JP2013234782A - Heat exchange unit - Google Patents
Heat exchange unit Download PDFInfo
- Publication number
- JP2013234782A JP2013234782A JP2012106334A JP2012106334A JP2013234782A JP 2013234782 A JP2013234782 A JP 2013234782A JP 2012106334 A JP2012106334 A JP 2012106334A JP 2012106334 A JP2012106334 A JP 2012106334A JP 2013234782 A JP2013234782 A JP 2013234782A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat medium
- heat exchanger
- connection body
- heating medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/20—Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、地中に埋設され又は液中に沈設され地中を流れる液体を介して地中の熱と熱交換を行う熱交換ユニットに関するものである。 The present invention relates to a heat exchange unit that performs heat exchange with heat in the ground via a liquid that is buried in the ground or is submerged in the liquid and flows in the ground.
地中の深部(例えば深さ5m以上)は年間を通じて温度がほぼ一定であり(例えば15℃)、外気と比べて夏は冷たく冬は暖かいという性質を有している。この性質を利用して地中からの採熱、或いは地中への放熱を行うため、地中に埋設する地中熱交換器が知られている。地中熱交換器はヒートポンプ,冷暖房装置,融雪装置等の負荷装置に接続され、負荷装置との間で空気,水,不凍液等の熱媒が循環され、負荷装置において熱媒から冷熱や温熱が取り出されることで大地熱が利用されるものである。
本願出願人が出願して特許された(特許文献1)には、少なくとも一部が螺旋状に形成され多条に複数並設されて内部を熱媒が流れる螺旋状流路と、下端が螺旋状流路の下端に接続され螺旋状流路の流路で囲まれる螺旋軸空間内に螺旋状流路の螺旋軸と略平行に配設され上端がヘッダで接続された地中熱媒流路と、螺旋状流路の間隔を保持する間隔保持部材と、を備え、該間隔保持部材が、環状に形成され地中熱媒流路が嵌挿又は嵌着される基部と、基部に延設されたアーム部と、アーム部の端部に形成され螺旋状流路が嵌着される嵌着部と、を備えた地中熱交換器熱交換器が開示されている。
The depth in the ground (for example, a depth of 5 m or more) has a substantially constant temperature throughout the year (for example, 15 ° C.), and has a property that it is colder in summer and warmer than winter. An underground heat exchanger embedded in the ground is known to collect heat from the ground using this property or to dissipate heat to the ground. The underground heat exchanger is connected to a load device such as a heat pump, an air conditioner, or a snow melting device, and a heat medium such as air, water, or antifreeze is circulated between the load devices. The earth heat is used by being taken out.
The applicant of the present application has filed and patented (Patent Document 1), at least a part of which is formed in a spiral shape and arranged in parallel in a plurality of lines, and a spiral flow path through which a heat medium flows, and a lower end spirally. A ground heat medium flow path that is connected to the lower end of the spiral flow path and is surrounded by the spiral flow path and is substantially parallel to the spiral axis of the spiral flow path and has an upper end connected by a header. And a gap holding member that holds the gap between the spiral flow paths, the gap holding member being formed in an annular shape, and a base part into which the underground heat medium flow path is inserted or fitted, and extending to the base part An underground heat exchanger heat exchanger is disclosed that includes an arm portion that is formed and a fitting portion that is formed at an end portion of the arm portion and into which a spiral flow path is fitted.
(特許文献1)の地中熱交換器は、螺旋状流路を有することにより、長尺(直管)状の流路を有する地中熱交換器と同等の伝熱面積を得るために必要な縦方向長さが、1/3〜1/20程度に短くなり、埋設する竪穴の深さや掘削溝等の長さを従来の1/3〜1/20程度にすることができるので、掘削コストを大幅に削減でき、また掘削量も少なく、掘削作業性、施工性に優れると共に、少量の充填材で竪穴や掘削溝等を埋め戻すことができ、埋め戻し作業性にも優れ、また埋め戻される際の充填材の圧力によって変形することがなく、局部的に過剰な応力が働き難いため、ピッチングが生じ難く、耐久性に優れ、さらに地中に熱媒の流路を均等に配置させることができ、熱交換斑が生じ難く、高い熱交換効率を維持できるものであった。
しかし、螺旋状流路の形成や間隔保持部材の取り付けなどに手間がかかると共に、地中熱交換器を埋設する地中の温度や必要な熱量に応じて、螺旋状流路の長さなどを変更することは難しく、組立作業性、設計自在性、汎用性に欠ける面があり、形状の簡素化、量産性の向上が望まれていた。
また、充填材による竪穴や掘削溝等の埋め戻し作業中やメンテナンスのための掘り起こし作業中に、地中熱交換器の螺旋状流路や間隔保持部材などに変形や破損などが発生するおそれがあり、施工性、耐久性の向上が望まれていた。
The underground heat exchanger of (Patent Document 1) is necessary to obtain a heat transfer area equivalent to that of the underground heat exchanger having a long (straight pipe) flow path by having a spiral flow path. The length in the vertical direction is shortened to about 1/3 to 1/20, and the depth of buried potholes and the length of excavation grooves can be reduced to about 1/3 to 1/20 of the conventional length. Costs can be significantly reduced, and the amount of excavation is small, excavation workability and workability are excellent, and potholes and excavation grooves can be backfilled with a small amount of filler, making it excellent in backfilling workability and filling. It is not deformed by the pressure of the filler when it is returned, and it is difficult for excessive stress to work locally, so that it is difficult for pitching to occur, it has excellent durability, and the heat medium flow path is evenly arranged in the ground In other words, heat exchange spots were hardly generated, and high heat exchange efficiency could be maintained.
However, it takes time to form a spiral channel and to attach a spacing member, and the length of the spiral channel can be adjusted according to the temperature of the ground where the underground heat exchanger is embedded and the amount of heat required. It is difficult to change, and there is a lack of assembly workability, design flexibility, and versatility, and it has been desired to simplify the shape and improve mass productivity.
In addition, there is a risk of deformation or breakage of the helical flow path or spacing member of the underground heat exchanger during backfilling work such as dredging holes and excavation grooves with fillers, and during excavation work for maintenance. Therefore, improvement in workability and durability was desired.
本発明は上記要望に応えるものであり、簡単な構成で、形状を簡素化することができ、組立、分解及び部分的な交換が容易で、量産性、メンテナンス性、保管性、搬送性に優れるだけでなく、長尺化が容易で、設計自在性、汎用性に優れると共に、熱交換器を確実に保護することができ、施工時やメンテナンス時に破損が発生することがなく、施工性、取扱い性、堅牢性に優れ、工期を短縮してコストダウンを図ることができ、地中を流れる地下水や地中に溜まった地下水(井戸水)、温泉水、油などの液体を介して熱交換を行うことにより、熱交換の効率性に優れ、地中の熱を有効に利用することができ、省エネルギー性、環境保護性に優れた熱交換ユニットの提供を目的とする。 The present invention meets the above demands, and can be simplified in configuration, simplified in shape, easily assembled, disassembled and partially replaced, and excellent in mass productivity, maintenance, storage, and transportability. In addition to being easy to lengthen, it is excellent in design flexibility and versatility, and it can protect the heat exchanger reliably, and there is no damage during construction or maintenance. It excels in performance and robustness, shortening the construction period and reducing costs, and exchanging heat through groundwater flowing underground, groundwater accumulated in the ground (well water), hot spring water, oil, and other liquids Accordingly, an object of the present invention is to provide a heat exchange unit that is excellent in heat exchange efficiency, can effectively use heat in the ground, and is excellent in energy saving and environmental protection.
上記課題を解決するために、本発明の熱交換ユニットは以下の構成を有している。
請求項1に記載の熱交換ユニットは、地中に埋設され又は液中に沈設され地中を流れる液体を介して地中の熱と熱交換を行う熱交換ユニットであって、地中に埋設され又は液中に沈設された通液性の筒型のケーシング部と、前記ケーシング部に内挿される熱交換器と、を備え、前記熱交換器が、(a)熱媒が流入する熱媒入口部と、前記熱媒入口部から流入した前記熱媒が流出する複数の熱媒流出部と、を有する上部接続体と、(b)上端部が前記上部接続体の前記熱媒流出部にそれぞれ着脱自在に接続され前記熱媒流出部から流出する前記熱媒を流下させる複数の採放熱管と、(c)各々の前記採放熱管の下端部が着脱自在に接続され前記採放熱管から流出する前記熱媒が流入する熱媒流入部と、各々の前記熱媒流入部から流入する前記熱媒を集合させて排出する熱媒出口部と、を有する下部接続体と、(d)下端部が前記下部接続体の前記熱媒出口部に接続され前記熱媒出口部から流出する前記熱媒を環流する戻り管と、を備えた構成を有している。
この構成により、以下のような作用を有する。
(1)地中に埋設され又は液中に沈設された通液性の筒型のケーシング部と、ケーシング部に内挿される熱交換器を有するので、熱交換器をケーシング部で保護して熱交換器の破損を防止することができ、堅牢性に優れると共に、通液性のケーシング部を通して地下水や井戸水などの液体がケーシング部の内と外を自由に移動することができ、地下水(井戸水)などの液体と熱交換器の採放熱管を流れる熱媒との間で確実に熱交換を行い、地中を流れる液体を介して大地の熱を有効利用することができ、熱交換の確実性、効率性に優れる。
(2)熱交換器が内挿されるケーシング部が通液性を有するので、ケーシング部の内部に土砂や充填材などを充填する必要がなく、施工性に優れると共に、熱交換器に不具合が発生した場合には、熱交換器のみを容易に地上に取り出して修理や交換作業を行うことができ、メンテナンス性に優れる。
(3)熱交換器がケーシング部に内挿されるので、地中に埋設する際に、熱交換器が周囲の土砂などと直接接触することがなく、また、埋設後にケーシング部の内部に土砂や充填材などを埋め戻す必要もないので、施工時に熱交換器が破損することがなく、施工性、取扱い性に優れる。
(4)熱媒が流入する熱媒入口部と、熱媒入口部から流入した熱媒が流出する複数の熱媒流出部と、を有する上部接続体と、上端部が上部接続体の熱媒流出部にそれぞれ着脱自在に接続され熱媒流出部から流出する熱媒を流下させる複数の採放熱管を備えていることにより、上部接続体に流入する熱媒を複数の採放熱管に分岐させて流下させることができ、採放熱の面積を拡大することができるので、ケーシング部の内部を流動する液体との間で効率的に熱交換を行うことができ、大地熱利用の効率性に優れる。
(5)各々の採放熱管から流出する熱媒が流入する熱媒流入部と、各々の熱媒流入部から流入する熱媒を集合させて排出する熱媒出口部と、を有する下部接続体と、下端部が下部接続体の熱媒出口部に接続され熱媒出口部から流出する熱媒を環流する戻り管を備えていることにより、各々の採放熱管を通過して採放熱を行った熱媒をまとめて戻り管から流出させることができ、短時間で素早く環流させることができるので、戻り管を通過する間の熱交換を低く抑えることができ、大地熱の有効利用性に優れる。
(6)各々の採放熱管の上端部及び下端部がそれぞれ上部接続体の熱媒流出部及び下部接続体の熱媒流入部に着脱自在に接続されるので、組立及び分解が容易で、量産性に優れると共に、採放熱管の交換が容易でメンテナンス性に優れるだけでなく、地中又は地中を流れる液体の温度や必要な熱量に応じて、採放熱管の長さを選択することができ、長尺化が容易で、設計自在性に優れる。
(7)上部接続体及び下部接続体に対して各々の採放熱管が着脱自在に接続されるので、破損などの不具合が発生した採放熱管のみを交換することができ、メンテナンス性、省資源性に優れる。
(8)複数の採放熱管を有することにより、採放熱管の表面積を増加させ、各々の採放熱管を流れる熱媒の流速を落とすことができ、熱媒が採放熱管の中を時間をかけて流下するので、ケーシング部内の液体との間で十分に熱交換を行うことができ、熱交換の効率性、大地熱の有効利用性に優れる。
In order to solve the above problems, the heat exchange unit of the present invention has the following configuration.
The heat exchange unit according to
This configuration has the following effects.
(1) Since it has a liquid-permeable cylindrical casing part buried in the ground or submerged in the liquid and a heat exchanger inserted in the casing part, the heat exchanger is protected by the casing part and heated. It is possible to prevent breakage of the exchanger, it is excellent in robustness, and liquid such as ground water and well water can freely move in and out of the casing part through the liquid-permeable casing part, and ground water (well water) Heat exchange between the liquid such as the heat exchanger and the heat transfer medium that flows through the heat-dissipating pipe of the heat exchanger, and the heat of the earth can be used effectively through the liquid flowing in the ground. Excellent efficiency.
(2) Since the casing part in which the heat exchanger is inserted has liquid permeability, there is no need to fill the casing part with earth and sand, fillers, etc. In such a case, only the heat exchanger can be easily taken out and repaired or exchanged, and the maintenance is excellent.
(3) Since the heat exchanger is inserted into the casing part, when embedded in the ground, the heat exchanger does not come into direct contact with the surrounding earth and sand. Since there is no need to refill the filler, the heat exchanger is not damaged during construction, and the construction and handling properties are excellent.
(4) An upper connection body having a heat medium inlet portion into which a heat medium flows in and a plurality of heat medium outlet portions from which the heat medium flowing in from the heat medium inlet portion flows out, and a heat medium whose upper end portion is an upper connection body. A plurality of heat collecting / radiating pipes that are detachably connected to the outflow part and flow down the heat medium flowing out from the heat medium outflow part, respectively, thereby branching the heat medium flowing into the upper connection body into a plurality of heat collecting / discharging pipes. Since the area of heat collection / dissipation can be expanded, heat can be exchanged efficiently with the liquid flowing inside the casing, and the efficiency of using geothermal heat is excellent. .
(5) A lower connector having a heat medium inflow portion into which a heat medium flowing out from each heat collecting and radiating pipe flows and a heat medium outlet portion that collects and discharges the heat medium flowing in from each heat medium inflow portion And a return pipe that is connected to the heat medium outlet of the lower connector and circulates the heat medium flowing out of the heat medium outlet. The heat transfer can be made to flow out of the return pipe in a short time, and can be quickly circulated in a short time, so heat exchange while passing through the return pipe can be kept low, and the effective use of earth heat is excellent. .
(6) Since the upper and lower ends of each heat collection and radiating tube are detachably connected to the heat medium outflow part of the upper connection body and the heat medium inflow part of the lower connection body, respectively, assembly and disassembly are easy and mass production is possible. In addition to exchanging the heat collecting and radiating tube, the length of the heat collecting and radiating tube can be selected according to the temperature of the liquid flowing in the ground or the ground and the amount of heat required. It is easy to lengthen and has excellent design flexibility.
(7) Since each heat-dissipating tube is detachably connected to the upper connector and the lower connector, only the heat-dissipating tube in which a malfunction such as breakage has occurred can be replaced. Excellent in properties.
(8) By having a plurality of heat collecting and radiating tubes, the surface area of the heat collecting and radiating tubes can be increased, and the flow rate of the heat medium flowing through each of the heat collecting and radiating tubes can be reduced. Therefore, heat can be sufficiently exchanged with the liquid in the casing portion, and the efficiency of heat exchange and the effective utilization of ground heat are excellent.
ここで、熱交換ユニットを設置する場所は、地熱を直接的或いは間接的に利用できる場所であればよい。大地に竪穴などを掘削して設置する以外に、石油の採掘のために油層に向かって掘られた坑井や井戸を利用して設置することや温泉水の中に設置することもできる。また、生ごみその他を利用して製造する堆肥の中に埋設すれば、堆肥の製造過程で発生する発酵熱も有効利用することができる。
ケーシング部は内挿される熱交換器を保護できるものであればよく、材質はコンクリート、鉄やステンレス等の金属、合成樹脂等から、適宜、選択することができる。ケーシング部として、構造物の建設に用いられる支持杭や摩擦杭を利用することもできる。この場合、杭打ち時に、熱交換器を埋設することができるので、別途、竪穴などを掘削する必要がなく、施工性に優れ、工期を短縮することができる。特に、ケーシング部としてコンクリートパイルを用いた場合、容易に地中に埋設することができ、施工性、耐久性に優れる。
ケーシング部は、通液性を有するものであればよく、コンクリート、金属、合成樹脂等で形成された周壁部に通液孔を設けたり、スリットを入れたりして通水性を付与してもよいし、金属製や合成樹脂製の繊維を編んで通液性を有する網目状の周壁部を形成してもよい。
周壁部に形成する通液孔の孔径、スリットの幅、網目の大きさなどは、ケーシング部の大きさ(直径)やケーシング部を埋設する場所の地質などによっても異なるが、一般的な地盤の場合は、3mm〜100mmに形成することが好ましい。これらの寸法が3mmより小さくなるにつれ、目詰まりが発生し易く、液体の流れが悪くなって、熱交換効率が低下し易くなる傾向があり、100mmより大きくなるにつれ、ケーシング部の内部に土砂やヘドロなどが侵入し、ケーシング部の内部を液体が流動し難くなって、熱交換効率が低下し易くなる傾向があり、いずれも好ましくない。
尚、通液孔やスリットの数や配置は、ケーシング部の剛性や耐久性を損なわない範囲で適宜、選択することができる。
Here, the place where the heat exchange unit is installed may be a place where geothermal heat can be used directly or indirectly. In addition to excavating and setting up pits in the ground, it can also be installed using wells or wells dug toward the oil reservoir for oil extraction or in hot spring water. Moreover, if it embed | buries in the compost | manufacturing manufactured using garbage etc., the fermentation heat which generate | occur | produces in the manufacturing process of compost can also be used effectively.
The casing part should just be what can protect the heat exchanger inserted, and a material can be suitably selected from metals, such as concrete, iron, and stainless steel, a synthetic resin, etc. As the casing portion, a support pile or a friction pile used for construction of a structure can be used. In this case, since the heat exchanger can be embedded at the time of pile driving, there is no need to separately excavate a hole or the like, and the workability is excellent and the construction period can be shortened. In particular, when a concrete pile is used as the casing part, it can be easily embedded in the ground, and is excellent in workability and durability.
The casing portion only needs to have liquid permeability, and may be provided with water permeability by providing a liquid passage hole in a peripheral wall portion formed of concrete, metal, synthetic resin, or by inserting a slit. Then, a mesh-like peripheral wall portion having liquid permeability may be formed by knitting metal or synthetic resin fibers.
The hole diameter, slit width, mesh size, etc. of the liquid passage hole formed in the peripheral wall part vary depending on the size (diameter) of the casing part and the geology of the place where the casing part is embedded, but the general ground In the case, it is preferable to form the film in a range of 3 mm to 100 mm. As these dimensions become smaller than 3 mm, clogging tends to occur, the liquid flow tends to deteriorate, and the heat exchange efficiency tends to decrease. There is a tendency for sludge or the like to enter, making it difficult for the liquid to flow through the inside of the casing portion, which tends to reduce the heat exchange efficiency.
In addition, the number and arrangement | positioning of a liquid flow hole and a slit can be suitably selected in the range which does not impair the rigidity and durability of a casing part.
採放熱管及び戻り管路としては、ポリプロピレン,ポリブテン,ポリアミド等の合成樹脂、チタン,ステンレス等の金属等で形成されたものが好適に用いられる。なかでも、合成樹脂製のものは成形性に優れると共に、腐食し難く、耐久性に優れるので、好ましい。また、採放熱管には単なる円筒管を用いてもよいが、波付管(蛇腹管)を用いた場合、組立前の採放熱管を巻回してコイル状に束ねて搬送することができ、長尺化が容易で、搬送性、施工性に優れる。
上部接続体及び下部接続体の材質は、採放熱管や戻り管路と同様のものが好適に用いられる。
上部接続体の熱媒流出部及び下部接続体の熱媒流入部は、それぞれ採放熱管の上端部及び下端部と着脱自在に接続できるものであればよい。嵌着や螺着などにより直接接続してもよいし、継手等を介して接続してもよいが、螺着によって接続するものが固定の確実性、安定性に優れ、好適に用いられる。尚、螺着によって接続する場合、どちらが雄螺子でも雌螺子でもよいが、袋ナットを用いることにより、組立及び分解作業が容易で施工性に優れる。
採放熱管の管径、数、配置は適宜、選択することができる。例えば、複数の採放熱管を円周上に配置してもよいし、直線状に配置してもよい。また、採放熱管の長さは、熱交換ユニットを埋設する地中の温度や必要な熱量に応じて、適宜、選択することができるが、予め様々な長さの採放熱管を用意する代わりに、所定の長さの採放熱管を必要に応じて連結することにより、汎用性、量産性に優れる。
As the heat collection and return pipe and the return pipe, those formed of a synthetic resin such as polypropylene, polybutene, and polyamide, or a metal such as titanium or stainless steel are preferably used. Among these, those made of synthetic resin are preferable because they are excellent in moldability, hardly corrode, and excellent in durability. In addition, a simple cylindrical tube may be used as the heat collecting and radiating tube, but when a corrugated tube (bellows tube) is used, the heat collecting and radiating tube before assembly can be wound and bundled in a coil shape and conveyed. It is easy to lengthen and excels in transportability and workability.
As the material of the upper connection body and the lower connection body, the same materials as those of the heat-radiating pipe and the return pipe line are preferably used.
The heat medium outflow portion of the upper connection body and the heat medium inflow portion of the lower connection body only need to be detachably connected to the upper end portion and the lower end portion of the heat collecting and radiating pipe, respectively. It may be connected directly by fitting or screwing, or may be connected via a joint or the like, but those connected by screwing are excellent in fixing reliability and stability and are preferably used. In addition, when connecting by screwing, whichever may be a male screw or a female screw, the use of a cap nut makes it easy to assemble and disassemble and has excellent workability.
The tube diameter, number, and arrangement of the heat collecting and radiating tubes can be selected as appropriate. For example, a plurality of heat collecting and radiating tubes may be arranged on the circumference or may be arranged in a straight line. In addition, the length of the heat collecting / radiating tube can be appropriately selected according to the temperature in the ground in which the heat exchange unit is buried and the required amount of heat, but instead of preparing the heat collecting / radiating tubes of various lengths in advance. Moreover, it is excellent in versatility and mass-productivity by connecting the heat-radiating pipes of a predetermined length as required.
請求項2に記載の発明は、請求項1に記載の熱交換ユニットであって、前記熱交換器の前記上部接続体が中央部に貫通孔を有する中空のリング状に形成され、前記熱交換器の前記戻り管の上端側が前記上部接続体の前記貫通孔に挿通されて貫設される構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)熱交換器の上部接続体が中央部に貫通孔を有する中空のリング状に形成され、熱交換器の戻り管の上端側が上部接続体の貫通孔に挿通されて貫設されるので、採放熱管の長さに応じて、上部接続体を戻り管の長手方向に沿って上下方向に容易に移動させることができ、採放熱管の長さによらず、上部接続体や下部接続体を共通化することができ、汎用性、量産性、組立作業性に優れる。
Invention of
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Since the upper connection body of the heat exchanger is formed in a hollow ring shape having a through hole in the center portion, and the upper end side of the return pipe of the heat exchanger is inserted through the through hole of the upper connection body and penetrated. Depending on the length of the heat-dissipating tube, the upper connector can be easily moved up and down along the longitudinal direction of the return tube, regardless of the length of the heat-dissipating tube. The body can be made common, and it excels in versatility, mass productivity, and assembly workability.
ここで、上部接続体の貫通孔は、戻り管を挿通することができればよく、必ずしも戻り管の外形と同形状又は相似形状である必要はない。尚、貫通孔の形状を戻り管の外形とほぼ同等か戻り管の外形よりもやや大き目に形成した場合、戻り管によって上部接続体のがたつきや位置ずれを抑えることができ、採放熱管や戻り管の変形が発生し難く、耐久性、施工性に優れる。 Here, the through-hole of the upper connecting member is not limited to the same shape as or similar to the outer shape of the return tube, as long as the return tube can be inserted. In addition, when the shape of the through hole is formed to be approximately the same as the outer shape of the return pipe or slightly larger than the outer shape of the return pipe, the return pipe can suppress the rattling and displacement of the upper connection body. In addition, the return pipe is not easily deformed and has excellent durability and workability.
請求項3に記載の発明は、請求項1又は2に記載の熱交換ユニットであって、前記熱交換器の前記戻り管が前記熱交換器の前記下部接続体の中央部に立設され、前記熱交換器の複数の前記採放熱管が前記戻り管の外周部に配設される構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)熱交換器の戻り管が熱交換器の下部接続体の中央部に立設され、熱交換器の複数の採放熱管が戻り管の外周部に配設されることにより、採放熱管と、ケーシング部の内部を流動する液体と、の間の熱交換が促進されると共に、戻り管と液体との間の熱交換が低く抑えられ、液体が大地から吸収した熱を無駄なく有効に利用して熱媒の加熱又は冷却を行うことができ、熱交換の効率性、大地熱の有効利用性に優れる。
Invention of
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) The heat exchanger's return pipe is erected at the center of the lower connector of the heat exchanger, and the heat exchanger's plurality of heat extraction / radiation pipes are arranged on the outer periphery of the return pipe, thereby collecting / dissipating heat. Heat exchange between the pipe and the liquid flowing inside the casing is promoted, and heat exchange between the return pipe and the liquid is kept low, and the heat absorbed by the liquid from the ground is effectively used. It can be used for heating or cooling of the heat medium, and is excellent in the efficiency of heat exchange and the effective utilization of ground heat.
ここで、複数の採放熱管を同一円周上に配置したり、等角度間隔で配置したりすることにより、各々の採放熱管における採放熱量(=熱媒の温度)を略均一とすることができる。これにより、各々の採放熱管から熱媒流入部を通って下部接続体に流入する熱媒を集合させて熱媒出口部から排出し、戻り管を通して環流する際に、熱媒に温度斑がなく、流れがスムーズで、熱媒の循環効率性に優れる。 Here, by arranging a plurality of heat collecting / radiating tubes on the same circumference or at equal angular intervals, the heat collecting / dissipating amount (= temperature of the heat medium) in each of the heat collecting / radiating tubes is made substantially uniform. be able to. As a result, the heat medium flowing into the lower connector through each heat collecting / radiating pipe through the heat medium inflow part is collected and discharged from the heat medium outlet part, and when the heat medium is circulated through the return pipe, temperature spots are generated in the heat medium. The flow is smooth and the circulation efficiency of the heat medium is excellent.
請求項4に記載の発明は、請求項1乃至3の内いずれか1項に記載の熱交換ユニットであって、前記熱交換器の各々の前記採放熱管が、複数の管体を直列に連結して形成される構成を有している。
この構成により、請求項1乃至3の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)熱交換器の各々の採放熱管が、複数の管体を直列に連結して形成されるので、採放熱管の長さを自在に調整することができ、組立、分解の作業性、設計の自在性に優れる。
(2)複数の管体を直列に連結して採放熱管を形成するので、破損などの不具合が発生した場合には、管体の部分的な交換で対応することができ、メンテナンス性、省資源性に優れる。
(3)施工前は短い管体の状態で搬送し、現場で連結して長尺状の採放熱管を形成することができるので、搬送性、量産性に優れる。
Invention of
With this configuration, in addition to the action obtained in any one of
(1) Since each heat collecting / radiating pipe of the heat exchanger is formed by connecting a plurality of pipes in series, the length of the heat collecting / radiating pipe can be freely adjusted, and assembly and disassembly workability Excellent design flexibility.
(2) Since multiple pipes are connected in series to form a heat-dissipating pipe, in the event of problems such as breakage, it can be dealt with by partial replacement of the pipe. Excellent resource.
(3) Since it can be transported in the state of a short tube before construction and connected in the field to form a long heat-dissipating tube, it is excellent in transportability and mass productivity.
ここで、管体は採放熱管を分割したものに相当し、材質や形状などは採放熱管と同様である。管体同士は、直接接続してもよいし、継手等を介して接続してもよい。特に、螺着によって接続するものは、固定の確実性、安定性に優れるが、袋ナットを用いた場合、組立及び分解作業が容易で施工性に優れる。 Here, the tube body corresponds to a part obtained by dividing the heat collecting / radiating tube, and the material and shape thereof are the same as those of the heat collecting / radiating tube. Tubes may be connected directly or via a joint or the like. In particular, those connected by screwing are excellent in fixing reliability and stability, but when a cap nut is used, assembly and disassembly work is easy and workability is excellent.
請求項5に記載の発明は、請求項4に記載の熱交換ユニットであって、前記複数の管体の連結部に配設される中間接続体を有し、前記中間接続体が、上流側の前記管体の下端部が着脱自在に接続される流入側接続部と、下流側の前記管体の上端部が着脱自在に接続される流出側接続部と、前記戻り管が挿通される挿通孔と、を備えた構成を有している。
この構成により、請求項4で得られる作用に加え、以下のような作用が得られる。
(1)複数の管体の連結部に配設される中間接続体が、上流側の管体の下端部が着脱自在に接続される流入側接続部と、下流側の管体の上端部が着脱自在に接続される流出側接続部を有することにより、複数の管体を中間接続体で容易に連結することができ、複数の採放熱管を中間接続体により一体化し、補強することができるので、長尺化を図ることができ、施工性、耐久性に優れる。
(2)複数の管体の連結部に配設される中間接続体が、戻り管が挿通される挿通孔を有することにより、中間接続体を戻り管の長手方向の任意の位置に配置することができ、設計自在性に優れる。
(3)中間接続体の挿通孔に戻り管が挿通されることにより、複数の採放熱管と戻り管を固定して一体に取り扱うことができ、埋設作業が容易で、施工性に優れる。
Invention of
With this configuration, in addition to the operation obtained in the fourth aspect, the following operation can be obtained.
(1) An intermediate connection body disposed in a connecting portion of a plurality of tube bodies includes an inflow side connection portion in which a lower end portion of an upstream tube body is detachably connected and an upper end portion of a downstream tube body By having an outflow side connection part that is detachably connected, a plurality of tubes can be easily connected by an intermediate connector, and a plurality of heat collecting tubes can be integrated and reinforced by the intermediate connector. Therefore, the length can be increased and the workability and durability are excellent.
(2) The intermediate connection body disposed at the connecting portion of the plurality of tube bodies has an insertion hole through which the return pipe is inserted, whereby the intermediate connection body is disposed at an arbitrary position in the longitudinal direction of the return pipe. It is excellent in design flexibility.
(3) Since the return pipe is inserted into the insertion hole of the intermediate connection body, the plurality of heat-radiating / radiating pipes and the return pipe can be fixed and handled integrally, so that the burying work is easy and the workability is excellent.
ここで、中間接続体の材質は、採放熱管や戻り管路と同様のものが好適に用いられる。また、中間接続体の流入側接続部及び流出側接続部は、上部接続体の熱媒流出部や下部接続体の熱媒流入部と同様のものが好適に用いられる。中間接続体は、上部接続体と同様に、中空のリング状に形成したものが好ましく、その挿通孔は、上部接続体の貫通孔と同様に形成することができる。 Here, the material of the intermediate connection body is preferably the same as that of the heat-radiating pipe and the return pipe. In addition, as the inflow side connection portion and the outflow side connection portion of the intermediate connection body, those similar to the heat medium outflow portion of the upper connection body and the heat medium inflow portion of the lower connection body are preferably used. The intermediate connection body is preferably formed in a hollow ring shape like the upper connection body, and the insertion hole can be formed in the same manner as the through hole of the upper connection body.
以上のように構成された本発明の熱交換ユニットによれば、以下のような効果が得られる。
請求項1に記載の発明によれば、以下のような効果を有する。
(1)熱交換器をケーシング部で保護して熱交換器の破損を防止することができ、堅牢性に優れ、通液性のケーシング部を通して地下水や井戸水などの液体がケーシング部の内と外を自由に移動することができ、地下水(井戸水)などの液体と熱交換器の採放熱管を流れる熱媒との間で確実に熱交換を行うことにより、地中を流れる液体を介して大地の熱を有効利用することができる熱交換の確実性、効率性に優れた熱交換ユニットを提供することができる。
According to the heat exchange unit of the present invention configured as described above, the following effects can be obtained.
According to invention of
(1) The heat exchanger can be protected by the casing part to prevent the heat exchanger from being damaged, and liquids such as ground water and well water can be passed inside and outside the casing part through the casing part that has excellent robustness and liquid permeability. It is possible to move freely, and by exchanging heat reliably between the liquid such as ground water (well water) and the heat medium flowing through the heat extraction and radiating pipe of the heat exchanger, Thus, it is possible to provide a heat exchange unit that can effectively use the heat of the heat exchange and is excellent in heat exchange reliability and efficiency.
請求項2に記載の発明によれば、請求項1の効果に加え、以下のような効果を有する。
(1)採放熱管の長さに応じて、上部接続体を戻り管の長手方向に沿って上下方向に容易に移動させることができ、採放熱管の長さによらず、上部接続体や下部接続体を共通化することができる汎用性、量産性、組立作業性に優れた熱交換ユニットを提供することができる。
According to invention of
(1) The upper connecting body can be easily moved in the vertical direction along the length of the return pipe according to the length of the heat collecting / radiating pipe. It is possible to provide a heat exchanging unit excellent in versatility, mass productivity, and assembling workability in which a lower connection body can be shared.
請求項3に記載の発明によれば、請求項1又は2の効果に加え、以下のような効果を有する。
(1)採放熱管と、ケーシング部の内部を流動する液体と、の間の熱交換が促進されると共に、戻り管と、ケーシング部の内部を流動する液体と、の間の熱交換が低く抑えられ、液体が大地から吸収した熱を無駄なく有効に利用して熱媒の加熱又は冷却を行うことができる熱交換の効率性、大地熱の有効利用性に優れた熱交換ユニットを提供することができる。
According to invention of
(1) Heat exchange between the heat collecting and radiating pipe and the liquid flowing inside the casing part is promoted, and heat exchange between the return pipe and the liquid flowing inside the casing part is low. Provided is a heat exchanging unit excellent in heat exchanging efficiency and effective use of earth heat, in which heat can be heated or cooled by effectively using the heat absorbed by the liquid from the earth without being wasted. be able to.
請求項4に記載の発明によれば、請求項1乃至3の内いずれか1項の効果に加え、以下のような効果を有する。
(1)採放熱管の長さを自在に調整することができ、破損などの不具合が発生した場合には、管体の部分的な交換で対応することができる組立、分解の作業性、設計の自在性、メンテナンス性、省資源性に優れた熱交換ユニットを提供することができる。
According to invention of
(1) The length of the heat-collecting / extracting tube can be adjusted freely. When troubles such as breakage occur, assembly and disassembly workability and design can be handled by partial replacement of the tube. It is possible to provide a heat exchange unit excellent in flexibility, maintenance, and resource saving.
請求項5に記載の発明によれば、請求項4の効果に加え、以下のような効果を有する。
(1)複数の管体を中間接続体で容易に連結することができ、複数の採放熱管を中間接続体により一体化して補強し、容易に長尺化を図ることができる施工性、耐久性に優れた熱交換ユニットを提供することができる。
According to invention of
(1) Multiple pipes can be easily connected with an intermediate connector, and multiple heat-dissipating tubes are integrated and reinforced with the intermediate connector, making it easy to lengthen the workability and durability It is possible to provide a heat exchange unit that is excellent in performance.
以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。尚、本発明の技術的範囲は本実施の形態に限定されるものではない。
(実施の形態1)
実施の形態1における熱交換ユニットについて説明する。
図1は実施の形態1における熱交換ユニットを示す側面模式図であり、図2は実施の形態1における熱交換ユニットに用いるケーシング部を示す要部模式斜視図であり、図3(a)は図1のA−A線矢視断面模式図であり、図3(b)は図1のB−B線矢視断面模式図であり、図4は図1のC−C線矢視断面模式図である。
図1中、1は実施の形態1における熱交換ユニット、1aは後述するケーシング部10に内挿された熱交換ユニット1の熱交換器、2は中空のリング状に形成された熱交換器1aの上部接続体、2aは上部接続体2の上面側に形成され熱媒が流入する熱媒入口部、2bは上部接続体2の下面側に形成され熱媒入口部2aから流入した熱媒が流出する複数の熱媒流出部、2cは熱媒流出部2bの外周に形設された雄螺子部、3は上部接続体2の中央部に形成された貫通孔、4はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製の波付管で形成された複数の管体4aを連結した熱交換器1aの採放熱管、4bは管体4aの上端部に配設され上部接続体2の熱媒流出部2bの雄螺子部2cや後述する中間接続体6の流出側接続部6bの雄螺子部6cに着脱自在に螺着される袋ナット状の上端接続部、4cは管体4aの下端部に配設され後述する下部接続体5の熱媒流入部5aの雄螺子部5bや中間接続体6の流入側接続部6aの雄螺子部6cに着脱自在に螺着される袋ナット状の下端接続部、5は中空の円板状に形成された熱交換器1aの下部接続体、5aは下部接続体5の上面側に形成され採放熱管4を流下した熱媒が流入する熱媒流入部、5bは熱媒流入部5aの外周に形設された雄螺子部、5cは下部接続体5の上面側中央部に形成され各々の熱媒流入部5aから流入する熱媒を集合させて排出する熱媒出口部、6は中空のリング状に形成され管体4aの連結部に配設される熱交換器1aの中間接続体、6aは中間接続体6の上面側に形成され上流側の管体4aを流下した熱媒が流入する複数の流入側接続部、6bは中間接続体6の下面側に形成され流入側接続部6aから流入した熱媒が流出する流出側接続部、6cは流入側接続部6a及び流出側接続部6bの外周に形設された雄螺子部、7は中間接続体6の中央部に形成された挿通孔、8はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂やチタン等の金属で形成され下端部が下部接続体5の熱媒出口部5cに接続され上端側及び長手方向の途中が上部接続体2の貫通孔3及び中間接続体6の挿通孔7に挿通されて貫設され熱媒出口部5cから流出する熱媒を環流する熱交換器1aの戻り管、9は上部接続体2の熱媒入口部2aに接続され熱交換器1aに熱媒を供給する熱媒供給管、10はコンクリートパイルを用いた熱交換ユニット1のケーシング部、10aはケーシング部10の周壁に形成された複数の通液孔である。
尚、図1においては、説明の都合上、一本の採放熱管4のみを示し、その外の採放熱管4を省略したが、上部接続体2の各々の熱媒流出部2bと下部接続体5の各々の熱媒流入部5aとの間は、それぞれ管体4aを連結した採放熱管4で接続される。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. The technical scope of the present invention is not limited to this embodiment.
(Embodiment 1)
The heat exchange unit in
FIG. 1 is a schematic side view showing a heat exchange unit according to the first embodiment, FIG. 2 is a schematic perspective view showing a main part of a casing used for the heat exchange unit according to the first embodiment, and FIG. FIG. 3 is a schematic cross-sectional view taken along line AA in FIG. 1, FIG. 3B is a schematic cross-sectional view taken along line BB in FIG. 1, and FIG. 4 is a schematic cross-sectional view taken along line CC in FIG. FIG.
In FIG. 1, 1 is a heat exchange unit in the first embodiment, 1a is a heat exchanger of a
In FIG. 1, for convenience of explanation, only one heat collecting / radiating
本実施の形態では、図2に示すように、コンクリートパイルの周壁部に複数の通液孔10aを形成して通液性を付与しケーシング部10に用いた。これにより、熱交換ユニット1を地中に埋設する場合には、容易に設置作業を行うことができ、施工性に優れ、工期を短縮することができる。尚、ケーシング部10は内挿される熱交換器1aを保護できるものであればよく、材質としてはコンクリート以外にも鉄やステンレス等の金属、合成樹脂等を用いることができる。
通液孔10aの孔径は3mm〜100mmに形成した。通液孔10aの孔径が3mmより小さくなるにつれ、目詰まりが発生し易く、液体(地下水等)の流れが悪くなって、熱交換効率が低下し易くなる傾向があり、100mmより大きくなるにつれ、ケーシング部10の内部に土砂やヘドロなどが侵入し、ケーシング部10の内部を液体が流動し難くなって、熱交換効率が低下し易くなる傾向があることがわかったためである。通液孔10aの孔径を3mm〜100mmにすることにより、地下水等の流水性に優れ、熱交換効率を向上させることができる。
尚、通液孔10aの孔径は同一である必要はなく、異なる孔径の通液孔10aを組み合わせてもよい。
また、通液孔10aの数や配置は、ケーシング部10の剛性や耐久性を損なわない範囲で適宜、選択することができる。本実施の形態では、図2に示すように通液孔10aをランダムに配置したが、規則的に配置してもよい。また、ケーシング部10の周壁部に通液孔10aを形成する代わりに、スリットを入れてもよい。スリットは、幅方向の寸法を通液孔10aの孔径と同等の3mm〜100mmとすることにより、通液孔10aと同様の作用・効果が得られる。尚、スリットは、ケーシング部10の長さ方向と平行に形成してもよいし、長さ方向に対して傾斜させて形成してもよい。
また、本実施の形態のようにケーシング部10の周壁部に後から通液孔10aを形成したり、スリットを形成したりする代わりに、初めからポーラス状(多孔質性)の材質でケーシング部10を形成したり、金属製や合成樹脂製の繊維を編んで通液性を有する網目状の周壁部を形成したりした場合は、通液孔10aやスリットの加工を省略することができる。
In the present embodiment, as shown in FIG. 2, a plurality of liquid passage holes 10 a are formed in the peripheral wall portion of the concrete pile to impart liquid permeability and used for the
The hole diameter of the
In addition, the hole diameter of the
Moreover, the number and arrangement | positioning of the
Moreover, instead of forming the
本実施の形態では、図3(a)及び図4に示すように、上部接続体2の貫通孔3及び中間接続体6の挿通孔7の形状を戻り管8の外形よりもやや大き目の円形に形成し、戻り管8を容易に挿通できるようにした。上部接続体2の貫通孔3及び中間接続体6の挿通孔7に戻り管8が挿通されることによって上部接続体2及び中間接続体6のがたつきや位置ずれを抑えることができる。また、これにより、埋設などの施工時に、採放熱管4や戻り管8の変形が発生し難く、耐久性、施工性に優れる。尚、上部接続体2の貫通孔3及び中間接続体6の挿通孔7は、戻り管8を挿通することができればよく、必ずしも戻り管8の外形と同形状又は相似形状である必要はない。
また、本実施の形態では、図3に示すように、複数の採放熱管4を同一円周上に等角度間隔で配置し、各々の採放熱管4における採放熱量(=熱媒の温度)が略均一となるようにした。これにより、各々の採放熱管4から熱媒流入部5aを通って下部接続体5に流入する熱媒を集合させて熱媒出口部5cから排出し、戻り管8を通して環流する際に、熱媒に温度斑がなく、流れがスムーズで、熱媒の循環効率性に優れる。
尚、採放熱管4の数や配置はこれに限定されるものではなく、適宜、選択することができる。
また、本実施の形態では、採放熱管4を構成する管体4aの連結部に中間接続体6を配設することにより、複数の採放熱管4を一体化し、耐久性を向上させたが、上部接続体2から下部接続体5までの距離が短い場合は、中間接続体6を用いず、上部接続体2と下部接続体5の間を管体4aで直接接続してもよい。尚、管体4aを複数の箇所で連結する場合、中間接続体6は、管体4aの全ての連結部に設ける必要はなく、その配置間隔は、適宜、選択することができる。また、中間接続体6を用いずに管体4a同士を接続することもできるが、その場合は、管体4a同士を直接接続してもよいし、継手を介して接続してもよい。
In the present embodiment, as shown in FIGS. 3A and 4, the shape of the through
Further, in the present embodiment, as shown in FIG. 3, a plurality of heat collecting / radiating
In addition, the number and arrangement | positioning of the heat collecting / radiating pipe |
Further, in the present embodiment, the
以上のように構成された実施の形態1における熱交換ユニットの使用方法について説明する。
実施の形態1における熱交換ユニット1は、大地に掘った孔に埋設するか或いは既存の坑井や地下水中(井戸の中)、温泉水中などに沈設する。熱交換器1aの採放熱管4及び戻り管8の周囲は、ケーシング部10で囲まれているが、周壁に複数の通液孔10aが形成されており、大地内を流動する地下水や井戸水などの液体がケーシング部10の内と外を自由に移動することができ、地下水(井戸水)などの液体と熱交換器1aとの間で直接熱交換を行うことができるので、ケーシング部10の内部にコンクリート,モルタル,土砂,土,砂,ケイ砂,廃シリコン等のケイ素粒等の充填材を充填しなくてもよい。
戻り管8及び熱媒供給管9の上端をヒートポンプ,冷暖房装置,融雪装置等の図示しない負荷装置に接続し、負荷装置で冷熱や温熱が熱交換された熱媒を熱媒供給管9から熱交換器1aの上部接続体2に供給する。熱媒は採放熱管4の上端から下端に向かって流下し、ケーシング部10の内部を流動する地下水(井戸水)などの液体を介して大地との間で熱交換を行う。熱交換を行った熱媒は、下部接続体5で集合して熱媒出口部5cから流出し、戻り管8によって負荷装置に環流される。このようにして熱媒は熱交換ユニット1と負荷装置の間を循環する。
The usage method of the heat exchange unit in
The
The upper ends of the
本発明の実施の形態1における熱交換ユニットによれば、以下のような作用が得られる。
(1)地中に埋設され又は液中に沈設された通液性の筒型のケーシング部と、ケーシング部に内挿される熱交換器を有するので、熱交換器をケーシング部で保護して熱交換器の破損を防止することができ、堅牢性に優れると共に、通液性のケーシング部を通して地下水や井戸水などの液体がケーシング部の内と外を自由に移動することができ、地下水(井戸水)などの液体と熱交換器の採放熱管を流れる熱媒との間で確実に熱交換を行い、地中を流れる液体を介して大地の熱を有効利用することができ、熱交換の確実性、効率性に優れる。
(2)熱交換器が内挿されるケーシング部が通液性を有するので、ケーシング部の内部に土砂や充填材などを充填する必要がなく、施工性に優れると共に、熱交換器に不具合が発生した場合には、熱交換器のみを容易に地上に取り出して修理や交換作業を行うことができ、メンテナンス性に優れる。
(3)熱交換器がケーシング部に内挿されるので、地中に埋設する際に、熱交換器が周囲の土砂などと直接接触することがなく、また、埋設後にケーシング部の内部に土砂や充填材などを埋め戻す必要もないので、施工時に熱交換器が破損することがなく、施工性、取扱い性に優れる。
(4)熱媒が流入する熱媒入口部と、熱媒入口部から流入した熱媒が流出する複数の熱媒流出部と、を有する上部接続体と、上端部が上部接続体の熱媒流出部にそれぞれ着脱自在に接続され熱媒流出部から流出する熱媒を流下させる複数の採放熱管を備えていることにより、上部接続体に流入する熱媒を複数の採放熱管に分岐させて流下させることができ、採放熱の面積を拡大することができるので、ケーシング部の内部を流動する液体との間で効率的に熱交換を行うことができ、大地熱利用の効率性に優れる。
(5)各々の採放熱管から流出する熱媒が流入する熱媒流入部と、各々の熱媒流入部から流入する熱媒を集合させて排出する熱媒出口部と、を有する下部接続体と、下端部が下部接続体の熱媒出口部に接続され熱媒出口部から流出する熱媒を環流する戻り管を備えていることにより、各々の採放熱管を通過して採放熱を行った熱媒をまとめて戻り管から流出させることができ、短時間で素早く環流させることができるので、戻り管を通過する間の熱交換を低く抑えることができ、大地熱の有効利用性に優れる。
(6)各々の採放熱管の上端部及び下端部がそれぞれ上部接続体の熱媒流出部及び下部接続体の熱媒流入部に着脱自在に接続されるので、組立及び分解が容易で、量産性に優れると共に、採放熱管の交換が容易でメンテナンス性に優れるだけでなく、地中又は地中を流れる液体の温度や必要な熱量に応じて、採放熱管の長さを選択することができ、長尺化が容易で、設計自在性に優れる。
(7)複数の採放熱管を有することにより、採放熱管の表面積を増加させ、各々の採放熱管を流れる熱媒の流速を落とすことができ、熱媒が採放熱管の中を時間をかけて流下するので、ケーシング部内の液体との間で十分に熱交換を行うことができ、熱交換の効率性、大地熱の有効利用性に優れる。
(8)熱交換器の上部接続体が中央部に貫通孔を有する中空のリング状に形成され、熱交換器の戻り管の上端側が上部接続体の貫通孔に挿通されて貫設されるので、採放熱管の長さに応じて、上部接続体を戻り管の長手方向に沿って上下方向に容易に移動させることができ、採放熱管の長さによらず、上部接続体や下部接続体を共通化することができ、汎用性、量産性、組立作業性に優れる。
(9)熱交換器の戻り管が熱交換器の下部接続体の中央部に立設され、熱交換器の複数の採放熱管が戻り管の外周部に配設されることにより、採放熱管と、ケーシング部の内部を流動する液体と、の間の熱交換が促進されると共に、戻り管と液体との間の熱交換が低く抑えられ、液体が大地から吸収した熱を無駄なく有効に利用して熱媒の加熱又は冷却を行うことができ、熱交換の効率性、大地熱の有効利用性に優れる。
(10)熱交換器の各々の採放熱管が、複数の管体を直列に連結して形成されるので、採放熱管の長さを自在に調整することができ、組立、分解の作業性、設計の自在性に優れる。
(11)複数の管体を直列に連結して採放熱管を形成するので、破損などの不具合が発生した場合には、管体の部分的な交換で対応することができ、メンテナンス性、省資源性に優れる。
(12)施工前は短い管体の状態で搬送し、現場で連結して長尺状の採放熱管を形成することができるので、搬送性、量産性に優れる。
(13)複数の管体の連結部に配設される中間接続体が、上流側の管体の下端部が着脱自在に接続される流入側接続部と、下流側の管体の上端部が着脱自在に接続される流出側接続部を有することにより、複数の管体を中間接続体で容易に連結することができ、複数の採放熱管を中間接続体により一体化し、補強することができるので、長尺化を図ることができ、施工性、耐久性に優れる。
(14)複数の管体の連結部に配設される中間接続体が、戻り管が挿通される挿通孔を有することにより、中間接続体を戻り管の長手方向の任意の位置に配置することができ、設計自在性に優れる。
(15)中間接続体の挿通孔に戻り管が挿通されることにより、複数の採放熱管と戻り管を固定して一体に取り扱うことができ、埋設作業が容易で、施工性に優れる。
According to the heat exchange unit in
(1) Since it has a liquid-permeable cylindrical casing part buried in the ground or submerged in the liquid and a heat exchanger inserted in the casing part, the heat exchanger is protected by the casing part and heated. It is possible to prevent breakage of the exchanger, it is excellent in robustness, and liquid such as ground water and well water can freely move in and out of the casing part through the liquid-permeable casing part, and ground water (well water) Heat exchange between the liquid such as the heat exchanger and the heat transfer medium that flows through the heat-dissipating pipe of the heat exchanger, and the heat of the earth can be used effectively through the liquid flowing in the ground. Excellent efficiency.
(2) Since the casing part in which the heat exchanger is inserted has liquid permeability, there is no need to fill the casing part with earth and sand, fillers, etc. In such a case, only the heat exchanger can be easily taken out and repaired or exchanged, and the maintenance is excellent.
(3) Since the heat exchanger is inserted into the casing part, when embedded in the ground, the heat exchanger does not come into direct contact with the surrounding earth and sand. Since there is no need to refill the filler, the heat exchanger is not damaged during construction, and the construction and handling properties are excellent.
(4) An upper connection body having a heat medium inlet portion into which a heat medium flows in and a plurality of heat medium outlet portions from which the heat medium flowing in from the heat medium inlet portion flows out, and a heat medium whose upper end portion is an upper connection body. A plurality of heat collecting / radiating pipes that are detachably connected to the outflow part and flow down the heat medium flowing out from the heat medium outflow part, respectively, thereby branching the heat medium flowing into the upper connection body into a plurality of heat collecting / discharging pipes. Since the area of heat collection / dissipation can be expanded, heat can be exchanged efficiently with the liquid flowing inside the casing, and the efficiency of using geothermal heat is excellent. .
(5) A lower connector having a heat medium inflow portion into which a heat medium flowing out from each heat collecting and radiating pipe flows and a heat medium outlet portion that collects and discharges the heat medium flowing in from each heat medium inflow portion And a return pipe that is connected to the heat medium outlet of the lower connector and circulates the heat medium flowing out of the heat medium outlet. The heat transfer can be made to flow out of the return pipe in a short time, and can be quickly circulated in a short time, so heat exchange while passing through the return pipe can be kept low, and the effective use of earth heat is excellent. .
(6) Since the upper and lower ends of each heat collection and radiating tube are detachably connected to the heat medium outflow part of the upper connection body and the heat medium inflow part of the lower connection body, respectively, assembly and disassembly are easy and mass production is possible. In addition to exchanging the heat collecting and radiating tube, the length of the heat collecting and radiating tube can be selected according to the temperature of the liquid flowing in the ground or the ground and the amount of heat required. It is easy to lengthen and has excellent design flexibility.
(7) By having a plurality of heat collecting and radiating tubes, the surface area of the heat collecting and radiating tubes can be increased, and the flow rate of the heat medium flowing through each of the heat collecting and radiating tubes can be reduced. Therefore, heat can be sufficiently exchanged with the liquid in the casing portion, and the efficiency of heat exchange and the effective utilization of ground heat are excellent.
(8) Since the upper connection body of the heat exchanger is formed in a hollow ring shape having a through hole at the center, and the upper end side of the return pipe of the heat exchanger is inserted through the through hole of the upper connection body and penetrated. Depending on the length of the heat-dissipating tube, the upper connector can be easily moved up and down along the longitudinal direction of the return tube, regardless of the length of the heat-dissipating tube. The body can be made common, and it excels in versatility, mass productivity, and assembly workability.
(9) The heat exchanger return pipe is erected at the center of the lower connector of the heat exchanger, and a plurality of heat collection / radiation pipes of the heat exchanger are arranged on the outer periphery of the return pipe, thereby collecting / dissipating heat. Heat exchange between the pipe and the liquid flowing inside the casing is promoted, and heat exchange between the return pipe and the liquid is kept low, and the heat absorbed by the liquid from the ground is effectively used. It can be used for heating or cooling of the heat medium, and is excellent in the efficiency of heat exchange and the effective utilization of ground heat.
(10) Since each heat collecting / radiating tube of the heat exchanger is formed by connecting a plurality of tubes in series, the length of the heat collecting / radiating tube can be freely adjusted, and workability of assembly and disassembly Excellent design flexibility.
(11) Since a plurality of tubes are connected in series to form a heat-dissipating tube, in the event of a failure such as breakage, it can be dealt with by partial replacement of the tube. Excellent resource.
(12) Since it can be transported in the state of a short tube before construction and connected on site to form a long heat-dissipating tube, it is excellent in transportability and mass productivity.
(13) An intermediate connection body disposed in a connecting portion of a plurality of tube bodies includes an inflow side connection portion in which a lower end portion of an upstream tube body is detachably connected, and an upper end portion of a downstream tube body. By having an outflow side connection part that is detachably connected, a plurality of tubes can be easily connected by an intermediate connector, and a plurality of heat collecting tubes can be integrated and reinforced by the intermediate connector. Therefore, the length can be increased and the workability and durability are excellent.
(14) The intermediate connection body disposed in the connecting portion of the plurality of tube bodies has an insertion hole through which the return pipe is inserted, whereby the intermediate connection body is disposed at an arbitrary position in the longitudinal direction of the return pipe. It is excellent in design flexibility.
(15) Since the return pipe is inserted into the insertion hole of the intermediate connection body, the plurality of heat-radiating / radiating pipes and the return pipe can be fixed and handled integrally, so that the burying work is easy and the workability is excellent.
本発明は、簡単な構成で、形状を簡素化することができ、組立、分解及び部分的な交換が容易で、量産性、メンテナンス性、保管性、搬送性に優れるだけでなく、長尺化が容易で、設計自在性、汎用性に優れると共に、熱交換器を確実に保護することができ、施工時やメンテナンス時に破損が発生することがなく、施工性、取扱い性、堅牢性に優れ、工期を短縮してコストダウンを図ることができ、地中を流れる地下水や地中に溜まった地下水(井戸水)、温泉水、油などの液体を介して熱交換を行うことにより、熱交換の効率性に優れ、地中の熱を有効に利用することができ、省エネルギー性、環境保護性に優れた熱交換ユニットの提供を行い、省エネルギー化や環境保護に貢献することができる。 The present invention has a simple configuration, can simplify the shape, can be easily assembled, disassembled and partially replaced, and is not only excellent in mass production, maintenance, storage, and transportability, but also has a longer length. It is easy to design, has excellent design flexibility and versatility, can reliably protect the heat exchanger, is not damaged during construction and maintenance, and has excellent workability, handleability, and robustness. The cost can be reduced by shortening the construction period, and the efficiency of heat exchange by exchanging heat through groundwater flowing underground, groundwater accumulated in the ground (well water), hot spring water, oil, etc. The heat exchange unit that excels in energy, can effectively use underground heat, and is excellent in energy saving and environmental protection, can contribute to energy saving and environmental protection.
1 熱交換ユニット
1a 熱交換器
2 上部接続体
2a 熱媒入口部
2b 熱媒流出部
2c,5b,6c 雄螺子部
3 貫通孔
4 採放熱管
4a 管体
4b 上端接続部
4c 下端接続部
5 下部接続体
5a 熱媒流入部
5c 熱媒出口部
6 中間接続体
6a 流入側接続部
6b 流出側接続部
7 挿通孔
8 戻り管
9 熱媒供給管
10 ケーシング部
10a 通液孔
DESCRIPTION OF
Claims (5)
地中に埋設され又は液中に沈設された通液性の筒型のケーシング部と、前記ケーシング部に内挿される熱交換器と、を備え、
前記熱交換器が、
(a)熱媒が流入する熱媒入口部と、前記熱媒入口部から流入した前記熱媒が流出する複数の熱媒流出部と、を有する上部接続体と、
(b)上端部が前記上部接続体の前記熱媒流出部にそれぞれ着脱自在に接続され前記熱媒流出部から流出する前記熱媒を流下させる複数の採放熱管と、
(c)各々の前記採放熱管の下端部が着脱自在に接続され前記採放熱管から流出する前記熱媒が流入する熱媒流入部と、各々の前記熱媒流入部から流入する前記熱媒を集合させて排出する熱媒出口部と、を有する下部接続体と、
(d)下端部が前記下部接続体の前記熱媒出口部に接続され前記熱媒出口部から流出する前記熱媒を環流する戻り管と、
を備えたことを特徴とする熱交換ユニット。 A heat exchange unit that exchanges heat with underground heat via a liquid that is buried in the ground or submerged in the liquid and flows through the ground,
A liquid-permeable cylindrical casing part buried in the ground or submerged in the liquid, and a heat exchanger inserted in the casing part,
The heat exchanger is
(A) an upper connection body having a heat medium inlet portion into which a heat medium flows and a plurality of heat medium outlet portions from which the heat medium flowing in from the heat medium inlet portion flows out;
(B) a plurality of heat collecting and radiating pipes, each having an upper end portion detachably connected to the heat medium outflow portion of the upper connecting body and allowing the heat medium flowing out from the heat medium outflow portion to flow down;
(C) A heat medium inflow portion into which the heat medium flowing out from the heat collecting and radiating tube flows in and a lower end portion of each of the heat collecting and radiating tubes is detachably connected; A lower connection body having a heat medium outlet for collecting and discharging
(D) a return pipe having a lower end connected to the heat medium outlet of the lower connector and circulating the heat medium flowing out of the heat medium outlet;
A heat exchange unit comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012106334A JP2013234782A (en) | 2012-05-07 | 2012-05-07 | Heat exchange unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012106334A JP2013234782A (en) | 2012-05-07 | 2012-05-07 | Heat exchange unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013234782A true JP2013234782A (en) | 2013-11-21 |
Family
ID=49761043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012106334A Pending JP2013234782A (en) | 2012-05-07 | 2012-05-07 | Heat exchange unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013234782A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015169216A (en) * | 2014-03-04 | 2015-09-28 | 三谷セキサン株式会社 | Heat exchanging pipe device and pipe hanging jig |
JP2016084947A (en) * | 2014-10-23 | 2016-05-19 | クラフトワーク株式会社 | Heat pump system |
CN106813411A (en) * | 2017-03-24 | 2017-06-09 | 东晨干热岩热力有限公司 | Useless geothermal well reutilization system and its construction method |
US20220341631A1 (en) * | 2020-05-13 | 2022-10-27 | Saudi Arabian Oil Company | Well completion converting a hydrocarbon production well into a geothermal well |
JP7260953B2 (en) | 2014-03-07 | 2023-04-19 | グリーンファイア・エナジー・インコーポレイテッド | Processes and methods for generating geothermal heat |
-
2012
- 2012-05-07 JP JP2012106334A patent/JP2013234782A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015169216A (en) * | 2014-03-04 | 2015-09-28 | 三谷セキサン株式会社 | Heat exchanging pipe device and pipe hanging jig |
JP7260953B2 (en) | 2014-03-07 | 2023-04-19 | グリーンファイア・エナジー・インコーポレイテッド | Processes and methods for generating geothermal heat |
JP2016084947A (en) * | 2014-10-23 | 2016-05-19 | クラフトワーク株式会社 | Heat pump system |
CN106813411A (en) * | 2017-03-24 | 2017-06-09 | 东晨干热岩热力有限公司 | Useless geothermal well reutilization system and its construction method |
CN106813411B (en) * | 2017-03-24 | 2022-09-30 | 东晨干热岩热力有限公司 | Waste geothermal well recycling system and construction method thereof |
US20220341631A1 (en) * | 2020-05-13 | 2022-10-27 | Saudi Arabian Oil Company | Well completion converting a hydrocarbon production well into a geothermal well |
US11674718B2 (en) * | 2020-05-13 | 2023-06-13 | Saudi Arabian Oil Company | Well completion converting a hydrocarbon production well into a geothermal well |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013234782A (en) | Heat exchange unit | |
JP2008292107A (en) | Heat exchanger, heat exchange system, and construction method of heat exchange system | |
JP2007315742A (en) | Underground heat exchanger and its buried structure | |
JP2016538526A (en) | Ground heat exchange system including a ground heat exchanger and related methods | |
KR101431193B1 (en) | Heat exchange device using geothermal | |
JP5103070B2 (en) | Support pile system for heat exchange for residential and architectural use using geothermal heat | |
KR101299826B1 (en) | Depth geothermal system unit | |
JP5914084B2 (en) | Heat collection system for sewage heat and its construction method | |
JP2014163554A (en) | Construction method of heat exchange equipment of geothermal heat utilization system and geothermal heat utilization system | |
KR101297986B1 (en) | Geothermal heat exchange system of standing column well type | |
JP2014025688A (en) | Heat exchange unit | |
US20140116643A1 (en) | Heat Exchanging and Accumulating Single Well for Ground Energy Collection | |
JP6089472B2 (en) | Holding member and underground heat exchanger | |
JP6160275B2 (en) | Heat exchange pipe unit | |
KR20090108795A (en) | Geothermal exchanging system and constructing method the same | |
JP5921891B2 (en) | Panel heat exchanger for underground heat source heat pump | |
JP6237867B2 (en) | Insertion method of underground heat exchanger | |
KR20190053330A (en) | Greenhouse cooling and heating system | |
JP4990593B2 (en) | Underground heat exchanger buried structure | |
JP5584839B1 (en) | Hybrid spiral pile with integrated underground heat collection function | |
WO2014080348A1 (en) | Geothermal heat exchanger device | |
KR200436894Y1 (en) | Supply unit for geothermy and ground water | |
JP6907596B2 (en) | How to use groundwater | |
KR20090111782A (en) | Heat pipe-type geothermal heat exchanger | |
JP6236254B2 (en) | Geothermal heat exchanger and air conditioning system using the same |