[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013175759A - Manufacturing method of light emitting device - Google Patents

Manufacturing method of light emitting device Download PDF

Info

Publication number
JP2013175759A
JP2013175759A JP2013081729A JP2013081729A JP2013175759A JP 2013175759 A JP2013175759 A JP 2013175759A JP 2013081729 A JP2013081729 A JP 2013081729A JP 2013081729 A JP2013081729 A JP 2013081729A JP 2013175759 A JP2013175759 A JP 2013175759A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
substrate
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013081729A
Other languages
Japanese (ja)
Other versions
JP5527456B2 (en
Inventor
Kimiki Matsumoto
公樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2013081729A priority Critical patent/JP5527456B2/en
Publication of JP2013175759A publication Critical patent/JP2013175759A/en
Application granted granted Critical
Publication of JP5527456B2 publication Critical patent/JP5527456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a light emitting device which makes color unevenness less likely to occur, efficiently extracts light emitted from a light emitting element, and realizes light emission achieving high luminous flux and high luminance.SOLUTION: A light emitting device includes: a light emitting element 101; and a translucent member 102 allowing light emitted from the light emitting element 101 to transmit and emitting the light to the exterior, and the light emitting element 101 is adhered to the translucent member 102 by an adhesive material 103 in the light emitting device. A manufacturing method of the light emitting device includes: a first process that the light emitting element 101 is placed on a substrate 107; a second process where an upper surface of the light emitting element 101 is exposed and a side surface of the light emitting element 101 is covered with a first light reflective member 104; a third process where an adhesive 103 is applied to the upper surface to adhere the light emitting element 101 to the translucent member 102 after the second process; and a fourth process where an upper surface of the translucent member 102 is exposed and a side surface of the translucent member 102 is covered with a second light reflective member 105 after the third process.

Description

本発明は、発光素子からの光を透過可能な透光性部材を備える発光装置の製造方法に関
する。
The present invention relates to a method for manufacturing a light emitting device including a translucent member that can transmit light from a light emitting element.

半導体発光素子は、小型で電力効率が良く鮮やかな色の発光をする。また、半導体素子
である発光素子は球切れ等の心配がない。さらに初期駆動特性に優れ、振動やオン・オフ
点灯の繰り返しに強いという特徴を有する。また、発光素子より放出される光源光と、こ
れに励起されて光源光と異なる色相の光を放出できる波長変換部材とを組み合わせること
で、光の混色の原理により、多様な色彩の光を出射可能な発光装置が開発されている。こ
のような優れた特性を有するため、発光ダイオード(LED)、レーザーダイオード(L
D)等の半導体発光素子は、各種の光源として利用されている。特に近年は、蛍光灯に代
わる照明用の光源として、より低消費電力で長寿命の次世代照明として注目を集めており
、更なる発光出力の向上及び発光効率の改善が求められている。また、車のヘッドライト
などの投光器、投光照明のように、高輝度な光源も求められている。
The semiconductor light emitting element is small in size, has high power efficiency, and emits bright colors. In addition, a light emitting element which is a semiconductor element does not have a concern about a broken ball. Furthermore, it has excellent initial drive characteristics and is strong against vibration and repeated on / off lighting. In addition, by combining the light source light emitted from the light emitting element and the wavelength conversion member that can be excited to emit light of a different hue from the light source light, light of various colors is emitted based on the principle of light color mixing. Possible light emitting devices have been developed. Because of such excellent characteristics, light-emitting diodes (LEDs) and laser diodes (L
Semiconductor light emitting devices such as D) are used as various light sources. In particular, in recent years, as a light source for illumination replacing a fluorescent lamp, attention has been attracted as next-generation illumination with lower power consumption and longer life, and further improvement in light emission output and improvement in light emission efficiency are required. In addition, there is a demand for a high-luminance light source such as a projector such as a car headlight and a floodlight.

このような光源として、例えば特許文献1に記載される発光装置が提案されている。特
許文献1に記載される発光装置は、電極が形成された上面を有する発光半導体チップと、
透明な接着剤により半導体発光チップの底面に固着された蛍光体チップとを備えている。
発光ダイオードチップから放出される殆どの青色光は、蛍光体チップ内に導かれ、その内
一部の光は蛍光体チップの外部に放出されるが、一部の光は蛍光体チップ内の蛍光体に照
射される。このため、蛍光体が青色光により励起され、黄色光を発生するが、青色光と黄
色光との混色により白色光が発生する。
As such a light source, for example, a light emitting device described in Patent Document 1 has been proposed. A light-emitting device described in Patent Document 1 includes a light-emitting semiconductor chip having an upper surface on which electrodes are formed;
And a phosphor chip fixed to the bottom surface of the semiconductor light emitting chip with a transparent adhesive.
Most of the blue light emitted from the light emitting diode chip is guided into the phosphor chip, and part of the light is emitted outside the phosphor chip, but part of the light is emitted from the phosphor chip. The body is irradiated. For this reason, the phosphor is excited by blue light and generates yellow light, but white light is generated by mixing colors of blue light and yellow light.

特開2002−141559号公報JP 2002-141559 A

図7は、特許文献1の発光装置500を示す図である。図7に示される発光装置では、
半導体発光チップ501(以下発光素子ともいう)と蛍光体チップ502(以下透光性部
材ともいう)を接続する際の接着材の塗布量のばらつきにより、接着材503を発光素子
501と蛍光体チップ502との間にのみ、適量配置することは困難である。接着材の量
を多めに設定すると、接着面からはみだした接着剤が発光素子の側面を伝って基板にたれ
たりすることによって、たれた接着材の中を光が伝播することによるロスで蛍光体チップ
に取り込まれる光が減少して光束が低下するという問題があった。
FIG. 7 is a diagram showing a light emitting device 500 of Patent Document 1. In the light emitting device shown in FIG.
Due to variations in the amount of adhesive applied when the semiconductor light emitting chip 501 (hereinafter also referred to as a light emitting element) and the phosphor chip 502 (hereinafter also referred to as a translucent member) are connected, the adhesive 503 is replaced with the light emitting element 501 and the phosphor chip. It is difficult to dispose an appropriate amount only between 502. If the amount of adhesive is set to a large amount, the adhesive that protrudes from the adhesive surface passes through the side surface of the light-emitting element and falls on the substrate, so that the phosphor is lost due to light propagation through the adhesive material. There was a problem that the light taken into the chip was reduced and the luminous flux was lowered.

また、接着剤の量が少ない場合には、発光素子と蛍光体チップとが接着できないのみな
らず、発光素子と蛍光体チップとの間に空気の層が介在されることから、界面で生じる屈
折率の差によって、発光素子から蛍光体チップに効率よく入光できず、蛍光体チップに取
り込まれる光が減少して発光色がばらついたり、光束が低下したりするという問題があっ
た。
In addition, when the amount of the adhesive is small, not only the light emitting element and the phosphor chip cannot be bonded, but also an air layer is interposed between the light emitting element and the phosphor chip, so that the refraction generated at the interface. Due to the difference in rate, there is a problem that light cannot be efficiently incident on the phosphor chip from the light emitting element, and the light taken into the phosphor chip is reduced, causing the emission color to vary and the luminous flux to decrease.

本発明は、従来のこのような問題点を解決するためになされたものである。本発明の目
的は、発光素子からの出射光を効率よく透光性部材に入射して外部に取り出すことができ
、高光束もしくは高輝度な発光を実現できる発光装置の製造方法を提供することにある。
The present invention has been made to solve such conventional problems. An object of the present invention is to provide a method for manufacturing a light-emitting device that can efficiently emit light emitted from a light-emitting element into a light-transmitting member and take it out, and can realize light emission with high luminous flux or high brightness. is there.

以上の目的を達成するために、本発明に係る製造方法は、発光素子と、前記発光素子か
ら出射される光を透過して外部に放出する透光性部材とを有し、前記発光素子と前記透光
性部材とが接着材を介して接着された発光装置を製造する方法であって、前記発光素子を
基板に載置する第1の工程と、前記発光素子の上面を露出させて前記発光素子の側面を第
1の光反射性部材で覆う第2の工程と、前記第2の工程の後で、前記上面に接着剤を塗布
し、前記発光素子と前記透光性部材とを接着する第3の工程と、前記第3の工程の後で、
前記透光性部材の上面を露出させて前記透光性部材の側面を第2の光反射性部材で覆う第
4の工程と、を有することを特徴とする。
In order to achieve the above object, a manufacturing method according to the present invention includes a light emitting element and a translucent member that transmits light emitted from the light emitting element and emits the light to the outside. A method of manufacturing a light emitting device in which the light transmissive member is bonded via an adhesive, the first step of placing the light emitting element on a substrate, and exposing the upper surface of the light emitting element. A second step of covering a side surface of the light emitting element with a first light reflective member; and after the second step, an adhesive is applied to the upper surface to bond the light emitting element and the light transmissive member. After the third step and after the third step,
And a fourth step of exposing a top surface of the light transmissive member and covering a side surface of the light transmissive member with a second light reflective member.

この発光装置においては、前記第3の工程よりも前に、前記発光素子と前記基板との隙
間を光反射性部材で覆う工程を更に含むことが好ましい。
Preferably, the light emitting device further includes a step of covering a gap between the light emitting element and the substrate with a light reflecting member before the third step.

さらに、前記第4の工程は印刷法により行われることが好ましい。   Furthermore, the fourth step is preferably performed by a printing method.

また、第1の光反射部材は、前記第2の光反射部材よりも低弾性もしくは低線膨張であ
ることが好ましい。
Moreover, it is preferable that a 1st light reflection member is low elasticity or a low linear expansion rather than the said 2nd light reflection member.

また、前記発光素子は、成長用基板上に半導体層が積層されて形成された発光素子であ
り、前記成長用基板は前記半導体層との接合面に凹凸を有していることが好ましい。
The light-emitting element is a light-emitting element formed by stacking a semiconductor layer on a growth substrate, and the growth substrate preferably has irregularities on a joint surface with the semiconductor layer.

本発明の製造方法によれば、発光素子の側面を接着材が覆うことがないため、接着材の
はみ出しによって生じる光のロスによる光束の低下を抑制し、高光束もしくは高輝度な発
光が可能な発光装置を提供することができる。
According to the manufacturing method of the present invention, since the adhesive material does not cover the side surface of the light emitting element, it is possible to suppress a decrease in the light beam due to the loss of light caused by the protrusion of the adhesive material, and to emit light with high light flux or high luminance. A light-emitting device can be provided.

本発明の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of this invention. 本発明の製造工程の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing process of this invention. 本発明の他の実施形態の製造工程の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing process of other embodiment of this invention. 本発明の他の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す概略斜視図および概略断面図である。It is the schematic perspective view and schematic sectional drawing which show other embodiment of this invention. 従来の発光装置の概略断面図である。It is a schematic sectional drawing of the conventional light-emitting device. 比較例および実施例4に係る発光装置の光束を示すグラフである。6 is a graph showing light fluxes of a light emitting device according to a comparative example and Example 4.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態
は、本発明の技術思想を具体化するための発光装置を例示するものであって、本発明は発
光装置を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、
実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成
部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の
範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す
部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以
下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、
詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材
で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を
複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説
明された内容は、他の実施例、実施形態等に利用可能なものもある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a light emitting device for embodying the technical idea of the present invention, and the present invention does not specify the light emitting device as follows. Further, the present specification describes the members shown in the claims,
It is by no means specific to the member of the embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in the following description, the same name and reference sign indicate the same or similar members,
Detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.

<実施の形態1>
図1は、本発明の実施の形態1の製造方法に係る発光装置100の概略断面図である。発
光装置100は、発光素子101と、この発光素子101から出射される光を透過して外
部に放出する透光性部材102とを有し、発光素子101と透光性部材102とが接着材
103を介して接着されている。本実施の形態において、発光素子101は、基板107
に形成された導電パターン(図示せず)に導電部材108を介して実装されている。
<Embodiment 1>
FIG. 1 is a schematic cross-sectional view of a light-emitting device 100 according to the manufacturing method of Embodiment 1 of the present invention. The light-emitting device 100 includes a light-emitting element 101 and a translucent member 102 that transmits light emitted from the light-emitting element 101 and emits the light to the outside. The light-emitting element 101 and the translucent member 102 are an adhesive. Bonded through 103. In this embodiment mode, the light-emitting element 101 includes a substrate 107.
It is mounted on a conductive pattern (not shown) formed through a conductive member 108.

発光素子101の側面は、第1の光反射性部材104で覆われており、発光素子101
の上面は、第1の光反射性部材104には覆われずに露出されている。その露出された発
光素子101の上面に接着材103が配置されており、その上に透光性部材102が配置
されている。さらに、透光性部材102は、その上面を光取り出し部として機能させるた
めに外部に露出させ、側面は色ムラを軽減させ光束を高めるために、第2の光反射性部材
105で覆われている。
The side surface of the light emitting element 101 is covered with the first light reflecting member 104, and the light emitting element 101
Is exposed without being covered by the first light-reflecting member 104. An adhesive material 103 is disposed on the exposed upper surface of the light emitting element 101, and a translucent member 102 is disposed thereon. Further, the translucent member 102 is exposed to the outside so that the upper surface functions as a light extraction portion, and the side surface is covered with the second light reflecting member 105 in order to reduce color unevenness and increase the luminous flux. Yes.

ここで、本実施の形態の製造方法は、予め第1の光反射性部材104により、発光素子
101の側面および基板107の発光素子載置面を被覆しておき、第1の光反射性部材1
04を形成したのちに、その上に接着材103を配置することにより、接着材103が発
光素子101の側面や、基板107に流れないように形成することを特徴とする。このよ
うに構成することにより、接着材103の配置箇所を所望の位置にコントロールすること
ができ、光のロスが少ない箇所に、はみ出した接着材を配置することが可能となる。これ
により、接着剤の塗布量による光束の低下を抑制することができ、その上から第2の樹脂
105により、透光性部材102の側面を覆うことで、透光性部材102の下方から入射
された光を上方からのみ出射することができるため、透光性部材の厚み方向からの出射光
に起因する色ムラを軽減することができる。
Here, in the manufacturing method of the present embodiment, the first light reflecting member 104 covers the side surface of the light emitting element 101 and the light emitting element mounting surface of the substrate 107 in advance, and then the first light reflecting member. 1
After forming 04, an adhesive material 103 is disposed thereon so that the adhesive material 103 does not flow to the side surface of the light emitting element 101 or the substrate 107. By configuring in this way, it is possible to control the arrangement position of the adhesive material 103 to a desired position, and it is possible to arrange the protruding adhesive material at a position where light loss is small. Thereby, it is possible to suppress a decrease in light flux due to the amount of adhesive applied, and the side surface of the translucent member 102 is covered with the second resin 105 from above, so that the light enters from below the translucent member 102. Since the emitted light can be emitted only from above, color unevenness caused by the emitted light from the thickness direction of the translucent member can be reduced.

以下に、本発明の製造方法について図2を用いて説明する。   Below, the manufacturing method of this invention is demonstrated using FIG.

(第一の工程)
まず、発光素子101を基板107に載置する。なお、図2は個々の発光装置を示すが、
製造時においては集合基板に対して以下の第二〜四の工程を行い、最後に個片化すること
により、個々の発光装置を作成する。
(First step)
First, the light emitting element 101 is placed on the substrate 107. In addition, although FIG. 2 shows each light-emitting device,
At the time of manufacture, the following second to fourth steps are performed on the collective substrate, and finally, individual light emitting devices are created by dividing into individual pieces.

(第二の工程)
次に、発光素子101の上面を露出させて発光素子の側面を第1の光反射性部材104で
覆う。本実施の形態では、図2(a)に示すように、発光素子101の光出射面と略面一
になる高さの枠体110を基板107上に配置し、第1の光反射性部材104をこの枠体
110に充填して硬化させることで形成している。
(Second step)
Next, the upper surface of the light emitting element 101 is exposed and the side surface of the light emitting element is covered with the first light reflective member 104. In the present embodiment, as shown in FIG. 2A, a frame body 110 having a height that is substantially flush with the light emitting surface of the light emitting element 101 is disposed on the substrate 107, and the first light reflective member. 104 is filled in the frame 110 and cured.

発光素子101からの光を効率よく透光性部材102に入射させるために、発光素子1
01の側面は、すべて第1の光反射性部材により覆われることが好ましい。すなわち、上
面のみを除いて、上面と接する面が第1の光反射性部材104により全て覆われているこ
とが好ましい。これにより、側面に接着材103が付着することを完全に防止することが
できる。また、発光素子101に、後述のような成長用基板上に半導体層が積層されて形
成された発光素子を用いる場合には、成長用基板をほぼ覆っていることが好ましい。
In order to make the light from the light emitting element 101 enter the translucent member 102 efficiently, the light emitting element 1
It is preferable that all side surfaces of 01 are covered with the first light reflecting member. That is, it is preferable that the first light-reflecting member 104 covers all surfaces that are in contact with the upper surface except for the upper surface. Thereby, it can prevent completely that the adhesive material 103 adheres to a side surface. In addition, in the case where a light emitting element formed by stacking a semiconductor layer on a growth substrate as described later is used as the light emitting element 101, it is preferable that the growth substrate is substantially covered.

(第三の工程)
第二の工程の後、発光素子101の上面に接着剤103を塗布し、前記発光素子と透光性
部材とを接着する。本実施の形態においては、図2(b)に示すように、第1の光反射性
部材104が硬化したのち、図2(a)で示した枠体110を取り外し、光出射面として
第1の光反射部材104から露出された発光素子101の上面に接着材103を塗布し、
透光性部材102を接合する。接着材103の量が少ない場合は、発光素子101と透光
性部材102との間に隙間が形成され、後に形成する第2の光反射性部材がこの隙間に入
ると光束が著しく低下してしまうため、図3(c)に示すように、接着後に、少なくとも
発光素子101の光出射面の面積よりも大きい面積を覆うように接着材103の量を調整
する。これにより、発光素子101の光出射面からはみ出した接着材は、第1の光反射性
部材104と第2の光反射性部材105との界面に配置されるようになるため、接着材1
03が発光素子101の側面や、基板107に流れることなく、光束の低下を抑制するこ
とができる。
(Third process)
After the second step, an adhesive 103 is applied to the upper surface of the light emitting element 101, and the light emitting element and the translucent member are bonded. In the present embodiment, as shown in FIG. 2B, after the first light-reflecting member 104 is cured, the frame 110 shown in FIG. An adhesive material 103 is applied to the upper surface of the light emitting element 101 exposed from the light reflecting member 104,
The translucent member 102 is joined. When the amount of the adhesive material 103 is small, a gap is formed between the light emitting element 101 and the translucent member 102. When a second light reflecting member to be formed later enters this gap, the luminous flux is remarkably lowered. Therefore, as shown in FIG. 3C, the amount of the adhesive 103 is adjusted so as to cover at least an area larger than the area of the light emitting surface of the light emitting element 101 after bonding. As a result, the adhesive that protrudes from the light emitting surface of the light emitting element 101 comes to be disposed at the interface between the first light reflective member 104 and the second light reflective member 105, so that the adhesive 1
03 does not flow to the side surface of the light-emitting element 101 or the substrate 107, so that a decrease in luminous flux can be suppressed.

(第四の工程)
次に、透光性部材102の上面を露出させて、透光性部材102の側面を光反射性部材で
覆う。本実施の形態では、図3(d)に示すように、透光性部材102の側面および第1
の光反射性部材104を覆うように、第2の光反射性部材105を数箇所に滴下して形成
する。このように形成することで、頂部は透光性部材102の光出射面が露出され、その
断面積が基板107に向かって大きくなるように第2の光反射性部材105が形成される
。色ムラを軽減させ、光束を高めるために、透光性部材102の側面を、第2の光反射性
部材105で完全に覆うことが好ましいが、ほぼ覆われていればよい。
(Fourth process)
Next, the upper surface of the translucent member 102 is exposed, and the side surface of the translucent member 102 is covered with a light reflective member. In the present embodiment, as shown in FIG. 3D, the side surface of the translucent member 102 and the first
The second light reflective member 105 is dropped at several places so as to cover the light reflective member 104. By forming in this way, the second light reflective member 105 is formed so that the light emitting surface of the translucent member 102 is exposed at the top, and the cross-sectional area thereof increases toward the substrate 107. In order to reduce color unevenness and increase the luminous flux, it is preferable to completely cover the side surface of the translucent member 102 with the second light reflective member 105, but it is sufficient that the side surface is substantially covered.

(第五の工程)
最後に、前記第一の工程乃至第四の工程にて加工された集合基板を個々に切断し、実施の
形態の製造方法に係る発光装置100を得る。
(Fifth process)
Finally, the aggregate substrate processed in the first to fourth steps is individually cut to obtain the light emitting device 100 according to the manufacturing method of the embodiment.

以下に、本実施の形態の製造方法に係る発光装置100の各部材及び構造について説明
する。
Below, each member and structure of the light-emitting device 100 which concern on the manufacturing method of this Embodiment are demonstrated.

(発光素子101)
発光素子101は、公知のもの、具体的には半導体発光素子を利用でき、GaN系半導体
は、後述の蛍光物質を効率よく励起できる短波長が発光可能であるため、好ましい。実施
の形態1の発光素子101は、同一面側に正電極および負電極が形成されているが、この
形態に限定されず、例えば一の面に正および負の電極は必ずしも一対に限定されず、それ
ぞれ複数形成されていてもよい。
(Light emitting element 101)
As the light-emitting element 101, a known element, specifically, a semiconductor light-emitting element can be used, and a GaN-based semiconductor is preferable because it can emit light with a short wavelength capable of efficiently exciting a fluorescent substance described later. Although the positive electrode and the negative electrode are formed on the same surface side in the light-emitting element 101 of Embodiment 1, the present invention is not limited to this mode. For example, the positive and negative electrodes are not necessarily limited to a pair on one surface. A plurality of each may be formed.

発光素子の種類は特に制限されるものではないが、例えば、MOCVD法等によって基
板上にInN、AlN、GaN、InGaN、AlGaN、InGaAlN等の窒化物半
導体を発光層として形成させたもの、一例として、サファイア基板上にn型GaNよりな
るn型コンタクト層と、n型AlGaNよりなるn型クラッド層と、p型GaNよりなる
p型コンタクト層とが順次に積層された構造のものを使用する。サファイア基板のように
、成長用基板が発光素子構造を構成しない場合には除去してもよい。成長用基板の除去は
、例えば装置又はサブマウントのチップ載置部に保持して、研磨、LLO(Laser Lift O
ff)で実施できる。また、半導体の構造としては、MIS接合、PIN接合やPN接合な
どを有するホモ構造、ヘテロ結合あるいはダブルヘテロ結合のものが挙げられる。半導体
の材料やその混晶比によって発光波長を種々選択できる。また、半導体活性層を量子効果
が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることができる。ま
た、活性層には、Si、Ge等のドナー不純物および/またはZn、Mg等のアクセプタ
ー不純物がドープされる場合もある。発光素子の発光波長は、その活性層のInGaNの
In含有量を変えるか、または活性層にドープする不純物の種類を変えることにより、紫
外領域から赤色まで変化させることができる。
The type of the light emitting element is not particularly limited, but for example, a nitride semiconductor such as InN, AlN, GaN, InGaN, AlGaN, InGaAlN, etc. formed as a light emitting layer on a substrate by MOCVD method, for example The n-type contact layer made of n-type GaN, the n-type cladding layer made of n-type AlGaN, and the p-type contact layer made of p-type GaN are sequentially stacked on the sapphire substrate. If the growth substrate does not constitute a light emitting element structure, such as a sapphire substrate, it may be removed. For example, the growth substrate is removed by holding it on the chip mounting portion of the apparatus or submount, polishing, LLO (Laser Lift O
ff). The semiconductor structure includes a homostructure having a MIS junction, a PIN junction, a PN junction, etc., a hetero bond, or a double hetero bond. Various emission wavelengths can be selected depending on the semiconductor material and the mixed crystal ratio. Moreover, it can be set as the single quantum well structure or the multiple quantum well structure which formed the semiconductor active layer in the thin film which produces a quantum effect. The active layer may be doped with donor impurities such as Si and Ge and / or acceptor impurities such as Zn and Mg. The emission wavelength of the light-emitting element can be changed from the ultraviolet region to red by changing the In content of InGaN in the active layer or changing the type of impurities doped in the active layer.

発光素子101の実装形態についても、公知の技術が採用できる。例えば、同一面側に
正負電極を有する素子構造では、電極面側を光取出面として実装してもよいし、電極と対
向する成長用基板側を光取出面とするフリップチップ実装としてもよい。
A known technique can also be adopted for the mounting form of the light emitting element 101. For example, in an element structure having positive and negative electrodes on the same surface side, the electrode surface side may be mounted as a light extraction surface, or flip chip mounting may be performed with the growth substrate side facing the electrode as a light extraction surface.

本実施の形態において、発光素子101は、図1に示すように、成長用基板101a上
に半導体層101bが積層されて形成された発光素子101であり、成長用基板101a
側を光取り出し面とし、半導体層101b側を基板107側にして実装されている。成長
用基板101aは半導体層101bとの接合面に凹凸(図示せず)を有しており、これによ
り半導体層101bから出射された光が、成長基板101aに当たるときの臨界角を意図
的に変えて、成長用基板101aの外部に光が取り出されやすくすることができる。
In the present embodiment, as shown in FIG. 1, the light emitting element 101 is a light emitting element 101 formed by stacking a semiconductor layer 101b on a growth substrate 101a, and the growth substrate 101a.
Mounting is performed with the side as the light extraction surface and the semiconductor layer 101b side as the substrate 107 side. The growth substrate 101a has irregularities (not shown) on the joint surface with the semiconductor layer 101b, thereby intentionally changing the critical angle when the light emitted from the semiconductor layer 101b hits the growth substrate 101a. Thus, light can be easily extracted to the outside of the growth substrate 101a.

本実施の形態において、発光素子101は基板109上に形成された導電パターン(図
示せず)上に、導電部材108を介してフリップチップ実装されている。フリップチップ
実装とする場合、基板107の発光素子搭載部と、発光素子102との隙間にアンダーフ
ィル材を配置することが好ましい。これにより、発光素子と基板の熱膨張率の差による応
力を吸収したり、放熱性を高めたりすることができる。アンダーフィル材は、第1の光反
射性部材104として同時に形成すると、1つの工程で形成でき、かつ、発光素子から基
板方向へ出射される光を反射することができ、光束を高めることができる。このとき、第
1の光反射性部材104に含有させる反射性物質(後述する)の粒径を、実装された発光
素子101と基板107との隙間よりも小さく設定することで、発光素子101の下部に
も第1の光反射性部材104を容易に配置させることができる。これにより、基板107
の方向に出射された光が基板107に吸収されることを防ぎ、基板107方向に出射され
た光も発光素子102側に反射させて光束を高めることができる。
In this embodiment mode, the light emitting element 101 is flip-chip mounted on a conductive pattern (not shown) formed on the substrate 109 with a conductive member 108 interposed therebetween. In the case of flip chip mounting, it is preferable to dispose an underfill material in a gap between the light emitting element mounting portion of the substrate 107 and the light emitting element 102. Thereby, the stress by the difference of the thermal expansion coefficient of a light emitting element and a board | substrate can be absorbed, or heat dissipation can be improved. When the underfill material is formed as the first light reflecting member 104 at the same time, it can be formed in one step, and the light emitted from the light emitting element toward the substrate can be reflected, and the luminous flux can be increased. . At this time, the particle size of the reflective material (described later) contained in the first light reflective member 104 is set to be smaller than the gap between the mounted light emitting element 101 and the substrate 107, so that The first light reflecting member 104 can be easily disposed also in the lower part. Thus, the substrate 107
The light emitted in the direction can be prevented from being absorbed by the substrate 107, and the light emitted in the direction of the substrate 107 can also be reflected toward the light emitting element 102 to increase the luminous flux.

(第1の光反射性部材104)
第1の光反射性部材104は、図1に示すように、発光素子101の側面を覆い、かつ、
発光素子101の光取出面は第1の光反射性部材104から露出させることにより、透光
性部材102に光を入光することが可能なように形成される。第1の光反射性部材104
は、発光素子101からの光を反射可能な部材からなり、発光素子の側面から出射した光
を発光素子内に反射させる。このように発光素子内に戻された光は、第1の光反射性部材
から露出された光出射面から接着材103を通り、発光素子から出射されて直接上方に向
かう光とともに、透光性部材102方向へと出射される。
(First light reflective member 104)
As shown in FIG. 1, the first light reflective member 104 covers the side surface of the light emitting element 101, and
The light extraction surface of the light emitting element 101 is formed so that light can enter the light transmissive member 102 by being exposed from the first light reflective member 104. First light reflective member 104
Is made of a member capable of reflecting light from the light emitting element 101 and reflects light emitted from the side surface of the light emitting element into the light emitting element. The light thus returned into the light emitting element passes through the adhesive material 103 from the light emitting surface exposed from the first light reflecting member, and is transmitted with the light emitted from the light emitting element and directly upward. The light is emitted in the direction of the member 102.

具体的には、第1の光反射性部材104の材料としては、シリコーン樹脂、変性シリコ
ーン樹脂、エポキシ樹脂、変性エポキシ樹脂、アクリル樹脂、また、これらの樹脂を少な
くとも一種以上含むハイブリッド樹脂等の樹脂に反射性物質を含有させることで形成する
ことができる。反射性物質の材料としては、酸化チタン、二酸化ケイ素、二酸化チタン、
二酸化ジルコニウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ホウ素、ム
ライトなどを用いることができる。その含有濃度、密度により光の反射量、透過量が異な
るため、発光装置の形状、大きさに応じて、適宜濃度、密度を調整するとよい。例えば、
比較的小さい発光装置の場合には、第1の光反射部材の肉厚を小さくする必要があり、そ
の薄肉部で光の漏れを抑制するために、反射性物質の濃度を高くすることが好ましい。一
方で、第1の光反射部材の塗布、成形などの製造工程において、反射性物質の濃度を高く
なると製造上の困難性がある場合には、その濃度を適宜調整する。例えば、反射性物質の
含有濃度を30wt%以上、その肉厚を20μm以上とするのが好ましい。
Specifically, as a material of the first light reflective member 104, a resin such as a silicone resin, a modified silicone resin, an epoxy resin, a modified epoxy resin, an acrylic resin, or a hybrid resin including at least one of these resins is used. It can be formed by containing a reflective material. Reflective materials include titanium oxide, silicon dioxide, titanium dioxide,
Zirconium dioxide, potassium titanate, alumina, aluminum nitride, boron nitride, mullite, or the like can be used. Since the amount of light reflection and transmission varies depending on the concentration and density, the concentration and density may be adjusted as appropriate according to the shape and size of the light-emitting device. For example,
In the case of a relatively small light emitting device, it is necessary to reduce the thickness of the first light reflecting member, and it is preferable to increase the concentration of the reflective substance in order to suppress light leakage at the thin portion. . On the other hand, in the manufacturing process such as application and molding of the first light reflecting member, if there is a manufacturing difficulty when the concentration of the reflective substance is increased, the concentration is adjusted appropriately. For example, it is preferable that the content concentration of the reflective material is 30 wt% or more and the thickness thereof is 20 μm or more.

また、反射性に加え、放熱性を併せ持つ材料とすると反射性能を持たせつつ、放熱性を
向上させることができる。このような材料として、熱伝導率の高い窒化アルミニウムや窒
化ホウ素が挙げられる。また、反射性物質とは別に、放熱性を高める目的で放熱性物質を
添加してもよい。さらに、光反射性部材は、基板107の主材料と同一材料を有している
ことが好ましく、これにより熱応力に対して強い発光装置が得られる。
Moreover, if it is a material which has heat dissipation in addition to reflectivity, heat dissipation can be improved, providing reflection performance. Examples of such a material include aluminum nitride and boron nitride having high thermal conductivity. In addition to the reflective material, a heat radiating material may be added for the purpose of enhancing the heat radiating property. Furthermore, the light reflective member preferably has the same material as the main material of the substrate 107, whereby a light emitting device that is resistant to thermal stress can be obtained.

また、第1の光反射性部材104を前述のアンダーフィル材として用いる場合、後述の
第2の光反射性部材よりも低弾性あるいは低線膨張のアンダーフィル材を用いると、発光
素子101と基板107との接合部における樹脂膨張収縮応力の緩和が可能となり、電気
的な接合信頼性が向上するため好ましい。このようなアンダーフィル材は、例えばJIS
−A硬度(ゴム硬度)10以下とすることが好ましい。この場合、後述の第2の光反射性
部材105に機械強度の高い材料を使用し、第1の光反射性部材が外部に露出しないよう
、第2の光反射性部材105で第1の光反射性部材104を完全に覆う構成とすることが
好ましい。これにより、発光素子101およびアンダーフィル材部分の外的応力に対する
耐久性を確保できる。
Further, when the first light reflective member 104 is used as the above-described underfill material, the light emitting element 101 and the substrate are used when an underfill material having lower elasticity or lower linear expansion than the second light reflective member described later is used. The resin expansion and contraction stress at the joint with 107 can be relaxed, and the electrical joint reliability is improved, which is preferable. Such underfill material is, for example, JIS
-A hardness (rubber hardness) is preferably 10 or less. In this case, a material having high mechanical strength is used for the second light reflecting member 105 described later, and the first light reflecting member 105 prevents the first light reflecting member 105 from being exposed to the outside. It is preferable that the reflective member 104 be completely covered. Thereby, durability with respect to the external stress of the light emitting element 101 and an underfill material part is securable.

第1の光反射性部材104は、射出成形、ポッティング成形、樹脂印刷法、トランスフ
ァーモールド法、圧縮成形などで成形することができる。
The first light reflective member 104 can be formed by injection molding, potting molding, resin printing, transfer molding, compression molding, or the like.

(第2の光反射性部材105)
第2の光反射性部材105は、透光性部材102の側面を覆い、発光素子101からの光
を出射する部分を外部に露出する。具体的な材料、成形方法は、上述の第1の光反射性部
材と同様である。第1の光反射性部材104と第2の光反射性部材105は、同じ部材で
形成してもよく、異なる部材で形成してもよい。第1の光反射部材を完全に覆う形で形成
してもよいし、第1の光反射性部材の一部を露出させて一部を覆う構成としてもよい
なお、発光装置に機械的強度を持たせるために、JIS―A硬度40以上であることが
好ましい。
(Second light reflective member 105)
The second light reflective member 105 covers the side surface of the light transmissive member 102 and exposes a portion that emits light from the light emitting element 101 to the outside. The specific material and molding method are the same as those of the first light reflective member described above. The first light reflective member 104 and the second light reflective member 105 may be formed of the same member or different members. The first light reflecting member may be formed so as to completely cover it, or a part of the first light reflecting member may be exposed to cover a part of the light reflecting device. In order to have it, it is preferable that the JIS-A hardness is 40 or more.

(接着材103)
接着材103は発光素子101と、透光性部材102とを接合するものであり、第1の光
反射性部材104と第2の光反射性部材105のとの界面に配置される。発光素子101
からの出射光を透光性部材102側へと有効に導光するために、発光素子101、接着材
103、透光性部材102の順に屈折率を小さくすることが好ましい。
(Adhesive 103)
The adhesive material 103 joins the light emitting element 101 and the translucent member 102 and is disposed at the interface between the first light reflective member 104 and the second light reflective member 105. Light emitting element 101
In order to effectively guide the emitted light from the light transmitting member 102 side, it is preferable to reduce the refractive index in the order of the light emitting element 101, the adhesive 103, and the light transmitting member 102.

また、発光素子101と透光性部材102との距離が近くなるほど、透光性部材102
に光が入る際に拡散した光が再度、透光性部材102に入る確率が高くなるので、接着材
の厚みを薄くすると、発光効率を向上させることができるため好ましい。
Further, the closer the distance between the light emitting element 101 and the light transmissive member 102 is, the light transmissive member 102 becomes.
Since the probability that the diffused light will enter the translucent member 102 again when the light enters is increased, it is preferable to reduce the thickness of the adhesive because the luminous efficiency can be improved.

接着材103の具体的な材料としては、例えば、シリコーン樹脂、エポキシ樹脂、アク
リル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、低融点ガラスなどが用いられる。
As a specific material of the adhesive material 103, for example, a silicone resin, an epoxy resin, an acrylic resin, a polycarbonate resin, a polyimide resin, a low-melting glass, or the like is used.

(透光性部材102)
本実施の形態における発光装置100は、発光素子101から出射される光を透過して外
部に放出する透光性部材102を有する。透光性部材102は、入射された光の少なくと
も一部を波長変換可能な蛍光体を有することが好ましい。これにより、発光素子からの光
が透光性部材を通過する際に、波長変換部材としての蛍光体を励起することで、発光素子
の発光波長とは異なった波長を持つ光が得られ、この結果、波長変換されない光との混色
により、所望の色相を有する出射光とすることができる。
(Translucent member 102)
The light emitting device 100 in this embodiment includes a translucent member 102 that transmits light emitted from the light emitting element 101 and emits the light to the outside. The translucent member 102 preferably includes a phosphor capable of converting the wavelength of at least part of the incident light. Thereby, when the light from the light emitting element passes through the translucent member, the phosphor as the wavelength conversion member is excited to obtain light having a wavelength different from the emission wavelength of the light emitting element. As a result, it can be set as the emitted light which has a desired hue by color mixing with the light which is not wavelength-converted.

具体的には、例えば、蛍光体の単結晶、多結晶もしくは蛍光体粉末の焼結体等の蛍光体
インゴットから切り出したものや、樹脂、ガラス、無機物等に蛍光体粉末を混合して焼結
したものが挙げられる。入光面および出光面が略平坦および略平行の板状とすることによ
り、受光から出光へ好適に光が進行する。また、出光面が例えばレンズ形状、もしくは光
を散乱させる形状などとなるように、表面を加工してもよい。
Specifically, for example, the phosphor powder mixed with a phosphor ingot such as a phosphor single crystal, polycrystal, or phosphor powder sintered body, resin, glass, inorganic, etc. is sintered. The thing which was done is mentioned. By making the light entrance surface and the light exit surface substantially flat and substantially parallel to each other, light suitably travels from light reception to light output. Further, the surface may be processed so that the light exit surface has, for example, a lens shape or a shape that scatters light.

また、青色発光素子と好適に組み合わせて白色発光とでき、波長変換部材に用いられる
代表的な蛍光体としては、例えば、YAG(Yttrium Aluminum Garnet)系、BOS(Bar
ium ortho-Silicate)系等の蛍光体などが好適に用いられる。
Moreover, it can be suitably combined with a blue light emitting element to emit white light, and typical phosphors used for wavelength conversion members include, for example, YAG (Yttrium Aluminum Garnet), BOS (Bar
A phosphor such as (ium ortho-Silicate) is preferably used.

さらに、波長変換部材を含有する透光性部材102と青色発光素子とを接着する接着材
103に赤色蛍光体を含有させることで、JIS規格に沿うように、電球色に発光する発
光装置とすることができる。つまり、発光素子101により発光された青色光と、蛍光体
の黄色光乃至赤色光とが混色することにより、暖色系の白色に発光する。発光素子101
近傍より、長波から短波に向かって蛍光体を配置することが光取り出し効率が良いと考え
られることから、発光素子により近い接着材103に赤色蛍光体を含有させることで、効
果的に光を取り出すことができる。発光素子101の近傍に配置されることから、熱に強
い蛍光体であることが好ましい。
Furthermore, a red phosphor is included in the adhesive 103 that bonds the translucent member 102 containing the wavelength conversion member and the blue light-emitting element, so that the light-emitting device emits light in a light bulb color so as to comply with the JIS standard. be able to. That is, the blue light emitted from the light emitting element 101 and the yellow light or red light of the phosphor are mixed to emit warm white light. Light emitting element 101
Since it is considered that the light extraction efficiency is good when the phosphors are arranged from the long wave toward the short wave from the vicinity, the light is effectively extracted by including the red phosphor in the adhesive material 103 closer to the light emitting element. be able to. Since it is disposed in the vicinity of the light emitting element 101, it is preferably a phosphor resistant to heat.

透光性部材102は、図1に示すように、発光素子の光出射面の幅よりも大きい幅を有
し、透光性部材102と発光素子101とが接着された際に、透光性部材102の外周部
が、発光素子の外周部よりも突出していることが好ましい。言い換えると、図1において
、透光性部材102の側面は、発光素子101の側面よりも外方向に突出している。これ
により、発光素子101の光出射面よりも大きな面をもって透光性部材102で受光する
ことができるため、光のロスを少なくすることができる。また、発光素子101の光出射
面からはみ出した接着材103を伝わる光を受光することもできる。
As shown in FIG. 1, the translucent member 102 has a width larger than the width of the light emitting surface of the light emitting element, and when the translucent member 102 and the light emitting element 101 are bonded together, the translucent member 102 is translucent. It is preferable that the outer peripheral part of the member 102 protrudes rather than the outer peripheral part of a light emitting element. In other words, in FIG. 1, the side surface of the translucent member 102 protrudes outward from the side surface of the light emitting element 101. Thereby, since the light-transmitting member 102 can receive light with a surface larger than the light emitting surface of the light emitting element 101, the light loss can be reduced. In addition, light transmitted through the adhesive 103 protruding from the light emitting surface of the light emitting element 101 can be received.

(基板107)
基板107の材料としては、ガラスエポキシ、樹脂、セラミックスなどの絶縁性部材が挙
げられる。また、絶縁部材を形成した金属であってもよい。特に、その表面に発光素子1
01との接続をとるための導体配線を形成することができるものが好ましく、そのような
材料として、耐熱性および耐候性の高いセラミックスからなることが好ましい。セラミッ
クス材料としては、アルミナ、窒化アルミニウム、ムライトなどが好ましい。なお、セラ
ミックスからなる支持基板であっても、セラミックス以外の絶縁性材料からなる絶縁層を
その一部に有していてもよい。このような材料としては、例えば、BTレジン、ガラスエ
ポキシ、エポキシ系樹脂等が挙げられる。
(Substrate 107)
Examples of the material of the substrate 107 include insulating members such as glass epoxy, resin, and ceramics. Moreover, the metal which formed the insulating member may be sufficient. In particular, the light emitting element 1 is formed on the surface.
A material capable of forming a conductor wiring for connection to 01 is preferable, and such a material is preferably made of a ceramic having high heat resistance and high weather resistance. As the ceramic material, alumina, aluminum nitride, mullite and the like are preferable. In addition, even if it is a support substrate which consists of ceramics, you may have an insulating layer which consists of insulating materials other than ceramics in that part. Examples of such a material include BT resin, glass epoxy, epoxy resin, and the like.

第1の光反射性部材104および/または第2の光反射性部材105をポッティングに
より形成する場合に、反射部材である樹脂の流出を抑制するために、基板107の表面に
凹または凸を形成することが好ましい。基板107の表面に設けられる配線パターンとし
て凸形状を形成してもよい。
When the first light-reflecting member 104 and / or the second light-reflecting member 105 is formed by potting, a concave or convex surface is formed on the surface of the substrate 107 in order to suppress the outflow of the resin as the reflecting member. It is preferable to do. A convex shape may be formed as a wiring pattern provided on the surface of the substrate 107.

また、基板107がキャビティを有する構造としてもよい。これにより、第1の光反射
性部材や第2の光反射性部材を形成する際に、枠体などのマスクが不要となり、好ましい
。例えば、基板の貼り合わせ構造、立体回路基板(Molded Interconnect Device;MID)な
どが挙げられる。
Further, the substrate 107 may have a structure having a cavity. Thereby, when forming a 1st light reflective member or a 2nd light reflective member, masks, such as a frame, become unnecessary and it is preferable. For example, a substrate bonding structure, a three-dimensional circuit board (Molded Interconnect Device; MID), and the like can be given.

以下、本発明に係る実施例を本発明の製造方法にそって詳述する。なお、本発明は以下
に示す実施例のみに限定されないことは言うまでもない。
Hereinafter, examples according to the present invention will be described in detail according to the production method of the present invention. Needless to say, the present invention is not limited to the following examples.

<実施例1>
実施例1として、図1に示す発光装置を製造する方法を、図2を用いて説明する。図2は
、本発明の発光装置の製造工程の一例を示す断面図である。
<Example 1>
As Example 1, a method of manufacturing the light-emitting device shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a cross-sectional view showing an example of a manufacturing process of the light emitting device of the present invention.

(第一の工程)
まず、発光素子101を基板107に載置する。本実施例では、基板107として窒化ア
ルミニウムを用いる。縦30mm、横40mm、厚み1.5mm、熱電導率が170W/
m・K程度の窒化アルミニウム板材の表面に、発光素子101との電気的接続をとるため
の配線をスパッタリングを用いて形成している。この窒化アルミニウム集合基板の配線に
、Auからなるバンプ108を用いて、サファイア基板上に半導体層が積層されて形成さ
れた1mm×1mmの発光素子101を、サファイア基板側が光出射面となるようにして
フリップチップ実装する。なお、図2は個々の発光装置を示すが、製造時においては集合
基板に対して以下の第二〜四の工程を行い、最後に個片化することにより、個々の発光装
置を作成する。
(First step)
First, the light emitting element 101 is placed on the substrate 107. In this embodiment, aluminum nitride is used as the substrate 107. Length 30mm, width 40mm, thickness 1.5mm, thermal conductivity is 170W /
Wiring for electrical connection with the light emitting element 101 is formed on the surface of an aluminum nitride plate of about m · K by sputtering. A bump 108 made of Au is used for the wiring of the aluminum nitride aggregate substrate, and the 1 mm × 1 mm light-emitting element 101 formed by stacking the semiconductor layers on the sapphire substrate is arranged so that the sapphire substrate side becomes the light emitting surface. Flip chip mounting. FIG. 2 shows individual light emitting devices. At the time of manufacture, the following second to fourth steps are performed on the collective substrate, and finally the individual light emitting devices are created by dividing into individual pieces.

(第二の工程)
次に、発光素子の上面を露出させて発光素子の側面を光反射性部材で覆う。本実施例では
、図2(a)に示すように、発光素子101の上面と略面一になる高さの枠体110を基
板107上に配置し、シリコーン樹脂に酸化チタンを含有させた第1の光反射性部材10
4をこの枠体110に充填して硬化させることで形成している。酸化チタンの粒径は、実
装された発光素子101と基板107との隙間よりも小さく設定されており、基板107
の方向に出射された光が基板107に吸収されることを防ぎ、基板107方向に出射され
た光も発光素子102側に反射させて光束を高めることができる。
(Second step)
Next, the upper surface of the light emitting element is exposed and the side surface of the light emitting element is covered with a light reflective member. In this embodiment, as shown in FIG. 2A, a frame 110 having a height substantially flush with the upper surface of the light emitting element 101 is disposed on a substrate 107, and titanium oxide is contained in a silicone resin. 1 light reflective member 10
4 is filled in the frame 110 and cured. The particle size of the titanium oxide is set to be smaller than the gap between the mounted light emitting element 101 and the substrate 107.
The light emitted in the direction can be prevented from being absorbed by the substrate 107, and the light emitted in the direction of the substrate 107 can also be reflected toward the light emitting element 102 to increase the luminous flux.

(第三の工程)
第2の工程の後、発光素子101の上面に接着剤を塗布し、前記発光素子と透光性部材と
を接着する。本実施例においては、図2(b)に示すように、第1の光反射性部材104
が硬化したのち、図2(a)で示した枠体110を取り外し、光出射面として第1の光反
射性部材104から露出された発光素子101の上面に接着材103を塗布し、透光性部
材102を接合する。本実施例では、接着材103としてシリコーン樹脂を用い、熱硬化
させることで透光性部材102と接着する。また、透光性部材として、YAGとアルミナ
を混合して焼結することで形成された蛍光体板を用いる。透光性部材が無機材料から形成
されるため、劣化が少なく、信頼性の高い発光装置とすることができる。接着後の接着材
層の厚みは、約10μmである。
(Third process)
After the second step, an adhesive is applied to the upper surface of the light emitting element 101, and the light emitting element and the translucent member are bonded. In the present embodiment, as shown in FIG. 2B, the first light reflective member 104 is used.
2 is removed, the frame 110 shown in FIG. 2A is removed, and an adhesive 103 is applied to the upper surface of the light-emitting element 101 exposed from the first light-reflecting member 104 as a light emitting surface. The adhesive member 102 is joined. In this embodiment, a silicone resin is used as the adhesive 103 and is bonded to the translucent member 102 by thermosetting. In addition, a phosphor plate formed by mixing and sintering YAG and alumina is used as the translucent member. Since the light-transmitting member is formed from an inorganic material, a highly reliable light-emitting device with little deterioration can be obtained. The thickness of the adhesive layer after bonding is about 10 μm.

(第四の工程)
次に、透光性部材102の上面を露出させて、透光性部材102の側面を光反射性部材で
覆う。本実施例では、図3(d)に示すように、透光性部材102の側面および第1の光
反射性部材104を覆うように、第2の光反射性部材105を数箇所に滴下して形成する
(Fourth process)
Next, the upper surface of the translucent member 102 is exposed, and the side surface of the translucent member 102 is covered with a light reflective member. In this embodiment, as shown in FIG. 3D, the second light reflective member 105 is dropped at several locations so as to cover the side surface of the light transmissive member 102 and the first light reflective member 104. Form.

(第五の工程)
最後に、前記第一の工程乃至第四の工程にて加工された集合基板をダイシングにより個々
に切断し、平面が6.5mm×12mmからなる実施例1に係る発光装置100を得る。
(Fifth process)
Finally, the aggregate substrate processed in the first to fourth steps is individually cut by dicing to obtain the light emitting device 100 according to Example 1 having a plane of 6.5 mm × 12 mm.

このようにして、製造された発光装置100は、発光素子101の側面や基板107に
接着材が流れることがなく、光束の低下を抑制することができる。
In this way, the manufactured light emitting device 100 can suppress a decrease in luminous flux without the adhesive material flowing on the side surface of the light emitting element 101 or the substrate 107.

<実施例2>
実施例2として、図4に示す発光装置200を製造する方法を、図3を用いて説明する。
図3(a)に示すように、第1の光反射性部材104として、シリコーン樹脂に酸化チタ
ンを含有させた針入度20のゲル状の樹脂を用い、バンプ108を介して基板107にフ
リップチップ実装された発光素子101の側面を覆うように滴下することで、第1の光反
射性部材104を形成する。このとき、発光素子101と基板107との隙間(バンプ1
08の間)にも第1の光反射性部材104が充填される。
<Example 2>
As Example 2, a method of manufacturing the light emitting device 200 shown in FIG. 4 will be described with reference to FIG.
As shown in FIG. 3A, as the first light reflecting member 104, a gel-like resin having a penetration of 20 in which titanium oxide is contained in a silicone resin is used and flipped to the substrate 107 through the bumps 108. The first light reflective member 104 is formed by dropping the light emitting element 101 mounted on the chip so as to cover the side surface. At this time, the gap between the light emitting element 101 and the substrate 107 (bump 1
The first light-reflecting member 104 is also filled in (between 08).

次に、図3(b)および図3(c)に示すように、第1の反射部材104から露出され
た発光素子101の光出射面に、実施例1と同様に接着材103を塗布し、透光性部材1
02を接着する。次に、図3(d)に示すように、基板107上に枠体であるメタルマス
ク111を配置し、JIS―A硬度70の第2の光反射性部材105をスクリーン印刷法
により形成する。このように形成することで、図4に示すような発光装置200を得るこ
とができる。この発光装置200は、発光素子101と基板107との接合部であるバン
プ108の周囲が柔らかい樹脂で覆われていることから、発光素子接合部における樹脂膨
張収縮応力の緩和が可能となり、電気的な接合信頼性が向上させることができる。また、
第2の光反射性部材105に機械強度の高い材料を使用しているので発光素子101およ
び第1の光反射性部材104の外的応力に対する耐久性を確保することができる。
Next, as shown in FIG. 3B and FIG. 3C, the adhesive material 103 is applied to the light emitting surface of the light emitting element 101 exposed from the first reflecting member 104 in the same manner as in Example 1. , Translucent member 1
Glue 02. Next, as shown in FIG. 3 (d), a metal mask 111, which is a frame, is disposed on the substrate 107, and a second light reflective member 105 having a JIS-A hardness of 70 is formed by screen printing. By forming in this way, a light emitting device 200 as shown in FIG. 4 can be obtained. In the light emitting device 200, since the periphery of the bump 108, which is a joint portion between the light emitting element 101 and the substrate 107, is covered with a soft resin, the resin expansion / contraction stress at the light emitting element joint portion can be relaxed, and the electrical Can improve the reliability of bonding. Also,
Since a material having high mechanical strength is used for the second light reflective member 105, durability of the light emitting element 101 and the first light reflective member 104 against external stress can be ensured.

<実施例3>
基板107として、窒化アルミニウムの3次元成形体表面にレーザパターニングで形成さ
れた配線を備え、キャビティを有する、セラミックMIDからなる基板を用いた。この基板
のキャビティ内に第1の光反射性部材104および第2の光反射性部材105を充填して
形成する以外、実施例1と同様にして発光装置を形成すると、図5に示すような発光装置
300を得ることができる。このようにキャビティを形成すると、ポッティングで第1の
反射部材104および第2の反射部材105を用いた封止を行えるため組み立てが容易と
なる。また、放熱性の良い窒化アルミニウムでキャビティおよび発光素子搭載部が形成さ
れるので、放熱性に優れた信頼性の高い発光装置とすることができる。
<Example 3>
As the substrate 107, a substrate made of ceramic MID having a cavity provided with wiring formed by laser patterning on the surface of a three-dimensional molded body of aluminum nitride was used. When the light emitting device is formed in the same manner as in Example 1 except that the first light reflecting member 104 and the second light reflecting member 105 are filled in the cavity of the substrate, the light emitting device is formed as shown in FIG. The light emitting device 300 can be obtained. When the cavity is formed in this way, since the sealing using the first reflecting member 104 and the second reflecting member 105 can be performed by potting, the assembly becomes easy. In addition, since the cavity and the light-emitting element mounting portion are formed using aluminum nitride with good heat dissipation, a highly reliable light-emitting device with excellent heat dissipation can be obtained.

<実施例4>
基板上に1mm×1mmの発光素子を4つ、0.1mm間隔でフリップチップ実装し、それ
ぞれの発光素子の側面を第1の光反射性部材104で覆い、発光素子の光出射面側に、全
ての発光素子を覆うような1枚の透光性部材102を用いる以外、実施例1と同様にして
発光装置を形成すると、図6(a)および図6(b)に示すような発光装置400を得る
ことができる。このように、基板107の上面は、第1の光反射性部材104および第2
の光反射性部材105から露出していてもよい。なお、図6(b)は、図6(a)のA−
A線における断面図を示している。
<Example 4>
Four 1 mm × 1 mm light emitting elements are flip-chip mounted on the substrate at 0.1 mm intervals, the side surfaces of the respective light emitting elements are covered with the first light reflecting member 104, and the light emitting surface side of the light emitting elements is When a light-emitting device is formed in the same manner as in Example 1 except that one translucent member 102 that covers all the light-emitting elements is used, a light-emitting device as shown in FIGS. 6A and 6B is formed. 400 can be obtained. As described above, the upper surface of the substrate 107 has the first light reflective member 104 and the second light reflective member 104.
The light reflecting member 105 may be exposed. Note that FIG. 6B shows the A-
A sectional view along line A is shown.

<比較例>
比較例として、発光素子と透光性部材とを接着材で接着したあとで、発光素子の側面及び
透光性部材の側面を覆うように光反射性部材を形成した以外は、実施例4と同様に形成し
たサンプルを示す。このサンプルにおいて、接着材の量を2.9mgとした場合と、5.
8mgとした場合の光束を図8に示す。一方、実施例4において、接着材の量を2.9m
gとした場合と、5.8mgとした場合の光束を図8に示す。
<Comparative example>
As a comparative example, Example 4 except that after the light emitting element and the translucent member were bonded with an adhesive, a light reflecting member was formed so as to cover the side surface of the light emitting element and the side surface of the translucent member. Similarly formed samples are shown. In this sample, when the amount of the adhesive is 2.9 mg, and 5.
FIG. 8 shows the luminous flux in the case of 8 mg. On the other hand, in Example 4, the amount of the adhesive was 2.9 m.
FIG. 8 shows the luminous fluxes when g is set to 5.8 mg.

実施例4の発光装置では、接着材の量の変化による光束変化がほとんどないのに対し、
比較例の発光装置では、接着材の量の変化によって、著しい光束の差が出る結果となった
。すなわち、実施例の発光装置では、製造工程において、接着剤の塗布量にばらつきが生
じたとしても光束の変化が少なく、量産性よく製造が可能である。
In the light emitting device of Example 4, there is almost no change in luminous flux due to a change in the amount of adhesive,
In the light emitting device of the comparative example, a significant difference in luminous flux was produced due to the change in the amount of the adhesive. That is, the light emitting device of the embodiment can be manufactured with high mass productivity with little change in the luminous flux even if the amount of adhesive applied varies in the manufacturing process.

本発明の発光装置およびその製造方法は、家庭用照明や車両用照明等として広く利用す
ることができる。
The light emitting device and the manufacturing method thereof according to the present invention can be widely used as home lighting, vehicle lighting, and the like.

100、200、300、400、500 発光装置
101 発光素子
102 透光性部材
103、503 接着材
104 第1の光反射性部材
105 第2の光反射性部材
107 基板
108 バンプ
110 枠体
111 メタルマスク
501 半導体発光チップ
502 蛍光体チップ
100, 200, 300, 400, 500 Light-emitting device 101 Light-emitting element 102 Translucent member 103, 503 Adhesive material 104 First light-reflective member 105 Second light-reflective member 107 Substrate 108 Bump 110 Frame body 111 Metal mask 501 Semiconductor light emitting chip 502 Phosphor chip

Claims (5)

発光素子と、前記発光素子から出射される光を透過して外部に放出する透光性部材とを
有し、前記発光素子と前記透光性部材とが接着材を介して接着された発光装置を製造する
方法であって、
前記発光素子を基板に載置する第1の工程と、
前記発光素子の上面を露出させて前記発光素子の側面を第1の光反射性部材で覆う第2
の工程と、
前記第2の工程の後で、前記上面に接着剤を塗布し、前記発光素子と前記透光性部材と
を接着する第3の工程と、
前記第3の工程の後で、前記透光性部材の上面を露出させて前記透光性部材の側面を第
2の光反射性部材で覆う第4の工程と、
を有することを特徴とする発光装置の製造方法。
A light-emitting device having a light-emitting element and a light-transmitting member that transmits light emitted from the light-emitting element and emits the light to the outside, and the light-emitting element and the light-transmitting member are bonded together with an adhesive A method of manufacturing
A first step of placing the light emitting element on a substrate;
A second light-sensitive member covering the side surface of the light-emitting element with the upper surface of the light-emitting element exposed;
And the process of
After the second step, a third step of applying an adhesive on the upper surface and bonding the light emitting element and the light transmissive member;
After the third step, a fourth step of exposing an upper surface of the light transmissive member and covering a side surface of the light transmissive member with a second light reflective member;
A method for manufacturing a light-emitting device, comprising:
前記第3の工程よりも前に、前記発光素子と前記基板との隙間を光反射性部材で覆う工
程を更に含む請求項1に記載の発光装置の製造方法。
The method for manufacturing a light-emitting device according to claim 1, further comprising a step of covering a gap between the light-emitting element and the substrate with a light reflective member before the third step.
前記第4の工程は印刷法により行われる請求項1または2に記載の発光装置の製造方法
The method for manufacturing a light emitting device according to claim 1, wherein the fourth step is performed by a printing method.
前記第1の光反射部材は、前記第2の光反射部材よりも低弾性もしくは低線膨張である
請求項1〜3に記載の発光装置の製造方法。
The method of manufacturing a light emitting device according to claim 1, wherein the first light reflecting member has lower elasticity or lower linear expansion than the second light reflecting member.
前記発光素子は、成長用基板上に半導体層が積層されて形成された発光素子であり、前
記成長用基板は前記半導体層との接合面に凹凸を有している請求項1〜4に記載の発光装
置の製造方法。
The said light emitting element is a light emitting element formed by laminating | stacking a semiconductor layer on the growth substrate, and the said growth substrate has an unevenness | corrugation in the junction surface with the said semiconductor layer. Method for manufacturing the light emitting device.
JP2013081729A 2013-04-10 2013-04-10 Method for manufacturing light emitting device Active JP5527456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081729A JP5527456B2 (en) 2013-04-10 2013-04-10 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081729A JP5527456B2 (en) 2013-04-10 2013-04-10 Method for manufacturing light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009034670A Division JP5278023B2 (en) 2009-02-18 2009-02-18 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2013175759A true JP2013175759A (en) 2013-09-05
JP5527456B2 JP5527456B2 (en) 2014-06-18

Family

ID=49268348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081729A Active JP5527456B2 (en) 2013-04-10 2013-04-10 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP5527456B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225910A (en) * 2014-05-27 2015-12-14 東芝ライテック株式会社 Light-emitting module and illumination device
JP2017224867A (en) * 2017-09-28 2017-12-21 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
US10181459B2 (en) 2015-11-27 2019-01-15 Nichia Corporation Method of manufacturing light-emitting device
US10424705B2 (en) 2016-11-01 2019-09-24 Nichia Corporation Light emitting device with large phosphor area and method for manufacturing same
WO2020052973A1 (en) * 2018-09-10 2020-03-19 Osram Oled Gmbh Optoelectronic component and method for producing an optoelectronic component
WO2020083692A1 (en) * 2018-10-24 2020-04-30 Osram Opto Semiconductors Gmbh Optoelectronic component, production method therefor and illumination device
CN111540821A (en) * 2015-04-02 2020-08-14 日亚化学工业株式会社 Light emitting device and method for manufacturing the same
US11393965B2 (en) 2019-08-02 2022-07-19 Nichia Corporation Light-emitting unit and surface-emission light source
US11594665B2 (en) 2019-08-02 2023-02-28 Nichia Corporation Light-emitting unit and surface-emission light source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335020A (en) * 2001-05-10 2002-11-22 Nichia Chem Ind Ltd Light emitting device
JP2006086191A (en) * 2004-09-14 2006-03-30 Nichia Chem Ind Ltd Light-emitting device
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335020A (en) * 2001-05-10 2002-11-22 Nichia Chem Ind Ltd Light emitting device
JP2006086191A (en) * 2004-09-14 2006-03-30 Nichia Chem Ind Ltd Light-emitting device
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225910A (en) * 2014-05-27 2015-12-14 東芝ライテック株式会社 Light-emitting module and illumination device
CN111540821B (en) * 2015-04-02 2024-02-20 日亚化学工业株式会社 Light emitting device and method of manufacturing the same
CN111540821A (en) * 2015-04-02 2020-08-14 日亚化学工业株式会社 Light emitting device and method for manufacturing the same
US10181459B2 (en) 2015-11-27 2019-01-15 Nichia Corporation Method of manufacturing light-emitting device
US11309467B2 (en) 2016-11-01 2022-04-19 Nichia Corporation Method for manufacturing light emitting device
US10424705B2 (en) 2016-11-01 2019-09-24 Nichia Corporation Light emitting device with large phosphor area and method for manufacturing same
US10763412B2 (en) 2016-11-01 2020-09-01 Nichia Corporation Light emitting device
JP2017224867A (en) * 2017-09-28 2017-12-21 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
WO2020052973A1 (en) * 2018-09-10 2020-03-19 Osram Oled Gmbh Optoelectronic component and method for producing an optoelectronic component
US20210376199A1 (en) * 2018-10-24 2021-12-02 Osram Opto Semiconductors Gmbh Optoelectronic Component, Method for Producing an Optoelectronic Component and Lighting Device
US11824143B2 (en) * 2018-10-24 2023-11-21 Osram Opto Semiconductors Gmbh Optoelectronic component, method for producing an optoelectronic component and lighting device
WO2020083692A1 (en) * 2018-10-24 2020-04-30 Osram Opto Semiconductors Gmbh Optoelectronic component, production method therefor and illumination device
US11393965B2 (en) 2019-08-02 2022-07-19 Nichia Corporation Light-emitting unit and surface-emission light source
US11594665B2 (en) 2019-08-02 2023-02-28 Nichia Corporation Light-emitting unit and surface-emission light source
US11799064B2 (en) 2019-08-02 2023-10-24 Nichia Corporation Light-emitting unit and surface-emission light source
US11901498B2 (en) 2019-08-02 2024-02-13 Nichia Corporation Light-emitting unit and surface-emission light source

Also Published As

Publication number Publication date
JP5527456B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5278023B2 (en) Method for manufacturing light emitting device
JP5482378B2 (en) Light emitting device
JP5527456B2 (en) Method for manufacturing light emitting device
JP5689225B2 (en) Light emitting device
JP5326705B2 (en) Light emitting device
JP5799988B2 (en) Light emitting device
JP6444299B2 (en) Light emitting device
JP5521325B2 (en) Light emitting device and manufacturing method thereof
JP2010272847A5 (en)
US20150034987A1 (en) Light emitting device and method for manufacturing light emitting device
JP6020657B2 (en) Light emitting device
JP2015099940A (en) Light-emitting device
JP2015026871A (en) Light emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP6665143B2 (en) Light emitting device manufacturing method
JP6222325B2 (en) Light emitting device
CN109427756B (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP2018078327A (en) Light-emitting device
JP2024083405A (en) Light-emitting device
JP6274240B2 (en) Light emitting device
JP2016086166A (en) Light emitting device
JP6825636B2 (en) Light emitting device
JP7277815B2 (en) Light-emitting device manufacturing method and light-emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5527456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250