[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013175467A - Led lamp and led bulb - Google Patents

Led lamp and led bulb Download PDF

Info

Publication number
JP2013175467A
JP2013175467A JP2013075457A JP2013075457A JP2013175467A JP 2013175467 A JP2013175467 A JP 2013175467A JP 2013075457 A JP2013075457 A JP 2013075457A JP 2013075457 A JP2013075457 A JP 2013075457A JP 2013175467 A JP2013175467 A JP 2013175467A
Authority
JP
Japan
Prior art keywords
light
fluorescent
heat conductive
led
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075457A
Other languages
Japanese (ja)
Other versions
JP5627145B2 (en
Inventor
Keiji Iimura
惠次 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013075457A priority Critical patent/JP5627145B2/en
Publication of JP2013175467A publication Critical patent/JP2013175467A/en
Application granted granted Critical
Publication of JP5627145B2 publication Critical patent/JP5627145B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED bulb with pantoscopic and high heat radiation properties.SOLUTION: An LED lamp 930A is provided with: a heat-conductive hollow member 110A consisting of a heat-radiating outer face 110A-a, a light-reflecting inner face 110A-b, and a plurality of fluorescent windows 130A to form an inner space HS; a light-emitting unit 140 including at least one light-emitting diode (LED) element 141 emitting a blue primary light beam L1 and arranged inside the inner space HS in thermal coupling with the heat-conductive hollow member 110A; and a fluorescent cover 120A arranged so as to cover an opening at a top end of the heat-conductive hollow member 110A. Yellow fluorescent materials contained in the fluorescent windows 130A and the fluorescent cover 120A convert a wavelength of the blue primary light beam L1 into those of yellow secondary light beams L2, L3, and a white illumination beam formed by mixing a part of the blue primary light beam L1 and the yellow secondary light beams L2, L3 is emitted outside. The LED lamp 930A, a turn-on circuit 160 incorporated in a housing 180, and a base for power feeding 170, are integrated to configure the LED bulb with pantoscopic and high heat radiation properties.

Description

この発明は発光ダイオード(LED)ランプおよびLED電球(電球形ランプ)に関する。 The present invention relates to a light emitting diode (LED) lamp and an LED bulb (bulb-shaped lamp).

この発明は、白熱電球と比べて低消費電力であり、また水銀の放電を利用する電球形蛍光ランプのように人体、地球環境に悪い影響を与える水銀を一切含まない、人体、地球環境に優しいクリーンなLED電球に関する。
This invention has lower power consumption than incandescent bulbs, and does not contain any mercury that adversely affects the human body and the global environment like a light bulb-type fluorescent lamp that uses mercury discharge. It relates to a clean LED bulb.

先行技術1(特開2001−243809号公開公報)に記載されているLED電球は、簡単な冷却構造により、LED素子の発熱を抑制して高い発光効率で長寿命のLED電球を提供するものである。 The LED bulb described in Prior Art 1 (Japanese Patent Laid-Open No. 2001-243809) provides a long-life LED bulb with high luminous efficiency by suppressing heat generation of the LED element with a simple cooling structure. is there.

図65(上記公報の図1を転載)に示すように、この公開公報に記載されているLED電球は、一端に口金1が設けられ、他端の開口部に向けてラッパ状に拡がるラッパ状金属放熱部2、このラッパ状金属放熱部2の開口部に取付けられた透光性カバー6と、ラッパ状金属放熱部2と透光性カバー6により形成された略球体7の内部に設けられた金属基板3と、この金属基板3の透光性カバー6に対向する外面に実装されたLED素子5とを備える。 As shown in FIG. 65 (reprinted from FIG. 1 of the above publication), the LED bulb described in this publication has a trumpet shape in which a cap 1 is provided at one end and expands in a trumpet shape toward the opening at the other end. The metal heat dissipating part 2, a translucent cover 6 attached to the opening of the trumpet-shaped metal heat dissipating part 2, and a substantially spherical body 7 formed by the trumpet-shaped metal heat dissipating part 2 and the translucent cover 6 are provided. The metal substrate 3 and the LED element 5 mounted on the outer surface of the metal substrate 3 facing the translucent cover 6 are provided.

先行技術2(特開2001−243807号公開公報)に記載されているLED電球は、簡単な構成で大きな光束で照射範囲の広い白色光が得ることができ、また、種々の配光パターンを作ることができ、従来の白熱電球との互換性があるLED電球を提供するものである。 The LED bulb described in Prior Art 2 (Japanese Patent Laid-Open No. 2001-243807) can obtain white light having a wide irradiation range with a large luminous flux with a simple configuration, and also makes various light distribution patterns. It is possible to provide an LED bulb that is compatible with conventional incandescent bulbs.

図66(上記公報の図1を転載)に示すように、この公開公報に記載されているLED電球は、一端に口金1が設けられ、他端の開口部に向けてラッパ状に拡がるラッパ状部材2と、このラッパ状部材2の開口部に取付けられ内面に蛍光体の層を有する透光性カバー5と、ラッパ状部材2と透光性カバー5により形成された略球体7の内部に設けられた基板3と、この基板3の透光性カバー5に対向する外面に実装されたLED素子4とを備える。
As shown in FIG. 66 (reprinted from FIG. 1 of the above publication), the LED bulb described in this publication has a trumpet shape in which a cap 1 is provided at one end and expands in a trumpet shape toward the opening at the other end. Inside the substantially spherical body 7 formed by the member 2, the translucent cover 5 attached to the opening of the trumpet-shaped member 2 and having a phosphor layer on the inner surface, and the trumpet-shaped member 2 and the translucent cover 5 The board | substrate 3 provided and the LED element 4 mounted in the outer surface facing the translucent cover 5 of this board | substrate 3 are provided.

特開2001−243809号公開公報(全頁、図1など)。Japanese Unexamined Patent Publication No. 2001-243809 (all pages, FIG. 1 and the like). 特開2001−243807号公開公報(全頁、図1など)。Japanese Unexamined Patent Publication No. 2001-243807 (all pages, FIG. 1 and the like).

現在市販されている多くのLED電球(電球形LEDランプ)は、白熱電球と比べて照明範囲(配光特性)が狭く、照明器具によってはランプ・シェード(笠)に暗所ができ、明るさに「むら」ができる問題点を有している。 Many LED bulbs (bulb-shaped LED lamps) currently on the market have a narrow illumination range (light distribution characteristics) compared to incandescent bulbs, and depending on the lighting fixtures, a dark place can be created in the lamp shade (shade) and the brightness. There is a problem that “unevenness” can occur.

このような配光特性が狭いLED電球を配光特性が広い白熱電球の替わりに、デザイン性の高い照明器具に取り付ける場合には、照明器具の目的とする照明効果を損なうことがある。 When such an LED bulb with a narrow light distribution characteristic is attached to a lighting device with high designability instead of an incandescent bulb with a wide light distribution property, the intended lighting effect of the lighting device may be impaired.

先行技術1(特開2001−243809号公開公報)に記載されているLED電球は、ラッパ状金属放熱部とドーム状の形状の透光性カバーにより形成された略球体の内部に設けられた金属基板と、この金属基板の透光性カバーに対向する外面に実装されたLED素子とを備えている。 The LED bulb described in Prior Art 1 (Japanese Patent Laid-Open No. 2001-243809) is a metal provided inside a substantially spherical body formed by a trumpet-shaped metal heat radiating portion and a dome-shaped translucent cover. The board | substrate and the LED element mounted in the outer surface facing the translucent cover of this metal substrate are provided.

このLED電球は、指向性の狭いLED素子を透光性カバーに対向するように金属基板に取り付けているしているので、当然ドーム状透光性カバーのみから照明光線が出射する構成となっている。 In this LED bulb, the LED element with narrow directivity is attached to the metal substrate so as to face the translucent cover, so that the illumination light beam is naturally emitted only from the dome-shaped translucent cover. Yes.

したがって、このLED電球は、その照明範囲が白熱電球と比較して狭い照射角度を有する狭角配光特性を有し、白熱電球のようにほぼ全方向を照明することができない基本的な問題点を有している。 Therefore, this LED bulb has a narrow-angle light distribution characteristic in which the illumination range has a narrow illumination angle compared to an incandescent bulb, and it is a basic problem that it cannot illuminate almost all directions like an incandescent bulb have.

先行技術2(特開2001−243807号公開公報)に記載されているLED電球は、ラッパ状部材の開口部に取付けられ内面に蛍光体の層を有するドーム状の形状の透光性カバーと、ラッパ状部材と透光性カバーにより形成された略球体の内部に設けられた基板と、この基板の透光性カバーに対向する外面に実装されたLED素子とを備えるので、当然ドーム状透光性カバーの内面に形成した蛍光体層から照明光線が出射する構成となっている。 The LED bulb described in Prior Art 2 (Japanese Patent Laid-Open No. 2001-243807) has a dome-shaped translucent cover attached to an opening of a trumpet-shaped member and having a phosphor layer on the inner surface thereof, Since it includes a substrate provided inside a substantially spherical body formed by a trumpet-shaped member and a light-transmitting cover, and an LED element mounted on the outer surface of the substrate facing the light-transmitting cover, it is naturally a dome-shaped light transmitting The illumination light beam is emitted from the phosphor layer formed on the inner surface of the protective cover.

先行技術2のLED電球も先行技術1と同様に、その照明範囲が白熱電球と比較して狭い照射角度を有する配光特性を有し、白熱電球のようにほぼ全方向を照明することができない基本的な問題点を有している。 Like the prior art 1, the LED light bulb of the prior art 2 has a light distribution characteristic in which the illumination range has a narrow irradiation angle as compared with the incandescent light bulb, and cannot illuminate almost all directions like the incandescent light bulb. Has basic problems.

この発明は、先行技術1、先行技術2の問題点を解決することを一つの目的とし、光透過性カバー(透光性カバー)から光線を出射して照明光線とすると共に、熱伝導性中空部材からも光線を出射して照明光線とするものである。 One object of the present invention is to solve the problems of the prior art 1 and the prior art 2, and the light is emitted from a light transmissive cover (light transmissive cover) to become an illumination light, and the heat conductive hollow. Light is also emitted from the member to produce illumination light.

この発明は、照明範囲が広い広角配光特性を有し、かつ放熱特性の良い、広角性能と放熱性能を両立させた、発光ダイオード(LED)ランプ、LED電球およびLEDランプ用部材を提供するものである。 The present invention provides a light-emitting diode (LED) lamp, an LED bulb, and a member for an LED lamp, which has a wide-angle light distribution characteristic with a wide illumination range and a good heat-dissipation characteristic, and achieves both wide-angle performance and heat-radiation performance. It is.

以下に、この発明の各種の態様のLEDランプ、LED電球(電球形LEDランプ)の要旨を、添付図の参照符号を付して記載する。この参照符号は、内容の理解を助けるために例示的に記入するものであり、前記要旨は以下に記入した参照符号のみに限定されない。 Below, the gist of the LED lamp and LED bulb (bulb-shaped LED lamp) of various aspects of the present invention will be described with reference numerals in the attached drawings. The reference numerals are provided for illustrative purposes to help understanding the contents, and the gist is not limited to the reference numerals described below.

この発明の一態様のLEDランプは、放熱外面110aと光反射性内面110bと複数の窓130からなり内部空間HSを有する熱伝導性中空部材110と、少なくとも一つの発光ダイオード(LED)素子141を含む発光ユニット140を備え、前記発光ユニット140は、前記LED素子141からの放射光線L1が前記内部空間HSへ入射する位置に配置され、前記熱伝導性中空部材110と熱結合された、LEDランプである。 The LED lamp according to an aspect of the present invention includes a heat conductive hollow member 110 having an internal space HS, which includes a heat dissipating outer surface 110a, a light reflecting inner surface 110b, and a plurality of windows 130, and at least one light emitting diode (LED) element 141. A light-emitting unit 140 including the light-emitting unit 140, the light-emitting unit 140 being disposed at a position where the radiation L1 from the LED element 141 is incident on the internal space HS, and thermally coupled to the thermally conductive hollow member 110. It is.

この発明の他の一態様のLEDランプは、放熱外面110aと光反射性内面110bと複数の窓130からなり内部空間HSを有する熱伝導性中空部材110と、少なくとも一つの発光ダイオード(LED)素子141が回路基板142に搭載された発光ユニット140を備え、前記発光ユニット140は、前記LED素子141からの放射光線L1が前記内部空間HSへ入射する位置に配置され、前記回路基板142は前記熱伝導性中空部材110と間接的または直接的に熱伝導結合するように配置され、それにより前記発光ユニット140は前記熱伝導性中空部材110と熱結合された、LEDランプである。 The LED lamp according to another aspect of the present invention includes a heat conductive hollow member 110 having a heat dissipation outer surface 110a, a light reflecting inner surface 110b, and a plurality of windows 130 and having an internal space HS, and at least one light emitting diode (LED) element. 141 includes a light emitting unit 140 mounted on a circuit board 142, and the light emitting unit 140 is disposed at a position where a radiation beam L1 from the LED element 141 is incident on the internal space HS. The light emitting unit 140 is an LED lamp that is arranged to be indirectly or directly thermally conductively coupled to the conductive hollow member 110, whereby the light emitting unit 140 is thermally coupled to the thermally conductive hollow member 110.

この発明の他の一態様のLEDランプは、放熱外面110aと光反射性内面110bと複数の窓130からなり内部空間HSを有する熱伝導性中空部材110と、少なくとも一つの発光ダイオード(LED)素子141を含む発光ユニット140を備え、前記発光ユニット140は、前記LED素子141からの放射光線L1が前記内部空間HSへ入射する位置に配置され、前記窓130は前記熱伝導性中空部材110に形成された複数の貫通孔111と前記貫通孔111と対応して配置された光透過性材料からなり、前記発光ユニット140は前記熱伝導性中空部材110と熱結合された、LEDランプである。 The LED lamp according to another aspect of the present invention includes a heat conductive hollow member 110 having a heat dissipation outer surface 110a, a light reflecting inner surface 110b, and a plurality of windows 130 and having an internal space HS, and at least one light emitting diode (LED) element. 141, and the light emitting unit 140 is disposed at a position where the light beam L1 from the LED element 141 enters the internal space HS, and the window 130 is formed in the heat conductive hollow member 110. The light emitting unit 140 is an LED lamp made of a plurality of through holes 111 and a light transmissive material disposed corresponding to the through holes 111, and the light emitting unit 140 is thermally coupled to the heat conductive hollow member 110.

この発明の他の一態様のLEDランプは、放熱外面110aと光反射性内面110bと複数の窓130からなり内部空間HSを有する熱伝導性中空部材110と、少なくとも一つの発光ダイオード(LED)素子141を含む発光ユニット140を備え、前記発光ユニット140は、前記LED素子141からの放射光線L1が前記内部空間HSへ入射する位置に配置され、前記窓130は前記熱伝導性中空部材110に形成された複数の貫通孔111と前記貫通孔111に充てんして配置された光透過性材料からなり、前記発光ユニット140は前記熱伝導性中空部材110と熱結合された、LEDランプである。 The LED lamp according to another aspect of the present invention includes a heat conductive hollow member 110 having a heat dissipation outer surface 110a, a light reflecting inner surface 110b, and a plurality of windows 130 and having an internal space HS, and at least one light emitting diode (LED) element. 141, and the light emitting unit 140 is disposed at a position where the light beam L1 from the LED element 141 enters the internal space HS, and the window 130 is formed in the heat conductive hollow member 110. The light emitting unit 140 is an LED lamp made of a plurality of through-holes 111 and a light-transmitting material disposed so as to fill the through-holes 111, and the light-emitting unit 140 is thermally coupled to the thermally conductive hollow member 110.

この発明の他の一態様のLEDランプは、放熱外面110aと光反射性内面110bと複数の窓130からなり内部空間HSを有する熱伝導性中空部材110と、少なくとも一つの発光ダイオード(LED)素子141を含む発光ユニット140を備え、前記発光ユニット140は、前記LED素子141からの放射光線L1が前記内部空間HSへ入射する位置に配置され、前記窓130は前記熱伝導性中空部材110に形成された複数の貫通孔111と少なくとも前記貫通孔111と対応し前記熱伝導性中空部材110の内側に配置された光透過性材料からなり、前記発光ユニット140は前記熱伝導性中空部材110と熱結合された、LEDランプである。 The LED lamp according to another aspect of the present invention includes a heat conductive hollow member 110 having a heat dissipation outer surface 110a, a light reflecting inner surface 110b, and a plurality of windows 130 and having an internal space HS, and at least one light emitting diode (LED) element. 141, and the light emitting unit 140 is disposed at a position where the light beam L1 from the LED element 141 enters the internal space HS, and the window 130 is formed in the heat conductive hollow member 110. The light-emitting unit 140 is made of a heat-transmitting hollow member 110 and a heat-transmitting material disposed at the inner side of the thermally conductive hollow member 110 corresponding to at least the through-hole 111. It is a combined LED lamp.

この発明の他の一態様のLEDランプは、放熱外面110aと光反射性内面110bと複数の窓130からなり内部空間HSを有する熱伝導性中空部材110と、少なくとも一つの発光ダイオード(LED)素子141を含む発光ユニット140を備え、前記発光ユニット140は、前記LED素子141からの放射光線L1が前記内部空間HSへ入射する位置に配置され、前記窓130は前記熱伝導性中空部材110に形成された複数の貫通孔111と少なくとも前記貫通孔111と対応し前記熱伝導性中空部材110の内側に配置された光透過性材料からなり、前記光透過性材料は前記熱伝導性中空部材110と相似形の形状を有し前記熱伝導性中空部材110の内面と近接、接触して配置された光透過性中空部材230からなり、前記発光ユニット140は前記熱伝導性中空部材110と熱結合された、LEDランプである。 The LED lamp according to another aspect of the present invention includes a heat conductive hollow member 110 having a heat dissipation outer surface 110a, a light reflecting inner surface 110b, and a plurality of windows 130 and having an internal space HS, and at least one light emitting diode (LED) element. 141, and the light emitting unit 140 is disposed at a position where the light beam L1 from the LED element 141 enters the internal space HS, and the window 130 is formed in the heat conductive hollow member 110. A plurality of through holes 111 formed and a light transmissive material corresponding to at least the through holes 111 and disposed inside the heat conductive hollow member 110, and the light transmissive material includes the heat conductive hollow member 110. A light-transmitting hollow member 230 having a similar shape and disposed in close proximity to and in contact with the inner surface of the thermally conductive hollow member 110; Light unit 140 is thermally coupled to the thermally conductive hollow member 110, an LED lamp.

この発明の他の一態様のLEDランプは、光透過性中空部材230と、前記光透過性中空部材230の外面の海状領域に配置した光反射兼熱伝導層と、前記外面の海状領域の存在しない島状領域に位置する複数の窓130からなる熱伝導性中空部材110と、少なくとも一つの発光ダイオード(LED)素子141を含む発光ユニット140を備え、前記発光ユニット140は前記LED素子141からの放射光線L1が前記内部空間HSへ入射する位置に配置され、前記発光ユニット140は前記熱伝導性中空部材110と熱結合された、LEDランプである。 The LED lamp according to another aspect of the present invention includes a light transmissive hollow member 230, a light reflection / heat conduction layer disposed in a sea region on the outer surface of the light transmissive hollow member 230, and a sea region on the outer surface. And a light emitting unit 140 including at least one light emitting diode (LED) element 141, and the light emitting unit 140 includes the LED element 141. The light emitting unit 140 is an LED lamp that is disposed at a position where the radiation L1 from the light enters the internal space HS, and the light emitting unit 140 is thermally coupled to the thermally conductive hollow member 110.

各種の前記態様において、前記熱伝導性中空部材は、円形筒状部材110、多角形筒状部材811、ロート状部材810、逆ドーム状半球形部材813、ドーム状半球形部材120−5および球形部材812から選択されることができる。 In the various aspects, the thermally conductive hollow member includes a circular cylindrical member 110, a polygonal cylindrical member 811, a funnel-shaped member 810, an inverted dome-shaped hemispherical member 813, a dome-shaped hemispherical member 120-5, and a spherical shape. The member 812 can be selected.

各種の前記態様において、更に、前記回路基板142に熱結合して配置された熱伝導部材150、155を設け、前記熱伝導部材150、155は前記熱伝導性中空部材110と熱結合して固定され、それにより前記回路基板142は前記熱伝導部材150、155を経由して間接的に前記熱伝導性中空部材110と熱結合されることができる。 In the various embodiments, the heat conductive members 150 and 155 arranged to be thermally coupled to the circuit board 142 are further provided, and the heat conductive members 150 and 155 are thermally coupled to the thermally conductive hollow member 110 and fixed. Accordingly, the circuit board 142 can be thermally coupled to the thermally conductive hollow member 110 indirectly via the thermally conductive members 150 and 155.

各種の前記態様において、前記回路基板142として熱伝導性回路基板150−1を用い、前記熱伝導性回路基板150−1は前記熱伝導性中空部材110と直接的に熱結合して固定されることができる。 In various embodiments, a heat conductive circuit board 150-1 is used as the circuit board 142, and the heat conductive circuit board 150-1 is directly thermally coupled to the heat conductive hollow member 110 and fixed. be able to.

各種の前記態様において、前記発光ユニット140は、前記LED素子141からの光線が前記内部空間HSへ入射するように前記熱伝導性中空部材110の一端の開口部またはその近辺に配置されることができる。 In the various aspects, the light emitting unit 140 may be disposed at or near an opening at one end of the thermally conductive hollow member 110 so that light from the LED element 141 enters the internal space HS. it can.

各種の前記態様において、更に、前記熱伝導性中空部材110の一端の開口部を覆う熱伝導部材150、155と、前記熱伝導部材150、155から前記内部空間HSへ延びる熱伝導性支柱152を設け、前記発光ユニット140は前記熱伝導性支柱152の上部に熱結合して配置されることができる。 In the various aspects, the heat conductive members 150 and 155 that cover the opening at one end of the heat conductive hollow member 110, and the heat conductive columns 152 that extend from the heat conductive members 150 and 155 to the internal space HS are further provided. The light emitting unit 140 may be thermally coupled to the top of the thermally conductive support 152.

各種の前記態様において、更に、前記発光ユニット140から前記熱伝導性中空部材110まで放射状に延びる複数の線形熱伝導部材157を設け、前記発光ユニット140は前記熱伝導性中空部材110と離隔して前記内部空間HS内に配置されることができる。 In the various aspects described above, a plurality of linear heat conductive members 157 extending radially from the light emitting unit 140 to the heat conductive hollow member 110 are further provided, and the light emitting unit 140 is separated from the heat conductive hollow member 110. It may be disposed in the internal space HS.

各種の前記態様において、前記窓130と対応する領域に光路変換素子を配置されることができる。 In the various aspects, an optical path conversion element may be disposed in a region corresponding to the window 130.

各種の前記態様において、前記熱伝導性中空部材110の内面において、前記窓130と対応する領域に光路変換素子を配置し、前記光路変換素子は、凸レンズ191またはプリズム192からなることができる。 In various aspects, an optical path conversion element may be disposed in a region corresponding to the window 130 on the inner surface of the thermally conductive hollow member 110, and the optical path conversion element may include a convex lens 191 or a prism 192.

各種の前記態様において、更に、前記熱伝導性中空部材110の上部開口を覆うように配置された光透過性材料からなる光透過性カバー120を設けることができる。 In the various aspects described above, a light-transmitting cover 120 made of a light-transmitting material disposed so as to cover the upper opening of the thermally conductive hollow member 110 can be further provided.

各種の前記態様において、更に、前記熱伝導性中空部材110の上部開口を覆うように配置され、光透過性材料からなる複数の窓130を有する熱伝導性部材からなる熱伝導性兼光透過性カバー120−5、120−7を設けることができる。 In various aspects, the heat conductive and light transmissive cover is further formed of a heat conductive member that is disposed so as to cover the upper opening of the heat conductive hollow member 110 and has a plurality of windows 130 made of a light transmissive material. 120-5, 120-7 can be provided.

各種の前記態様において、前記熱伝導性中空部材110の前記窓130、前記光透過性カバー120および、または熱伝導性兼光透過性カバー120−5,120−7の前記窓130は、前記LED素子141からの放射光線L1を散乱する光散乱材料を含む光散乱窓または光散乱カバーからなることができる。 In the various embodiments, the window 130 of the thermally conductive hollow member 110, the light transmissive cover 120, and / or the window 130 of the heat conductive and light transmissive covers 120-5 and 120-7 are the LED elements. 141 may comprise a light scattering window or light scattering cover including a light scattering material that scatters the emitted light L1 from 141.

各種の前記態様において、前記熱伝導性中空部材110の前記窓130、前記光透過性カバー120および、または熱伝導性兼光透過性カバー120−5,120−7の前記窓130は、前記LED素子141からの第一の波長範囲を有する放射光線を波長変換して第二の波長範囲を有する可視光線に波長変換する蛍光材料を含む蛍光窓130および、または蛍光カバー120Aからなることができる。 In the various embodiments, the window 130 of the thermally conductive hollow member 110, the light transmissive cover 120, and / or the window 130 of the heat conductive and light transmissive covers 120-5 and 120-7 are the LED elements. The fluorescent window 130 may include a fluorescent window 130A and / or a fluorescent cover 120A including a fluorescent material that converts the wavelength of the emitted light having a first wavelength range from 141 to visible light having the second wavelength range.

各種の前記態様において、前記光透過性カバー120または前記熱伝導性兼光透過性カバー120−5,120−7は、半球形(ドーム形)、ほぼ球形、ほぼVまたはU字形、ほぼ逆VまたはU字形または平板形の形状を有することができる。 In various embodiments, the light transmissive cover 120 or the heat and light transmissive covers 120-5, 120-7 may be hemispherical (dome shaped), generally spherical, generally V or U-shaped, generally inverted V or It can have a U shape or a flat shape.

各種の前記態様において、前記窓130または前記光透過性カバー120は、前記LED素子141からの放射光線L1を散乱する光散乱材料を含む光散乱窓または光散乱カバーからなり、前記光散乱窓または前記光散乱カバーは散乱材料を含む透明材料または表面を粗面化した透明材料からなることができる。 In the various embodiments, the window 130 or the light transmissive cover 120 includes a light scattering window or a light scattering cover including a light scattering material that scatters the radiation L1 from the LED element 141, and the light scattering window or The light scattering cover may be made of a transparent material including a scattering material or a transparent material having a roughened surface.

各種の前記態様において、前記熱伝導性中空部材110または前記熱伝導性兼光透過性カバー120−5,120−7の前記窓130または前記光透過性カバー120は、蛍光体を含む透明材料または透明材料の内面または外面に蛍光体を含む蛍光層からなることができる。 In the various embodiments, the window 130 or the light transmissive cover 120 of the heat conductive hollow member 110 or the heat conductive / light transmissive covers 120-5 and 120-7 may be a transparent material or a transparent material including a phosphor. It can consist of a fluorescent layer containing a phosphor on the inner or outer surface of the material.

各種の前記態様において、更に、前記熱伝導性中空部材110に放熱フィン190または放熱ピンを設けることができる。 In the various aspects described above, the heat conductive hollow member 110 may be further provided with heat radiation fins 190 or heat radiation pins.

各種の前記態様において、複数の前記窓130は、円形、楕円形、矩形および、また長方形を有することができる。 In various aspects, the plurality of windows 130 may have a circular shape, an elliptical shape, a rectangular shape, and a rectangular shape.

各種の前記態様において、複数の前記窓130または前記貫通孔111は、前記熱伝導性中空部材110または前記熱伝導性兼光透過性カバー120−5,120−7に並列状または千鳥状に配列されることができる。 In various aspects, the plurality of windows 130 or the through holes 111 are arranged in parallel or in a staggered manner on the heat conductive hollow member 110 or the heat conductive / light transmissive covers 120-5 and 120-7. Can be.

各種の前記態様において、複数の前記窓130または前記貫通孔111の開口面積および、または分布密度は、は、前記熱伝導性中空部材110または前記熱伝導性兼光透過性カバー120−5,120−7の異なる領域で一定または可変することができる。 In the various aspects described above, the opening area and / or distribution density of the plurality of windows 130 or the through-holes 111 is determined by the thermally conductive hollow member 110 or the thermally conductive and light transmissive covers 120-5 and 120-. It can be constant or variable in 7 different regions.

各種の前記態様において、複数の前記窓130または前記貫通孔111の開口率は、前記熱伝導性中空部材110または前記熱伝導性兼光透過性カバー120−5,120−7の異なる領域で一定または可変することができる。 In various aspects, the aperture ratio of the plurality of windows 130 or the through holes 111 is constant in different regions of the heat conductive hollow member 110 or the heat conductive / light transmissive covers 120-5 and 120-7. Can be variable.

各種の前記態様において、前記光透過性中空部材230は、前記貫通孔111と対応した領域のみが光散乱性または蛍光性を有することができる。 In the various embodiments, only the region corresponding to the through hole 111 of the light transmissive hollow member 230 can have light scattering property or fluorescence property.

各種の前記態様において、前記熱伝導性中空部材110の窓130、前記光透過性カバー120または熱伝導性兼光透過性カバー120−5の窓130−1は、前記LED素子141からの青色光線を黄色光線に波長変換する少なくとも黄色蛍光材料を含む蛍光窓130Aまたは蛍光カバー120Aからなることができ、ほぼ白色の照明光線を出射する。 In various aspects, the window 130 of the thermally conductive hollow member 110, the light transmissive cover 120, or the window 130-1 of the thermally conductive and light transmissive cover 120-5 receives blue light from the LED element 141. It can comprise a fluorescent window 130A or fluorescent cover 120A containing at least a yellow fluorescent material that converts the wavelength into yellow light, and emits substantially white illumination light.

各種の前記態様において、前記熱伝導性中空部材110の前記窓130、前記光透過性カバー120または熱伝導性兼光透過性カバー120−5、120−7の前記窓130−1は、前記LED素子からの紫色または紫外光線を三原色光線に波長変換する三原色蛍光材料を含む蛍光窓130Aまたは蛍光カバー120Aからなることができ、白色照明光線を出射する。 In the various embodiments, the window 130 of the heat conductive hollow member 110, the light transmissive cover 120, or the window 130-1 of the heat conductive / light transmissive cover 120-5, 120-7 may include the LED element. From a fluorescent window 130A or fluorescent cover 120A containing a three primary color fluorescent material that converts the wavelength of violet or ultraviolet light from the primary color to a primary color, and emits white illumination light.

各種の前記態様において、発光ユニット140Aは、中心から前記熱伝導性中空部材813まで放射状に延びる複数の熱伝導性線状部材からなる熱伝導性支持部材157Aに搭載され、前記内部空間HS1、HS2内に保持され配置されることができる。 In various aspects, the light emitting unit 140A is mounted on the heat conductive support member 157A including a plurality of heat conductive linear members extending radially from the center to the heat conductive hollow member 813, and the internal spaces HS1, HS2 are mounted. Can be held and placed within.

各種の前記態様において、前記光反射性内面110bは正反射性または散乱反射性を有することができる。 In the various aspects, the light-reflecting inner surface 110b may have regular reflectivity or scattering reflectivity.

各種の前記態様において、前記光透過性中空部材230は貫通孔211と対応した領域に光散乱性または蛍光性を有することができる。 In various aspects, the light transmissive hollow member 230 may have light scattering or fluorescence in a region corresponding to the through hole 211.

各種の前記態様において、前記熱伝導性中空部材110または前記熱伝導性兼光透過性カバー120−5は、前記窓130、130−1の部分を除いて、a)銅、アルミニウム、亜鉛、錫または鉄からなる熱伝導性金属またはその合金、b)熱伝導性セラミック、またはc)熱伝導性粒子または熱伝導性繊維からなる熱伝導性フィラーを合成樹脂またはガラスに含有した熱伝導性合成樹脂からなることができる。 In the various embodiments, the thermally conductive hollow member 110 or the thermally conductive and light transmissive cover 120-5 is a) copper, aluminum, zinc, tin or From a heat conductive synthetic resin containing a heat conductive metal or iron alloy thereof, b) a heat conductive ceramic, or c) a heat conductive filler made of heat conductive particles or heat conductive fibers in a synthetic resin or glass. Can be.

各種の前記態様において、前記窓130、130−1または前記光透過性カバー120は、透明または光散乱性を有する熱伝導性フィラーを合成樹脂またはガラスからなる透明材料に混入し光散乱性と熱伝導性を付与した光散乱透過性窓または光散乱透過性カバーからなることができる。 In the various embodiments, the window 130, 130-1 or the light-transmitting cover 120 is mixed with a transparent material made of synthetic resin or glass with a transparent or light-scattering heat conductive filler, thereby providing light scattering and heat. It can be composed of a light scattering transparent window or a light scattering transparent cover provided with conductivity.

この発明のLED電球は、各種の前記態様のLEDランプと、給電端子170と、交流を直流に変換する点灯回路160からなり、前記LEDランプと前記給電端子170と前記点灯回路160を結合して一体化したものである。 The LED bulb according to the present invention includes various LED lamps of the above-described aspects, a power supply terminal 170, and a lighting circuit 160 that converts alternating current into direct current, and the LED lamp, the power supply terminal 170, and the lighting circuit 160 are combined. It is an integrated one.

前記態様を具体化する一実施例では、例えば図1ないし図3を参照して、LEDランプ(100)は放熱性外面(110a)と光反射性内面(110b)と複数の窓(130)からなる熱伝導性円筒(110)と、回路基板(142)に発光ダイオード(LED)素子(141)を搭載した発光ユニット(140)と、回路基板(142)と熱伝導性円筒(110)と熱結合する熱伝導性基板150を備える。 In one embodiment embodying the above aspect, for example, referring to FIGS. 1 to 3, the LED lamp (100) is composed of a heat dissipating outer surface (110a), a light reflecting inner surface (110b), and a plurality of windows (130). A heat conductive cylinder (110), a light emitting unit (140) in which a light emitting diode (LED) element (141) is mounted on a circuit board (142), a circuit board (142), a heat conductive cylinder (110), and heat. A thermally conductive substrate 150 is provided for bonding.

発光ユニット(140)は、LED素子(141)の放射光線(L1)が中空空間(HS)へ指向して、光反射性内面(110b)、窓(130)に向かうように、熱伝導性円筒(110)の下端に配置される。 The light emitting unit (140) has a thermally conductive cylinder so that the radiation (L1) of the LED element (141) is directed toward the hollow space (HS) and toward the light reflective inner surface (110b) and the window (130). It is arranged at the lower end of (110).

更に点灯回路(160)を内蔵したハウジング(180)が熱伝導性基板(150)と給電用口金(170)の間に設けられてLED電球(電球形LEDランプ)(100A)となる。 Further, a housing (180) containing a lighting circuit (160) is provided between the heat conductive substrate (150) and the power supply base (170) to form an LED bulb (bulb-shaped LED lamp) (100A).

LED素子(141)の発熱は、放熱性外面(110a)から外部空気へ効果的に放散される。 The heat generated by the LED element (141) is effectively dissipated from the heat dissipating outer surface (110a) to the external air.

放射光線(L1)は熱伝導性円筒(110)の窓(130)と熱伝導性円筒(110)の上端に設けた光透過性カバー(120)の両方から出射されて広角な配光特性を有する照明光線(L2)および(L3)となる。 The emitted light beam (L1) is emitted from both the window (130) of the heat conductive cylinder (110) and the light transmissive cover (120) provided at the upper end of the heat conductive cylinder (110), and has a wide-angle light distribution characteristic. Illumination rays (L2) and (L3) are provided.

これにより、放熱性と広角性を共に有し、白熱電球と交換できるLED電球(電球形LEDランプ)を提供できる。
Thereby, it is possible to provide an LED bulb (bulb-shaped LED lamp) that has both heat dissipation and wide-angle properties and can be replaced with an incandescent bulb.

この発明のLED電球は、通常のLED電球(電球形LEDランプ)と異なり、白熱電球と同様な照明範囲(配光特性)を有するので、照明器具のランプ・シェード(笠、カバー)などから暗所を生じることなく所定の明るさの光線を出射できる。 Unlike an ordinary LED bulb (bulb-shaped LED lamp), the LED bulb of the present invention has an illumination range (light distribution characteristic) similar to that of an incandescent bulb. It is possible to emit a light beam having a predetermined brightness without generating a spot.

したがって、この発明のLED電球を、白熱電球の替わりに、特にデザイン性の高い照明器具に取り付ける場合にも、照明器具が目的とする照明効果を得ることができる。 Therefore, even when the LED bulb of the present invention is attached to a lighting device having a particularly high design property instead of an incandescent bulb, the lighting effect intended by the lighting device can be obtained.

この発明は、先行技術1、2と異なり白熱電球と同様な広角配光特性を有する、発光ダイオード(LED)ランプ、LED電球を提供できる。 The present invention can provide a light emitting diode (LED) lamp and an LED bulb having a wide-angle light distribution characteristic similar to that of an incandescent bulb unlike the prior arts 1 and 2.

この発明は、高い放熱特性と広角な配光特性とを両立させた、発光ダイオード(LED)ランプ、LED電球を提供できる。
The present invention can provide a light-emitting diode (LED) lamp and an LED bulb that have both high heat dissipation characteristics and wide-angle light distribution characteristics.

図1ないし図64は、この発明の各種の実施例を示し、図65、図6は先行技術を示す。 1 to 64 show various embodiments of the present invention, and FIGS. 65 and 6 show the prior art.

図1ないし図64において、同一な構成要素、構成部分には同一な参照符号を付している。 1 to 64, the same components and components are denoted by the same reference numerals.

図1は実施例1のLEDランプ100、LED電球100Aを示す概略的な分解斜視図である。FIG. 1 is a schematic exploded perspective view showing an LED lamp 100 and an LED bulb 100A according to the first embodiment. 図2は実施例1のLEDランプ100、LED電球100Aを示す概略的な斜視図である。FIG. 2 is a schematic perspective view illustrating the LED lamp 100 and the LED bulb 100A according to the first embodiment. 図3は実施例1のLEDランプ100、LED電球100Aを示し、その一部を破断して断面とした概略的な正面図である。FIG. 3 is a schematic front view of the LED lamp 100 and the LED bulb 100A according to the first embodiment, with a part of the LED lamp 100 and the LED bulb 100A cut away. 図4は図2のA1−A2線に沿ったLEDランプ100、LED電球100Aを示す概略的な断面図である。FIG. 4 is a schematic cross-sectional view showing the LED lamp 100 and the LED bulb 100A along the line A1-A2 of FIG. 図5は図2のB1−B2線に沿ったLEDランプ100、LED電球100Aを示す概略的な断面図である。FIG. 5 is a schematic cross-sectional view showing the LED lamp 100 and the LED bulb 100A along the line B1-B2 of FIG. 図6は図4の概略的な断面図に光路を記入した光路説明図である。FIG. 6 is an optical path explanatory diagram in which the optical path is written in the schematic cross-sectional view of FIG. 図7は図5の概略的な断面図に光路を記入した光路説明図である。FIG. 7 is an optical path explanatory diagram in which the optical path is written in the schematic cross-sectional view of FIG. 図8は図4の概略的な断面図における部分PT−Aの数例を拡大して示す概略的な断面図である。FIG. 8 is an enlarged schematic cross-sectional view showing several examples of the part PT-A in the schematic cross-sectional view of FIG. 図9は図4の概略的な断面図における部分PT−Bの数例を拡大して示す概略的な断面図である。9 is an enlarged schematic cross-sectional view showing several examples of the portion PT-B in the schematic cross-sectional view of FIG. 図10は実施例1に用いられる円筒110の一部の数例を平面的に展開した展開図である。FIG. 10 is a development view in which several examples of the cylinder 110 used in the first embodiment are developed in a planar manner. 図11は図4の概略的な断面図における部分PT−Cの数例を拡大して示す概略的な断面図である。FIG. 11 is an enlarged schematic cross-sectional view showing several examples of the portion PT-C in the schematic cross-sectional view of FIG. 図12はこの発明に使用できる各種のLED素子を示す概略的な断面図である。FIG. 12 is a schematic cross-sectional view showing various LED elements that can be used in the present invention. 図13はこの発明に使用できる他の各種のLED素子を示す概略的な断面図である。FIG. 13 is a schematic cross-sectional view showing other various LED elements that can be used in the present invention. 図14はこの発明に使用できる各種のLEDユニットを示す概略的な断面図である。FIG. 14 is a schematic cross-sectional view showing various LED units that can be used in the present invention. 図15は複数のLED素子を用いたLEDユニットにおいるLED素子の配列の例を示す概略的な平面図である。FIG. 15 is a schematic plan view showing an example of the arrangement of LED elements in an LED unit using a plurality of LED elements. 図16は、実施例2のLED電球100A−1を示す概略的な正面図である。FIG. 16 is a schematic front view illustrating the LED bulb 100A-1 according to the second embodiment. 図17は、実施例3のLED電球100A−2を示す概略的な正面図である。FIG. 17 is a schematic front view showing the LED bulb 100A-2 of the third embodiment. 図18は実施例4のLED電球200Aを示す概略的な正面図である。FIG. 18 is a schematic front view showing the LED bulb 200A of the fourth embodiment. 図19は実施例4のLED電球200Aに用いられる円筒110の窓(貫通孔)の他の配列を示す概略的な平面図である。FIG. 19 is a schematic plan view showing another arrangement of the windows (through holes) of the cylinder 110 used in the LED bulb 200A of the fourth embodiment. 図20は実施例5のLED電球300Aを示す概略的な正面図である。FIG. 20 is a schematic front view showing an LED bulb 300A of the fifth embodiment. 図21は実施例6のLED電球400Aを示す概略的な断面図である。FIG. 21 is a schematic cross-sectional view showing an LED bulb 400A of the sixth embodiment. 図22はLED電球400Aの一部を拡大して示す概略的な断面図である。FIG. 22 is a schematic cross-sectional view showing an enlarged part of the LED bulb 400A. 図23は実施例7のLED電球500Aを示す概略的な断面図である。FIG. 23 is a schematic cross-sectional view showing an LED bulb 500A of Example 7. 図24はLED電球500Aの一部を拡大して示す概略的な断面図である。FIG. 24 is a schematic cross-sectional view showing an enlarged part of the LED bulb 500A. 図25は実施例8のLED電球700Aを示す概略的な分解斜視図であるFIG. 25 is a schematic exploded perspective view showing the LED bulb 700A of the eighth embodiment. 図26はLED電球700Aを示し一部を正面図とした概略的な部分断面図である。FIG. 26 is a schematic partial cross-sectional view showing a part of the LED bulb 700A, with a part thereof being a front view. 図27は図26において光路および熱伝導経路を記入した概略的な部分断面図である。FIG. 27 is a schematic partial sectional view in which the optical path and the heat conduction path are shown in FIG. 図28は図26における一部分PT−Dを示す概略的な拡大断面図である。FIG. 28 is a schematic enlarged sectional view showing a part PT-D in FIG. 図29は図26における一部分PT−Eを示す概略的な拡大断面図である。FIG. 29 is a schematic enlarged sectional view showing a part PT-E in FIG. 図30(図30A、図30B、図30C、図30D)は、図26における一部分PT−Eを示す概略的な拡大断面図である。30 (FIGS. 30A, 30B, 30C, and 30D) is a schematic enlarged cross-sectional view showing a part PT-E in FIG. 図31(図31A、図31B、図31C、図31D)は、図26における一部分PT−Eを示す概略的な拡大断面図である。31 (FIGS. 31A, 31B, 31C, and 31D) is a schematic enlarged cross-sectional view showing a part PT-E in FIG. 図32は実施例9のLED電球800Aを示し一部を正面図とした概略的な部分断面図である。FIG. 32 is a schematic partial cross-sectional view showing a part of the LED bulb 800A of Example 9 and a part of which is a front view. 図33は、LED電球810Aを示す概略的な縦断面図である。FIG. 33 is a schematic longitudinal sectional view showing the LED bulb 810A. 図34は、LED電球820Aを示す概略的な縦断面図である。FIG. 34 is a schematic longitudinal sectional view showing the LED bulb 820A. 図35は、LED電球830Aを示す概略的な縦断面図である。FIG. 35 is a schematic longitudinal sectional view showing the LED bulb 830A. 図36は、LED電球840Aを示し一部を正面図で現わす概略的な縦断面図である。FIG. 36 is a schematic longitudinal sectional view showing a part of the LED bulb 840A and a front view thereof. 図37は、LED電球850Aを示す概略的な分解斜視図である。FIG. 37 is a schematic exploded perspective view showing the LED bulb 850A. 図38はLED電球860Aを示す概略的な縦断面図である。FIG. 38 is a schematic longitudinal sectional view showing the LED bulb 860A. 図39はLED電球870Aを示す概略的な縦断面図である。FIG. 39 is a schematic longitudinal sectional view showing the LED bulb 870A. 図40はLED電球880Aを示す概略的な縦断面図である。FIG. 40 is a schematic longitudinal sectional view showing the LED bulb 880A. 図41は実施例18のLED電球890Aを示す概略的な縦断面図である。FIG. 41 is a schematic longitudinal sectional view showing an LED bulb 890A of Example 18. 図42は実施例19のLED電球900Aを示す概略的な縦断面図である。FIG. 42 is a schematic longitudinal sectional view showing an LED bulb 900A of Example 19. 図43は実施例20のLED電球910Aを示す概略的な縦断面図である。FIG. 43 is a schematic longitudinal sectional view showing an LED bulb 910A of Example 20. 図44は、実施例21のLED電球920Aを示す概略的な縦断面図である。FIG. 44 is a schematic longitudinal sectional view showing an LED bulb 920A of Example 21. 図45は、実施例22および実施例23のLED電球930Aを示す概略的な縦断面図である。FIG. 45 is a schematic longitudinal sectional view showing an LED bulb 930A of Example 22 and Example 23. 図46は、図45に光路を記入した実施例22を示す概略的な縦断面図である。FIG. 46 is a schematic longitudinal sectional view showing Example 22 in which the optical path is shown in FIG. 図47は、図45に光路を記入した実施例23を示す概略的な縦断面図である。FIG. 47 is a schematic longitudinal sectional view showing Example 23 in which the optical path is shown in FIG. 図48は、実施例24のLED電球940Aを示す概略的な縦断面図である。FIG. 48 is a schematic longitudinal sectional view showing an LED bulb 940A of Example 24. 図49は、図48に光路を記入した概略的な縦断面図である。FIG. 49 is a schematic longitudinal sectional view in which the optical path is shown in FIG. 図50は、実施例25のLED電球950Aを示す概略的な縦断面図である。FIG. 50 is a schematic longitudinal sectional view showing an LED bulb 950A of Example 25. 図51は、図50に光路を記入した概略的な縦断面図である。FIG. 51 is a schematic longitudinal sectional view in which the optical path is shown in FIG. 図52は、実施例26のLED電球960Aを示す概略的な縦断面図である。FIG. 52 is a schematic longitudinal sectional view showing an LED bulb 960A of Example 26. 図53は、発光ユニットの支持部材を示す概略的な平面図である。FIG. 53 is a schematic plan view showing a support member of the light emitting unit. 図54は、図52に光路を記入した概略的な縦断面図である。54 is a schematic longitudinal sectional view in which the optical path is shown in FIG. 図55は、実施例27のLED電球970Aを示す概略的な縦断面図である。FIG. 55 is a schematic longitudinal sectional view showing an LED bulb 970A of Example 27. 図56は、図55に光路を記入した概略的な縦断面図である。56 is a schematic longitudinal sectional view in which the optical path is shown in FIG. 図57は、実施例28のLED電球980Aを示す概略的な縦断面図である。FIG. 57 is a schematic longitudinal sectional view showing an LED bulb 980A of Example 28. 図58は、図57に示す発光ユニットの支持部材を示す概略的な平面図である。FIG. 58 is a schematic plan view showing a support member of the light emitting unit shown in FIG. 図59は、図57に光路を記入した概略的な縦断面図である。FIG. 59 is a schematic longitudinal sectional view in which the optical path is shown in FIG. 図60は、実施例29のLED電球990Aを示す概略的な縦断面図である。FIG. 60 is a schematic longitudinal sectional view showing an LED bulb 990A of Example 29. 図61は、図60に光路を記入した概略的な縦断面図である。61 is a schematic longitudinal sectional view in which the optical path is shown in FIG. 図62は、実施例30のLED電球991Aを示す概略的な縦断面図である。62 is a schematic longitudinal sectional view showing an LED bulb 991A of Example 30. FIG. 図63は、図62に光路を記入した概略的な縦断面図である。63 is a schematic longitudinal sectional view in which the optical path is shown in FIG. 図64は、実施例31のLED電球992Aを示す概略的な縦断面図である。FIG. 64 is a schematic longitudinal sectional view showing an LED bulb 992A of Example 31. 図65は、実施例32のLED電球993Aを示す概略的な縦断面図である。FIG. 65 is a schematic longitudinal sectional view showing an LED bulb 993A of Example 32. 図66は、実施例32のLED電球993Aに用いられる熱伝導性支持部材の拡大斜視図である。FIG. 66 is an enlarged perspective view of a heat conductive support member used in the LED bulb 993A of Example 32. 図67は、先行技術1のLED電球を示す断面図である。FIG. 67 is a cross-sectional view showing the LED bulb of Prior Art 1. 図68は、先行技術2のLED電球を示す断面図である。FIG. 68 is a cross-sectional view showing an LED bulb of Prior Art 2.

この発明の実施例1の広角LEDランプ100、電球形LEDランプ(LED電球)100Aを、図1ないし図15を参照して記載する。 A wide-angle LED lamp 100 and a bulb-type LED lamp (LED bulb) 100A according to Embodiment 1 of the present invention will be described with reference to FIGS.

図1は実施例1のLEDランプ100、LED電球100Aを示す概略的な分解斜視図である。 FIG. 1 is a schematic exploded perspective view showing an LED lamp 100 and an LED bulb 100A according to the first embodiment.

図2は実施例1のLEDランプ100、LED電球100Aを示す概略的な斜視図である。 FIG. 2 is a schematic perspective view illustrating the LED lamp 100 and the LED bulb 100A according to the first embodiment.

図3は実施例1のLEDランプ100、LED電球100Aを示し、その一部を破断して断面とした概略的な正面図である。 FIG. 3 is a schematic front view of the LED lamp 100 and the LED bulb 100A according to the first embodiment, with a part of the LED lamp 100 and the LED bulb 100A cut away.

図4は図2のA1−A2線に沿ったLEDランプ100、LED電球100Aを示す概略的な断面図である。 FIG. 4 is a schematic cross-sectional view showing the LED lamp 100 and the LED bulb 100A along the line A1-A2 of FIG.

図5は図2のB1−B2線に沿ったLEDランプ100、LED電球100Aを示す概略的な断面図である。 FIG. 5 is a schematic cross-sectional view showing the LED lamp 100 and the LED bulb 100A along the line B1-B2 of FIG.

図6は図4の概略的な断面図に光路を記入した光路説明図である。 FIG. 6 is an optical path explanatory diagram in which the optical path is written in the schematic cross-sectional view of FIG.

図7は図5の概略的な断面図に光路を記入した光路説明図である。 FIG. 7 is an optical path explanatory diagram in which the optical path is written in the schematic cross-sectional view of FIG.

図8は図4の概略的な断面図における部分PT−Aの数例を拡大して示す概略的な断面図である。 FIG. 8 is an enlarged schematic cross-sectional view showing several examples of the part PT-A in the schematic cross-sectional view of FIG.

図9は図4の概略的な断面図における部分PT−Bの数例を拡大して示す概略的な断面図である。 9 is an enlarged schematic cross-sectional view showing several examples of the portion PT-B in the schematic cross-sectional view of FIG.

図10は実施例1に用いられる円筒110の一部の数例を平面的に展開した展開図である。 FIG. 10 is a development view in which several examples of the cylinder 110 used in the first embodiment are developed in a planar manner.

図11は図4の概略的な断面図における部分PT−Cの数例を拡大して示す概略的な断面図である。 FIG. 11 is an enlarged schematic cross-sectional view showing several examples of the portion PT-C in the schematic cross-sectional view of FIG.

図12はこの発明に使用できる各種のLED素子を示す概略的な断面図である。 FIG. 12 is a schematic cross-sectional view showing various LED elements that can be used in the present invention.

図13はこの発明に使用できる他の各種のLED素子を示す概略的な断面図である。 FIG. 13 is a schematic cross-sectional view showing other various LED elements that can be used in the present invention.

図14はこの発明に使用できる各種のLEDユニットを示す概略的な断面図である。 FIG. 14 is a schematic cross-sectional view showing various LED units that can be used in the present invention.

図15は複数のLED素子を用いたLEDユニットにおいるLED素子の配列の例を示す概略的な平面図である。 FIG. 15 is a schematic plan view showing an example of the arrangement of LED elements in an LED unit using a plurality of LED elements.

図1ないし図5を参照して、実施例1のLEDランプ100、電球形LEDランプ(LED電球)100Aについて詳細に記載する。 With reference to FIG. 1 thru | or 5, it describes in detail about the LED lamp 100 of Example 1, and a light bulb-shaped LED lamp (LED light bulb) 100A.

LEDランプは、放熱外面と光反射性内面と複数の窓からなり、内部空間を有する熱伝導性中空部材と、前記熱伝導性中空部材と熱結合させ、前記内部空間へ指向する位置に配置させた、少なくとも一つの発光ダイオード(LED)素子を備える。 The LED lamp is composed of a heat-dissipating outer surface, a light-reflecting inner surface, and a plurality of windows, and is disposed at a position that is thermally coupled to the heat-conductive hollow member having an internal space and the heat-conductive hollow member and is directed to the internal space. And at least one light emitting diode (LED) element.

LEDランプ100は、熱伝導性材料からなり内部空間HSを有する「熱伝導性円筒」(熱伝導性中空部材)110と、少なくとも一つのLED(発光ダイオード(LED)素子)141を回路基板142に装着(実装)した「発光ユニット」140を備える。 The LED lamp 100 includes a “thermally conductive cylinder” (thermally conductive hollow member) 110 made of a thermally conductive material and having an internal space HS, and at least one LED (light emitting diode (LED) element) 141 on a circuit board 142. A “light emitting unit” 140 is provided.

熱伝導性円筒110は、外気と接するように露出した放熱外面110aと光反射性内面110bと貫通孔111を覆う光透過材料を有する複数の窓130からなる。 The thermally conductive cylinder 110 includes a plurality of windows 130 having a light transmissive material covering the heat radiating outer surface 110a, the light reflective inner surface 110b, and the through hole 111 exposed so as to be in contact with the outside air.

例えば図3ないし図7に示すように、発光ユニット140は、その回路基板142が熱伝導性基板(ヒートシンク、熱伝導性部材)150上に熱伝導接触(熱結合)して搭載、固定される。 For example, as shown in FIGS. 3 to 7, the light emitting unit 140 is mounted and fixed with its circuit board 142 on a thermally conductive substrate (heat sink, thermally conductive member) 150 in thermal conductive contact (thermal coupling). .

熱伝導性円筒110は、上端の開口112(光出射端)から下端(光入射端)にわたって同じ内径d1(図4参照)を有する円筒からなり、円板状の熱伝導性基板150は上記内径d1と同じまたはわずかに小さな外径を有する熱伝導性円板からなる。 The thermally conductive cylinder 110 is a cylinder having the same inner diameter d1 (see FIG. 4) from the upper end opening 112 (light emitting end) to the lower end (light incident end), and the disk-shaped thermally conductive substrate 150 has the above inner diameter. It consists of a thermally conductive disc with an outer diameter equal to or slightly smaller than d1.

発光ユニット140を搭載した熱伝導性基板150は、熱伝導性円筒110の下端(光入射端)の内面110bと接触、近接して挿入される。 The thermally conductive substrate 150 on which the light emitting unit 140 is mounted is inserted in contact with and close to the inner surface 110b of the lower end (light incident end) of the thermally conductive cylinder 110.

熱伝導性基板150は、その環状側面が熱伝導性円筒110の下端部と全面的にまたは部分的に熱伝導接触して固定されるように、熱伝導性ネジ(はんだ、熱伝導性接着材、熱伝導性リベット(鋲止め)、ピン止め、溶着、溶接)などの任意の熱伝導性固定手段FM(図3参照)により円筒110に固定される。 The thermally conductive substrate 150 is fixed to a thermally conductive screw (solder, thermally conductive adhesive) so that its annular side surface is fixed in full or partial thermal conduction with the lower end of the thermally conductive cylinder 110. It is fixed to the cylinder 110 by any heat conductive fixing means FM (see FIG. 3) such as a heat conductive rivet (fastening), pinning, welding, welding).

したがって、発光ユニット140は、熱伝導性基板150を経由して熱伝導性円筒110(内面110b、外面110a)と間接的に熱結合されることになる。 Therefore, the light emitting unit 140 is indirectly thermally coupled to the heat conductive cylinder 110 (the inner surface 110b and the outer surface 110a) via the heat conductive substrate 150.

これにより動作中にLED素子141で発生した熱は露出した外面110aから空気中へ効果的に放散され、発光ユニット140のLED素子141は冷却され、常時LED素子141は許容温度以下に保たれる。 As a result, heat generated in the LED element 141 during operation is effectively dissipated into the air from the exposed outer surface 110a, the LED element 141 of the light emitting unit 140 is cooled, and the LED element 141 is always kept below the allowable temperature. .

更にLEDランプ100にハウジング180に内蔵した点灯回路160と給電用口金170を設け電球形LED電球100Aとなる。 Furthermore, the LED lamp 100 is provided with a lighting circuit 160 built in the housing 180 and a power supply base 170 to form a light bulb shaped LED bulb 100A.

点灯回路160は、商用電源などの交流を直流に変換する電源回路であり、発光ユニット140のLED素子141を直流駆動してLED素子141を点灯する。 The lighting circuit 160 is a power supply circuit that converts an alternating current such as a commercial power source into a direct current, and lights the LED element 141 by driving the LED element 141 of the light emitting unit 140 in a direct current.

ハウジング180は、ロート状、円錐殻状などの形状をなし、直径が大きな上部開口と上部開口より直径が小さな下部開口とからなり、その内部空洞に点灯回路160が収容される。 The housing 180 has a funnel shape, a conical shell shape, and the like. The housing 180 includes an upper opening having a larger diameter and a lower opening having a smaller diameter than the upper opening, and the lighting circuit 160 is accommodated in the internal cavity.

熱伝導性基板150はその底部が金属、樹脂などのハウジング180の上部開口を塞ぐように、ハウジング180の上部と固定され、ハウジング180の下部と給電用の口金170が固定される。 The thermally conductive substrate 150 is fixed to the upper part of the housing 180 so that the bottom part closes the upper opening of the housing 180 made of metal, resin, etc., and the lower part of the housing 180 and the power supply base 170 are fixed.

リング状絶縁性部材181は、ハウジング180と口金170を連結する。 The ring-shaped insulating member 181 connects the housing 180 and the base 170.

口金170は、白熱電球用に広く用いられている外部ソケットから交流電力を受電する給電端子であり、白熱電球の口金と同じスクリュウ形(エジソン形)給電端子(給電ベース)とすることができる。その代わり、口金170は、ピン形など他の任意の形式の給電端子としても良い。 The base 170 is a power supply terminal that receives AC power from an external socket that is widely used for incandescent lamps, and can be a screw-type (Edison type) power supply terminal (power supply base) that is the same as the base of the incandescent lamp. Instead, the base 170 may be a power supply terminal of any other type such as a pin shape.

(熱伝導性中空部材)
実施例1における熱伝導性円筒110などの熱伝導性中空部材は、全ての実施例に用いられる主要構成要素の一つである。
(Heat conductive hollow member)
The heat conductive hollow member such as the heat conductive cylinder 110 in the first embodiment is one of the main components used in all the embodiments.

実施例1における熱伝導性円筒110は、外面110aと光反射性内面110bとこれらの両面110a、110bを厚み方向にほぼ垂直または下向きに傾斜して貫通する貫通孔111と貫通孔111を覆う光透過材料を有する複数の窓130からなる。 The heat conductive cylinder 110 according to the first exemplary embodiment covers the outer surface 110a, the light-reflecting inner surface 110b, and the through-holes 111 and the through-holes 111 that penetrate the both surfaces 110a and 110b while being inclined substantially vertically or downward in the thickness direction. It consists of a plurality of windows 130 having a transmissive material.

図10(図10A、図10B、図10B、図C、図10D)は、熱伝導性円筒110の一部を拡大して示す平面図である。 10 (FIGS. 10A, 10B, 10B, C, and 10D) is a plan view showing a part of the thermally conductive cylinder 110 in an enlarged manner.

図10Aに示す熱伝導性円筒110−1は、外面110a(または光反射性内面110b)と複数の円形の窓130−1(または貫通孔111−1)からなり、複数の窓が横方向のピッチp1、縦方向のピッチp2を隔てて、格子状に並列配列されている。 10A includes an outer surface 110a (or light-reflecting inner surface 110b) and a plurality of circular windows 130-1 (or through-holes 111-1), and the plurality of windows are in the lateral direction. They are arranged in parallel in a grid pattern with a pitch p1 and a pitch p2 in the vertical direction.

図10Bに示す熱伝導性円筒110−2は、外面110a(または光反射性内面110b)と複数の矩形の窓130−2(または貫通孔111−2)からなり、複数の窓が格子状に並列配列されている。 A thermally conductive cylinder 110-2 shown in FIG. 10B includes an outer surface 110a (or light-reflecting inner surface 110b) and a plurality of rectangular windows 130-2 (or through holes 111-2), and the plurality of windows are arranged in a lattice pattern. They are arranged in parallel.

図10Cに示す熱伝導性円筒110−3は、外面110a(または光反射性内面110b)と複数の楕円形の窓130−3(または貫通孔111−3)からなり、複数の窓が格子状に並列配列されている。 A thermally conductive cylinder 110-3 shown in FIG. 10C includes an outer surface 110a (or light-reflecting inner surface 110b) and a plurality of elliptical windows 130-3 (or through-holes 111-3), and the plurality of windows are in a lattice shape. Are arranged in parallel.

図10Dに示す熱伝導性円筒110−2は、外面110a(または光反射性内面110b)と複数の長方形の窓130−4(または貫通孔111−4)からなり、複数の窓が格子状に並列配列されている。 A thermally conductive cylinder 110-2 shown in FIG. 10D includes an outer surface 110a (or light-reflecting inner surface 110b) and a plurality of rectangular windows 130-4 (or through holes 111-4), and the plurality of windows are arranged in a lattice pattern. They are arranged in parallel.

図10(図10A、図10B、図10B、図C、図10D)に示すように、それぞれの貫通孔111(窓130)の開口面積は熱伝導性円筒110の下部から上部の全ての領域にわたって全て同じサイズとすることができる。 As shown in FIG. 10 (FIGS. 10A, 10B, 10B, C, and 10D), the opening area of each through hole 111 (window 130) extends from the lower part to the upper part of the thermally conductive cylinder 110. All can be the same size.

また貫通孔111(窓130)の分布密度も全ての領域にわたって同じとすることができる。 Also, the distribution density of the through holes 111 (windows 130) can be the same over the entire region.

その代わり、発光ユニット140からの光線L1の指向特性を考慮して複数の貫通孔111(窓130)の上記開口面積および、または上記分布密度を異なる領域で可変してもよく、それにより円筒110の窓130からの出射光線L2の光量を異なる領域で均一化または異ならせることができる。 Instead, the opening area and / or the distribution density of the plurality of through holes 111 (windows 130) may be varied in different regions in consideration of the directivity of the light beam L1 from the light emitting unit 140, whereby the cylinder 110 The amount of the light beam L2 emitted from the window 130 can be made uniform or different in different regions.

例えば、複数の貫通孔111(窓130)の上記開口面積および、または上記分布密度を円筒110の下部から上部または環状周辺の左右に向かって連続的または段階的に増加または減少させても良い。 For example, the opening area and / or the distribution density of the plurality of through-holes 111 (windows 130) may be increased or decreased continuously or stepwise from the lower part of the cylinder 110 toward the upper part or the left and right of the annular periphery.

熱伝導性円筒110は、通常の合成樹脂より高い熱伝導性を有する銅、アルミニウム、亜鉛、錫、鉄などの熱伝導性金属(または合金)、熱伝導性セラミック、または熱伝導性粒子、熱伝導性繊維などの熱伝導性フィラー(充填物)を合成樹脂に含有した熱伝導性合成樹脂などからなることができる。 The heat conductive cylinder 110 is made of a heat conductive metal (or alloy) such as copper, aluminum, zinc, tin, or iron, a heat conductive ceramic, or a heat conductive particle, heat having a higher heat conductivity than a normal synthetic resin. It can consist of heat conductive synthetic resin etc. which contained heat conductive fillers (filler), such as conductive fiber, in synthetic resin.

熱伝導性円筒110の素材として用いられる熱伝導性金属(または合金)は、例えば、銅、アルミニウム、錫、亜鉛、鉄などの金属、ジュラルミン(アルミニウムと銅、亜鉛、マグネシウムの合金であるアルミニウム合金)、鋼鉄(鉄と炭素、ニッケル、クロムなどとの合金)などの合金があげられる。 Examples of the thermally conductive metal (or alloy) used as the material of the thermally conductive cylinder 110 include metals such as copper, aluminum, tin, zinc, and iron, and duralumin (aluminum alloy that is an alloy of aluminum, copper, zinc, and magnesium). ) And steel (alloys of iron and carbon, nickel, chromium, etc.).

熱伝導性円筒110の素材として、鉄(熱伝導率TC:約67W/mK)、炭素鋼(熱伝導率TC:約30−50W/mK)、クロム鋼(熱伝導率TC:約20−60W/mK)、ニッケル鋼(熱伝導率TC:約10−60W/mK)などの各種の鋼鉄などの熱伝導性金属、合金を用いることができる。 As materials for the thermally conductive cylinder 110, iron (thermal conductivity TC: about 67 W / mK), carbon steel (thermal conductivity TC: about 30-50 W / mK), chromium steel (thermal conductivity TC: about 20-60 W). / MK), heat conductive metals and alloys such as various steels such as nickel steel (thermal conductivity TC: about 10-60 W / mK) can be used.

全光量(全光束)の大きな光線を放射する高出力LEDを用いる場合には、熱伝導性円筒110の素材として、特に熱伝導率の高い銅(熱伝導率TC:約370W/mK)、アルミニウム(熱伝導率TC:約200W/mK)、ジュラルミン(熱伝導率TC:約140W/mK)などの高熱伝導性金属、合金を用いるのが望ましい。 When using a high-power LED that emits a large amount of light (total luminous flux), copper, which has a particularly high thermal conductivity (thermal conductivity TC: about 370 W / mK), aluminum, is used as the material of the thermal conductive cylinder 110. It is desirable to use a metal or alloy having high thermal conductivity such as (thermal conductivity TC: about 200 W / mK) or duralumin (thermal conductivity TC: about 140 W / mK).

熱伝導性円筒110の一例として、アルミニウム、その合金、銅、その合金、アルミニウム、銅などの異種金属の積層板などの熱伝導性金属板に複数の貫通孔(開口)111を形成した、パンチング・メタル(パーフォレイト・メタル:perforated metal)、エキスパンデッド・メタルと称する熱伝導性多孔金属板を、円筒状に加工した熱伝導性多孔金属円筒を使用できる。 As an example of the thermally conductive cylinder 110, punching in which a plurality of through holes (openings) 111 are formed in a thermally conductive metal plate such as aluminum, an alloy thereof, copper, an alloy thereof, a laminated plate of different metals such as aluminum, copper, and the like. A heat conductive porous metal cylinder obtained by processing a metal (perforated metal) or a heat conductive porous metal plate called expanded metal into a cylindrical shape can be used.

他の例として、多孔性円筒110は、無孔性熱伝導性円筒に後から複数の貫通孔111をパンチング、ドリル加工などの機械的パンチング加工、エッチング液を用いた化学的エッチング処理、レーザービームなどを用いた物理的エッチング処理によるエッチング加工して形成しても良い。 As another example, the porous cylinder 110 is a non-porous thermally conductive cylinder, and a plurality of through holes 111 are punched later, mechanical punching processing such as drilling, chemical etching treatment using an etching solution, laser beam It may be formed by etching using a physical etching process using the like.

他の例として、多孔性円筒110は、アルミニウムなどの熱伝導性金属、熱伝導性樹脂、熱伝導性セラミックなどの熱伝導性素材と所定の金形を用いて、複数の貫通孔、貫通孔と放熱フィンを有する円筒を製造しても良い。 As another example, the porous cylinder 110 includes a plurality of through-holes and through-holes using a heat conductive material such as aluminum, a heat conductive resin, a heat conductive ceramic, and a predetermined mold. And a cylinder having heat radiation fins may be manufactured.

熱伝導性円筒110は、円筒の外面が露出し外気と接触する熱伝導性外面110aからなり、その内面が光反射性内面110bからなる。したがって円筒として素材自体が高い熱伝導性と高い光反射性を共に有するアルミニウムまたはその合金、アルミニウムの陽極酸化膜付きアルミニウム(アルマイト、alumite(商標))を用いるのが望ましい。 The heat conductive cylinder 110 is composed of a heat conductive outer surface 110a in which the outer surface of the cylinder is exposed and in contact with the outside air, and its inner surface is composed of a light reflective inner surface 110b. Therefore, it is desirable to use aluminum or an alloy thereof having high thermal conductivity and high light reflectivity, and aluminum with an anodized film of aluminum (alumite (alumite (trademark)) as the cylinder.

その代わりに、熱伝導性円筒110として、高い熱伝導性を有する銅製円筒を用い、内面にアルミニウム、銀、錫、亜鉛などの高光反射性金属をメッキ、蒸着加工などにより被覆して光反射性内面110bとしても、アルミニウム製円筒と同様に高い熱伝導性と高い光反射性を共に持たせることができる。 Instead, a copper cylinder having high thermal conductivity is used as the thermal conductive cylinder 110, and the inner surface is coated with a highly light reflective metal such as aluminum, silver, tin, zinc, etc., and coated with vapor deposition or the like to reflect light. Similarly to the aluminum cylinder, the inner surface 110b can have both high thermal conductivity and high light reflectivity.

この場合に、予め複数の貫通孔を設けた銅製円筒の全体に上記高光反射性金属をメッキ加工することにより、内面、外面および貫通孔111の内壁の全てを光反射性とすることができる。 In this case, all of the inner surface, the outer surface, and the inner wall of the through-hole 111 can be made light-reflective by plating the above-described highly light-reflecting metal on the entire copper cylinder provided with a plurality of through-holes in advance.

円筒110として、内面側となる高い光反射性と熱伝導性を有するアルミニウムまたはその合金からなる第一の金属薄板と外面側となる高い熱伝導性を有する銅またはその合金からなる第二の金属薄板からなる異種金属板を積層一体化したクラッド形金属板を用いることができる。 As the cylinder 110, a first metal thin plate made of aluminum or an alloy thereof having high light reflectivity and thermal conductivity on the inner surface side, and a second metal made of copper or an alloy thereof having high thermal conductivity on the outer surface side. A clad metal plate in which dissimilar metal plates made of thin plates are laminated and integrated can be used.

実用的には、第一の金属薄板とし高い光反射性と熱伝導性を有するアルミニウムを用いる場合には、クラッド形金属板の全体としては比較的に高い熱伝導性が得られるので第二の金属薄板として鋼板を用いることができる。 Practically, when aluminum having high light reflectivity and thermal conductivity is used as the first thin metal plate, relatively high thermal conductivity can be obtained as a whole of the clad metal plate. A steel plate can be used as the metal thin plate.

またこのクラッド形金属板を予めパンチング加工して多数の貫通孔111を有するクラッド形金属板を円筒加工して熱伝導性円筒110とすることができる。 In addition, this clad metal plate can be punched in advance, and the clad metal plate having a large number of through holes 111 can be cylindrically processed to form a heat conductive cylinder 110.

熱伝導性円筒として銅を用い、内面にアルミニウム、銀、錫、亜鉛などの高光反射性金属をメッキ、蒸着加工などにより被覆して光反射性内面110bとしても、アルミニウム製円筒と同様に高い熱伝導性と高い光反射性を共に持たせることができる。 Copper is used as the heat conductive cylinder, and the inner surface 110b is coated with a highly light reflective metal such as aluminum, silver, tin, or zinc by vapor deposition or the like. Both conductivity and high light reflectivity can be provided.

光反射性内面110bは、光を鏡面反射する正反射性内面のみならず光を散乱反射する散乱反射性内面でも良い。 The light reflective inner surface 110b may be not only a regular reflective inner surface that specularly reflects light but also a scattering reflective inner surface that scatters and reflects light.

光反射性金属からなる熱伝導性円筒(中空部材)110の内面を、ブラスト処理、エッチング処理などの粗面化処理を行って多数の微小凹凸表面からなる散乱反射性(拡散反射性)内面110b(光反射性内面)としても良い。 The inner surface of a heat conductive cylinder (hollow member) 110 made of a light-reflective metal is subjected to a roughening process such as blasting or etching, thereby producing a scattering reflective (diffuse reflective) inner surface 110b made up of a number of minute uneven surfaces. (Light reflective inner surface) may be used.

または熱伝導性円筒(中空部材)110の内面に、白色顔料を含む白色塗料を塗布した白色散乱性を有する白色塗料膜を形成して散乱反射性内面110b(光反射性内面)としても良い。 Alternatively, a white paint film having a white scattering property in which a white paint containing a white pigment is applied may be formed on the inner surface of the heat conductive cylinder (hollow member) 110 to form a scattering reflective inner surface 110b (light reflective inner surface).

(透過性窓)
図8(図8A、図8B、図8C)に示すように、透過性窓130は、透明材料に散乱性フィラーを混入して光散乱透過性窓とするのが望ましく、それにより窓130から外部に出射する照明光線L2の出射角度を広げることができる。
(Transparent window)
As shown in FIG. 8 (FIG. 8A, FIG. 8B, FIG. 8C), the transmissive window 130 is preferably a light scattering transmissive window by mixing a scatter filler in a transparent material. It is possible to widen the emission angle of the illumination light beam L <b> 2 emitted to.

光散乱透過性窓130の数例と、それらにおける光路を図8(図8A、図8B、図8C)は、図4における部分PT−Aを拡大した断面図を参照して記載する。 FIG. 8 (FIGS. 8A, 8B, and 8C) describes several examples of the light-scattering / transmissive window 130 and the optical path in them, with reference to a cross-sectional view enlarging the part PT-A in FIG.

図8Aに示すように、光散乱透過性窓130−1は円筒110に設けた貫通孔111に光散乱性フィラー130−1bを混入した透明樹脂130−1aを充てんしたものである。LED素子からの放射光線L1bが窓130−1の内面(円筒内面110b側)に入射すると、光線L1bは窓130−1内に進み透明樹脂130−1aに分散された光散乱性フィラー130−1bで散乱して、窓130−1の外面(円筒外面110a側)から外部へ拡散された広角の照明光線L2となって出射する。 As shown in FIG. 8A, the light-scattering / transparent window 130-1 is obtained by filling a through-hole 111 provided in a cylinder 110 with a transparent resin 130-1a mixed with a light-scattering filler 130-1b. When the radiated light L1b from the LED element enters the inner surface (on the cylindrical inner surface 110b side) of the window 130-1, the light L1b travels into the window 130-1 and is a light scattering filler 130-1b dispersed in the transparent resin 130-1a. And is emitted as a wide-angle illumination light beam L2 diffused to the outside from the outer surface (cylinder outer surface 110a side) of the window 130-1.

図8Bに示すように、他の光散乱透過性窓130−2は円筒110に設けた貫通孔111に透明樹脂130−2aを充てんし、透明樹脂130−2aの外面(円筒外面110b側)に透明樹脂塗料に上記光散乱性フィラーを混入した散乱透過層130−2bを塗布、形成したものである。 As shown in FIG. 8B, in the other light-scattering / transparent window 130-2, the through hole 111 provided in the cylinder 110 is filled with the transparent resin 130-2a, and the outer surface of the transparent resin 130-2a (the cylinder outer surface 110b side) is filled. A scattering transmission layer 130-2b in which the light scattering filler is mixed in a transparent resin coating is applied and formed.

LED素子からの放射光線L1bが窓130−2の内面(円筒内面110b側)に入射すると、光線L1bは窓130−2内に進み透明樹脂130−2aを透過し、散乱透過層130−2bで散乱して、窓130−2の外面(円筒外面110b側)から外部へ拡散された広角の照明光線L2となって出射する。 When the emitted light L1b from the LED element is incident on the inner surface (cylindrical inner surface 110b side) of the window 130-2, the light L1b travels into the window 130-2 and is transmitted through the transparent resin 130-2a. Scattered and emitted from the outer surface of the window 130-2 (cylinder outer surface 110b side) as a wide-angle illumination light beam L2 diffused to the outside.

図8Cに示すように、更に他の光散乱透過性窓130−3は円筒110に設けた貫通孔111に透明樹脂130−3aを充てんし、透明樹脂130−3aの外面(円筒外面110a側)にブラスト加工などにより粗面化処理をして外面を粗面130−3bを形成したものである。 As shown in FIG. 8C, another light-scattering / transparent window 130-3 fills the through hole 111 provided in the cylinder 110 with the transparent resin 130-3a, and the outer surface of the transparent resin 130-3a (on the cylinder outer surface 110a side). The outer surface is roughened by blasting or the like to form a rough surface 130-3b.

LED素子からの放射光線L1aが窓130−3の内面(円筒内面110b側)に入射すると、光線L1bは窓130−3内に進み透明樹脂130−3aを透過し、粗面130−3bで散乱して、窓130−2の外面(円筒外面110a側)から外部へ拡散された広角の照明光線L2となって出射する。 When the emitted light L1a from the LED element is incident on the inner surface of the window 130-3 (on the cylindrical inner surface 110b side), the light L1b travels into the window 130-3, passes through the transparent resin 130-3a, and is scattered by the rough surface 130-3b. Then, it is emitted from the outer surface of the window 130-2 (the cylindrical outer surface 110a side) as a wide-angle illumination light beam L2 diffused to the outside.

上記の光散乱性フィラーは、それ自体で光散乱性を有する酸化チタン、酸化亜鉛で代表される白色顔料などの光散乱性フィラー(充てん材)のみならず、それ自体は透明または半透明であるが透明樹脂材料と異なる屈折率を有し透明樹脂材料に分散して含有した時に両者の屈折率の差に基づいて光散乱性を示す光透過性フィラーからなる。 The light scattering filler is not only a light scattering filler (filler) such as titanium oxide having a light scattering property and a white pigment typified by zinc oxide, but also itself is transparent or translucent. Is made of a light-transmitting filler having a different refractive index from that of the transparent resin material and exhibiting light scattering properties based on the difference in refractive index between the two when contained in the transparent resin material.

更に、光散乱透過性窓130−1(130)として、少なくとも透明樹脂材料より高い熱伝導性を有する粒子、繊維、ウィスカーなどの金属酸化物、セラミックなどからなる光散乱性および熱伝導性フィラーをアクリル、ポリカーボネート、エポキシ、シリコーンなどの透明樹脂材料に混入して、光散乱透過性窓130−1(130)の熱伝導性を向上させるのが望ましい。 Further, as the light-scattering / transmitting window 130-1 (130), a light-scattering and heat-conducting filler made of particles, fibers, metal oxides such as whiskers, ceramics, and the like having at least higher thermal conductivity than the transparent resin material. It is desirable to improve the thermal conductivity of the light-scattering / transparent window 130-1 (130) by mixing in a transparent resin material such as acrylic, polycarbonate, epoxy, or silicone.

透明樹脂材料より高い熱伝導性を有する光散乱性および熱伝導性フィラーとしては、例えば酸化チタン(TiO2)、シリカ(SiO2)またはガラスを用いることができる。 As the light scattering and thermal conductive filler having higher thermal conductivity than the transparent resin material, for example, titanium oxide (TiO2), silica (SiO2) or glass can be used.

光散乱性および熱伝導性フィラーとして、酸化チタン(TiO2、TC:約11W/m・K)、シリカまたはガラス(約1W/m・K)と比較して熱伝導率(サーマル・コンダクティビティー:TC)が少なくとも数倍以上高い、例えば酸化亜鉛(ZnO、TC:約54W/m・K)、酸化アルミニウム(Al2O3、TC:約35W/m・K)、酸化マグネシウム(MgO、TC:約60W/m・K))等の金属酸化物、窒化ホウ素(BN、TC:約60W/m・K)、窒化アルミニウム(AlN、TC:約150W/m・K)、窒化ケイ素(SiN、TC:約50W/m・K)等の金属窒化物、炭化ケイ素(SiC、TC:約490W/m・K)、サファイア(TC:約30W/m・K)、ダイヤモンド(TC:約2000W/m・K)などの一種または複数種からなる透明あるいは白色を示す高熱伝導粒子を用いるのが特に望ましい。 Thermal conductivity (thermal conductivity: TC) as compared with titanium oxide (TiO2, TC: about 11 W / m · K), silica or glass (about 1 W / m · K) as a light scattering and heat conductive filler ) Is at least several times higher, for example, zinc oxide (ZnO, TC: about 54 W / m · K), aluminum oxide (Al 2 O 3, TC: about 35 W / m · K), magnesium oxide (MgO, TC: about 60 W / m)・ K)), etc., boron nitride (BN, TC: about 60 W / m · K), aluminum nitride (AlN, TC: about 150 W / m · K), silicon nitride (SiN, TC: about 50 W / K) metal nitride such as m · K), silicon carbide (SiC, TC: about 490 W / m · K), sapphire (TC: about 30 W / m · K), diamond (TC: about 2000 W / m · K) Which one or to use a plurality of kinds transparent or highly thermally conductive particles exhibiting white consisting particularly desirable.

これにより、光散乱透過性窓130−1(130)を含めた熱伝導性円筒110全体の熱伝導性を向上させることができる。そして熱伝導性円筒110からの照明光線L2の全光量を多くしたいときに、貫通孔111、窓130−1(130)の上記開口率を増加させても、窓130−1(130)の存在による熱伝導性円筒110全体の熱伝導性の低下を防ぐことができる。 Thereby, the heat conductivity of the whole heat conductive cylinder 110 including the light-scattering transmission window 130-1 (130) can be improved. When it is desired to increase the total amount of the illumination light beam L2 from the heat conductive cylinder 110, the presence of the window 130-1 (130) even if the aperture ratio of the through hole 111 and the window 130-1 (130) is increased. It is possible to prevent a decrease in the thermal conductivity of the entire thermal conductive cylinder 110 due to.

(光反射性内面)
図9(図9A、図9B)を参照して、光反射性内面110bの数例と、それらにおける光路を記載する。(図9は図4における一部分PT−Bを拡大した断面図である。)
(Light reflective inner surface)
With reference to FIG. 9 (FIG. 9A, FIG. 9B), several examples of the light-reflective inner surface 110b and the optical path in them are described. (FIG. 9 is an enlarged cross-sectional view of a part PT-B in FIG. 4.)

この明細書、特許請求の範囲において用いる用語「光反射性」は、光の入射角と反射角が反射面に対して同じ角度となる「正反射(鏡面反射)」のみならず、入射光が複数の方向に反射される「散乱反射(拡散反射)」も含む。 The term “light reflectivity” used in this specification and claims refers to not only “regular reflection (specular reflection)” in which the incident angle and the reflection angle of light are the same angle with respect to the reflecting surface, but also incident light. It also includes “scattering reflection (diffuse reflection)” reflected in a plurality of directions.

したがって、この明細書、特許請求の範囲において、用語「光反射性内面」、「反射性内面」は、光を正反射(鏡面反射)または散乱反射(拡散反射)する内面を意味する。 Therefore, in this specification and claims, the terms “light-reflective inner surface” and “reflective inner surface” mean an inner surface that specularly reflects light (specular reflection) or scatter-reflects (diffuse reflection).

図9Aは、光反射性内面110bと外面110aを有する円筒110と窓130を示し、円筒110として素材自体で光反射性と熱伝導性が共に優れたアルミニウムまたはアルミニウム合金などを用いることができる。 FIG. 9A shows a cylinder 110 and a window 130 having a light-reflective inner surface 110b and an outer surface 110a. As the cylinder 110, aluminum or an aluminum alloy having excellent light reflectivity and thermal conductivity can be used.

熱伝導性円筒(中空部材)110として素材自体がアルミニウム、アルミニウム合金などの光反射率の高い光反射性を有する光反射性金属を用いる場合には、その内面は光を正反射(鏡面反射)または散乱反射(拡散反射)する光反射性内面110bとなる。 When a light-reflecting metal having high light reflectivity such as aluminum or aluminum alloy is used as the heat conductive cylinder (hollow member) 110, its inner surface reflects light regularly (specular reflection). Or it becomes the light reflective inner surface 110b which carries out a scattering reflection (diffuse reflection).

この光反射性金属からなる熱伝導性円筒(中空部材)110の内面を、更に鏡面処理、平滑化処理などを行って正反射性(鏡面反射性)内面(光反射性内面)110bとしても良い、 The inner surface of the heat-conductive cylinder (hollow member) 110 made of the light-reflecting metal may be further subjected to a mirror surface treatment, a smoothing treatment, or the like to form a regular reflection (mirror reflection) inner surface (light reflection inner surface) 110b. ,

光反射性金属からなる熱伝導性円筒(中空部材)110の内面を、ブラスト処理、エッチング処理などの粗面化処理を行って多数の微小凹凸表面からなる散乱反射性(拡散反射性)内面110b(光反射性内面)としても良い。 The inner surface of a heat conductive cylinder (hollow member) 110 made of a light-reflective metal is subjected to a roughening process such as blasting or etching, thereby producing a scattering reflective (diffuse reflective) inner surface 110b made up of a number of minute uneven surfaces. (Light reflective inner surface) may be used.

銅、鋼鉄などの光反射率が比較的に低い熱伝導性円筒(中空部材)110を用いる場合には、その内面にアルミニウム、亜鉛、錫、ニッケル、クローム、銀などのように光反射率の高い光反射性を有する光反射性金属をメッキ処理、真空蒸着、スパッタリング処理などを行って正反射(鏡面反射)内面110b(光反射性内面)としても良い。 When a heat conductive cylinder (hollow member) 110 having a relatively low light reflectivity such as copper or steel is used, the inner surface thereof has a light reflectivity such as aluminum, zinc, tin, nickel, chrome, silver, etc. A light reflective metal having high light reflectivity may be plated, vacuum deposited, or sputtered to form a regular reflection (specular reflection) inner surface 110b (light reflection inner surface).

または熱伝導性円筒(中空部材)110の内面に、白色顔料を含む白色塗料を塗布した白色散乱性を有する白色塗料膜を形成して散乱反射性内面110b(光反射性内面)としても良い。 Alternatively, a white paint film having a white scattering property in which a white paint containing a white pigment is applied may be formed on the inner surface of the heat conductive cylinder (hollow member) 110 to form a scattering reflective inner surface 110b (light reflective inner surface).

LED素子からの放射光線L1cが光反射性内面110bに到達するときに、そこで反射されて円筒110内の空間HSを上方へ進む。 When the emitted light L1c from the LED element reaches the light-reflective inner surface 110b, it is reflected there and travels upward in the space HS in the cylinder 110.

反射光線L1cはその進行方向に位置する窓130、光透過性カバー120または光反射性内面110bに到達する。窓130、光透過性カバー120に到達した反射光線L1cはそれらから外部に出射して照明光線L2、L3となり、光反射性内面110bに到達した反射光線L1cは更に反射されて円筒110内の空間HSを上方へ進む。 The reflected light beam L1c reaches the window 130, the light transmissive cover 120, or the light reflective inner surface 110b located in the traveling direction. The reflected light beam L1c that has reached the window 130 and the light transmissive cover 120 is emitted from the outside to become illumination light beams L2 and L3, and the reflected light beam L1c that has reached the light-reflective inner surface 110b is further reflected to be a space in the cylinder 110. Go up HS.

図9Bは、内面110bと外面110aを有する円筒110と窓130を示し、円筒110とし熱伝導性が優れているが光反射性が比較的に小さい銅などを用い、内面110bにアルミニウム、銀などの反射性金属層を形成して光反射性内面110b−1としている。LED素子からの放射光線L1cが光反射性内面110b−1に到達するときに、そこで反射されて円筒110内の空間HSを上方へ進み、反射光線L1cは進行方向に位置する窓130、光透過性カバー120から外部に出射して照明光線L2、L3となり、または光反射性内面110b−1に到達して反射し更に上方に進む。 FIG. 9B shows a cylinder 110 and a window 130 having an inner surface 110b and an outer surface 110a. The cylinder 110 is made of copper or the like that has excellent thermal conductivity but relatively low light reflectivity, and aluminum and silver are used for the inner surface 110b. The reflective metal layer is formed as the light reflective inner surface 110b-1. When the emitted light L1c from the LED element reaches the light-reflecting inner surface 110b-1, it is reflected there and travels upward in the space HS in the cylinder 110, and the reflected light L1c is transmitted through the window 130 positioned in the traveling direction. The light is emitted to the outside from the protective cover 120 to become illumination light beams L2 and L3, or reaches the light-reflecting inner surface 110b-1 to be reflected and proceeds further upward.

(貫通孔と窓の形状と配列)
貫通孔と窓の形状と配列について図10を参照して記載する。
(Shape and arrangement of through holes and windows)
The shape and arrangement of the through holes and windows will be described with reference to FIG.

図10(図10A、図10B、図10C、図10D)は複数の貫通孔110、窓130を有する多孔性円筒110の一部を拡大し平面状に展開した展開図である。 FIG. 10 (FIGS. 10A, 10B, 10C, and 10D) is a developed view in which a part of the porous cylinder 110 having a plurality of through holes 110 and windows 130 is enlarged and developed in a planar shape.

図10Aに示す円筒110−1は、多孔板の内外面(外面110aまたは内面110b)とほぼ同じ直径の複数の貫通孔110−1(または窓130−1)からなり、横方向のピッチp1、縦方向の列のピッチp2を離して複数の貫通孔110−1(または窓130−1)が格子(マトリクス)状の行列で並列に配列されている。 A cylinder 110-1 shown in FIG. 10A is composed of a plurality of through holes 110-1 (or windows 130-1) having substantially the same diameter as the inner and outer surfaces (outer surface 110a or inner surface 110b) of the perforated plate, and has a lateral pitch p1, A plurality of through-holes 110-1 (or windows 130-1) are arranged in parallel in a lattice (matrix) matrix with the pitch p2 of the columns in the vertical direction being separated.

図10Bに示す円筒110−2は、多孔板の内外面(外面110aまたは内面110b)とほぼ同じ面積の四角形など矩形からなる複数の貫通孔110−2(または窓130−2)からなり、これらが格子(マトリクス)状の行列で並列に配列されている。 A cylinder 110-2 shown in FIG. 10B includes a plurality of through-holes 110-2 (or windows 130-2) made of a rectangle such as a rectangle having substantially the same area as the inner and outer surfaces (outer surface 110a or inner surface 110b) of the perforated plate. Are arranged in parallel in a lattice-like matrix.

図10Cに示す円筒110−3は、多孔板の内外面(外面110aまたは内面110b)とほぼ同じ面積の楕円形からなる複数の貫通孔110−3(または窓130−3)からなり、楕円形貫通孔、窓が長軸,短軸の配置方向をそれぞれ同一方向にして格子(マトリクス)状の行列で並列に配列されている。 A cylinder 110-3 shown in FIG. 10C is composed of a plurality of through-holes 110-3 (or windows 130-3) each having an oval shape having substantially the same area as the inner and outer surfaces (outer surface 110a or inner surface 110b) of the perforated plate. The through holes and the windows are arranged in parallel in a lattice-like matrix with the arrangement directions of the major axis and the minor axis being the same direction.

図10Dに示す円筒110−4は、多孔板の内外面(外面110aまたは内面110b)とほぼ同じ面積の長方形からなる複数の貫通孔110−4(または窓130−4)からなり、楕円形貫通孔、窓が長辺,短辺の配置方向をそれぞれ同一方向にして格子(マトリクス)状の行列で並列に配列されている。 A cylinder 110-4 shown in FIG. 10D is composed of a plurality of through-holes 110-4 (or windows 130-4) made of a rectangle having substantially the same area as the inner and outer surfaces (outer surface 110a or inner surface 110b) of the perforated plate. The holes and windows are arranged in parallel in a lattice-like matrix with the long sides and short sides arranged in the same direction.

図10A、図10B、図10C、図10Dにおいて、貫通孔110(110−1、110−2、110−3、110−4)、窓130(130−1、130−2、130−3、130−4)のピッチ、面積および、または形状を多孔板の異なる領域で変化させても良く、それにより窓130から出射する照明光線L2の光量を調節できる。 10A, 10B, 10C, and 10D, the through hole 110 (110-1, 110-2, 110-3, 110-4) and the window 130 (130-1, 130-2, 130-3, 130). -4), the pitch, area, and / or shape may be changed in different regions of the perforated plate, whereby the amount of illumination light L2 emitted from the window 130 can be adjusted.

(光透過性カバー)
光透過性カバー120は、熱伝導性円筒110の他端(上部の光出射開口112)(図4参照)を覆って固定、配置されることができる。
(Light transmissive cover)
The light transmissive cover 120 can be fixed and disposed so as to cover the other end (the upper light exit opening 112) (see FIG. 4) of the heat conductive cylinder 110.

光透過性カバー120は光透過性樹脂、ガラスからなるドーム、半円形など曲面形状の光透過性材料からなる。 The light transmissive cover 120 is made of a light transmissive material having a curved shape such as a light transmissive resin, a glass dome, or a semicircular shape.

光透過性カバー120は光透過性樹脂、ガラスからなる平板からなっても良い。(後に図30、図31を参照して記載する。) The light transmissive cover 120 may be formed of a light transmissive resin or a flat plate made of glass. (This will be described later with reference to FIGS. 30 and 31.)

また目的により、光透過性カバー120を省略しても良い。 Further, the light transmissive cover 120 may be omitted depending on the purpose.

図11(図11A、図11B、図11C、図11D)を参照して、光散乱透過性カバー120の具体例を、記載する。これらの図は、図4における部分PT−Cを拡大したものである。 With reference to FIG. 11 (FIG. 11A, FIG. 11B, FIG. 11C, FIG. 11D), the specific example of the light-scattering transparent cover 120 is described. These drawings are enlarged views of the portion PT-C in FIG.

図11Aに示す光散乱透過性カバー120Aは、所定の厚さの透明なカバー本体と、透明カバー本体の内面に透明な樹脂、ガラス内に粒子状、繊維状の複数の光散乱性フィラー(充てん剤)を分散して含有した光散乱層120A−1と、ほぼ平滑な曲面からなる外面120A−2とからなる。 11A includes a transparent cover body having a predetermined thickness, a transparent resin on the inner surface of the transparent cover body, and a plurality of light-scattering fillers in the form of particles and fibers in glass. The light scattering layer 120A-1 in which the agent is dispersed and the outer surface 120A-2 having a substantially smooth curved surface.

図11Bに示す光散乱透過性カバー120Bは、所定の厚さの透明なカバー本体の内部に粒子状、繊維状の複数の光散乱性フィラーを分散して含有したものであり、その内面120B−1と外面120B−2はほぼ平滑な曲面からなる。 A light scattering / transmitting cover 120B shown in FIG. 11B contains a plurality of light scattering fillers in the form of particles and fibers dispersed inside a transparent cover body having a predetermined thickness, and its inner surface 120B- 1 and the outer surface 120B-2 are substantially smooth curved surfaces.

図11Cに示す光散乱透過性カバー120Cは、所定の厚さの透明なカバー本体の内面120C−1を粗面、マイクロ・プリズム面などの複数の微小な凹凸面とし、その外面120C−2をほぼ平滑な曲面としたものである。 A light scattering / transmitting cover 120C shown in FIG. 11C has an inner surface 120C-1 of a transparent cover body having a predetermined thickness as a plurality of minute uneven surfaces such as a rough surface and a micro-prism surface, and an outer surface 120C-2 thereof. It is a substantially smooth curved surface.

その代わりに、破線で示すように外面120C−2≡を粗面、マイクロ・プリズム面としても良く、また内外面を粗面、マイクロ・プリズム面120C−1および120C−2≡としても良い。 Instead, the outer surface 120C-2≡ may be a rough surface and a micro-prism surface as indicated by a broken line, and the inner and outer surfaces may be rough surfaces and the micro-prism surfaces 120C-1 and 120C-2≡.

図11Dに示す光散乱透過性カバー120Dは、所定の厚さの透明なカバー本体と、ほぼ平滑な曲面からなる外面120D−1と透明カバー本体の内面に透明な樹脂、ガラス内に複数の光散乱性フィラーを分散して含有した光散乱層120D−2とからなる。 11D includes a transparent cover body having a predetermined thickness, an outer surface 120D-1 having a substantially smooth curved surface, a transparent resin on the inner surface of the transparent cover body, and a plurality of lights in the glass. And a light scattering layer 120D-2 containing a scattering filler.

その代わりに、光散乱透過性カバーは、透明なカバー本体の内面に図11Aに示した光散乱層120A−1を設けると共に外面に図11Dに示した光散乱層120D−2を設けても良い。 Instead, the light scattering transparent cover may be provided with the light scattering layer 120A-1 shown in FIG. 11A on the inner surface of the transparent cover body and the light scattering layer 120D-2 shown in FIG. 11D on the outer surface. .

(LED素子)
図12(図12A、図12B、図12C、図12D、図12E、図12F)を参照して、この発明で好適に用いられる白色光線を出射する面実装(SMD)形LED素子141の例を記載する。
(LED element)
With reference to FIG. 12 (FIG. 12A, FIG. 12B, FIG. 12C, FIG. 12D, FIG. 12E, FIG. 12F), an example of a surface mount (SMD) type LED element 141 that emits white light suitably used in the present invention. Describe.

図12A、図12B、図12C、図12D、図12E、図12Fに示すように、LED素子141は面実装(SMD)形LED素子であり、青色光線、紫色光線、紫外線などの短波長光線を放射するLEDチップと、LEDチップ141aを封止し短波長光線を受光してより長い波長を有する可視光線に波長変換する蛍光体(波長変換素子)を含有する封止材を含み、疑似白色光線、白色光線を外部に出射するものである。これらの図において、小さな複数の丸は蛍光体粒子を示す。 As shown in FIG. 12A, FIG. 12B, FIG. 12C, FIG. 12D, FIG. 12E, and FIG. 12F, the LED element 141 is a surface mount (SMD) type LED element, and emits short wavelength light such as blue light, violet light, and ultraviolet light. A pseudo white light ray including a sealing material containing a radiating LED chip and a phosphor (wavelength conversion element) that seals the LED chip 141a, receives a short wavelength light, and converts the wavelength into visible light having a longer wavelength. The white light is emitted to the outside. In these figures, small circles indicate phosphor particles.

LED素子141−1、141−2、141−3、141−4、141−5、141−6は、それぞれ両面と側面に所定のパターンの導電リード配線141cを形成させた絶縁基板141dと、絶縁基板141dの上面に搭載し短波長光線を発するLEDチップ141aと、LEDチップ141aと導電リード配線141cを接続するボンディング・ワイヤー141bと、LEDチップ141aを封止しLEDチップ141aから放射される短波長光線を波長変換してより長い波長を有する可視光線を放射する蛍光体を含有する透明封止材141e−1、141e−2、141e−3、141kを含む。 The LED elements 141-1, 141-2, 141-3, 141-4, 141-5, 141-6 are insulated from the insulating substrate 141d in which the conductive lead wiring 141c having a predetermined pattern is formed on both sides and side surfaces, respectively. An LED chip 141a that emits short wavelength light, is mounted on the upper surface of the substrate 141d, a bonding wire 141b that connects the LED chip 141a and the conductive lead wire 141c, and a short wavelength that is emitted from the LED chip 141a by sealing the LED chip 141a. The transparent sealing materials 141e-1, 141e-2, 141e-3, 141k containing the fluorescent substance which radiates | emits the visible light which wavelength-converts a light ray and has a longer wavelength are included.

疑似白色光線を出射するLED素子141は、青色光線を発する青色LEDチップ141aと青色光線を黄色光線に変換する黄色蛍光体を組み合わせる。この場合、青色光線と黄色光線が混色した疑似白色光線が得られる。 The LED element 141 that emits pseudo-white light combines a blue LED chip 141a that emits blue light and a yellow phosphor that converts blue light into yellow light. In this case, a pseudo white light in which blue light and yellow light are mixed is obtained.

白色光線を出射するLED素子141は、青色光線を発する青色LEDチップ141aと青色光線を緑色光線に変換する緑色蛍光体および青色光線を赤色光線に変換する赤色蛍光体を組み合わせる。この場合、青色光線と緑色光線および赤色光線が混色した白色光線が得られる。 The LED element 141 that emits white light combines a blue LED chip 141a that emits blue light, a green phosphor that converts blue light into green light, and a red phosphor that converts blue light into red light. In this case, white light in which blue light, green light and red light are mixed is obtained.

または白色光線を出射するLED素子141は、紫色光線または紫外光線を発するLEDチップ141aと紫色、紫外光線をそれぞれ赤色光線、緑色光線、青色光線に変換する三種類の三原色(R、G、B)蛍光体を組み合わせる。この場合、赤色光線、緑色光線、青色光線が混色した白色光線が得られる。 Alternatively, the LED element 141 that emits white light is an LED chip 141a that emits purple light or ultraviolet light, and three kinds of primary colors (R, G, B) that convert purple light and ultraviolet light into red light, green light, and blue light, respectively. Combine phosphors. In this case, white light obtained by mixing red light, green light, and blue light is obtained.

図12Aに示すLED素子141−1は、LEDチップ141aを封止し、蛍光体を含有する透明封止材141e−1が矩形立体、台形立体または円柱であり、上面と周側面から光線が出射する。 The LED element 141-1 shown in FIG. 12A seals the LED chip 141 a, and the transparent sealing material 141 e-1 containing a phosphor is a rectangular solid, trapezoidal solid, or cylinder, and light is emitted from the upper surface and the peripheral side surface. To do.

図12Bに示すLED素子141−1は、LEDチップ141aを封止し、蛍光体を含有する透明封止材141e−2が反射ケーシング141fにより囲まれており、上面から光線が出射する。 The LED element 141-1 shown in FIG. 12B seals the LED chip 141 a, a transparent sealing material 141 e-2 containing a phosphor is surrounded by a reflective casing 141 f, and light rays are emitted from the upper surface.

図12Cに示すLED素子141−3は、LEDチップ141aを封止し、蛍光体を含有する透明封止材141e−3が凸レンズ状であり、その半球面からから光線が出射する。 In the LED element 141-3 shown in FIG. 12C, the LED chip 141a is sealed, and the transparent sealing material 141e-3 containing a phosphor is in the shape of a convex lens, and light is emitted from the hemispherical surface.

図12Dに示すLED素子141−3は、図12Bに示すLED素子141−2の変形であり、蛍光体を含有する透明封止材141e−2の上面に凸レンズ141gを配置したものであり、凸レンズ141gの半球面から光線が出射する。 An LED element 141-3 shown in FIG. 12D is a modification of the LED element 141-2 shown in FIG. 12B, in which a convex lens 141g is arranged on the upper surface of a transparent sealing material 141e-2 containing a phosphor. A light ray is emitted from the hemispherical surface of 141 g.

図12Bに示すLED素子141−2は、LEDチップ141aを封止し、蛍光体を含有する透明封止材141e−2が反射ケーシング141fにより囲まれており、上面から光線が出射する。 The LED element 141-2 shown in FIG. 12B seals the LED chip 141 a, a transparent sealing material 141 e-2 containing a phosphor is surrounded by a reflective casing 141 f, and light rays are emitted from the upper surface.

図12Fに示すLED素子141−5は、図12Bに示すLED素子141−2の変形であり、蛍光体を含有する透明封止材141e−2の上面に、凸レンズの頂面に断面がV字形の円錐形溝を有する溝付き凸レンズ141jを配置したものであり、光線は主として曲面から出射する。 The LED element 141-5 shown in FIG. 12F is a modification of the LED element 141-2 shown in FIG. 12B, and has a V-shaped cross section on the top surface of the transparent sealing material 141e-2 containing the phosphor and on the top surface of the convex lens. The grooved convex lens 141j having a conical groove is disposed, and light rays are emitted mainly from a curved surface.

図12Dに示すLED素子141−4は、図12Bに示すLED素子141−2の変形であり、蛍光体を含有する透明封止材141e−2の上面に凸レンズ141gを配置したものであり、凸レンズ141gの半球面から光線が出射する。 An LED element 141-4 shown in FIG. 12D is a modification of the LED element 141-2 shown in FIG. 12B, in which a convex lens 141g is arranged on the upper surface of a transparent sealing material 141e-2 containing a phosphor. A light ray is emitted from the hemispherical surface of 141 g.

図12Eに示すLED素子141−4aは、図12Bに示すLED素子141−2の変形であり、蛍光体を含有する透明封止材141e−2の上面に、V字形断面の円錐形表面を有する円錐形レンズ141hを配置したものであり、光線は円錐形表面で内部全反射し主として周側面から光線が出射する。 An LED element 141-4a shown in FIG. 12E is a modification of the LED element 141-2 shown in FIG. 12B, and has a conical surface with a V-shaped cross section on the upper surface of a transparent sealing material 141e-2 containing a phosphor. A conical lens 141h is arranged, and the light rays are totally internally reflected at the conical surface and emitted mainly from the peripheral side surface.

LED素子141−7、141−8、141−9、141−10、141−11、141−12は、それぞれ両面と側面に所定のパターンの導電リード配線141cを形成させた絶縁基板141dと、絶縁基板141dの上面に搭載し短波長光線を発するLEDチップ141aと、LEDチップ141aと導電リード配線141cを接続するボンディング・ワイヤー141bと、LEDチップ141aを封止する透明封止材141e−1、141e−2、141e−3、141kを含む。 The LED elements 141-7, 141-8, 141-9, 141-10, 141-11, 141-12 are insulated from the insulating substrate 141d in which conductive lead wires 141c having a predetermined pattern are formed on both sides and side surfaces, respectively. LED chip 141a that is mounted on the upper surface of substrate 141d and emits short wavelength light, bonding wire 141b that connects LED chip 141a and conductive lead wire 141c, and transparent sealing materials 141e-1 and 141e that seal LED chip 141a -2, 141e-3, 141k.

図12Gに示すLED素子141−6は、LEDチップ141aを封止し、蛍光体を含有する透明封止材が凸レンズ141kと、その上面にV字形断面の円錐形表面と傾斜側面を有する断面がM字形のレンズ141mからなる特殊レンズ状であり、主として傾斜側面と曲面から光線が出射する。 The LED element 141-6 shown in FIG. 12G has an LED chip 141a sealed, a transparent sealing material containing a phosphor has a convex lens 141k, and a cross section having a V-shaped conical surface and an inclined side surface on the upper surface thereof. It is a special lens shape consisting of an M-shaped lens 141m, and light rays are emitted mainly from inclined side surfaces and curved surfaces.

これらの単色光SMD形LED素子141−7、141−8、141−9を用いて白色光線を得るには、赤色光線、緑色光線、青色光線を出射する3個の単色光SMD形LED素子を隣接して配置させ、これらの3色光線を混色して白色光線を得る。 In order to obtain white light using these single color light SMD type LED elements 141-7, 141-8, 141-9, three single color light SMD type LED elements emitting red light, green light and blue light are used. It arrange | positions adjacently and mixes these three color light rays, and obtains a white light ray.

図13Aに示すLED素子141−7は、単色LEDチップ141aを封止する透明封止材141e−4が矩形立体、台形立体または円柱であり、上面と周側面から光線が出射する。 In the LED element 141-7 shown in FIG. 13A, the transparent sealing material 141 e-4 that seals the monochromatic LED chip 141 a is a rectangular solid, trapezoidal solid, or cylinder, and light rays are emitted from the upper surface and the peripheral side surface.

図13Bに示すLED素子141−8は、LEDチップ141aを封止する透明封止材141e−2が反射ケーシング141fにより囲まれており、上面から光線が出射する。 In the LED element 141-8 shown in FIG. 13B, a transparent sealing material 141e-2 for sealing the LED chip 141a is surrounded by a reflective casing 141f, and light rays are emitted from the upper surface.

図13Cに示すLED素子141−9は、LEDチップ141aを封止する透明封止材141e−3が凸レンズ状であり、その半球面からから光線が出射する。 In the LED element 141-9 shown in FIG. 13C, the transparent sealing material 141e-3 that seals the LED chip 141a has a convex lens shape, and light is emitted from the hemispherical surface.

図13A、図13B、図13Cは、R、G、Bのいずれかの単色光を出射するSMD)形LED素子141−7、141−8、141−9を示す。 13A, 13B, and 13C show SMD) type LED elements 141-7, 141-8, and 141-9 that emit any one of R, G, and B monochromatic lights.

これらの単色光SMD形LED素子141−7、141−8、141−9を用いて白色光線を得るには、赤色光線、緑色光線、青色光線を出射する3個の単色光SMD形LED素子を隣接して配置させ、これらの3色光線を混色、合成して白色光線を得る。 In order to obtain white light using these single color light SMD type LED elements 141-7, 141-8, 141-9, three single color light SMD type LED elements emitting red light, green light and blue light are used. Arranged adjacently, these three color light beams are mixed and combined to obtain a white light beam.

図13C、図13D、図13Eは、白色光線を出射するSMD形LED素子141−10、141−11、141−12を示す。 13C, 13D, and 13E show SMD LED elements 141-10, 141-11, and 141-12 that emit white light.

図13C、図13D、図13E に示すように、SMD形LED素子141−10、141−11、141−12は、それぞれのパッケージ内に赤色光線、緑色光線、青色光線を出射する3個の単色光LEDチップ141a(R)、141a(G)、141a(B)が内蔵されており、赤色光線、緑色光線、青色光線が合成された白色光線を出射する。 As shown in FIGS. 13C, 13D, and 13E, the SMD type LED elements 141-10, 141-11, and 141-12 have three single colors that emit red light, green light, and blue light in the respective packages. Optical LED chips 141a (R), 141a (G), and 141a (B) are built in, and emit white light in which red light, green light, and blue light are combined.

図13Cに示すLED素子141−10は、三原色LEDチップ141a(R)、141a(G)、141a(B)を封止する透明封止材141e−4が矩形立体、台形立体または円柱であり、上面と周側面から白色光線が出射する。 In the LED element 141-10 shown in FIG. 13C, the transparent sealing material 141e-4 for sealing the three primary color LED chips 141a (R), 141a (G), and 141a (B) is a rectangular solid, trapezoidal solid, or cylinder. White light is emitted from the top and peripheral sides.

図13Dに示すLED素子141−11は、三原色LEDチップ141a(R)、141a(G)、141a(B)を封止する透明封止材141e−5が反射ケーシング141fにより囲まれており、上面から白色光線が出射する。 In the LED element 141-11 shown in FIG. 13D, a transparent sealing material 141e-5 for sealing the three primary color LED chips 141a (R), 141a (G), and 141a (B) is surrounded by a reflective casing 141f. From which white light is emitted.

図13Eに示すLED素子141−12は、三原色LEDチップ141a(R)、141a(G)、141a(B)を封止する透明封止材141e−6が凸レンズ状であり、その半球面からから白色光線が出射する。 In the LED element 141-12 shown in FIG. 13E, the transparent sealing material 141e-6 for sealing the three primary color LED chips 141a (R), 141a (G), and 141a (B) has a convex lens shape. White light is emitted.

(発光ユニット)
図14(図14A、図14B、図14C)および図15を参照してこの発明に用いられる発光ユニットを記載する。
(Light emitting unit)
The light emitting unit used in the present invention will be described with reference to FIG. 14 (FIGS. 14A, 14B, and 14C) and FIG.

図14(図14A、図14B、図14C)は、発光ユニット140の数例(140−1、140−2、140−3)を示す概略的な部分断面図である。 FIG. 14 (FIGS. 14A, 14B, and 14C) is a schematic partial cross-sectional view showing several examples (140-1, 140-2, 140-3) of the light emitting unit 140. FIG.

図15は、発光ユニット140におけるLED素子141の配列パターンを示す概略的な平面図である。 FIG. 15 is a schematic plan view showing an arrangement pattern of the LED elements 141 in the light emitting unit 140.

図14Aに示すように、発光ユニット140−1は、ために、例えば図12、図13を参照して詳細に記載した白色照明光線L1を出射させる一つまたは複数のSMD形LED素子141を回路基板142の一表面に実装したものである。 As shown in FIG. 14A, the light emitting unit 140-1 is configured to circuit one or more SMD LED elements 141 that emit the white illumination light beam L1 described in detail with reference to FIGS. 12 and 13, for example. This is mounted on one surface of the substrate 142.

回路基板142は、銅、アルミニウムなどの高熱伝導性、導電性金属基板、高熱伝導性、導電性カーボン基板などの導電性基板に配線パターンを有する絶縁被覆を表面に形成した基板、高熱伝導性絶縁セラミック基板に配線パターンを形成した基板を用いるのが望ましい。 The circuit board 142 is a board in which an insulating coating having a wiring pattern is formed on a conductive substrate such as copper, aluminum or the like, a conductive metal substrate, a high thermal conductivity, or a conductive carbon substrate. It is desirable to use a substrate in which a wiring pattern is formed on a ceramic substrate.

図15に示すように、発光ユニット140(140−1)は、例えば、円形(または矩形)の回路基板142に、中心および複数の仮想同心線AR(1)、AR(2)、・・・・・、AR(n)に沿って複数のLED素子141(またはLEDチップ141a)を配列することができる。 As shown in FIG. 15, the light emitting unit 140 (140-1) includes, for example, a circular (or rectangular) circuit board 142, a center and a plurality of virtual concentric lines AR (1), AR (2),. A plurality of LED elements 141 (or LED chips 141a) can be arranged along AR (n).

回路基板142における複数の同心状仮想線AR(1)、AR(2)、・・・・・、AR(n)に配列する複数のLED 141としては図12(図12Aないし図12G)または図13(図13Aないし図13(E)に示す複数のSMD形LED素子の群から一種または複数種を選択して用いることができる。 A plurality of LEDs 141 arranged in a plurality of concentric virtual lines AR (1), AR (2),..., AR (n) on the circuit board 142 are shown in FIG. 12 (FIGS. 12A to 12G) or FIG. 13 (one or more types can be selected and used from the group of a plurality of SMD type LED elements shown in FIGS. 13A to 13E).

図6などに示すLED電球100Aにおいて、光透過性カバー120から出射させる照明光線L3の光量(光束)と円筒110(窓130)の周側面から出射させる照明光線L2の光量の比率は、目的に応じて次のようにして可変できる。 In the LED bulb 100A shown in FIG. 6 and the like, the ratio of the light amount (light beam) of the illumination light beam L3 emitted from the light transmissive cover 120 and the light amount of the illumination light beam L2 emitted from the peripheral side surface of the cylinder 110 (window 130) is It can be varied as follows.

光透過性カバー120から出射させる照明光線L3の全光量を円筒110(窓130)の周側面から出射させる照明光線L2の全光量より大きくしたいときには、例えば、回路基板142の中心近辺の仮想線AR(1)に(図6に示す円筒110の中心軸の近辺の位置に)上面方向に指向して光線を放射する上面発光LED素子141−2(図12B参照)、広角発光LED素子141−1、141−3(図12A、図12C参照)を配置または配列し、回路基板142の中心から最も離れた仮想線AR(n)に(図6に示す円筒110の内面110bに隣接する位置に)側面方向に指向して光線を放射する側面発光LED素子141−4、141−6(図12E、図12G参照)を配置または配列すれば良い。 When it is desired to make the total light amount of the illumination light beam L3 emitted from the light transmissive cover 120 larger than the total light amount of the illumination light beam L2 emitted from the peripheral side surface of the cylinder 110 (window 130), for example, the virtual line AR near the center of the circuit board 142 is used. In (1) (at a position near the central axis of the cylinder 110 shown in FIG. 6), a top-emitting LED element 141-2 (see FIG. 12B) that emits a light beam directed toward the upper surface, and a wide-angle LED element 141-1. , 141-3 (see FIGS. 12A and 12C) are arranged or arranged on an imaginary line AR (n) farthest from the center of the circuit board 142 (at a position adjacent to the inner surface 110b of the cylinder 110 shown in FIG. 6). Side-emitting LED elements 141-4 and 141-6 (see FIGS. 12E and 12G) that emit light in the direction of the side may be arranged or arranged.

上記と反対に、光透過性カバー120から出射させる照明光線L3の全光量を円筒110(窓130)の周側面から出射させる照明光線L2の全光量より小さくしたいときには、回路基板142の中心近辺の仮想線AR(1)に上面発光LED素子141−2(図12B参照)、広角発光LED素子141−1、141−3(図12A、図12C参照)を配置または配列し、回路基板142の中心から最も離れた仮想線AR(n)に側面発光LED素子141−4、141−6(図12E、図12G参照)を配置または配列すれば良い。 On the contrary, when it is desired to make the total light amount of the illumination light beam L3 emitted from the light transmissive cover 120 smaller than the total light amount of the illumination light beam L2 emitted from the peripheral side surface of the cylinder 110 (window 130), A top surface light emitting LED element 141-2 (see FIG. 12B) and wide angle light emitting LED elements 141-1 and 141-3 (see FIGS. 12A and 12C) are arranged or arranged on the virtual line AR (1), and the center of the circuit board 142 The side-emitting LED elements 141-4 and 141-6 (see FIG. 12E and FIG. 12G) may be arranged or arranged on the virtual line AR (n) farthest from the center.

図14Bに示す発光ユニット140−2は、白色照明光線L1を出射させるために、一つまたは複数の青色、紫色、紫外線などの短波長光線を発する複数のLEDチップ141aを回路基板142の上面に実装し、LEDチップ141aを複数の蛍光体粒子141bを含有した透明封止材141cで被覆したものである。 The light emitting unit 140-2 shown in FIG. 14B has, on the upper surface of the circuit board 142, a plurality of LED chips 141a that emit one or more short-wavelength light rays such as blue, purple, and ultraviolet light in order to emit the white illumination light beam L1. The LED chip 141a is mounted and covered with a transparent sealing material 141c containing a plurality of phosphor particles 141b.

図14Cに示す発光ユニット140−3は、白色照明光線L1を出射させるために、一つまたは複数の青色、紫色、紫外線などの短波長光線を発する複数のLEDチップ141aを回路基板142の上面に実装し、LEDチップ141aを透明封止材141cで被覆し、更に複数の蛍光体粒子141bを含有した透明封止材141dで被覆したものである。 The light emitting unit 140-3 shown in FIG. 14C has, on the upper surface of the circuit board 142, a plurality of LED chips 141a that emit one or a plurality of short-wavelength light beams such as blue, violet, and ultraviolet light in order to emit the white illumination light beam L1. The LED chip 141a is mounted with a transparent sealing material 141c and further covered with a transparent sealing material 141d containing a plurality of phosphor particles 141b.

ハウジング180は、ロート状、円錐殻状などの形状をなした金属、樹脂、セラミックからなる素材からなり、その内部空洞に点灯回路160を収容することができる。ハウジング180の素材は、熱伝導性を有するのが望ましい。 The housing 180 is made of a material made of metal, resin, or ceramic having a funnel shape or a conical shell shape, and the lighting circuit 160 can be accommodated in the internal cavity thereof. The material of the housing 180 preferably has thermal conductivity.

(窓)
光透過性を有する窓130は、樹脂、ガラスからなる光透過性材料を貫通孔111に覆うように固定、配置したものである。
(window)
The light-transmissive window 130 is fixed and arranged so as to cover the through-hole 111 with a light-transmissive material made of resin or glass.

この明細書において用語「貫通孔」は、貫通孔のみならず、用語「スルーホール:through hole」、「開口またはオープニング:opening」、「アパーチャー:aperture」、「スリット:slit」も含む。 In this specification, the term “through hole” includes not only a through hole but also the terms “through hole”, “opening or opening”, “aperture”, and “slit”.

窓130は、貫通孔111にアクリル、ポリカーボネート、エポキシ、シリコーン樹脂などのなどの透明樹脂、ガラスからなる光透過性材料を充てん、封止してなるのが望ましい。それによりLED素子141からの光線L1は、窓130から熱伝導性円筒110の外部に出射でき、また外気、湿気が熱伝導性円筒110の内部空間HSに侵入しないようにすることができる。 The window 130 is preferably formed by filling the through-hole 111 with a transparent resin such as acrylic, polycarbonate, epoxy, or silicone resin, or a light transmissive material made of glass. Thereby, the light beam L1 from the LED element 141 can be emitted from the window 130 to the outside of the heat conductive cylinder 110, and outside air and moisture can be prevented from entering the internal space HS of the heat conductive cylinder 110.

熱伝導性円筒110の外面110aまたは内面110bの総面積S1に対する複数の貫通孔111の開口の総面積S2の比率を開口率S2/S1と定義するときに、開口率S2/S1が大きいほど複数の窓130から出射できる照明光線L2の全光量(全光束)が増加し、逆に外面110aから放熱する熱量が減少する。 When the ratio of the total area S2 of the plurality of through-holes 111 to the total area S1 of the outer surface 110a or the inner surface 110b of the thermally conductive cylinder 110 is defined as an aperture ratio S2 / S1, the larger the aperture ratio S2 / S1, the more The total amount of light (total luminous flux) of the illumination light L2 that can be emitted from the window 130 increases, and conversely, the amount of heat radiated from the outer surface 110a decreases.

(光路)
図1、図3、図6、図7を参照して、LEDランプ100、LED電球100Aにおける光路を説明すると下記のa)ないしh)の通りである。
(Light path)
The optical paths in the LED lamp 100 and the LED bulb 100A will be described with reference to FIG. 1, FIG. 3, FIG. 6, and FIG.

a)円筒110の内部空間HSにおいて、LED素子140は放射光線L1を上方向と横方向へ指向して出射する。 a) In the internal space HS of the cylinder 110, the LED element 140 emits the emitted light beam L1 in the upward and lateral directions.

b)その放射光線L1は一部が窓130に、他の一部が光反射性内面110bに到達し、残りが上部開口112を経由して光透過性カバー120に到達する。 b) Part of the emitted light beam L1 reaches the window 130, the other part reaches the light-reflective inner surface 110b, and the other part reaches the light-transmitting cover 120 via the upper opening 112.

c)図3、図6、図8、図9などを参照して、窓130で受光した光線L1bは、貫通孔111の内部の光透過材料を透過、散乱透過して円筒110の外部に出射して照明光線L2となる。 c) Referring to FIGS. 3, 6, 8, 9, and the like, the light beam L <b> 1 b received by the window 130 is transmitted through the light transmitting material inside the through-hole 111, scattered and transmitted, and emitted to the outside of the cylinder 110. Thus, the illumination light beam L2 is obtained.

d)特に図3、図6、図7を参照して、光透過性カバー120に達した光線L1aは、そこを透過、散乱透過して外部に出射して照明光線L3となる。 d) With particular reference to FIGS. 3, 6, and 7, the light beam L1a that has reached the light-transmitting cover 120 is transmitted, scattered and transmitted therethrough, and is emitted to the outside to become an illumination light beam L3.

e)図3、図6、図7などを参照して、光反射性内面110bに到達した光線L1cはそこで正反射、散乱反射などにより反射して横方向を含めて上方向に進む。 e) With reference to FIG. 3, FIG. 6, FIG. 7, etc., the light beam L1c that has reached the light-reflecting inner surface 110b is reflected by regular reflection, scattering reflection, etc., and proceeds upward including the lateral direction.

f)図3、図6、図7などを参照して、光反射性内面110bで反射した光線L1cは一部が窓130に到達し、一部が光反射性内面110bの別の領域に到達し、または光透過性カバー120に到達する。 f) Referring to FIG. 3, FIG. 6, FIG. 7, etc., part of the light beam L1c reflected by the light-reflecting inner surface 110b reaches the window 130, and part of it reaches another region of the light-reflecting inner surface 110b. Or reach the light transmissive cover 120.

g)図3、図6、図8、図9などを参照して、窓130に到達した光線は、上記c)に記載したようにそこを透過、散乱透過して円筒110の外部に出射して照明光線L2となる。 g) Referring to FIG. 3, FIG. 6, FIG. 8, FIG. 9, etc., the light rays that have reached the window 130 are transmitted through and scattered through the window as described in c) above, and are emitted to the outside of the cylinder 110. The illumination light beam L2.

h)光反射性内面110bの別の領域に到達した光線は再び繰り返してほぼ上方に進み、光反射性内面110bの空に別の領域に到達し、または別の窓130に入射し、または光透過性カバー120に入射する。 h) Light rays that have reached another area of the light-reflective inner surface 110b repeat again and proceed almost upward, reach another area in the sky of the light-reflective inner surface 110b, or enter another window 130, or light The light enters the transmissive cover 120.

このように光反射性内面110bに到達した反射光線L1cは一回反射または複数回繰り返して反射してほぼ上方向に進み、反射ロスを無視すると全ての光線反射光線L1cは窓130または光透過性カバー120から外部へ出射する。 In this way, the reflected light beam L1c that has reached the light-reflecting inner surface 110b is reflected once or repeatedly several times and then travels substantially upward. If the reflection loss is ignored, all the reflected light beams L1c are transmitted through the window 130 or the light transmissive property. The light is emitted from the cover 120 to the outside.

このLED電球100Aは、LED素子140からの出射光線L1のほとんどが円筒110と光透過性カバー120から外部に出射して照明光線L2、L3とすることができるので、広い照射範囲(配光領域)を照射できる。 In this LED bulb 100A, most of the emitted light beam L1 from the LED element 140 can be emitted to the outside from the cylinder 110 and the light transmissive cover 120 to become illumination light beams L2 and L3. ) Can be irradiated.

従ってこのLED電球100Aは、市販のLED電球と比べて広い配光特性を発揮でき、高い放熱性と広い配光特性を両立させた白熱電球と置換できる低消費電力、長寿命の電球形LEDランプを提供できる。 Therefore, the LED bulb 100A can exhibit a wide light distribution characteristic as compared with a commercially available LED bulb, and can be replaced with an incandescent lamp having both high heat dissipation and wide light distribution characteristics. Can provide.

(熱伝導経路)
この実施例1のLED電球100Aにおける熱伝導経路を図3、図6または図7を参照して記載する。
(Heat conduction path)
A heat conduction path in the LED bulb 100A of the first embodiment will be described with reference to FIG. 3, FIG. 6, or FIG.

LED電球100Aの給電用口金170を交流電力供給用の白熱電球用の外部ソケットに取り付けたときに、口金170から交流電力が点灯回路160に供給され、点灯回路160の出力においてAC−DC変換されて、所定の直流電圧が回路基板142の上面(一面)に搭載されたLED素子141に供給されてそこから放射光線L1を出射する。 When the power supply cap 170 of the LED bulb 100A is attached to an external socket for an incandescent bulb for supplying AC power, AC power is supplied from the cap 170 to the lighting circuit 160, and AC-DC conversion is performed at the output of the lighting circuit 160. Then, a predetermined DC voltage is supplied to the LED element 141 mounted on the upper surface (one surface) of the circuit board 142 and emits a radiation beam L1 therefrom.

回路基板142の底面(他面)は、高熱伝導基板150上に熱伝導接触して固定されているので、LED素子141の点灯中、LED素子141において発生した熱は、回路基板142から高熱伝導基板150に伝達、移送される。 Since the bottom surface (other surface) of the circuit board 142 is fixed on the high heat conduction substrate 150 by heat conduction contact, the heat generated in the LED element 141 during the lighting of the LED element 141 is transmitted from the circuit board 142 to the high heat conduction. It is transmitted and transferred to the substrate 150.

高熱伝導基板150と高熱伝導性円筒(中空部材)110は下記のようにして熱伝導結合されている。 The high thermal conductive substrate 150 and the high thermal conductive cylinder (hollow member) 110 are thermally conductively coupled as follows.

高熱伝導基板150の周縁と、高熱伝導性円筒(中空部材)110の下端の熱伝導内面110bと密に接触、密接し、熱伝導性ネジ(または、はんだ、熱伝導性樹脂などの熱伝導性結合材)などの任意の固定手段FMにより固定されている。 The thermal conductivity of the thermal conductive screw (or solder, thermal conductive resin, or the like) is in close contact with or in close contact with the periphery of the high thermal conductive substrate 150 and the thermal conductive inner surface 110b at the lower end of the high thermal conductive cylinder (hollow member) 110. It is fixed by an arbitrary fixing means FM such as a binder.

高熱伝導基板150の周縁と高熱伝導性円筒(中空部材)110の下端の熱伝導内面110bの間に、熱伝導性シリコーン樹脂、ゴム、ゲルなどの熱伝導性弾性部材、熱伝導性カーボン繊維などの熱伝導性繊維部材などの熱伝導性部材を介在させても良い。 Between the peripheral edge of the high heat conductive substrate 150 and the heat conductive inner surface 110b at the lower end of the high heat conductive cylinder (hollow member) 110, a heat conductive elastic member such as a heat conductive silicone resin, rubber, gel, etc., a heat conductive carbon fiber, etc. A heat conductive member such as a heat conductive fiber member may be interposed.

したがって、LED素子141の発熱は、矢印H1で示す熱伝導経路にしたがって、LED素子141から順次、回路基板142、高熱伝導基板150を経由して、高熱伝導性円筒(中空部材)110に伝達、移送され、矢印H2で示すように円筒(中空部材)110の露出した放熱外面110aから外部空気へ放散される。 Therefore, the heat generated by the LED element 141 is transmitted from the LED element 141 sequentially to the high thermal conductivity cylinder (hollow member) 110 via the circuit board 142 and the high thermal conductivity substrate 150 according to the heat conduction path indicated by the arrow H1. As shown by the arrow H2, it is transferred to the outside air from the exposed heat radiating outer surface 110a of the cylinder (hollow member) 110.

このようにして、LED素子141の点灯中、LED素子141において発生した熱は、高熱伝導性円筒(中空部材)110の放熱外面110aから外部空気へ放散されるので、LED素子141は所定の許容温度以下に保たれて、所定の光量(光束)の光線を効率よく放射でき、過熱によるLED素子141の劣化を回避でき、よって長寿命のLED電球100Aを提供できる。 Thus, since the heat generated in the LED element 141 during the lighting of the LED element 141 is dissipated from the heat radiating outer surface 110a of the high thermal conductivity cylinder (hollow member) 110 to the external air, the LED element 141 has a predetermined tolerance. Maintaining the temperature below the temperature, light of a predetermined light amount (light flux) can be efficiently emitted, and deterioration of the LED element 141 due to overheating can be avoided, and thus a long-life LED bulb 100A can be provided.

図16を参照して、実施例2のLED電球100A−1を記載する。図16はLED電球100A−1を示す概略的な正面図である。 With reference to FIG. 16, LED bulb 100A-1 of Example 2 is described. FIG. 16 is a schematic front view showing the LED bulb 100A-1.

この実施例2のLED電球100A−1は上記実施例1のLED電球100Aの一変形であり、複数の放熱フィンを付加した点を除いてLED電球100Aと同一である。 The LED bulb 100A-1 of the second embodiment is a modification of the LED bulb 100A of the first embodiment, and is the same as the LED bulb 100A except that a plurality of heat radiation fins are added.

LED電球100A−1は、上記実施例1のLED電球100Aにおける熱伝導性円筒110において、縦方向の複数の窓130の列とこれと隣接する縦方向の複数の窓130の列の間の外面の領域に縦方向に延びる所定の長さLnと放熱側面190a、放熱頂面190bからなる熱伝導性放熱フィン190を立設したものである。 The LED bulb 100A-1 is an outer surface between a row of a plurality of vertical windows 130 and a row of a plurality of vertical windows 130 adjacent thereto in the thermally conductive cylinder 110 of the LED bulb 100A of the first embodiment. In this region, a thermally conductive heat dissipating fin 190 having a predetermined length Ln extending in the vertical direction, a heat dissipating side surface 190a and a heat dissipating top surface 190b is erected.

したがって、発光ユニット140のLED素子141からの発熱は、回路基板142と熱伝導基板150を経由して熱伝導性円筒110に伝達され、円筒110の外面110aからと放熱フィン190の側面190a、頂面190bから外気に放熱される。 Therefore, heat generated from the LED element 141 of the light emitting unit 140 is transmitted to the heat conductive cylinder 110 via the circuit board 142 and the heat conductive board 150, and from the outer surface 110 a of the cylinder 110 to the side face 190 a of the radiating fin 190, the top. Heat is radiated from the surface 190b to the outside air.

図17を参照して、実施例3のLED電球100A−2を記載する。図17はLED電球100A−2を示す概略的な正面図である。 With reference to FIG. 17, LED bulb 100A-2 of Example 3 is described. FIG. 17 is a schematic front view showing the LED bulb 100A-2.

この実施例3のLED電球100A−2は上記実施例1のLED電球100Aの他の一変形であり、複数の放熱フィンを付加した点を除いてLED電球100Aと同一である。 The LED bulb 100A-2 of the third embodiment is another modification of the LED bulb 100A of the first embodiment, and is the same as the LED bulb 100A except that a plurality of heat radiation fins are added.

LED電球100A−2は、上記実施例1のLED電球100Aにおける熱伝導性円筒110において、横方向の複数の窓130の列とこれと隣接する横方向の複数の窓130の列の間の外面の領域に縦方向に環状に延びる放熱側面190'a、放熱頂面190'bからなる熱伝導性放熱フィン190'を立設したものである。 The LED bulb 100A-2 is an outer surface between a row of a plurality of windows 130 in the horizontal direction and a row of a plurality of windows 130 adjacent in the horizontal direction in the thermally conductive cylinder 110 in the LED bulb 100A of the first embodiment. In this region, a heat conductive heat dissipating fin 190 'comprising a heat dissipating side surface 190'a and a heat dissipating top surface 190'b extending in a ring shape in the vertical direction is erected.

したがって、発光ユニット140のLED素子141からの発熱は、回路基板142と熱伝導基板150を経由して熱伝導性円筒110に伝達され、円筒110の外面110aからと放熱フィン190'の側面19'0a、頂面190'bから外気に放熱される。 Therefore, the heat generated from the LED element 141 of the light emitting unit 140 is transmitted to the heat conductive cylinder 110 via the circuit board 142 and the heat conductive board 150, and from the outer surface 110a of the cylinder 110 to the side face 19 'of the radiating fin 190'. 0a, heat is radiated from the top surface 190'b to the outside air.

図18、図19を参照して、実施例4のLED電球200を記載する。図18はLED電球200を示す概略的な正面図、図19は円筒110の窓(貫通孔)の配列を示す概略的な平面図である。 With reference to FIG. 18 and FIG. 19, the LED light bulb 200 of Example 4 is described. 18 is a schematic front view showing the LED bulb 200, and FIG. 19 is a schematic plan view showing an arrangement of windows (through holes) of the cylinder 110. FIG.

図18に示すように、この実施例4のLED電球200は、上記実施例1と同様に、a)外面と光反射性内面と貫通孔111を覆う光透過材料を有する複数の窓130からなる熱伝導性円筒(熱伝導性中空部材)110と、少なくとも一つのLED素子141を回路基板142に実装した発光ユニット140と回路基板142を熱伝導接触して固定する熱伝導性基板150を備えるLEDランプと、b)ハウジング180に内蔵した点灯回路160と給電用口金170からなる。 As shown in FIG. 18, the LED bulb 200 according to the fourth embodiment includes a) a plurality of windows 130 having a light transmissive material covering the outer surface, the light-reflecting inner surface, and the through-hole 111, as in the first embodiment. LED including a heat conductive cylinder 110 (heat conductive hollow member), a light emitting unit 140 in which at least one LED element 141 is mounted on the circuit board 142, and a heat conductive substrate 150 for fixing the circuit board 142 in heat conductive contact. A lamp, and b) a lighting circuit 160 built in the housing 180 and a feeding base 170.

発光ユニット140を搭載した熱伝導性基板150は、熱伝導性円筒110の下端(光入射端)の内面110bと接触、近接して挿入され、その環状側面が熱伝導性円筒110の下端部と全面的にまたは部分的に熱伝導接触して固定されるように、熱伝導性ネジ、熱伝導性接着材、熱伝導性リベット(鋲止め)、ピン止め、溶着、溶接などの任意の熱伝導性固定手段により円筒110に固定される。 The heat conductive substrate 150 on which the light emitting unit 140 is mounted is inserted in contact with and close to the inner surface 110b of the lower end (light incident end) of the heat conductive cylinder 110, and its annular side surface is connected to the lower end of the heat conductive cylinder 110. Any heat conduction such as heat conductive screws, heat conductive adhesives, heat conductive rivets (pinning), pinning, welding, welding, etc. to be fixed in full or partial heat conduction contact It is fixed to the cylinder 110 by sex fixing means.

したがって、発光ユニット140のLED素子141の発熱は、熱伝導経路H1で示すように熱伝導性基板150を経由して熱伝導性円筒110と間接的に熱結合される。 Therefore, the heat generated by the LED element 141 of the light emitting unit 140 is indirectly thermally coupled to the heat conductive cylinder 110 via the heat conductive substrate 150 as indicated by the heat conduction path H1.

これにより動作中にLED素子141で発生した熱は露出した外面110aから空気中へ効果的に放散H2され、発光ユニット140のLED素子141は冷却され、常時LED素子141は許容温度以下に保たれる。 As a result, the heat generated in the LED element 141 during operation is effectively dissipated H2 from the exposed outer surface 110a into the air, the LED element 141 of the light emitting unit 140 is cooled, and the LED element 141 is always kept below the allowable temperature. It is.

図18に示すように、LED素子141からの放射光線L1は、光透過性カバー120に直接向かう光線L1aと、円筒110の窓130に向かう光線L1bと、円筒110の反射内面110bに向かう光線L1cとなる。 As shown in FIG. 18, the emitted light L1 from the LED element 141 includes a light beam L1a that goes directly to the light transmissive cover 120, a light beam L1b that goes to the window 130 of the cylinder 110, and a light beam L1c that goes to the reflective inner surface 110b of the cylinder 110. It becomes.

窓130に向かう光線L1bは円筒110の周辺から外部に出射して照明光線L2となり、光透過性カバー120に直接向かう光線L1aは外部に出射して照明光線L3となり、反射内面110bに向かう光線L1cは反射して反射光線L1dとなって光透過性カバー120、円筒110の他の反射内面110bまたは窓130に向かって進む。 The light beam L1b toward the window 130 is emitted from the periphery of the cylinder 110 to the outside to become the illumination light beam L2, and the light beam L1a directly directed to the light transmissive cover 120 is emitted to the outside to become the illumination light beam L3, and the light beam L1c toward the reflective inner surface 110b. Is reflected as a reflected light beam L1d and travels toward the light transmissive cover 120, the other reflective inner surface 110b of the cylinder 110, or the window 130.

上記実施例1においては図10(図10A、図10B、図10C、図10D)に示すように円筒110における貫通孔111、窓130の配列が並列配列であるが、上記実施例1と異なり、この実施例4においては図19(図19A、図19B)に示すように円筒110における貫通孔111、窓130の配列が千鳥配列である。 In the first embodiment, as shown in FIG. 10 (FIGS. 10A, 10B, 10C, and 10D), the arrangement of the through holes 111 and the windows 130 in the cylinder 110 is a parallel arrangement, but unlike the first embodiment, In Example 4, as shown in FIG. 19 (FIGS. 19A and 19B), the arrangement of the through holes 111 and the windows 130 in the cylinder 110 is a staggered arrangement.

図19Aに示す例では、円筒110−5の外面110aと内面110bとを貫通する複数の円形貫通孔111−5に光透過材料を充填した複数の窓130−5が、互い違いのジグザグ状に配置され、矢印付き鎖線で示す千鳥形配列をなしている。 In the example shown in FIG. 19A, a plurality of windows 130-5 in which a plurality of circular through holes 111-5 penetrating the outer surface 110a and the inner surface 110b of the cylinder 110-5 are filled with a light transmitting material are arranged in an alternating zigzag shape. It has a staggered arrangement indicated by chain lines with arrows.

図19Bに示す例では、円筒110−6の外面110aと内面110bとを貫通する複数の矩形貫通孔111−6に光透過材料を充填した複数の窓130−6が、互い違いのジグザグ状に配置され、矢印付き鎖線で示す千鳥形配列をなしている。 In the example shown in FIG. 19B, a plurality of windows 130-6 in which a plurality of rectangular through holes 111-6 penetrating the outer surface 110a and the inner surface 110b of the cylinder 110-6 are filled with a light transmitting material are arranged in an alternating zigzag shape. It has a staggered arrangement indicated by chain lines with arrows.

図20を参照して、実施例5のLED電球300Aを記載する。図20はLED電球300Aを示す概略的な正面図である。 With reference to FIG. 20, LED bulb 300A of Example 5 is described. FIG. 20 is a schematic front view showing the LED bulb 300A.

図20に示すように、この実施例5のLED電球300Aは、上記実施例1と同様に、a)外面と光反射性内面と貫通孔111を覆う光透過材料を有する複数の窓130からなる熱伝導性円筒(熱伝導性中空部材)110と、少なくとも一つのLED素子141を回路基板142に実装した発光ユニット140と回路基板142を熱伝導接触して固定する熱伝導性基板150を備えるLEDランプと、b)ハウジング180に内蔵した点灯回路160と給電用口金170からなる。 As shown in FIG. 20, the LED bulb 300 </ b> A according to the fifth embodiment includes a) a plurality of windows 130 having a light transmissive material covering the outer surface, the light reflective inner surface, and the through-hole 111, as in the first embodiment. LED including a heat conductive cylinder 110 (heat conductive hollow member), a light emitting unit 140 in which at least one LED element 141 is mounted on the circuit board 142, and a heat conductive substrate 150 for fixing the circuit board 142 in heat conductive contact. A lamp, and b) a lighting circuit 160 built in the housing 180 and a feeding base 170.

発光ユニット140を搭載した熱伝導性基板150は、熱伝導性円筒110の下端(光入射端)の内面と接触、近接して挿入され、その環状側面が熱伝導性円筒110の下端部と全面的にまたは部分的に熱伝導接触して固定されるように、熱伝導性ネジ、熱伝導性接着材、熱伝導性リベット(鋲止め)、ピン止め、溶着、溶接などの任意の熱伝導性固定手段により円筒110に固定される。 The heat conductive substrate 150 on which the light emitting unit 140 is mounted is inserted in contact with and in close proximity to the inner surface of the lower end (light incident end) of the heat conductive cylinder 110, and the annular side surface of the heat conductive cylinder 110 is the entire surface of the lower end portion of the heat conductive cylinder 110. Any thermal conductivity, such as thermally conductive screws, thermally conductive adhesives, thermally conductive rivets (pinning), pinning, welding, welding, etc., to be fixed in part or partially thermally conductive contact It is fixed to the cylinder 110 by fixing means.

したがって、発光ユニット140のLED素子141の発熱は、熱伝導性基板150を経由して熱伝導性円筒110と間接的に熱結合される。 Therefore, the heat generated by the LED element 141 of the light emitting unit 140 is indirectly thermally coupled to the heat conductive cylinder 110 via the heat conductive substrate 150.

これにより動作中にLED素子141で発生した熱は露出した外面110aから空気中へ効果的に放散され、発光ユニット140のLED素子141は冷却され、常時LED素子141は許容温度以下に保たれる。 As a result, heat generated in the LED element 141 during operation is effectively dissipated into the air from the exposed outer surface 110a, the LED element 141 of the light emitting unit 140 is cooled, and the LED element 141 is always kept below the allowable temperature. .

この実施例5のLED電球300Aは、上記実施例1と異なり、熱伝導性円筒110に配置された複数の窓130の縦配列のピッチが変化している。 In the LED bulb 300A of the fifth embodiment, unlike the first embodiment, the pitch of the vertical arrangement of the plurality of windows 130 arranged in the heat conductive cylinder 110 is changed.

図20に示すように、円筒110の下端近辺(発光ユニット140の近辺)において縦方向に隣接する窓130の配列のピッチp1は、円筒110の上端(光透過性カバー120の配置方向)の近辺における配列のピッチpnより大きく設定(p1>pn、n=1,2,3,・・・)してあり、このピッチは上記下端近辺から上記上端に向かって段階的または連続的に減少している。これにより円筒110の周面から外部へ出射する光量を均一化できる。 As shown in FIG. 20, the pitch p1 of the arrangement of the windows 130 adjacent in the vertical direction in the vicinity of the lower end of the cylinder 110 (in the vicinity of the light emitting unit 140) is in the vicinity of the upper end of the cylinder 110 (the arrangement direction of the light-transmitting cover 120). (P1> pn, n = 1, 2, 3,...), And the pitch decreases stepwise or continuously from the vicinity of the lower end toward the upper end. Yes. Thereby, the amount of light emitted from the peripheral surface of the cylinder 110 to the outside can be made uniform.

使用する照明器具、照明シェード(笠)のデザイン、照明の目的によっては円筒110の周面の下方から出射する光量を上方から出射する光量より多くしたい時には、図20に示すピッチと正反対に、ピッチを上記下端近辺から上記上端に向かって段階的または連続的に増加させるように(pn>p1)設定する。 Depending on the lighting fixture to be used, the design of the lighting shade (shade), and the purpose of lighting, when it is desired to increase the amount of light emitted from below the peripheral surface of the cylinder 110 from the amount emitted from above, the pitch is opposite to the pitch shown in FIG. Is increased stepwise or continuously from the vicinity of the lower end toward the upper end (pn> p1).

図21、図22を参照して、実施例6のLED電球400Aを記載する。図21はLED電球400Aを示す概略的な断面図である。図22はLED電球400Aの一部を拡大して示す概略的な断面図である。 With reference to FIG. 21, FIG. 22, LED bulb 400A of Example 6 is described. FIG. 21 is a schematic cross-sectional view showing the LED bulb 400A. FIG. 22 is a schematic cross-sectional view showing an enlarged part of the LED bulb 400A.

図21に示すように、この実施例6のLED電球400Aは、上記実施例1と同様に、a)外面と光反射性内面と貫通孔111を覆う光透過材料を有する複数の窓130からなる熱伝導性円筒(熱伝導性中空部材)110と、少なくとも一つのLED素子141を回路基板142に実装した発光ユニット140と回路基板142を熱伝導接触して固定する熱伝導性基板150を備えるLEDランプと、b)ハウジング180に内蔵した点灯回路160と給電用口金170からなる。 As shown in FIG. 21, the LED bulb 400 </ b> A of the sixth embodiment includes a) a plurality of windows 130 having a light transmissive material covering the outer surface, the light-reflecting inner surface, and the through-hole 111, as in the first embodiment. LED including a heat conductive cylinder 110 (heat conductive hollow member), a light emitting unit 140 in which at least one LED element 141 is mounted on the circuit board 142, and a heat conductive substrate 150 for fixing the circuit board 142 in heat conductive contact. A lamp, and b) a lighting circuit 160 built in the housing 180 and a feeding base 170.

上記実施例1と同様に、発光ユニット140を搭載した熱伝導性基板150は、熱伝導性円筒110の下端(光入射端)の内面と接触、近接して挿入され、その環状側面が熱伝導性円筒110の下端部と全面的にまたは部分的に熱伝導接触して固定されるように、熱伝導性ネジ、熱伝導性接着材、熱伝導性リベット(鋲止め)、ピン止め、溶着、溶接などの任意の熱伝導性固定手段により円筒110に固定される。 As in the first embodiment, the heat conductive substrate 150 on which the light emitting unit 140 is mounted is inserted in contact with and close to the inner surface of the lower end (light incident end) of the heat conductive cylinder 110, and the annular side surface is thermally conductive. A heat conductive screw, a heat conductive adhesive, a heat conductive rivet (pinning), pinning, welding, so that the lower end of the conductive cylinder 110 is fixed in full or partial heat conductive contact. It is fixed to the cylinder 110 by any heat conductive fixing means such as welding.

したがって、発光ユニット140のLED素子141の発熱は、熱伝導性基板150を経由して熱伝導性円筒110と間接的に熱結合される。 Therefore, the heat generated by the LED element 141 of the light emitting unit 140 is indirectly thermally coupled to the heat conductive cylinder 110 via the heat conductive substrate 150.

これにより動作中にLED素子141で発生した熱は露出した外面110aから空気中へ効果的に放散され、発光ユニット140のLED素子141は冷却され、常時LED素子141は許容温度以下に保たれる。 As a result, heat generated in the LED element 141 during operation is effectively dissipated into the air from the exposed outer surface 110a, the LED element 141 of the light emitting unit 140 is cooled, and the LED element 141 is always kept below the allowable temperature. .

この実施例6のLED電球400Aは、上記実施例1と異なり、熱伝導性円筒110の内面において複数の窓130と対応する領域に凸レンズ(光路変換素子)190を設けたものである。 Unlike the first embodiment, the LED bulb 400A of the sixth embodiment is provided with a convex lens (optical path conversion element) 190 in an area corresponding to the plurality of windows 130 on the inner surface of the heat conductive cylinder 110.

これによりLED素子141の内で上向きに向かう放射光線L1の一部の光線L1bを凸レンズ(光路変換素子)190でほぼ横方向に屈折させて光路変換させ、窓130から出射させることができる。 As a result, a part of the light beam L1b of the upwardly emitted radiation beam L1 in the LED element 141 can be refracted almost horizontally by the convex lens (optical path conversion element) 190 to change the optical path and be emitted from the window 130.

図22(図22A、図22B。図22C、図22D)は、凸レンズ(光路変換素子、偏向素子)190を設けた光散乱透過性窓130の数例と、それらにおける光路を示す。 22 (FIG. 22A, FIG. 22B, FIG. 22C, FIG. 22D) shows several examples of the light-scattering / transparent window 130 provided with a convex lens (optical path conversion element, deflection element) 190, and optical paths in them.

図22Aは、図8Aに示す光散乱透過性窓130−1に凸レンズ190を設けたものである。 In FIG. 22A, a convex lens 190 is provided on the light-scattering / transparent window 130-1 shown in FIG. 8A.

光散乱透過性窓130−1は円筒110に設けた貫通孔111に光散乱性フィラー130−1bを混入した透明樹脂130−1aを充てんしたものであり、光散乱透過性窓130−1の内面に凸レンズ190を設けている。 The light-scattering / transparent window 130-1 is obtained by filling the through-hole 111 provided in the cylinder 110 with a transparent resin 130-1a mixed with a light-scattering filler 130-1b, and the inner surface of the light-scattering / transparent window 130-1. A convex lens 190 is provided.

LED素子からの上向きの放射光線L1bが凸レンズ190のドーム状(半球形)曲面に入射すると、そこで屈折されて略横向きの光線となり、光散乱性窓130−1の内面(円筒内面110b側)に入射し、光線L1bは窓130−1内に進み、窓130−1の外面(円筒外面110a側)から外部へ拡散された広角の照明光線L2となって出射する。 When the upward radiation beam L1b from the LED element is incident on the dome-shaped (hemispherical) curved surface of the convex lens 190, it is refracted there to become a substantially lateral beam, and is incident on the inner surface of the light scattering window 130-1 (on the cylindrical inner surface 110b side). The incident light ray L1b travels into the window 130-1, and is emitted as a wide-angle illumination light ray L2 diffused to the outside from the outer surface (cylinder outer surface 110a side) of the window 130-1.

図22Bは、図8Bに示す光散乱透過性窓130−2に凸レンズ190を設けたものである。 FIG. 22B is a diagram in which a convex lens 190 is provided on the light scattering transparent window 130-2 shown in FIG. 8B.

図22Bに示すように、光散乱透過性窓130−2は円筒110に設けた貫通孔111に透明樹脂130−2aを充てんし、透明樹脂130−2aの外面(円筒外面110b側)に透明樹脂塗料に上記光散乱性フィラーを混入した散乱透過層130−2bを塗布、形成したものである。 As shown in FIG. 22B, the light-scattering / transparent window 130-2 fills the through-hole 111 provided in the cylinder 110 with the transparent resin 130-2a, and the transparent resin 130-2a has a transparent resin on the outer surface (cylinder outer surface 110b side). A scattering transmission layer 130-2b in which the light scattering filler is mixed in a paint is applied and formed.

LED素子からの上向きの放射光線L1bが凸レンズ190のドーム状曲面に入射すると、そこで屈折されて略横向きの光線となり、光散乱性窓130−1の内面(円筒内面110b側)に入射し、光線L1bは窓130−1内に進み透明樹脂130−2aを透過し、散乱透過層130−2bで散乱して、窓130−2の外面(円筒外面110b側)から外部へ拡散された広角の照明光線L2となって出射する。 When the upward radiated light beam L1b from the LED element is incident on the dome-shaped curved surface of the convex lens 190, it is refracted to become a substantially lateral light beam, and is incident on the inner surface of the light scattering window 130-1 (on the cylindrical inner surface 110b side). L1b travels into the window 130-1, passes through the transparent resin 130-2a, is scattered by the scattering transmission layer 130-2b, and is diffused from the outer surface (cylindrical outer surface 110b side) of the window 130-2 to the outside. The light beam L2 is emitted.

図22Cは、図8Cに示す光散乱透過性窓130−3に凸レンズ190を設けたものである。 FIG. 22C shows a case in which a convex lens 190 is provided on the light-scattering / transparent window 130-3 shown in FIG. 8C.

図22Cに示すように、光散乱透過性窓130−3は円筒110に設けた貫通孔111に透明樹脂130−3aを充てんし、透明樹脂130−3aの外面(円筒外面110b側)にブラスト加工などにより粗面化処理をして外面を粗面130−3bを形成したものである。 As shown in FIG. 22C, in the light scattering / transparent window 130-3, the through hole 111 provided in the cylinder 110 is filled with the transparent resin 130-3a, and the outer surface of the transparent resin 130-3a (the cylinder outer surface 110b side) is blasted. A rough surface 130-3b is formed on the outer surface by roughening the surface.

LED素子からの上向きの放射光線L1bが凸レンズ190のドーム状曲面に入射すると、そこで屈折されて略横向きの光線となり、光線L1bは窓130−3内に進み透明樹脂130−3aを透過し、粗面130−3bで散乱して、窓130−3の外面(円筒外面110b側)から外部へ拡散された広角の照明光線L2となって出射する。 When the upward radiation beam L1b from the LED element is incident on the dome-shaped curved surface of the convex lens 190, it is refracted to become a substantially lateral beam, and the light beam L1b travels into the window 130-3 and passes through the transparent resin 130-3a, and is roughly The light is scattered by the surface 130-3b and emitted as a wide-angle illumination light beam L2 diffused from the outer surface (cylindrical outer surface 110b side) of the window 130-3 to the outside.

図22Dに示すように、光散乱フィラーを含まない透明窓130−4の内面に凸レンズ(光路変換素子)190を設けてもよい。 As shown to FIG. 22D, you may provide the convex lens (optical path changing element) 190 in the inner surface of the transparent window 130-4 which does not contain a light-scattering filler.

LED素子からの上向きの放射光線L1bが凸レンズ190のドーム状曲面に入射すると、そこで屈折されて略横向きの光線となり、光線L1bは窓130−4内に進み透明樹脂130−4aを透過し、散乱することなく窓130−3の外面(円筒外面110b側)から外部へ照明光線L2となって出射する。 When the upward emitted light beam L1b from the LED element is incident on the dome-shaped curved surface of the convex lens 190, it is refracted to become a substantially horizontal light beam, and the light beam L1b travels into the window 130-4 and is transmitted through the transparent resin 130-4a. Without being performed, the illumination light beam L2 is emitted from the outer surface (cylinder outer surface 110b side) of the window 130-3 to the outside.

図23、図24を参照して、実施例7のLED電球500Aを記載する。図23はLED電球500Aを示す概略的な断面図である。図24はLED電球500Aの一部を拡大して示す概略的な断面図である。 With reference to FIG. 23 and FIG. 24, LED bulb 500A of Example 7 is described. FIG. 23 is a schematic cross-sectional view showing an LED bulb 500A. FIG. 24 is a schematic cross-sectional view showing an enlarged part of the LED bulb 500A.

図23に示すように、この実施例7のLED電球500Aは、上記実施例1と同様に、a)外面と光反射性内面と貫通孔111を覆う光透過材料を有する複数の窓130からなる熱伝導性円筒(熱伝導性中空部材)110と、少なくとも一つのLED素子141を回路基板142に実装した発光ユニット140と回路基板142を熱伝導接触して固定する熱伝導性基板150を備えるLEDランプと、b)ハウジング180に内蔵した点灯回路160と給電用口金170からなる。 As shown in FIG. 23, the LED bulb 500A of Example 7 includes a) a plurality of windows 130 having a light transmissive material covering the outer surface, the light-reflective inner surface, and the through-hole 111, as in Example 1 above. LED including a heat conductive cylinder 110 (heat conductive hollow member), a light emitting unit 140 in which at least one LED element 141 is mounted on the circuit board 142, and a heat conductive substrate 150 for fixing the circuit board 142 in heat conductive contact. A lamp, and b) a lighting circuit 160 built in the housing 180 and a feeding base 170.

上記実施例1と同様に、発光ユニット140を搭載した熱伝導性基板150は、熱伝導性円筒110の下端(光入射端)の内面と接触、近接して挿入され、その環状側面が熱伝導性円筒110の下端部と全面的にまたは部分的に熱伝導接触して固定されるように、熱伝導性ネジ、熱伝導性接着材、熱伝導性リベット(鋲止め)、熱伝導性ピン止め、溶着、溶接などの任意の熱伝導性固定手段により円筒110に固定される。 As in the first embodiment, the heat conductive substrate 150 on which the light emitting unit 140 is mounted is inserted in contact with and close to the inner surface of the lower end (light incident end) of the heat conductive cylinder 110, and the annular side surface is thermally conductive. Heat conductive screw, heat conductive adhesive, heat conductive rivet (claw stop), heat conductive pinning so that the bottom end of the conductive cylinder 110 is fixed in full or partial heat conductive contact. It is fixed to the cylinder 110 by any heat conductive fixing means such as welding or welding.

したがって、発光ユニット140のLED素子141の発熱は、熱伝導性基板150を経由して熱伝導性円筒110と間接的に熱結合される。 Therefore, the heat generated by the LED element 141 of the light emitting unit 140 is indirectly thermally coupled to the heat conductive cylinder 110 via the heat conductive substrate 150.

これにより動作中にLED素子141で発生した熱は露出した外面110aから空気中へ効果的に放散され、発光ユニット140のLED素子141は冷却され、常時LED素子141は許容温度以下に保たれる。 As a result, heat generated in the LED element 141 during operation is effectively dissipated into the air from the exposed outer surface 110a, the LED element 141 of the light emitting unit 140 is cooled, and the LED element 141 is always kept below the allowable temperature. .

この実施例7のLED電球500Aは、上記実施例1と異なり、熱伝導性円筒110の内面において複数の窓130と対応する領域にプリズム(光路変換素子)192を設けたものである。 Unlike the first embodiment, the LED bulb 500A of the seventh embodiment is provided with a prism (optical path conversion element) 192 in an area corresponding to the plurality of windows 130 on the inner surface of the thermally conductive cylinder 110.

これによりLED素子141の内で上向きに向かう放射光線L1の一部の光線L1bをプリズム(光路変換素子)192でほぼ横方向に屈折させて光路変換させ、窓130から出射させることができる。 As a result, a part of the light beam L1b of the upwardly emitted radiation beam L1 in the LED element 141 can be refracted almost horizontally by the prism (optical path conversion element) 192 to change the optical path, and can be emitted from the window 130.

図24(図24A、図24B。図24C、図24D)は、プリズム(光路変換素子、偏向素子)192を設けた光散乱透過性窓130の数例と、それらにおける光路を示す。 FIG. 24 (FIG. 24A, FIG. 24B, FIG. 24C, FIG. 24D) shows several examples of the light-scattering / transparent window 130 provided with a prism (light path conversion element, deflection element) 192, and the light paths in them.

図24Aは、図8Aに示す光散乱透過性窓130−1にプリズム192を設けたものである。 FIG. 24A is a view in which a prism 192 is provided in the light-scattering / transmissive window 130-1 shown in FIG. 8A.

光散乱透過性窓130−1は円筒110に設けた貫通孔111に光散乱性フィラー130−1bを混入した透明樹脂130−1aを充てんしたものであり、光散乱透過性窓130−1の内面にプリズム192を設けている。 The light-scattering / transparent window 130-1 is obtained by filling the through-hole 111 provided in the cylinder 110 with a transparent resin 130-1a mixed with a light-scattering filler 130-1b, and the inner surface of the light-scattering / transparent window 130-1. A prism 192 is provided.

LED素子からの上向きの放射光線L1bがプリズム192の一辺(傾斜面)に入射すると、そこで屈折されて略横向きの光線となり、光散乱性窓130−1の内面(円筒内面110b側)に入射し、光線L1bは窓130−1内に進み、窓130−1の外面(円筒外面110a側)から外部へ拡散された広角の照明光線L2となって出射する。 When the upward radiated light beam L1b from the LED element is incident on one side (inclined surface) of the prism 192, it is refracted there to become a substantially lateral light beam, and is incident on the inner surface (cylindrical inner surface 110b side) of the light scattering window 130-1. The light beam L1b travels into the window 130-1, and is emitted as a wide-angle illumination light beam L2 diffused outward from the outer surface (cylinder outer surface 110a side) of the window 130-1.

図24Bは、図8Bに示す光散乱透過性窓130−2にプリズム192を設けたものである。 FIG. 24B is a diagram in which a prism 192 is provided on the light-scattering / transmissive window 130-2 shown in FIG. 8B.

図24Bに示すように、光散乱透過性窓130−2は円筒110に設けた貫通孔111に透明樹脂130−2aを充てんし、透明樹脂130−2aの外面(円筒外面110b側)に透明樹脂塗料に上記光散乱性フィラーを混入した散乱透過層130−2bを塗布、形成したものである。 As shown in FIG. 24B, the light-scattering / transparent window 130-2 fills the through-hole 111 provided in the cylinder 110 with a transparent resin 130-2a, and the transparent resin 130-2a has a transparent resin on the outer surface (cylinder outer surface 110b side). A scattering transmission layer 130-2b in which the light scattering filler is mixed in a paint is applied and formed.

LED素子からの上向きの放射光線L1bがプリズム192の一辺(傾斜面)に入射すると、そこで屈折されて略横向きの光線となり、光散乱性窓130−1の内面(円筒内面110b側)に入射し、光線L1bは窓130−1内に進み透明樹脂130−2aを透過し、散乱透過層130−2bで散乱して、窓130−2の外面(円筒外面110b側)から外部へ拡散された広角の照明光線L2となって出射する。 When the upward radiated light beam L1b from the LED element is incident on one side (inclined surface) of the prism 192, it is refracted there to become a substantially lateral light beam, and is incident on the inner surface (cylindrical inner surface 110b side) of the light scattering window 130-1. The light beam L1b travels into the window 130-1, passes through the transparent resin 130-2a, is scattered by the scattering transmission layer 130-2b, and is diffused from the outer surface (cylinder outer surface 110b side) of the window 130-2 to the outside. Is emitted as an illumination light beam L2.

図24Cは、図8Cに示す光散乱透過性窓130−3にプリズム192を設けたものである。 FIG. 24C is obtained by providing a prism 192 on the light-scattering / transmissive window 130-3 shown in FIG. 8C.

図24Cに示すように、光散乱透過性窓130−3は円筒110に設けた貫通孔111に透明樹脂130−3aを充てんし、透明樹脂130−3aの外面(円筒外面110b側)にブラスト加工などにより粗面化処理をして外面を粗面130−3bを形成したものである。 As shown in FIG. 24C, the light-scattering / transparent window 130-3 fills the through hole 111 provided in the cylinder 110 with a transparent resin 130-3a, and blasts the outer surface of the transparent resin 130-3a (on the cylinder outer surface 110b side). A rough surface 130-3b is formed on the outer surface by roughening the surface.

LED素子からの上向きの放射光線L1bがプリズム192の一辺(傾斜面)に入射すると、そこで屈折されて略横向きの光線となり、光線L1bは窓130−3内に進み透明樹脂130−3aを透過し、粗面130−3bで散乱して、窓130−3の外面(円筒外面110b側)から外部へ拡散された広角の照明光線L2となって出射する。 When the upward radiation beam L1b from the LED element is incident on one side (inclined surface) of the prism 192, it is refracted there to become a substantially lateral beam, and the beam L1b travels into the window 130-3 and passes through the transparent resin 130-3a. The light is scattered by the rough surface 130-3b and emitted from the outer surface of the window 130-3 (on the cylindrical outer surface 110b side) to the outside as a wide-angle illumination light beam L2.

図24Dに示すように、光散乱フィラーを含まない透明窓130−4の内面にプリズム(光路変換素子)192を設けてもよい。 As shown in FIG. 24D, a prism (light path conversion element) 192 may be provided on the inner surface of the transparent window 130-4 that does not include a light scattering filler.

LED素子からの上向きの放射光線L1bがプリズム192の一辺(傾斜面)に入射すると、そこで屈折されて略横向きの光線となり、光線L1bは窓130−4内に進み透明樹脂130−4aを透過し、散乱することなく窓130−3の外面(円筒外面110b側)から外部へ照明光線L2となって出射する。 When the upward radiated light beam L1b from the LED element is incident on one side (inclined surface) of the prism 192, it is refracted there to become a substantially horizontal light beam, and the light beam L1b travels into the window 130-4 and passes through the transparent resin 130-4a. The light beam L2 is emitted from the outer surface of the window 130-3 (on the cylindrical outer surface 110b side) to the outside without being scattered.

図25ないし図29を参照して、実施例8の電球形LEDランプ(LED電球)700Aを詳細に記載する。 With reference to FIGS. 25 to 29, a light bulb shaped LED lamp (LED light bulb) 700A of Example 8 will be described in detail.

図25は実施例8のLED電球700Aを示す概略的な分解斜視図である FIG. 25 is a schematic exploded perspective view showing the LED bulb 700A of the eighth embodiment.

図26はLED電球700Aを示し一部を正面図とした概略的な部分断面図である。 FIG. 26 is a schematic partial cross-sectional view showing a part of the LED bulb 700A, with a part thereof being a front view.

図27は図26において光路および熱伝導経路を記入した概略的な部分断面図である。 FIG. 27 is a schematic partial sectional view in which the optical path and the heat conduction path are shown in FIG.

図28は図26における一部分PT−Dを示す概略的な拡大断面図である。 FIG. 28 is a schematic enlarged sectional view showing a part PT-D in FIG.

図29は図26における一部分PT−Eを示す概略的な拡大断面図である。 FIG. 29 is a schematic enlarged sectional view showing a part PT-E in FIG.

図25ないし図26を参照してLED電球700Aの構成を記載する。LED電球700Aは、主として透過性カバー120と、熱伝導性円筒(熱伝導性中空部材)210と、熱伝導性円筒210の内面側に配置された光透過性円筒230と、発光ユニット140と、熱伝導底蓋155と、点灯回路160したハウジング180と、給電用口金(給電端子)170からなる。 The configuration of the LED bulb 700A will be described with reference to FIGS. The LED bulb 700A mainly includes a transmissive cover 120, a thermally conductive cylinder (thermally conductive hollow member) 210, a light transmissive cylinder 230 disposed on the inner surface side of the thermally conductive cylinder 210, a light emitting unit 140, It consists of a heat conductive bottom lid 155, a housing 180 with a lighting circuit 160, and a power supply base (power supply terminal) 170.

そして透過性カバー120と、熱伝導性円筒210(透過性円筒230)と、発光ユニット140と、熱伝導底蓋155と、ハウジング180と、給電用口金(給電端子)170がこの順序で配置され一体化されている。 The transmissive cover 120, the heat conductive cylinder 210 (the transmissive cylinder 230), the light emitting unit 140, the heat conductive bottom cover 155, the housing 180, and the power supply base (power supply terminal) 170 are arranged in this order. It is integrated.

発光ユニット140は、少なくとも一つのLED素子141を回路基板142の上面に実装してなる。 The light emitting unit 140 is formed by mounting at least one LED element 141 on the upper surface of the circuit board 142.

図27、図28A(図26における一部PT−Dの部分的拡大図)を参照してLED電球700Aにおける熱伝導経路、熱伝導性固定手段を説明する。 With reference to FIG. 27 and FIG. 28A (partially enlarged view of a part PT-D in FIG. 26), a heat conduction path and heat conductive fixing means in the LED bulb 700A will be described.

熱伝導性底蓋155(ヒートシンク、熱伝導性部材)155は、円形の熱伝導性底板155aと、底板155aの周縁近辺上に延びる二つの熱伝導性リング状部材155c、155dと、リング状部材155c、155d間の溝155bからなる。 The thermally conductive bottom lid 155 (heat sink, thermally conductive member) 155 includes a circular thermally conductive bottom plate 155a, two thermally conductive ring members 155c and 155d extending on the periphery of the bottom plate 155a, and a ring member. It consists of a groove 155b between 155c and 155d.

回路基板142の底面(他面)は、高熱伝導底蓋155の上面155aに熱伝導接触して固定されているので、LED素子141の点灯中、LED素子141において発生した熱は、回路基板142から高熱伝導底蓋155に伝達、移送される。 Since the bottom surface (other surface) of the circuit board 142 is fixed in thermal contact with the top surface 155a of the high thermal conductivity bottom lid 155, the heat generated in the LED element 141 during the lighting of the LED element 141 is generated by the circuit board 142. To the high thermal conductivity bottom lid 155.

高熱伝導性円筒(中空部材)210の下端は、高熱伝導底蓋155におけるリング状部材155b、155c間の溝155b内に挿入され、熱伝導性樹脂(熱伝導性接着剤、はんだ、熱伝導性ネジなどの熱伝導性結合材)などの任意の熱伝導性固定手段FM'により固定されている。 The lower end of the high thermal conductivity cylinder (hollow member) 210 is inserted into the groove 155b between the ring-shaped members 155b and 155c in the high thermal conductivity bottom lid 155, and the thermal conductive resin (thermal conductive adhesive, solder, thermal conductivity). It is fixed by arbitrary heat conductive fixing means FM ′ such as a heat conductive bonding material such as a screw.

このとき、高熱伝導基板150の周縁と高熱伝導性円筒(中空部材)210の下端の熱伝導内面210bの間に、熱伝導性シリコーン樹脂、ゴム、ゲルなどの熱伝導性弾性部材、熱伝導性カーボン繊維などの熱伝導性繊維部材などの熱伝導性部材を介在させても良い。 At this time, a heat conductive elastic member such as a heat conductive silicone resin, rubber, gel, or the like is provided between the periphery of the high heat conductive substrate 150 and the heat conductive inner surface 210b at the lower end of the high heat conductive cylinder (hollow member) 210. A heat conductive member such as a heat conductive fiber member such as carbon fiber may be interposed.

したがって発光ユニット140のLED素子141で発生した熱は、矢印付き実線で示す熱伝導経路H1、矢印付き鎖線で示す熱伝導経路H1aに従い、回路基板142、高熱伝導底蓋155を経由して高熱伝導性円筒210に伝達移送され、その高熱伝導性外面210aから、外部空気に熱拡散H2(矢印付き波状実線で示す)される。 Therefore, the heat generated in the LED element 141 of the light emitting unit 140 follows the heat conduction path H1 indicated by a solid line with an arrow and the heat conduction path H1a indicated by a chain line with an arrow, and then the heat is conducted through the circuit board 142 and the high heat conduction bottom cover 155. The heat transfer is transferred to the conductive cylinder 210 and is thermally diffused H2 (indicated by a wavy solid line with an arrow) to the external air from the highly heat conductive outer surface 210a.

このようにして、LED素子141の点灯中、LED素子141において発生した熱は、高熱伝導性円筒(中空部材)210の外面210aから外部空気へ放散されるので、LED素子141は所定の許容温度以下に保たれ、過熱によるLED素子141の劣化を回避でき、よって長寿命のLED電球700Aを提供できる。 Thus, since the heat generated in the LED element 141 during the lighting of the LED element 141 is dissipated from the outer surface 210a of the high thermal conductivity cylinder (hollow member) 210 to the external air, the LED element 141 has a predetermined allowable temperature. It is kept below, and deterioration of the LED element 141 due to overheating can be avoided, and thus a long-life LED bulb 700A can be provided.

発光ユニット140の回路基板142は、熱伝導性接着剤、熱伝導性ネジなどの任意の熱伝導性固定手段により熱伝導性底蓋155の熱伝導性底板155a上に熱伝導接触して固定される。 The circuit board 142 of the light emitting unit 140 is fixed in thermal conductive contact with the heat conductive bottom plate 155a of the heat conductive bottom lid 155 by any heat conductive fixing means such as a heat conductive adhesive or a heat conductive screw. The

熱伝導性円筒(熱伝導性中空部材)210は、外気と接するように露出した外面210aと光反射性内面210bと貫通孔111からなる。 The heat conductive cylinder (heat conductive hollow member) 210 includes an outer surface 210 a exposed so as to be in contact with the outside air, a light reflective inner surface 210 b, and a through hole 111.

熱伝導性円筒210の一例として、アルミニウム、その合金、銅、その合金、アルミニウム、銅などの異種金属の積層板などの熱伝導性金属板に複数の貫通孔(開口)111を形成した、パンチング・メタル(パーフォレイト・メタル、エキスパンデッド・メタルと称する熱伝導性多孔金属板を、円筒状に加工した熱伝導性多孔金属円筒を使用できる。 As an example of the thermally conductive cylinder 210, punching, in which a plurality of through holes (openings) 111 are formed in a thermally conductive metal plate such as aluminum, an alloy thereof, copper, an alloy thereof, a laminated plate of different metals such as aluminum and copper, etc. A metal (a heat conductive porous metal cylinder obtained by processing a heat conductive porous metal plate called a perforated metal or an expanded metal into a cylindrical shape can be used.

透過性円筒230は、熱伝導性円筒210と相似形であり、熱伝導性円筒210の内径d1よりわずかに小さい外径d3を有し熱伝導性円筒210の内側に挿入されて配置される。 The permeable cylinder 230 is similar to the thermally conductive cylinder 210 and has an outer diameter d3 that is slightly smaller than the inner diameter d1 of the thermally conductive cylinder 210 and is inserted and disposed inside the thermally conductive cylinder 210.

光透過性円筒230の一例として、アクリル、ポリカーボネート、エポキシ、シリコーン、ポリエチレン・テレフタレート(PET)などの透明樹脂材料を使用できる。 As an example of the light transmitting cylinder 230, a transparent resin material such as acrylic, polycarbonate, epoxy, silicone, polyethylene terephthalate (PET), or the like can be used.

透過性円筒230は、熱伝導性円筒210の反射性内面210bに接触、近接、密接、接着、溶着されるのが望ましく、それにより熱伝導性円筒210の複数の貫通孔111は、透過性円筒230によって封止される。 The transmissive cylinder 230 is preferably in contact with, close to, intimate with, adhered to, or welded to the reflective inner surface 210b of the thermally conductive cylinder 210 so that the plurality of through-holes 111 of the thermally conductive cylinder 210 are transmissive cylinder. 230 is sealed.

そして熱伝導性円筒210の複数の貫通孔111は、貫通孔111と対応する透過性円筒230の部分によって覆われて実施例1などに記載した透過性窓130として機能する。 The plurality of through holes 111 of the heat conductive cylinder 210 are covered with a portion of the transmissive cylinder 230 corresponding to the through hole 111 and function as the transmissive window 130 described in the first embodiment.

この実施例では、熱伝導性円筒210は、上端の開口112(光出射端)から下端(光入射端)にわたって同じ内径d1を有する円筒からなる。 In this embodiment, the heat conductive cylinder 210 is formed of a cylinder having the same inner diameter d1 from the upper end opening 112 (light emitting end) to the lower end (light incident end).

図27などに示すように熱伝導性円筒210の下端部は熱伝導性底蓋155の溝155b内に挿入され、熱伝導性接着剤、はんだなどの任意の熱伝導性固定手段FM'により固定され、
熱伝導性円筒210と熱伝導性底蓋155は熱結合される。
As shown in FIG. 27 and the like, the lower end portion of the heat conductive cylinder 210 is inserted into the groove 155b of the heat conductive bottom lid 155 and fixed by an arbitrary heat conductive fixing means FM ′ such as a heat conductive adhesive or solder. And
The thermally conductive cylinder 210 and the thermally conductive bottom lid 155 are thermally coupled.

したがって、発光ユニット140は、熱伝導性底蓋155を経由して熱伝導性円筒210(内面210b、外面210a)と間接的に熱結合されることになる。 Therefore, the light emitting unit 140 is indirectly thermally coupled to the heat conductive cylinder 210 (the inner surface 210b and the outer surface 210a) via the heat conductive bottom lid 155.

これにより動作中にLED素子141で発生した熱は露出した外面210aから空気中へ効果的に放散され、発光ユニット140のLED素子141は冷却され、常時LED素子141は許容温度以下に保たれる。 As a result, heat generated in the LED element 141 during operation is effectively dissipated from the exposed outer surface 210a into the air, the LED element 141 of the light emitting unit 140 is cooled, and the LED element 141 is always kept below the allowable temperature. .

点灯回路160は、商用電源などの交流を直流に変換する電源回路であり、発光ユニット140のLED素子141を直流駆動してLED素子141を点灯する。 The lighting circuit 160 is a power supply circuit that converts an alternating current such as a commercial power source into a direct current, and lights the LED element 141 by driving the LED element 141 of the light emitting unit 140 in a direct current.

ハウジング180は、ロート状、円錐殻状などの形状をなし、直径が大きな上部開口と上部開口より直径が小さな下部開口とからなり、その内部空洞に点灯回路160が収容される。 The housing 180 has a funnel shape, a conical shell shape, and the like. The housing 180 includes an upper opening having a larger diameter and a lower opening having a smaller diameter than the upper opening, and the lighting circuit 160 is accommodated in the internal cavity.

熱伝導性底蓋155はその底部が金属、樹脂などのハウジング180の上部開口を塞ぐように、ハウジング180の上部と固定され、ハウジング180の下部と給電用の口金170が固定される。 The heat conductive bottom lid 155 is fixed to the upper portion of the housing 180 so that the bottom portion closes the upper opening of the housing 180 such as metal or resin, and the lower portion of the housing 180 and the power supply cap 170 are fixed.

口金170は、白熱電球用に広く用いられている外部ソケットから交流電力を受電する給電端子であり、白熱電球の口金と同じスクリュウ形(エジソン形)給電端子(給電ベース)とすることができる。その代わり、口金170は、ピン形など他の任意の形式の給電端子としても良い。 The base 170 is a power supply terminal that receives AC power from an external socket that is widely used for incandescent lamps, and can be a screw-type (Edison type) power supply terminal (power supply base) that is the same as the base of the incandescent lamp. Instead, the base 170 may be a power supply terminal of any other type such as a pin shape.

LEDランプ700Aの給電用口金170を交流電力供給用の白熱電球用の外部ソケットに取り付けたときに、口金170から交流電力が点灯回路160に供給され、点灯回路160の出力においてAC−DC変換されて、所定の直流電圧が回路基板142の上面(一面)に搭載されたLED素子141に供給されてそこから放射光線L1を出射する。
When the power supply base 170 of the LED lamp 700A is attached to an external socket for an incandescent bulb for supplying AC power, AC power is supplied from the base 170 to the lighting circuit 160, and AC-DC conversion is performed at the output of the lighting circuit 160. Then, a predetermined DC voltage is supplied to the LED element 141 mounted on the upper surface (one surface) of the circuit board 142 and emits a radiation beam L1 therefrom.

(熱伝導経路、熱伝導性固定手段の数例)
図28(図28A、図28B、図28C、図28D)を参照してLED電球700Aにおける熱伝導経路と熱伝導性固定手段の数例を記載する。
(Heat conduction path, several examples of heat conductive fixing means)
With reference to FIG. 28 (FIG. 28A, FIG. 28B, FIG. 28C, FIG. 28D), several examples of the heat conduction path and the heat conductive fixing means in the LED bulb 700A will be described.

図28A、図28Bは、図26(参照符号PT−Dの拡大部分)、図27を参照して既に詳細に記載した一例の熱伝導経路155、熱伝導性固定手段FM'である。 FIG. 28A and FIG. 28B are an example of the heat conduction path 155 and the heat conductive fixing means FM ′ already described in detail with reference to FIG. 26 (enlarged portion of the reference symbol PT-D) and FIG.

図28Aに示すように、熱伝導性円筒210の環状の下端円筒周縁は高熱伝導底蓋155の二つのリング状部材155c、155d間の溝155bリング状溝155b内に挿入され、熱伝導性リング状部材155c、155dによって挟まれている。 As shown in FIG. 28A, the peripheral edge of the annular lower end of the heat conductive cylinder 210 is inserted into the groove 155b ring-shaped groove 155b between the two ring-shaped members 155c and 155d of the high heat conductive bottom cover 155, and the heat conductive ring It is sandwiched between the shaped members 155c and 155d.

熱伝導性円筒210と高熱伝導底蓋155は熱伝導性接着剤、はんだなどの熱伝導性固定手段FM'によって固定されるのが望ましい。 The heat conductive cylinder 210 and the high heat conductive bottom cover 155 are preferably fixed by a heat conductive fixing means FM ′ such as a heat conductive adhesive or solder.

発光ユニット140は回路基板142にLED素子141を実装したものであり、回路基板142は高熱伝導底蓋155の底板155aに熱伝導接触して固定されているので、LED素子141の発熱は、熱伝導経路H1に示すように回路基板142を経由して高熱伝導底蓋155に伝達、移送される。 The light emitting unit 140 has the LED element 141 mounted on the circuit board 142, and the circuit board 142 is fixed to the bottom plate 155a of the high thermal conductive bottom lid 155 in thermal conductive contact. As shown in the conduction path H1, it is transmitted and transferred to the high thermal conductivity bottom lid 155 via the circuit board 142.

図28Aにおいては、光透過性円筒230の下端は、高熱伝導底蓋155における内側のリング状部材155dより上方に位置しているので、熱伝導性円筒210の環状の下端近辺の環状周縁は一対のリング状部材155c、155dによって挟まれているので、LED素子141からの熱は更に底板155aから一対のリング状部材155c、155dを経由して熱伝導性経路H1、H1aに従って熱伝導性円筒210の環状の下端円筒周縁に伝達、移送され、その外面210aから外部空気へ拡散され放熱される。 In FIG. 28A, the lower end of the light-transmitting cylinder 230 is positioned above the inner ring-shaped member 155d of the high thermal conductive bottom lid 155, so that the annular peripheral edge near the annular lower end of the thermal conductive cylinder 210 is a pair. Therefore, the heat from the LED element 141 further passes through the pair of ring-shaped members 155c and 155d from the bottom plate 155a along the heat-conductive paths H1 and H1a, and the heat-conductive cylinder 210 is sandwiched between the ring-shaped members 155c and 155d. Is transmitted to and transferred to the peripheral edge of the annular lower end cylinder, diffused from the outer surface 210a to the external air, and radiated.

図28Bにおいては熱伝導性円筒210と光透過性円筒230は共にそれらの下端近辺において一対のリング状部材155c、155dによって挟まれているが、光透過性円筒230は熱伝導性円筒210より熱伝導率が低いので、LED素子141からの熱は主として熱伝導性経路H1、H1aに従って底板155aから外側のリング状部材155cを経由して熱伝導性円筒210の環状の下端円筒周縁に伝達、移送され、その外面210aから外部空気へ拡散され放熱される。 In FIG. 28B, both the heat conductive cylinder 210 and the light transmissive cylinder 230 are sandwiched between the pair of ring-shaped members 155c and 155d in the vicinity of their lower ends, but the light transmissive cylinder 230 is heated more than the heat conductive cylinder 210. Since the conductivity is low, the heat from the LED element 141 is transmitted and transferred mainly from the bottom plate 155a to the peripheral edge of the annular lower end cylinder of the heat conductive cylinder 210 via the outer ring-shaped member 155c according to the heat conductive paths H1 and H1a. Then, it is diffused from the outer surface 210a to the external air and radiated.

図28C、図28Dに示す高熱伝導底蓋156は、図28A、図28Bに示す高熱伝導底蓋155と異なり、熱伝導性底板156aとその周縁に立設した一つの熱伝導性リング状部材156cからなる。 28C and 28D differs from the high thermal conductivity bottom lid 155 shown in FIGS. 28A and 28B in that the thermal conductive bottom plate 156a and one thermal conductive ring-shaped member 156c erected on the periphery thereof. Consists of.

図28Cにおいては、熱伝導性円筒210はその下端近辺において光透過性円筒230と熱伝導性リング状部材156cによって挟まれ、これらの3部材を貫通する複数の貫通孔が設けられ、これらの貫通孔に熱伝導性ネジ、リベット素子、ピンなどの熱伝導性固定部材FM"が挿入され、3部材が固定され一体化している。 In FIG. 28C, the heat conductive cylinder 210 is sandwiched between the light-transmitting cylinder 230 and the heat conductive ring-shaped member 156c in the vicinity of the lower end thereof, and a plurality of through-holes passing through these three members are provided. A heat conductive fixing member FM "such as a heat conductive screw, a rivet element, and a pin is inserted into the hole, and the three members are fixed and integrated.

LED素子141からの熱は主として熱伝導性経路H1、H1aに従って底板156aから外側のリング状部材156cを経由して熱伝導性円筒210の環状の下端円筒周縁に伝達、移送され、その外面210aから外部空気へ拡散され放熱される。 Heat from the LED element 141 is transmitted and transferred mainly from the bottom plate 156a via the outer ring-shaped member 156c to the peripheral edge of the annular lower end cylinder of the heat conductive cylinder 210 according to the heat conductive paths H1 and H1a, and from the outer surface 210a. It diffuses to the outside air and dissipates heat.

図28Dにおいては、熱伝導性円筒210はその下端近辺が光透過性円筒230の下端に沿って折り曲げられ、貫通孔がリング状部材156c、熱伝導性円筒210はその下端近辺、光透過性円筒230の下端、熱伝導性円筒210の折り曲げ部分を貫いて設けられ、これらの貫通孔に熱伝導性ネジ、リベット素子、ピンなどの熱伝導性固定部材FM"が挿入され、3部材が固定され一体化している。 In FIG. 28D, the heat conductive cylinder 210 is bent near the lower end of the light transmitting cylinder 230, the through hole is a ring-shaped member 156c, and the heat conductive cylinder 210 is near the lower end of the light transmitting cylinder 230. The heat conductive fixing member FM "such as a heat conductive screw, a rivet element, and a pin is inserted into these through holes, and the three members are fixed. It is integrated.

LED素子141からの熱は主として熱伝導性経路H1、H1aに従って底板156aから外側のリング状部材156cを経由して熱伝導性円筒210の環状の下端円筒周縁に伝達、移送され、その外面210aから外部空気へ拡散され放熱される。 Heat from the LED element 141 is transmitted and transferred mainly from the bottom plate 156a via the outer ring-shaped member 156c to the peripheral edge of the annular lower end cylinder of the heat conductive cylinder 210 according to the heat conductive paths H1 and H1a, and from the outer surface 210a. It diffuses to the outside air and dissipates heat.

図27を参照してLED電球700Aにおける光路を説明する。 The optical path in the LED bulb 700A will be described with reference to FIG.

LED素子141からの放射光線L1は、ほぼ上方向に進み光透過性カバー120に向かう光線L1aと、ほぼ横上方向に進み光透過性円筒230を透過して熱伝導性円筒210の貫通孔111に向かう光線L1bと、ほぼ横上方向に進み光透過性円筒230を透過して熱伝導性円筒210の反射内面210bに向かう光線L1cとからなる。 The radiated light L1 from the LED element 141 travels substantially upward and travels toward the light-transmitting cover 120, travels substantially horizontally upward, passes through the light-transmitting cylinder 230, and passes through the through-hole 111 of the heat conductive cylinder 210. And a light beam L1c that travels substantially horizontally upward and passes through the light-transmitting cylinder 230 and travels toward the reflective inner surface 210b of the thermally conductive cylinder 210.

光線L1aは光透過性カバー120から外部に出射して照明光線L3となり、光線L1bは貫通孔111から外部に出射して照明光線L2となり、光線L1aは貫通孔111から外部に出射して照明光線L2となり、反射内面210bで反射して光透過性円筒230を透過して反射光線L1dとなり、光透過性カバー120、他の貫通孔111または他の反射内面210bに向かう。 The light beam L1a is emitted to the outside from the light-transmitting cover 120 to become the illumination light beam L3, the light beam L1b is emitted to the outside through the through hole 111 and becomes the illumination light beam L2, and the light beam L1a is emitted to the outside through the through hole 111. L2 is reflected by the reflective inner surface 210b, passes through the light transmissive cylinder 230, becomes a reflected light beam L1d, and travels toward the light transmissive cover 120, the other through-holes 111, or the other reflective inner surface 210b.

図29(図29A、図29B、図29C、図29D)を参照してLED電球700Aにおける光透過性円筒、熱伝導性円筒の幾つかの具体例とその光路を記載する。 With reference to FIG. 29 (FIG. 29A, FIG. 29B, FIG. 29C, FIG. 29D), some specific examples of the light transmissive cylinder and the heat conductive cylinder in the LED bulb 700A and their optical paths will be described.

図29(図29A、図29B、図29C、図29D)は、図26における一部分PT−Eを示す概略的な拡大断面図である。 29 (FIGS. 29A, 29B, 29C, and 29D) is a schematic enlarged cross-sectional view showing a part PT-E in FIG.

図29A、図29B、図29C、図29D (および図27、図28)に示すように、光透過性円筒230の外径は複数の貫通孔(または開口)211が設けられた熱伝導性円筒210の内径と等しいかわずかに小さくしてあるので、光透過性円筒230は、熱伝導性円筒210の光反射性内面210bに接触、密接、近接して配置することができる。 As shown in FIGS. 29A, 29B, 29C, and 29D (and FIGS. 27 and 28), the outer diameter of the light transmitting cylinder 230 is a thermally conductive cylinder provided with a plurality of through holes (or openings) 211. Since it is equal to or slightly smaller than the inner diameter of 210, the light-transmitting cylinder 230 can be placed in close contact with, in close proximity to, the light-reflecting inner surface 210 b of the thermally conductive cylinder 210.

したがってこれらの貫通孔(または開口)211は、これらと対応する光透過性円筒230によって覆われ、貫通孔211と貫通孔211と対面する光透過性円筒230の領域が、実質的に例えば実施例1における窓130として機能し、即ち貫通孔211と光透過性円筒230の組み合わせが窓130に該当する。 Therefore, these through-holes (or openings) 211 are covered with the light-transmitting cylinders 230 corresponding to them, and the region of the light-transmitting cylinders 230 facing the through-holes 211 and the through-holes 211 substantially corresponds to, for example, the embodiment. 1, that is, a combination of the through hole 211 and the light-transmitting cylinder 230 corresponds to the window 130.

LED素子141からの放射光線L1は、ほぼ上方向に進み光透過性カバー120に向かう光線L1aと、ほぼ横上方向に進み光透過性円筒230を透過して熱伝導性円筒210の貫通孔111に向かう光線L1bと、ほぼ横上方向に進み光透過性円筒230を透過して熱伝導性円筒210の反射内面210bに向かう光線L1cとからなる。 The radiated light L1 from the LED element 141 travels substantially upward and travels toward the light-transmitting cover 120, travels substantially horizontally upward, passes through the light-transmitting cylinder 230, and passes through the through-hole 111 of the heat conductive cylinder 210. And a light beam L1c that travels substantially horizontally upward and passes through the light-transmitting cylinder 230 and travels toward the reflective inner surface 210b of the thermally conductive cylinder 210.

図29A、図29B、図29C、図29Dに示すように、ほぼ横上方向に進み光透過性円筒230を透過して熱伝導性円筒210の反射内面210b、210−1bに向かう光線L1cは、反射内面210b反射内面210bで反射して反射光線L1dとなり、主として斜め上方に進み、光透過性カバー120、異なる反射内面210b反射内面210b、または貫通孔111に向かう。 As shown in FIG. 29A, FIG. 29B, FIG. 29C, and FIG. 29D, the light beam L1c that travels almost horizontally upward and passes through the light-transmitting cylinder 230 toward the reflective inner surfaces 210b and 210-1b of the heat-conductive cylinder 210 is Reflected inner surface 210b Reflected by the reflected inner surface 210b to become a reflected light beam L1d, travels obliquely upward, and travels toward the light-transmitting cover 120, the different reflecting inner surface 210b, the reflecting inner surface 210b, or the through hole 111.

図29Aに示す光透過性円筒230は透明素材からなる透明円筒230であり、したがって熱伝導性円筒210の貫通孔111に向かう光線L1bは、透明円筒230を透過して外部に出射してほぼ直進する照明光線L2となる。 The light transmissive cylinder 230 shown in FIG. 29A is a transparent cylinder 230 made of a transparent material. Therefore, the light beam L1b directed to the through hole 111 of the heat conductive cylinder 210 passes through the transparent cylinder 230 and is emitted to the outside and travels substantially straight. It becomes the illumination light ray L2 to do.

図29Bに示す例では、光透過性円筒230は透明素材からなる透明円筒230であり、貫通孔111に対面する外面領域に、複数の散乱粒子を透明素材に含む光散乱層240aまたは240bが形成されている。したがって、貫通孔111に向かう光線L1bは、透明円筒230内を進み、光散乱層240aまたは240bにおいて散乱されて外部に出射して拡散された照明光線L2となる。 In the example shown in FIG. 29B, the light-transmitting cylinder 230 is a transparent cylinder 230 made of a transparent material, and a light scattering layer 240a or 240b containing a plurality of scattering particles in the transparent material is formed in the outer surface area facing the through hole 111. Has been. Therefore, the light beam L1b toward the through-hole 111 travels through the transparent cylinder 230, becomes an illumination light beam L2 that is scattered by the light scattering layer 240a or 240b, emitted to the outside, and diffused.

図29Cに示す例では、光透過性円筒230は透明素材からなる透明円筒230であり、貫通孔111に対面する外面領域に、ブラスト加工、エッチング加工などにより微小凹凸を有する粗面240cが形成されている。したがって、貫通孔111に向かう光線L1bは、透明円筒230内を進み、粗面240cにおいて散乱されて外部に出射して拡散された照明光線L2となる。 In the example shown in FIG. 29C, the light transmissive cylinder 230 is a transparent cylinder 230 made of a transparent material, and a rough surface 240c having minute irregularities is formed on the outer surface area facing the through hole 111 by blasting, etching, or the like. ing. Therefore, the light beam L1b toward the through-hole 111 travels through the transparent cylinder 230, becomes an illumination light beam L2 that is scattered on the rough surface 240c, emitted to the outside, and diffused.

図29Dに示す例では、熱伝導性中空部材は、光透過性円筒(光透過性中空部材)230と、光透過性円筒230の外面の海状領域に形成して配置した光反射兼熱伝導層210−1と、前記外面の海状領域の存在しない島状領域に位置する複数の開口からなる窓部211からなることができる。 In the example shown in FIG. 29D, the heat conductive hollow member includes a light transmissive cylinder (light transmissive hollow member) 230 and a light reflection / heat conduction formed and arranged in a sea area on the outer surface of the light transmissive cylinder 230. The layer 210-1 and the window part 211 which consists of several opening located in the island-like area | region where the sea-like area | region of the said outer surface does not exist can be comprised.

または熱伝導性中空部材は、光透過性円筒(光透過性中空部材)230の外面に島状の複数の開口からなる窓部211を有するアルミニウム・フィルムなどからなる光反射兼熱伝導性金属フィルム210−1を積層しても良い。 Alternatively, the heat-conductive hollow member is a light-reflective / heat-conductive metal film made of an aluminum film or the like having a window 211 having a plurality of island-shaped openings on the outer surface of a light-transmitting cylinder (light-transmitting hollow member) 230. 210-1 may be laminated.

光反射兼熱伝導層210−1は、前記光透過性円筒230の外面の所定領域にアルミニウム、銀、ニッケルなどの光反射率(および熱伝導率)の高い光反射金属を蒸着、スパッタリンクなどにより光反射金属膜210−1aを形成してなることができる。 The light reflecting / heat conducting layer 210-1 is formed by depositing a light reflecting metal having a high light reflectivity (and heat conductivity) such as aluminum, silver, nickel, etc. on a predetermined region of the outer surface of the light transmissive cylinder 230, a sputter link, etc. Thus, the light reflecting metal film 210-1a can be formed.

更に光反射金属膜210−1aに電気メッキ、無電解メッキなどにより銅、銀などの高い熱伝導性金属膜210−1bを積層しても良い。 Further, a highly heat conductive metal film 210-1b such as copper or silver may be laminated on the light reflecting metal film 210-1a by electroplating or electroless plating.

光反射兼熱伝導層210−1は、望ましくは、アルミニウム、銀、ニッケルなどの光反射率の高い光反射金属を蒸着、スパッタリンクなどにより光反射金属膜210−1bを形成し、更に光反射金属膜210−1bに電気メッキ、無電解メッキなどにより銅、銀などの高い熱伝導性金属膜210−1bを積層したものである。 The light reflecting / heat conducting layer 210-1 is preferably formed by depositing a light reflecting metal having a high light reflectivity such as aluminum, silver or nickel, and forming a light reflecting metal film 210-1b by sputtering or the like. A high thermal conductive metal film 210-1b made of copper, silver or the like is laminated on the metal film 210-1b by electroplating or electroless plating.

図30(図30A、図30B、図30C、図30D)を参照してLED電球700Aにおける光透過性円筒、熱伝導性円筒の幾つかの他の具体例とその光路について記載する。 With reference to FIG. 30 (FIG. 30A, FIG. 30B, FIG. 30C, FIG. 30D), some other specific examples of the light-transmitting cylinder and the heat-conducting cylinder in the LED bulb 700A and its optical path will be described.

図30(図30A、図30B、図30C、図30D)は、図26における一部分PT−Eを示す概略的な拡大断面図である。 30 (FIGS. 30A, 30B, 30C, and 30D) is a schematic enlarged cross-sectional view showing a part PT-E in FIG.

図30(図30A、図30B、図30C、図30D)は、図29(図29A、図29B、図29C、図29D)において、熱伝導性円筒210の貫通孔(または開口)211の領域と対面する光透過性円筒230の内面領域に、光路変換素子として凸レンズ190を固定、配置したものである。 30 (FIG. 30A, FIG. 30B, FIG. 30C, FIG. 30D) is the same as the region of the through hole (or opening) 211 of the heat conductive cylinder 210 in FIG. 29 (FIG. 29A, FIG. 29B, FIG. 29C, FIG. 29D). A convex lens 190 is fixed and arranged as an optical path conversion element in the inner surface area of the light-transmitting cylinder 230 facing each other.

予め複数の凸レンズ190を内面に形成した柔軟性を有する光透過性フィルムを円筒状に丸めて固定し、凸レンズ付き光透過性円筒230とすることができる。 A light-transmitting film having flexibility, in which a plurality of convex lenses 190 are formed on the inner surface in advance, is rolled into a cylindrical shape and fixed to form a light-transmitting cylinder 230 with a convex lens.

図30A、図30B、図30C、図30D (および図27、図28)に示すように、凸レンズ190を形成した光透過性円筒230の外径は複数の貫通孔211が設けられた熱伝導性円筒210の内径と等しいかわずかに小さくしてあるので、光透過性円筒230は、熱伝導性円筒210の光反射性内面210bに接触、密接、近接して配置することができる。 As shown in FIGS. 30A, 30B, 30C, and 30D (and FIGS. 27 and 28), the outer diameter of the light-transmitting cylinder 230 on which the convex lens 190 is formed has a thermal conductivity in which a plurality of through holes 211 are provided. Since the inner diameter of the cylinder 210 is equal to or slightly smaller than the inner diameter of the cylinder 210, the light-transmitting cylinder 230 can be disposed in contact with, in close contact with, or in close proximity to the light-reflecting inner surface 210 b of the thermally conductive cylinder 210.

したがってこれらの貫通孔(または開口)211は、これらと対応する凸レンズ190を形成した光透過性円筒230によって覆われ、貫通孔211と貫通孔211と対面する光透過性円筒230の領域が、実質的に例えば実施例1における窓130として機能し、即ち貫通孔211と光透過性円筒230の組み合わせが窓130に該当する。 Therefore, these through-holes (or openings) 211 are covered by a light-transmitting cylinder 230 having a convex lens 190 corresponding thereto, and the region of the light-transmitting cylinder 230 facing the through-hole 211 and the through-hole 211 is substantially Specifically, for example, it functions as the window 130 in the first embodiment, that is, the combination of the through hole 211 and the light transmitting cylinder 230 corresponds to the window 130.

LED素子141からの放射光線L1は、ほぼ上方向に進み光透過性カバー120に向かう光線L1aと、ほぼ横上方向に進み凸レンズ190で屈折し光透過性円筒230を透過して熱伝導性円筒210の貫通孔111に向かう光線L1bと、ほぼ横上方向に進み光透過性円筒230を透過して熱伝導性円筒210の反射内面210bに向かう光線L1cとからなる。 The emitted light beam L1 from the LED element 141 travels almost upward and travels toward the light-transmitting cover 120. The light beam L1 travels substantially horizontally upward and is refracted by the convex lens 190 and passes through the light-transmitting cylinder 230 and passes through the heat-transmitting cylinder 230. A light beam L1b directed to the through-hole 111 of 210 and a light beam L1c traveling substantially horizontally upward and transmitted through the light-transmitting cylinder 230 toward the reflecting inner surface 210b of the heat-conductive cylinder 210.

図30A、図30B、図30C、図30Dに示すように、ほぼ横上方向に進み凸レンズ190で屈折し光透過性円筒230を透過して熱伝導性円筒210の反射内面210b、210−1bに向かう光線L1cは、反射内面210b反射内面210bで反射して反射光線L1dとなり、主として斜め上方に進み、光透過性カバー120、異なる反射内面210b反射内面210b、または貫通孔111に向かう。 As shown in FIGS. 30A, 30B, 30C, and 30D, the light travels substantially horizontally upward and is refracted by the convex lens 190, passes through the light-transmitting cylinder 230, and is reflected on the reflective inner surfaces 210b and 210-1b of the heat conductive cylinder 210. The light beam L1c that travels is reflected by the reflective inner surface 210b and becomes the reflected light beam L1d, travels mainly obliquely upward, and travels toward the light transmissive cover 120, the different reflective inner surface 210b, the reflective inner surface 210b, or the through hole 111.

図30Aに示す光透過性円筒230は透明素材からなる透明円筒230であり、したがって熱伝導性円筒210の貫通孔111に向かう光線L1bは、凸レンズ190で屈折した後に透明円筒230を透過して外部に出射してほぼ直進する照明光線L2となる。 The light transmissive cylinder 230 shown in FIG. 30A is a transparent cylinder 230 made of a transparent material. Therefore, the light beam L1b toward the through hole 111 of the heat conductive cylinder 210 is refracted by the convex lens 190 and then passes through the transparent cylinder 230 to be externally transmitted. Becomes an illumination light beam L2 that exits and travels substantially straight.

図30Bに示す例では、光透過性円筒230は透明素材からなる透明円筒230であり、貫通孔111に対面する外面領域に、複数の散乱粒子を透明素材に含む光散乱層240aまたは240bが形成されている。したがって、貫通孔111に向かう光線L1bは、凸レンズ190で屈折した後に透明円筒230内を進み、光散乱層240aまたは240bにおいて散乱されて外部に出射して拡散された照明光線L2となる。 In the example shown in FIG. 30B, the light transmissive cylinder 230 is a transparent cylinder 230 made of a transparent material, and a light scattering layer 240a or 240b containing a plurality of scattering particles in the transparent material is formed in the outer surface area facing the through hole 111. Has been. Therefore, the light beam L1b toward the through hole 111 travels through the transparent cylinder 230 after being refracted by the convex lens 190, becomes an illumination light beam L2 that is scattered by the light scattering layer 240a or 240b, emitted to the outside, and diffused.

図30Cに示す例では、光透過性円筒230は透明素材からなる透明円筒230であり、貫通孔111に対面する外面領域に、ブラスト加工、エッチング加工などにより微小凹凸を有する粗面240cが形成されている。したがって、貫通孔111に向かう光線L1bは、凸レンズ190で屈折した後に透明円筒230内を進み、粗面240cにおいて散乱されて外部に出射して拡散された照明光線L2となる。 In the example shown in FIG. 30C, the light transmissive cylinder 230 is a transparent cylinder 230 made of a transparent material, and a rough surface 240c having minute irregularities is formed on the outer surface area facing the through hole 111 by blasting, etching, or the like. ing. Accordingly, the light beam L1b toward the through hole 111 travels through the transparent cylinder 230 after being refracted by the convex lens 190, becomes an illumination light beam L2 scattered and emitted to the outside by being scattered on the rough surface 240c.

図30Dに示す例では、内面に凸レンズ190を形成した光透過性円筒230の外面に孔または開口211に該当する複数の島状領域を除く海状領域に光反射兼熱伝導層210−1を形成したものである。 In the example shown in FIG. 30D, the light reflecting / heat conducting layer 210-1 is formed on the outer surface of the light-transmitting cylinder 230 having the convex lens 190 formed on the inner surface, and on the sea-like region excluding the plurality of island-like regions corresponding to the holes or openings 211. Formed.

光反射兼熱伝導層210−1は、望ましくは、アルミニウム、銀、ニッケルなどの光反射率の高い光反射金属を蒸着、スパッタリンクなどにより光反射金属膜210−1bを形成し、更に光反射金属膜210−1bに電気メッキ、無電解メッキなどにより銅、銀などの高い熱伝導性金属膜210−1bを積層したものである。 The light reflecting / heat conducting layer 210-1 is preferably formed by depositing a light reflecting metal having a high light reflectivity such as aluminum, silver or nickel, and forming a light reflecting metal film 210-1b by sputtering or the like. A high thermal conductive metal film 210-1b made of copper, silver or the like is laminated on the metal film 210-1b by electroplating or electroless plating.

図31(図31A、図31B、図31C、図31D)を参照してLED電球700Aにおける光透過性円筒、熱伝導性円筒の幾つかの他の具体例とその光路について記載する。 With reference to FIG. 31 (FIG. 31A, FIG. 31B, FIG. 31C, FIG. 31D), some other specific examples of the light transmissive cylinder and the heat conductive cylinder in the LED bulb 700A and its optical path will be described.

図31(図31A、図31B、図31C、図31D)は、図26における一部分PT−Eを示す概略的な拡大断面図である。 31 (FIGS. 31A, 31B, 31C, and 31D) is a schematic enlarged cross-sectional view showing a part PT-E in FIG.

図31(図31A、図31B、図31C、図31D)は、図29(図29A、図29B、図29C、図29D)において、熱伝導性円筒210の貫通孔(または開口)211の領域と対面する光透過性円筒230の内面領域に、光路変換素子としてプリズム192を固定、配置したものである。 FIG. 31 (FIGS. 31A, 31B, 31C, and 31D) shows the region of the through hole (or opening) 211 of the thermally conductive cylinder 210 in FIG. 29 (FIGS. 29A, 29B, 29C, and 29D). A prism 192 is fixed and arranged as an optical path conversion element in the inner surface area of the light-transmitting cylinder 230 facing each other.

予め複数のプリズム192を内面に形成した柔軟性を有する光透過性フィルムを円筒状に丸めて固定し、凸レンズ付き光透過性円筒230とすることができる。 A light-transmitting film having flexibility, in which a plurality of prisms 192 are formed on the inner surface in advance, is rolled into a cylindrical shape and fixed to form a light-transmitting cylinder 230 with a convex lens.

図31A、図31B、図31C、図31D (および図27、図28)に示すように、プリズム192を形成した光透過性円筒230の外径は複数の貫通孔211が設けられた熱伝導性円筒210の内径と等しいかわずかに小さくしてあるので、光透過性円筒230は、熱伝導性円筒210の光反射性内面210bに接触、密接、近接して配置することができる。 As shown in FIGS. 31A, 31B, 31C, and 31D (and FIGS. 27 and 28), the outer diameter of the light-transmitting cylinder 230 on which the prism 192 is formed is the thermal conductivity provided with a plurality of through holes 211. Since the inner diameter of the cylinder 210 is equal to or slightly smaller than the inner diameter of the cylinder 210, the light-transmitting cylinder 230 can be disposed in contact with, in close contact with, or in close proximity to the light-reflecting inner surface 210 b of the thermally conductive cylinder 210.

したがってこれらの貫通孔(または開口)211は、これらと対応するプリズム192を形成した光透過性円筒230によって覆われ、貫通孔211と貫通孔211と対面する光透過性円筒230の領域が、実質的に例えば実施例1における窓130として機能し、即ち貫通孔211と光透過性円筒230の組み合わせが窓130に該当する。 Therefore, these through-holes (or openings) 211 are covered with a light-transmitting cylinder 230 having a prism 192 corresponding thereto, and the region of the light-transmitting cylinder 230 facing the through-hole 211 and the through-hole 211 is substantially Specifically, for example, it functions as the window 130 in the first embodiment, that is, the combination of the through hole 211 and the light transmitting cylinder 230 corresponds to the window 130.

LED素子141からの放射光線L1は、ほぼ上方向に進み光透過性カバー120に向かう光線L1aと、ほぼ横上方向に進みプリズム192で屈折し光透過性円筒230を透過して熱伝導性円筒210の貫通孔111に向かう光線L1bと、ほぼ横上方向に進み光透過性円筒230を透過して熱伝導性円筒210の反射内面210bに向かう光線L1cとからなる。 The emitted light L1 from the LED element 141 travels substantially upward and travels toward the light transmissive cover 120, travels substantially laterally upward, is refracted by the prism 192, passes through the light transmissive cylinder 230, and passes through the heat conductive cylinder 230. A light beam L1b directed to the through-hole 111 of 210 and a light beam L1c traveling substantially horizontally upward and transmitted through the light-transmitting cylinder 230 toward the reflecting inner surface 210b of the heat-conductive cylinder 210.

図31A、図31B、図31C、図31Dに示すように、ほぼ横上方向に進みプリズム192で屈折し光透過性円筒230を透過して熱伝導性円筒210の反射内面210b、210−1bに向かう光線L1cは、反射内面210b反射内面210bで反射して反射光線L1dとなり、主として斜め上方に進み、光透過性カバー120、異なる反射内面210b反射内面210b、または貫通孔111に向かう。 As shown in FIG. 31A, FIG. 31B, FIG. 31C, and FIG. 31D, the light travels almost horizontally upward and is refracted by the prism 192 and transmitted through the light-transmitting cylinder 230 to the reflecting inner surfaces 210b and 210-1b of the heat-conductive cylinder 210. The light beam L1c that travels is reflected by the reflective inner surface 210b and becomes the reflected light beam L1d, travels mainly obliquely upward, and travels toward the light transmissive cover 120, the different reflective inner surface 210b, the reflective inner surface 210b, or the through hole 111.

図31Aに示す光透過性円筒230は透明素材からなる透明円筒230であり、したがって熱伝導性円筒210の貫通孔111に向かう光線L1bは、プリズム192で屈折した後に透明円筒230を透過して外部に出射してほぼ直進する照明光線L2となる。 The light transmissive cylinder 230 shown in FIG. 31A is a transparent cylinder 230 made of a transparent material. Therefore, the light beam L1b directed to the through hole 111 of the heat conductive cylinder 210 is refracted by the prism 192 and then passes through the transparent cylinder 230 to be externally transmitted. Becomes an illumination light beam L2 that exits and travels substantially straight.

図31Bに示す例では、光透過性円筒230は透明素材からなる透明円筒230であり、貫通孔111に対面する外面領域に、複数の散乱粒子を透明素材に含む光散乱層240aまたは240bが形成されている。したがって、貫通孔111に向かう光線L1bは、プリズム192で屈折した後に透明円筒230内を進み、光散乱層240aまたは240bにおいて散乱されて外部に出射して拡散された照明光線L2となる。 In the example shown in FIG. 31B, the light-transmitting cylinder 230 is a transparent cylinder 230 made of a transparent material, and a light scattering layer 240a or 240b containing a plurality of scattering particles in the transparent material is formed in the outer surface area facing the through hole 111. Has been. Therefore, the light beam L1b toward the through hole 111 travels through the transparent cylinder 230 after being refracted by the prism 192, and becomes an illumination light beam L2 scattered and emitted to the outside by the light scattering layer 240a or 240b.

図31Cに示す例では、光透過性円筒230は透明素材からなる透明円筒230であり、貫通孔111に対面する外面領域に、ブラスト加工、エッチング加工などにより微小凹凸を有する粗面240cが形成されている。したがって、貫通孔111に向かう光線L1bは、プリズム192で屈折した後に透明円筒230内を進み、粗面240cにおいて散乱されて外部に出射して拡散された照明光線L2となる。 In the example shown in FIG. 31C, the light-transmitting cylinder 230 is a transparent cylinder 230 made of a transparent material, and a rough surface 240c having minute irregularities is formed on the outer surface area facing the through hole 111 by blasting, etching, or the like. ing. Therefore, the light beam L1b toward the through-hole 111 travels through the transparent cylinder 230 after being refracted by the prism 192, becomes an illumination light beam L2 that is scattered on the rough surface 240c, emitted to the outside, and diffused.

図31Dに示す例では、内面にプリズム192を形成した光透過性円筒230の外面に孔または開口211に該当する複数の島状領域を除く海状領域に光反射兼熱伝導層210−1を形成したものである。 In the example shown in FIG. 31D, the light reflecting / heat conducting layer 210-1 is formed on the outer surface of the light-transmitting cylinder 230 having the prism 192 formed on the inner surface, except for a plurality of island regions corresponding to the holes or openings 211. Formed.

光反射兼熱伝導層210−1は、望ましくは、アルミニウム、銀、ニッケルなどの光反射率の高い光反射金属を蒸着、スパッタリンクなどにより光反射金属膜210−1bを形成し、更に光反射金属膜210−1bに電気メッキ、無電解メッキなどにより銅、銀などの高い熱伝導性金属膜210−1bを積層したものである。 The light reflecting / heat conducting layer 210-1 is preferably formed by depositing a light reflecting metal having a high light reflectivity such as aluminum, silver or nickel, and forming a light reflecting metal film 210-1b by sputtering or the like. A high thermal conductive metal film 210-1b made of copper, silver or the like is laminated on the metal film 210-1b by electroplating or electroless plating.

図32を参照して実施例9のLED電球800Aについて記載する。 The LED bulb 800A of Example 9 will be described with reference to FIG.

図32は実施例9のLED電球800Aを示し一部を正面図とした概略的な部分断面図である。 FIG. 32 is a schematic partial cross-sectional view showing a part of the LED bulb 800A of Example 9 and a part of which is a front view.

実施例1などに示したLED電球100 Aは、複数の窓130を有する熱伝導性中空部材として円筒の形状を有する熱伝導性円筒810を用いているが、熱伝導性中空部材の形状はその目的に応じてほぼロート状(円錐状、ホーン状、コーン状)、その他の形状とすることができる。 The LED bulb 100A shown in Example 1 or the like uses a thermally conductive cylinder 810 having a cylindrical shape as a thermally conductive hollow member having a plurality of windows 130. The shape of the thermally conductive hollow member is Depending on the purpose, it can have a substantially funnel shape (conical shape, horn shape, cone shape) or other shapes.

図32に示すように、実施例9のLED電球800Aは、複数の窓130を有する熱伝導性中空部材としてロート状の形状を有する熱伝導性ロート状部材810を用いている。 As shown in FIG. 32, the LED bulb 800A of Example 9 uses a heat conductive funnel-shaped member 810 having a funnel shape as a heat conductive hollow member having a plurality of windows 130.

LED電球800Aは、光透過性カバー120と、貫通孔111に光透過性材料を充てんした複数の窓130を有する熱伝導性ロート状部材810と、LED素子141と回路基板142からなる発光ユニット140と、発光ユニット140を収容し、かつ熱伝導性ロート状部材810の下端近辺を固定する熱伝導性ハウジング182と、点灯回路160を内蔵した給電用口金170を備える。 The LED bulb 800 </ b> A includes a light-transmitting cover 120, a heat-conductive funnel-shaped member 810 having a plurality of windows 130 filled with a light-transmitting material in the through-holes 111, a light-emitting unit 140 including an LED element 141 and a circuit board 142. A heat conductive housing 182 that houses the light emitting unit 140 and fixes the vicinity of the lower end of the heat conductive funnel-shaped member 810, and a power supply base 170 that incorporates the lighting circuit 160.

光透過性カバー120は、熱伝導性ロート状部材810の上部の大開口を塞ぐように上記上部に固定され、発光ユニット140は熱伝導性部材150上に固定され、熱伝導性ロート状部材810の下部の小開口近辺において内部空間HS内に配置されている。 The light transmissive cover 120 is fixed to the upper part so as to close the large opening at the upper part of the heat conductive funnel-shaped member 810, the light emitting unit 140 is fixed on the heat conductive member 150, and the heat conductive funnel-shaped member 810 is fixed. It is arrange | positioned in the interior space HS in the vicinity of the small opening of the lower part.

LED素子141からの放射光線L1は、一部が窓130を透過してロート状部材810の周側面から出射して照明光線L2となり、一部がロート状部材810の光反射性内面で反射して内部空間HS内を上方向、横上方向に進み、他の一部は上部に進み光透過性カバー120を透過して照明光線L3となる。 A part of the emitted light L1 from the LED element 141 passes through the window 130 and is emitted from the peripheral side surface of the funnel-shaped member 810 to become an illumination light beam L2, and a part of the light is reflected by the light-reflecting inner surface of the funnel-shaped member 810. In the internal space HS, the light travels upward and laterally upward, and the other part travels upward and passes through the light-transmitting cover 120 to become an illumination light beam L3.

このようにして、LED電球800Aは光透過性カバー120から出射する照明光線L3により上方向(または下方向)を照明するのみならず、ロート状部材810の周側面から出射する照明光線L2により側面方向(横方向)を照明できるので、他の実施例1などと同様に、ほぼ全方向を照明できるLED電球を提供できる。 In this way, the LED bulb 800A not only illuminates the upper direction (or the lower direction) with the illumination light beam L3 emitted from the light transmissive cover 120, but also has the side surface with the illumination light beam L2 emitted from the peripheral side surface of the funnel-shaped member 810. Since the direction (lateral direction) can be illuminated, an LED bulb that can illuminate almost all directions can be provided in the same manner as in the first embodiment.

点灯中、LED素子141からの発熱は、熱伝導経路H1に従い、順次、回路基板142、熱伝導性部材150、熱伝導性ハウジング182を経由して、熱伝導性ロート状部材810に伝達、移送され、熱伝導性ロート状部材810の外面から外気に拡散され放熱H2されるので、LED素子141は常時、許容温度以下に保持される。 During lighting, the heat generated from the LED element 141 is transmitted and transferred to the heat conductive funnel-shaped member 810 sequentially via the circuit board 142, the heat conductive member 150, and the heat conductive housing 182 in accordance with the heat conduction path H1. Then, the LED element 141 is always kept below the allowable temperature because it is diffused from the outer surface of the heat conductive funnel-shaped member 810 to the outside air and dissipated H2.

図33を参照して実施例10のLED電球810Aについて記載する。図33は、LED電球810Aを示す概略的な縦断面図である。 The LED bulb 810A of Example 10 will be described with reference to FIG. FIG. 33 is a schematic longitudinal sectional view showing the LED bulb 810A.

この実施例10のLED電球810Aは、実施例1のLED電球100Aと発光ユニットと熱伝導性基板の個所が異なり、その他の構成はLED電球100Aと同じである。 The LED bulb 810A of the tenth embodiment is different from the LED bulb 100A of the first embodiment in the light emitting unit and the heat conductive substrate, and the other configurations are the same as the LED bulb 100A.

実施例1のLED電球100Aにおいては、発光ユニット140は、LED素子140を回路基板142に実装し、回路基板142を熱伝導性基板150の上に熱結合して固定し、熱伝導性基板150の周縁部をネジ、リベット素子、ピンなどの熱伝導性固定手段FMにより熱伝導性円筒110と熱結合して固定している。 In the LED light bulb 100A according to the first embodiment, the light emitting unit 140 includes the LED element 140 mounted on the circuit board 142, and the circuit board 142 is thermally coupled and fixed on the heat conductive board 150. The peripheral edge portion of the heat conductive cylinder 110 is thermally coupled and fixed to the heat conductive cylinder 110 by a heat conductive fixing means FM such as a screw, a rivet element, or a pin.

これに対し実施例10のLED電球810Aにおいては、実施例1の回路基板142を省略して、絶縁性を有する熱伝導性基板150−1を用い、絶縁性、熱伝導性150−1の上面に接続パターンを形成して、LED素子140を絶縁性、熱伝導性基板150−1上に実装している。 On the other hand, in the LED bulb 810A of the tenth embodiment, the circuit board 142 of the first embodiment is omitted, and the heat conductive substrate 150-1 having an insulating property is used. The LED element 140 is mounted on the insulating and heat conductive substrate 150-1 by forming a connection pattern.

そして絶縁性、熱伝導性基板150−1の周縁部をネジ、リベット素子、ピンなどの熱伝導性固定手段FMにより熱伝導性円筒110と熱結合して固定している。 The peripheral portion of the insulating and heat conductive substrate 150-1 is thermally coupled and fixed to the heat conductive cylinder 110 by a heat conductive fixing means FM such as a screw, a rivet element, or a pin.

その他の構成は、この実施例10と実施例1は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 In other configurations, the tenth embodiment and the first embodiment are the same, and the same components are denoted by the same reference numerals, and therefore the description thereof is omitted here.

図34を参照して実施例110のLED電球820Aについて記載する。図34は、LED電球820Aを示す概略的な縦断面図である。 The LED light bulb 820A of Example 110 will be described with reference to FIG. FIG. 34 is a schematic longitudinal sectional view showing the LED bulb 820A.

この実施例11のLED電球820Aは、実施例1のLED電球100Aと発光ユニットと熱伝導性基板の個所が異なり、その他の構成はLED電球100Aと同じである。 The LED bulb 820A of the eleventh embodiment is different from the LED bulb 100A of the first embodiment in the light emitting unit and the location of the heat conductive substrate, and other configurations are the same as the LED bulb 100A.

実施例1のLED電球100Aにおいては、発光ユニット140は、LED素子140を回路基板142に実装し、回路基板142を熱伝導性基板150の上に熱結合して固定し、熱伝導性基板150の周縁部をネジ素子、リベット素子、ピンなどの熱伝導性固定手段FMにより熱伝導性円筒110と熱結合して固定している。 In the LED light bulb 100A according to the first embodiment, the light emitting unit 140 includes the LED element 140 mounted on the circuit board 142, and the circuit board 142 is thermally coupled and fixed on the heat conductive board 150. The thermal conductive cylinder 110 is thermally coupled and fixed by a thermal conductive fixing means FM such as a screw element, a rivet element, or a pin.

これに対し実施例11のLED電球820Aにおいては、実施例1の回路基板142を省略して、周縁に沿ってリング状熱伝導性板150−2を有する熱伝導性底蓋からなる熱伝導性基板150−2を用い、熱伝導性基板150−2の上面に接続パターン付き絶縁層を形成し、この絶縁層を経由してLED素子140を熱伝導性基板150−2上に実装している。 On the other hand, in the LED light bulb 820A of Example 11, the circuit board 142 of Example 1 is omitted, and the thermal conductivity composed of a thermally conductive bottom cover having a ring-shaped thermally conductive plate 150-2 along the periphery. An insulating layer with a connection pattern is formed on the upper surface of the thermally conductive substrate 150-2 using the substrate 150-2, and the LED element 140 is mounted on the thermally conductive substrate 150-2 via this insulating layer. .

この実施例11では、熱伝導性円筒110の下端の外面と、リング状熱伝導性板150−2の内面に凹凸ネジ部からなる熱伝導性固定手段FMが予め形成され、これにより熱伝導性基板150−2と熱伝導性円筒110は熱結合して固定されている。 In the eleventh embodiment, the heat conductive fixing means FM including the concave and convex screw portions is formed in advance on the outer surface of the lower end of the heat conductive cylinder 110 and the inner surface of the ring-shaped heat conductive plate 150-2. The substrate 150-2 and the thermally conductive cylinder 110 are fixed by thermal coupling.

その他の構成は、この実施例11と実施例1は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 The other configurations are the same as those in the eleventh embodiment and the first embodiment, and the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted here.

図35を参照して実施例12のLED電球830Aについて記載する。図35は、LED電球830Aを示す概略的な縦断面図である。 An LED bulb 830A of Example 12 will be described with reference to FIG. FIG. 35 is a schematic longitudinal sectional view showing the LED bulb 830A.

この実施例12のLED電球830Aは、実施例1のLED電球100Aと光透過性カバーの形状が異なり、その他の構成はLED電球100Aと同じである。 The LED bulb 830A of the twelfth embodiment is different from the LED bulb 100A of the first embodiment in the shape of the light transmissive cover, and other configurations are the same as the LED bulb 100A.

実施例1のLED電球100Aにおける光透過性カバー120は半円形部材であるのに対して、実施例12のLED電球830Aにおける光透過性カバー120−1はほぼ円板である。 The light transmissive cover 120 in the LED bulb 100A of the first embodiment is a semicircular member, whereas the light transmissive cover 120-1 in the LED bulb 830A of the twelfth embodiment is substantially a disc.

その他の構成は、この実施例12と実施例1は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 The other configurations are the same as those of the twelfth embodiment and the first embodiment, and the same components are denoted by the same reference numerals, and therefore the description thereof is omitted here.

図36を参照して実施例13のLED電球840Aについて記載する。図36は、LED電球840Aを示し一部を正面図で現わす概略的な縦断面図である。 The LED bulb 840A of Example 13 will be described with reference to FIG. FIG. 36 is a schematic longitudinal sectional view showing a part of the LED bulb 840A and a front view thereof.

この実施例13のLED電球840Aは、図32を参照して記載した実施例9のLED電球800Aと光透過性カバーの形状が異なり、その他の構成はLED電球800Aと同じである。 The LED bulb 840A of the thirteenth embodiment is different from the LED bulb 800A of the ninth embodiment described with reference to FIG. 32 in the shape of the light-transmitting cover, and other configurations are the same as the LED bulb 800A.

実施例1のLED電球100Aにおける光透過性カバー120はドーム状(半球形)部材であるのに対して、実施例13のLED電球840Aにおける光透過性カバー120−1はほぼ円板である。 The light transmissive cover 120 in the LED light bulb 100A of Example 1 is a dome-shaped (hemispherical) member, whereas the light transmissive cover 120-1 in the LED light bulb 840A of Example 13 is substantially a disk.

その他の構成は、この実施例13と実施例1は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 In other configurations, the thirteenth embodiment and the first embodiment are the same, and the same components are denoted by the same reference numerals, and therefore the description thereof is omitted here.

図37を参照して実施例14のLED電球850Aについて記載する。図37は、LED電球850Aを示す概略的な分解斜視図である。 An LED bulb 850A of Example 14 will be described with reference to FIG. FIG. 37 is a schematic exploded perspective view showing the LED bulb 850A.

この実施例14のLED電球850Aは、実施例1のLED電球100Aの外観形状と窓部が異なり、その他の構成はLED電球100Aと同じである。 The LED bulb 850A of the fourteenth embodiment is different from the LED bulb 100A of the first embodiment in the external shape and window portion, and the other configuration is the same as the LED bulb 100A.

実施例1のLED電球100Aにおいては、図1などに示すように、熱伝導性中空部材が熱伝導性円筒110であり、光透過性カバー120がドーム状(半球形)部材であり、ハウジング180の上部開口が円形である。 In the LED bulb 100A of the first embodiment, as shown in FIG. 1 and the like, the heat conductive hollow member is a heat conductive cylinder 110, the light transmissive cover 120 is a dome-shaped (hemispherical) member, and a housing 180 The upper opening of is circular.

これに対して、図37に示すように、熱伝導性中空部材が6角形などの熱伝導性多角筒(多角形熱伝導性中空部材)811であり、光透過性カバー120−2が6角形などの多角立体板であり、ハウジング180の上部開口が6角形などの多角形である。 On the other hand, as shown in FIG. 37, the heat conductive hollow member is a heat conductive polygonal cylinder (polygonal heat conductive hollow member) 811 such as a hexagon, and the light transmitting cover 120-2 is a hexagon. The upper opening of the housing 180 is a polygon such as a hexagon.

この実施例14では、熱伝導性多角筒811に設けた窓130の口径が熱伝導性多角筒110の下端(発光ユニット140の配置個所)から上端(発光ユニット140の配置個所)に向かって段階的に(または連続的に)拡大している。 In the fourteenth embodiment, the diameter of the window 130 provided in the heat conductive polygonal cylinder 811 is stepped from the lower end (position where the light emitting unit 140 is disposed) to the upper end (position where the light emitting unit 140 is disposed). (Or continuously).

図37に示すように、下端近辺の窓130−1の口径は小さく、上端近辺の窓130−3の口径は大きく、下端と上端の中間の窓130−2の口径は窓130−1より大きく窓130−3より小さく設定してある。 As shown in FIG. 37, the aperture of the window 130-1 near the lower end is small, the aperture of the window 130-3 near the upper end is large, and the aperture of the middle window 130-2 between the lower end and the upper end is larger than the window 130-1. It is set smaller than the window 130-3.

このように、窓130の口径を熱伝導性多角筒811の異なる領域において可変することにより、熱伝導性多角筒811の周側面から出射する光量を変化させることができ、用途に応じた配光特性を選択できる。 In this way, by varying the aperture of the window 130 in different regions of the heat conductive polygonal cylinder 811, the amount of light emitted from the peripheral side surface of the heat conductive polygonal cylinder 811 can be changed, and the light distribution according to the application You can select characteristics.

その他の構成は、この実施例14と実施例1は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 In other configurations, the fourteenth embodiment and the first embodiment are the same, and the same components are denoted by the same reference numerals, and therefore the description thereof is omitted here.

図38を参照して実施例15のLED電球860Aについて記載する。図38はLED電球860Aを示す概略的な縦断面図である。 The LED bulb 860A of Example 15 will be described with reference to FIG. FIG. 38 is a schematic longitudinal sectional view showing the LED bulb 860A.

この実施例15のLED電球860Aは、実施例1のLED電球100Aの光透過性カバーと形状が異なり、その他の構成はLED電球100Aと同じである。 The LED bulb 860A of the fifteenth embodiment is different in shape from the light transmissive cover of the LED bulb 100A of the first embodiment, and the other configuration is the same as that of the LED bulb 100A.

実施例1のLED電球100Aにおいては、図1などに示すように、光透過性カバー120がドーム状(半球形)部材である。 In the LED bulb 100A according to the first embodiment, as illustrated in FIG. 1 and the like, the light transmissive cover 120 is a dome-shaped (hemispherical) member.

これに対して、この実施例15のLED電球860Aにおいては、図38に示すように、光透過性カバー120−2が下方に開口を有するほぼ球状の内部空間を有する殻である。 On the other hand, in the LED bulb 860A of the fifteenth embodiment, as shown in FIG. 38, the light transmissive cover 120-2 is a shell having a substantially spherical inner space having an opening below.

球状光透過性カバー120−2は、その開口部分が熱伝導性円筒110の上端開口を覆うように固定される。 The spherical light transmissive cover 120-2 is fixed so that the opening thereof covers the upper end opening of the thermally conductive cylinder 110.

その他の構成は、この実施例15と実施例1は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 The other configurations are the same as in the fifteenth embodiment and the first embodiment, and the same components are denoted by the same reference numerals, and therefore the description thereof is omitted here.

図39を参照して実施例16のLED電球870Aについて記載する。図39はLED電球870Aを示す概略的な縦断面図である。 An LED bulb 870A of Example 16 will be described with reference to FIG. FIG. 39 is a schematic longitudinal sectional view showing the LED bulb 870A.

この実施例16のLED電球870Aは、実施例1のLED電球100Aの光透過性カバーと形状が異なり、その他の構成はLED電球100Aと同じである。 The LED bulb 870A of the sixteenth embodiment is different in shape from the light transmissive cover of the LED bulb 100A of the first embodiment, and the other configuration is the same as the LED bulb 100A.

実施例1のLED電球100Aにおいては、図1などに示すように、光透過性カバー120がドーム状(半球形)部材である。 In the LED bulb 100A according to the first embodiment, as illustrated in FIG. 1 and the like, the light transmissive cover 120 is a dome-shaped (hemispherical) member.

これに対して、この実施例16のLED電球870Aにおいては、図39に示すように、光透過性カバー120−2がほぼローソクの炎を現わすローソク形外観形状をなす殻であり、シャンデリア照明器具に用いられるいわゆるシャンデリア電球の光透過性カバーと類似した形状である。 On the other hand, in the LED light bulb 870A of the sixteenth embodiment, as shown in FIG. 39, the light-transmitting cover 120-2 is a shell having a candle-shaped outer shape that almost shows a candle flame, and has a chandelier illumination. It has a shape similar to the light-transmitting cover of a so-called chandelier bulb used in the appliance.

ローソク形光透過性カバー120−2は、その下端開口部分が熱伝導性円筒110の上端開口を覆うように固定される。 The candle-shaped light transmissive cover 120-2 is fixed so that the lower end opening portion covers the upper end opening of the heat conductive cylinder 110.

その他の構成は、この実施例16と実施例1は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 In other configurations, the sixteenth embodiment and the first embodiment are the same, and the same components are denoted by the same reference numerals, and therefore the description thereof is omitted here.

図40を参照して実施例17のLED電球880Aについて記載する。図40はLED電球880Aを示す概略的な縦断面図である。 The LED bulb 880A of Example 17 will be described with reference to FIG. FIG. 40 is a schematic longitudinal sectional view showing the LED bulb 880A.

LED電球880Aは、光透過性かつ熱伝導性カバー(部分透過性カバー)120−5と、複数の窓130を有する熱伝導性円筒110と、LED素子141と回路基板142からなる発光ユニット140と、回路基板142と熱結合して固定された熱伝導性部材150と、点灯回路160を内蔵した熱伝導性ハウジング180と、給電用口金170を備える。 The LED bulb 880A includes a light transmissive and heat conductive cover (partially transmissive cover) 120-5, a heat conductive cylinder 110 having a plurality of windows 130, a light emitting unit 140 including an LED element 141 and a circuit board 142, and the like. , A heat conductive member 150 thermally fixed to the circuit board 142, a heat conductive housing 180 containing the lighting circuit 160, and a power supply cap 170.

光透過性かつ熱伝導性カバー(部分透過性カバー)120−5は、熱伝導性円筒110の上端の開口を覆うように上端に熱結合して固定される。 The light transmissive and heat conductive cover (partially transmissive cover) 120-5 is fixed by being thermally coupled to the upper end so as to cover the opening at the upper end of the heat conductive cylinder 110.

光透過性かつ熱伝導性カバー120−5は、外面110−1aと光反射性内面110−1bからなる熱伝導性ドーム状(半球形)部材110−1と、熱伝導性ドーム状部材110−1に設けた複数の貫通孔に光透過性材料を充てんした複数の窓130−1からなる。 The light transmissive and heat conductive cover 120-5 includes a heat conductive dome-shaped (hemispherical) member 110-1 composed of an outer surface 110-1a and a light reflective inner surface 110-1b, and a heat conductive dome-shaped member 110-. 1 includes a plurality of windows 130-1 in which a plurality of through holes provided in 1 are filled with a light-transmitting material.

熱伝導性ドーム状部材110−1は熱伝導性円筒110と同様な構成であり、窓130−1は熱伝導性円筒110の窓130と同様な構成である。 The thermally conductive dome-shaped member 110-1 has the same configuration as that of the thermally conductive cylinder 110, and the window 130-1 has the same configuration as the window 130 of the thermally conductive cylinder 110.

発光ユニット140は円板状の熱伝導性部材150上に固定され、熱伝導性円筒110の下部の開口近辺において内部空間内に配置されている。 The light emitting unit 140 is fixed on a disk-shaped heat conductive member 150 and is disposed in the inner space near the opening at the bottom of the heat conductive cylinder 110.

熱伝導性部材150は、その周縁端面が熱伝導性円筒110の下部にネジなどの固定手段FMにより熱結合して固定されている。 The thermal conductive member 150 has its peripheral end face fixed to the lower part of the thermal conductive cylinder 110 by thermal coupling with a fixing means FM such as a screw.

実施例1のLED電球100Aにおいては、光透過性カバー120がほぼ全ての領域が光透過性材料からなるのに対して、この実施例17のLED電球880Aにおいては、光透過性かつ熱伝導性カバー120−5からなる点が異なる。 In the LED bulb 100A of the first embodiment, the light-transmitting cover 120 is almost entirely made of a light-transmitting material, whereas in the LED bulb 880A of the seventeenth embodiment, the light-transmitting and thermal conductivity is provided. The point which consists of cover 120-5 differs.

光透過性かつ熱伝導性カバー120−5の形状は、実施例1の光透過性カバー120の形状と同様なドーム状(半球形)形状からなる。 The shape of the light transmissive and heat conductive cover 120-5 is a dome shape (hemispherical shape) similar to the shape of the light transmissive cover 120 of the first embodiment.

LED素子141からの放射光線L1は、光透過性かつ熱伝導性カバー120−5に向かう光線L1aと、円筒110に向かう光線L1b、L1cとなる。 The emitted light beam L1 from the LED element 141 becomes a light beam L1a toward the light transmissive and heat conductive cover 120-5, and light beams L1b and L1c toward the cylinder 110.

円筒110の窓130に向かう光線L1bは、円筒110の周辺から外部に出射して照明光線L2となる。 The light beam L1b toward the window 130 of the cylinder 110 is emitted from the periphery of the cylinder 110 to the outside and becomes an illumination light beam L2.

円筒110の反射内面110bに向かう光線L1cは、反射して反射光線L1dとなって光透過性かつ熱伝導性カバー120−5、円筒110の他の反射内面110bまたは窓130に向かって進む。 The light beam L1c that travels toward the reflective inner surface 110b of the cylinder 110 is reflected to become a reflected light beam L1d and travels toward the light transmissive and heat conductive cover 120-5, the other reflective inner surface 110b of the cylinder 110, or the window 130.

光透過性かつ熱伝導性カバー120−5の窓130−1へ向かう光線L1aは、窓130−1から出射して照明光線L3となる。 The light beam L1a toward the window 130-1 of the light transmissive and heat conductive cover 120-5 is emitted from the window 130-1 and becomes an illumination light beam L3.

光透過性かつ熱伝導性カバー120−5の反射内面110−1bへ向かう光線は反射して、他の窓130、窓130−1または他の反射内面110−1、110−1bへ向かう光線となる。 The light beam directed to the reflective inner surface 110-1b of the light transmissive and thermally conductive cover 120-5 is reflected, and the light beam is directed to the other window 130, the window 130-1, or the other reflective inner surface 110-1, 110-1b. Become.

円筒110の窓130に向かう光線L1bは、円筒110の周辺から外部に出射して照明光線L2となる。 The light beam L1b toward the window 130 of the cylinder 110 is emitted from the periphery of the cylinder 110 to the outside and becomes an illumination light beam L2.

円筒110の反射内面110bに向かう光線L1cは、反射して反射光線L1dとなって光透過性かつ熱伝導性カバー120−5、円筒110の他の反射内面110bまたは窓130に向かって進む。 The light beam L1c that travels toward the reflective inner surface 110b of the cylinder 110 is reflected to become a reflected light beam L1d and travels toward the light transmissive and heat conductive cover 120-5, the other reflective inner surface 110b of the cylinder 110, or the window 130.

このようにして、LED電球880Aは光透過性かつ熱伝導性カバー120−5から出射する照明光線L3により上方向(または下方向)を照明するのみならず、熱伝導性円筒110の周側面から出射する照明光線L2により側面方向(横方向)を照明できるので、他の実施例1などと同様に、ほぼ全方向を照明できるLED電球を提供できる。 In this manner, the LED bulb 880A not only illuminates the upper direction (or the lower direction) with the illumination light beam L3 emitted from the light transmissive and heat conductive cover 120-5, but also from the peripheral side surface of the heat conductive cylinder 110. Since the side surface direction (lateral direction) can be illuminated by the emitted illumination light beam L2, an LED bulb that can illuminate almost all directions can be provided in the same manner as in the first embodiment.

点灯中、LED素子141からの発熱は、熱伝導経路H1に従い、順次、回路基板142、熱伝導性部材150を経由して、熱伝導性円筒110に伝達、移送され、熱伝導性円筒110の外面110aから外気に拡散され放熱H2される。 During lighting, the heat generated from the LED element 141 is sequentially transferred to and transferred to the heat conductive cylinder 110 via the circuit board 142 and the heat conductive member 150 according to the heat conduction path H1. It is diffused from the outer surface 110a to the outside air and radiated heat H2.

更にこの実施例17では、LED素子141からの発熱は熱伝導性円筒110の上端から光透過性かつ熱伝導性カバー120−5に伝達、移送され、カバー120−5の外面110−1aから外気に拡散され放熱H3される。 Furthermore, in this Example 17, the heat generated from the LED element 141 is transmitted and transferred from the upper end of the heat conductive cylinder 110 to the light transmissive and heat conductive cover 120-5, and from the outer surface 110-1a of the cover 120-5. And is dissipated in heat.

図41を参照して実施例18のLED電球890Aについて記載する。図41は、LED電球890Aを示す概略的な縦断面図である。 An LED bulb 890A of Example 18 will be described with reference to FIG. FIG. 41 is a schematic longitudinal sectional view showing the LED bulb 890A.

実施例18のLED電球890Aは、図32を参照して記載した実施例9のLED電球800Aにおいて、光透過性カバー120の替わりに図41を参照して記載した実施例17のLED電球880Aの熱伝導性かつ光透過性カバー120−5と同様な熱伝導性かつ光透過性カバー120−5を用いたものである。 The LED bulb 890A of Example 18 is the same as the LED bulb 800A of Example 9 described with reference to FIG. 32, but instead of the LED bulb 880A of Example 17 described with reference to FIG. A heat conductive and light transmissive cover 120-5 similar to the heat conductive and light transmissive cover 120-5 is used.

図41に示すように、実施例18のLED電球890Aは、複数の貫通孔に光透過性材料を充てんした複数の窓130−1を有する熱伝導性ドーム状部材110−1からなる熱伝導性かつ光透過性カバー120−5と、複数の貫通孔111に光透過性材料を充てんした複数の窓130を有する熱伝導性ロート状部材810と、LED素子141と回路基板142からなる発光ユニット140と、発光ユニット140を収容し、かつ熱伝導性ロート状部材810の下端近辺を固定する熱伝導性ハウジング182と、点灯回路160を内蔵した給電用口金170を備える。 As shown in FIG. 41, the LED bulb 890A of Example 18 has a thermal conductivity composed of a thermally conductive dome-shaped member 110-1 having a plurality of windows 130-1 in which a plurality of through holes are filled with a light transmissive material. In addition, a light-transmitting cover 120-5, a heat-conductive funnel-shaped member 810 having a plurality of windows 130 in which a plurality of through-holes 111 are filled with a light-transmitting material, a light-emitting unit 140 including an LED element 141 and a circuit board 142 A heat conductive housing 182 that houses the light emitting unit 140 and fixes the vicinity of the lower end of the heat conductive funnel-shaped member 810, and a power supply base 170 that incorporates the lighting circuit 160.

熱伝導性かつ光透過性カバー120−5は、熱伝導性ロート状部材810の上部の大開口を塞ぐように上記上部に固定され、発光ユニット140は熱伝導性部材150上に固定され、熱伝導性ロート状部材810の下部の小開口近辺において内部空間HS内に配置されている。 The heat conductive and light transmissive cover 120-5 is fixed to the upper part so as to close the large opening on the upper part of the heat conductive funnel member 810, and the light emitting unit 140 is fixed on the heat conductive member 150, The conductive funnel-shaped member 810 is disposed in the inner space HS in the vicinity of the small opening at the bottom.

LED素子141からの放射光線L1は、熱伝導性かつ光透過性カバー120−5と熱伝導性ロート状部材810に向って進む。放射光線L1の一部が熱伝導性かつ光透過性カバー120−5と熱伝導性ロート状部材810の窓130−1、130から出射して照明光線L3、L2となり、放射光線L1の残部が熱伝導性かつ光透過性カバー120−5と熱伝導性ロート状部材810の光反射性内面110−1b、110bで反射して他の光反射性内面110−1b、110bまたは窓130−1、130に向かって進む。 The emitted light L1 from the LED element 141 travels toward the thermally conductive and light transmissive cover 120-5 and the thermally conductive funnel member 810. A part of the radiation beam L1 exits from the heat-conductive and light-transmissive cover 120-5 and the windows 130-1 and 130 of the heat-conductive funnel member 810 to become illumination beams L3 and L2, and the remainder of the radiation beam L1 is The light-reflective inner surfaces 110-1b and 110b or the window 130-1 reflected by the light-reflective inner surfaces 110-1b and 110b of the heat-conductive and light-transmissive cover 120-5 and the heat-conductive funnel-shaped member 810, Proceed toward 130.

このようにして、LED電球890Aは熱伝導性かつ光透過性カバー120−5から出射する照明光線L3により上方向(または下方向)を照明するのみならず、ロート状部材810の周側面から出射する照明光線L2により側面方向(横方向)を照明できるので、ほぼ全方向を照明できるLED電球を提供できる。 Thus, the LED bulb 890A not only illuminates the upper direction (or the lower direction) with the illumination light beam L3 emitted from the thermally conductive and light-transmissive cover 120-5, but also emits from the peripheral side surface of the funnel-shaped member 810. Since the illumination light beam L2 can illuminate the side direction (lateral direction), an LED bulb that can illuminate almost all directions can be provided.

点灯中、LED素子141からの発熱は、熱伝導経路H1に従い、順次、回路基板142、熱伝導性部材150、熱伝導性ハウジング182を経由して、熱伝導性ロート状部材810に伝達、移送され、熱伝導性ロート状部材810の外面110aから外気に拡散され放熱H2される。 During lighting, the heat generated from the LED element 141 is transmitted and transferred to the heat conductive funnel-shaped member 810 sequentially via the circuit board 142, the heat conductive member 150, and the heat conductive housing 182 in accordance with the heat conduction path H1. Then, the heat is dissipated from the outer surface 110a of the heat conductive funnel-shaped member 810 to the outside air to be radiated H2.

更にこの実施例18では、実施例17と同様に、LED素子141からの発熱は熱伝導性円筒110の上端から光透過性かつ熱伝導性カバー120−5に伝達、移送され、カバー120−5の外面110−1aから外気に拡散され放熱H3される。 Further, in Example 18, as in Example 17, the heat generated from the LED element 141 is transmitted and transferred from the upper end of the heat conductive cylinder 110 to the light transmissive and heat conductive cover 120-5, and the cover 120-5. Is diffused from the outer surface 110-1a to the outside air to dissipate heat H3.

このようにして、LED電球890Aにおいては、LED素子141からの発熱は、伝導性ロート状部材810の外面110aと光透過性かつ熱伝導性カバー120−5のほぼ全面から放散されるので、LED素子141は常時、許容温度以下に保持される。 In this way, in the LED bulb 890A, the heat generated from the LED element 141 is dissipated from the outer surface 110a of the conductive funnel-shaped member 810 and the almost entire surface of the light-transmissive and heat-conductive cover 120-5. The element 141 is always kept below the allowable temperature.

図42を参照して実施例19のLED電球900Aについて記載する。図42は、LED電球900Aを示す概略的な縦断面図である。 The LED bulb 900A of Example 19 will be described with reference to FIG. FIG. 42 is a schematic longitudinal sectional view showing the LED bulb 900A.

図42に示すように、LED素子141と回路基板142からなる発光ユニット140と、回路基板142を熱結合して固定する熱伝導性部材155と、熱伝導性部材155の底面と熱結合して固定され点灯回路160を収容する熱伝導性ハウジング182と、熱伝導性ハウジング182の下部に固定された給電用口金170を備える。 As shown in FIG. 42, the light emitting unit 140 composed of the LED element 141 and the circuit board 142, the thermal conductive member 155 that thermally fixes and fixes the circuit board 142, and the bottom surface of the thermal conductive member 155 are thermally coupled. A heat conductive housing 182 that is fixed and accommodates the lighting circuit 160, and a power supply base 170 that is fixed to the lower portion of the heat conductive housing 182 are provided.

この実施例19のLED電球900Aにおいては、他の実施例と異なり、下部に開口を有するほぼ球状のグローブからなる熱伝導性かつ光透過性カバー(球形中空部材)812を用いる。 In the LED light bulb 900A of the nineteenth embodiment, unlike the other embodiments, a thermally conductive and light transmissive cover (spherical hollow member) 812 made of a substantially spherical glove having an opening at the bottom is used.

熱伝導性かつ光透過性カバー812は、外面110−2aと光反射性内面110−2bを有するほぼ球状殻からなる熱伝導性部材110−2と、熱伝導性球状殻110−2に設けた複数の貫通孔に光透過性材料を充てんした複数の窓130−2と下部開口からなり、ほぼ球状の内部空間HSを有する。 The heat conductive and light transmissive cover 812 is provided on the heat conductive member 110-2 having a substantially spherical shell having an outer surface 110-2a and a light reflective inner surface 110-2b, and the heat conductive spherical shell 110-2. It has a plurality of windows 130-2 in which a plurality of through-holes are filled with a light transmitting material and a lower opening, and has a substantially spherical inner space HS.

海状の熱伝導性球状殻110−2に島状の複数の窓130−2が配置されており、複数の窓130−2は連続した熱伝導性球状殻110−2に互いに孤立して配置されている。 A plurality of island-shaped windows 130-2 are arranged in the sea-like thermally conductive spherical shell 110-2, and the plurality of windows 130-2 are arranged isolated from each other in the continuous thermally conductive spherical shell 110-2. Has been.

発光ユニット140を設けた熱伝導部材155の周縁の熱伝導突起155aに熱伝導性球状殻110−2の下部開口部が熱結合して固定され、発光ユニット140は熱伝導性かつ光透過性球状カバー120−6の内部空間HS内の下部に収容される。 The lower opening of the thermally conductive spherical shell 110-2 is thermally coupled and fixed to the heat conductive protrusion 155a at the periphery of the heat conducting member 155 provided with the light emitting unit 140, and the light emitting unit 140 is thermally conductive and light transmissive spherical. The cover 120-6 is accommodated in the lower part in the internal space HS.

LED素子141からの放射光線L1は、内部空間HSを経由して熱伝導性かつ光透過性球状カバー120−6の窓130−2または反射内面110−2に向けて進む。 The emitted light L1 from the LED element 141 travels toward the window 130-2 or the reflective inner surface 110-2 of the thermally conductive and light-transmissive spherical cover 120-6 via the internal space HS.

窓130−2に入射した放射光線L1は、熱伝導性かつ光透過性球状カバー120−6のほぼ全球面から出射してほぼ全球状に広がる広角照明光線L3となる。 The radiated light beam L1 incident on the window 130-2 becomes a wide-angle illumination light beam L3 that is emitted from almost the entire spherical surface of the thermally conductive and light-transmitting spherical cover 120-6 and spreads in a substantially spherical shape.

このようにして、LED電球900Aは熱伝導性かつ光透過性球状カバー120−6から出射する照明光線L3によりほぼ全方向を照明できるLED電球を提供できる。 Thus, the LED bulb 900A can provide an LED bulb that can illuminate almost all directions with the illumination light beam L3 emitted from the thermally conductive and light-transmissive spherical cover 120-6.

点灯中、LED素子141からの発熱は、順次、回路基板142、熱伝導性部材155、熱伝導突起155aを経由して、熱伝導性かつ光透過性球状カバー120−6の熱伝導性球状殻110−2に伝達、移送され、露出外面110aから外気に拡散され放熱H3される。 During lighting, the heat generated from the LED element 141 sequentially passes through the circuit board 142, the heat conductive member 155, and the heat conductive protrusion 155a, and the heat conductive spherical shell 120-6 of the heat conductive and light transmissive spherical cover 120-6. 110-2 is transferred to and transferred from the exposed outer surface 110a to the outside air to dissipate heat H3.

このようにして、LED電球900Aにおいては、LED素子141からの発熱は、熱伝導性球状殻110−2のほぼ全球面から放散されるので、LED素子141は常時、許容温度以下に保持される。 In this manner, in the LED bulb 900A, the heat generated from the LED element 141 is dissipated from almost the entire spherical surface of the thermally conductive spherical shell 110-2, so that the LED element 141 is always kept below the allowable temperature. .

図43を参照して実施例20のLED電球910Aについて記載する。図43は、LED電球910Aを示す概略的な縦断面図である。 The LED bulb 910A of Example 20 will be described with reference to FIG. FIG. 43 is a schematic longitudinal sectional view showing the LED bulb 910A.

この実施例20のLED電球910Aは、実施例12のLED電球830Aの変形であり、カバーの構成が異なり、その他の構成はLED電球830Aと同じである。 The LED bulb 910A of the twentieth embodiment is a modification of the LED bulb 830A of the twelfth embodiment, has a different cover configuration, and the other configurations are the same as the LED bulb 830A.

実施例12のLED電球830Aの円板状カバー120−1はほぼ全部が光透過性材料からなる光透過性円板状カバー120−1であるのに対して、この実施例20のLED電球910Aの円板状カバー120−1は、熱伝導性かつ光透過性を有する円板状カバー120−7からなる。 The disk-shaped cover 120-1 of the LED bulb 830A of the twelfth embodiment is a light-transmitting disk-shaped cover 120-1 made almost entirely of a light-transmissive material, whereas the LED bulb 910A of the twentieth embodiment is used. The disc-shaped cover 120-1 is composed of a disc-shaped cover 120-7 having heat conductivity and light transmittance.

LED電球910Aは、複数の貫通孔111に光透過性材料を充てんした複数の窓130を有する熱伝導性円筒110と、熱伝導性円筒110の内部空間の下端近辺に配置したLED素子141と回路基板142からなる発光ユニット140と、回路基板142を熱結合して固定する熱伝導性部材150と、熱伝導性部材155の底面と熱結合して固定され点灯回路160を収容する熱伝導性ハウジング182と、熱伝導性ハウジング182の下部に固定された給電用口金170を備える。 The LED bulb 910 </ b> A includes a thermally conductive cylinder 110 having a plurality of windows 130 in which a plurality of through-holes 111 are filled with a light transmissive material, and an LED element 141 and a circuit disposed near the lower end of the internal space of the thermally conductive cylinder 110. A light-emitting unit 140 comprising a substrate 142, a heat conductive member 150 that thermally fixes and fixes the circuit board 142, and a heat conductive housing that is fixed to the bottom surface of the heat conductive member 155 and that is fixed and accommodates the lighting circuit 160. 182 and a power supply cap 170 fixed to the lower part of the thermally conductive housing 182.

熱伝導性円筒110の上部開口を覆うように、熱伝導性かつ光透過性を有する円板状カバー120−7が熱伝導性円筒110の上端と熱結合して固定され、熱伝導性円筒110の下端は熱伝導性部材155の周縁端部と熱結合して固定されている。 A disk-shaped cover 120-7 having heat conductivity and light transmittance is fixed by being thermally coupled to the upper end of the heat conductive cylinder 110 so as to cover the upper opening of the heat conductive cylinder 110. The lower end of the heat conductive member 155 is fixed by thermal coupling with the peripheral edge of the heat conductive member 155.

その他の構成は、この実施例20と実施例12は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 The other configurations are the same as those in the twentieth embodiment and the twelfth embodiment, and the same components are denoted by the same reference numerals, and therefore, the description thereof is omitted here.

LED素子141からの放射光線L1は、内部空間を経由して熱伝導性円筒110の窓130または反射内面110bと、熱伝導性かつ光透過性円板状カバー120−7の窓130−1または反射内面110−1bに向けて進む。 The emitted light L1 from the LED element 141 passes through the internal space through the window 130 or the reflective inner surface 110b of the thermally conductive cylinder 110 and the window 130-1 of the thermally conductive and light transmissive disc-shaped cover 120-7 or Proceed toward the reflective inner surface 110-1b.

窓130、130−1に入射した放射光線L1は、熱伝導性円筒110と熱伝導性かつ光透過性円板状カバー120−7から出射して広角照明光線L3となる。 The radiation beam L1 incident on the windows 130 and 130-1 is emitted from the thermally conductive cylinder 110 and the thermally conductive and light transmissive disc-shaped cover 120-7 to become a wide-angle illumination beam L3.

点灯中、LED素子141からの発熱は、順次、回路基板142、熱伝導性部材155を経由して、熱伝導性円筒110と熱伝導性かつ光透過性円板状カバー120−7に伝達、移送され、露出外面110a、110−1aから外気に拡散され熱伝導性円筒110の側周面から外気へ拡散して放熱H2され、かつ熱伝導性かつ光透過性円板状カバー120−7から外気へ拡散して放熱H3される。 During lighting, the heat generated from the LED element 141 is sequentially transmitted to the heat conductive cylinder 110 and the heat conductive and light transmissive disc-shaped cover 120-7 via the circuit board 142 and the heat conductive member 155. From the exposed outer surfaces 110a and 110-1a, diffused to the outside air, diffused from the side peripheral surface of the heat conductive cylinder 110 to the outside air, and dissipated heat H2, and from the heat conductive and light transmissive disc-shaped cover 120-7. It diffuses to the outside air and is dissipated H3.

このようにして、LED電球910Aにおいては、LED素子141からの発熱は、熱伝導性円筒110と熱伝導性かつ光透過性円板状カバー120−7から放散されるので、LED素子141は常時、許容温度以下に保持される。 In this manner, in the LED bulb 910A, the heat generated from the LED element 141 is dissipated from the heat conductive cylinder 110 and the heat conductive and light transmissive disc-shaped cover 120-7. The temperature is kept below the allowable temperature.

図44を参照して実施例21のLED電球920Aについて記載する。図44は、LED電球920Aを示す概略的な縦断面図である。 The LED bulb 920A of Example 21 will be described with reference to FIG. FIG. 44 is a schematic longitudinal sectional view showing the LED bulb 920A.

この実施例21のLED電球920Aは、実施例13のLED電球840Aの変形であり、カバーの構成が異なり、その他の構成はLED電球840Aと同じである。 The LED bulb 920A of the twenty-first embodiment is a modification of the LED bulb 840A of the thirteenth embodiment, the cover configuration is different, and the other configurations are the same as the LED bulb 840A.

実施例13のLED電球840Aの円板状カバー120−1はほぼ全部が光透過性材料からなる光透過性円板状カバー120−1であるのに対して、この実施例21のLED電球920Aのカバーは、熱伝導性かつ光透過性を有する円板状カバー120−7からなる。 The disk-shaped cover 120-1 of the LED bulb 840A of the thirteenth embodiment is almost the light-transmitting disk-shaped cover 120-1 made of a light-transmissive material, whereas the LED bulb 920A of the twenty-first embodiment is used. The cover is composed of a disk-shaped cover 120-7 having heat conductivity and light transmittance.

LED電球920Aは、複数の貫通孔111に光透過性材料を充てんした複数の窓130からなるロート状熱伝導性中空部材810と、ロート状熱伝導性中空部材810の内部空間の下端近辺に配置したLED素子141と回路基板142からなる発光ユニット140と、回路基板142を熱結合して固定する熱伝導性部材150と、発光ユニット140と熱伝導性部材150を収容する熱伝導性ハウジング182と、熱伝導性ハウジング182の下部に固定され点灯回路160を空洞に内蔵した給電用口金170を備える。 The LED bulb 920 </ b> A is disposed in the vicinity of the lower end of the inner space of the funnel-shaped thermally conductive hollow member 810 and the funnel-shaped thermally conductive hollow member 810 including a plurality of windows 130 in which a plurality of through-holes 111 are filled with a light-transmitting material. A light emitting unit 140 composed of the LED element 141 and the circuit board 142, a heat conductive member 150 that thermally couples and fixes the circuit board 142, and a heat conductive housing 182 that houses the light emitting unit 140 and the heat conductive member 150. The power supply cap 170 is fixed to the lower part of the heat conductive housing 182 and includes the lighting circuit 160 in the cavity.

ロート状熱伝導性中空部材810の上部開口を覆うように、熱伝導性かつ光透過性を有する円板状カバー120−7がロート状熱伝導性中空部材810の上端と熱結合して固定され、ロート状熱伝導性中空部材810の下端は熱伝導性ハウジング182の周縁部と熱結合して固定されている。 A disk-shaped cover 120-7 having heat conductivity and light transmittance is fixed by being thermally coupled to the upper end of the funnel-like heat conductive hollow member 810 so as to cover the upper opening of the funnel-like heat conductive hollow member 810. The lower end of the funnel-shaped thermally conductive hollow member 810 is fixed by being thermally coupled to the peripheral edge of the thermally conductive housing 182.

その他の構成は、この実施例21と実施例13は同じであり、同一な構成要素には同一な参照符号を付しているので、ここではその記載を省略する。 The other configurations are the same in the twenty-first embodiment and the thirteenth embodiment, and the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted here.

LED素子141からの放射光線L1は、内部空間を経由してロート状熱伝導性中空部材810の窓130または反射内面と、熱伝導性かつ光透過性円板状カバー120−7の窓130−1または熱伝導性円板110−1の反射内面に向けて進む。 The emitted light L1 from the LED element 141 passes through the internal space, the window 130 or the reflective inner surface of the funnel-shaped thermally conductive hollow member 810, and the window 130- of the thermally conductive and light-transmissive disc-shaped cover 120-7. 1 or towards the reflective inner surface of the thermally conductive disc 110-1.

窓130、130−1に入射した放射光線L1は、熱伝導性円筒810と熱伝導性かつ光透過性円板状カバー120−7から出射して広角照明光線L3となる。 The radiated light beam L1 incident on the windows 130 and 130-1 is emitted from the heat conductive cylinder 810 and the heat conductive and light transmissive disc-shaped cover 120-7 to become a wide-angle illumination light beam L3.

点灯中、LED素子141からの発熱は、順次、回路基板142、熱伝導性部材150、熱伝導性ハウジング182を経由して、ロート状熱伝導性中空部材810と熱伝導性かつ光透過性円板状カバー120−7に伝達、移送され、ロート状熱伝導性中空部材810とその露出外面から外気に拡散され、熱伝導性円筒810の側周面から外気へ放熱H2され、かつ熱伝導性かつ光透過性円板状カバー120−7から外気へ放熱H3される。 During lighting, the heat generated from the LED element 141 sequentially passes through the circuit board 142, the heat conductive member 150, and the heat conductive housing 182, and the funnel-shaped heat conductive hollow member 810 and the heat conductive and light transmissive circle. It is transmitted and transferred to the plate-like cover 120-7, diffused to the outside air from the funnel-like thermally conductive hollow member 810 and its exposed outer surface, and radiated from the side peripheral surface of the thermally conductive cylinder 810 to the outside air, and is thermally conductive. In addition, heat is radiated H3 from the light-transmitting disk-shaped cover 120-7 to the outside air.

このようにして、LED電球920Aにおいては、LED素子141からの発熱は、ロート状熱伝導性中空部材810と熱伝導性かつ光透過性円板状カバー120−7から放散されるので、LED素子141は常時、許容温度以下に保持される。 In this manner, in the LED bulb 920A, the heat generated from the LED element 141 is dissipated from the funnel-like thermally conductive hollow member 810 and the thermally conductive and light-transmissive disc-shaped cover 120-7. 141 is always kept below the allowable temperature.

図45、図46、図47を参照して実施例22(および実施例23)のLED電球930A(実施例22および実施例23)、930A−1(実施例22)について記載する。 With reference to FIGS. 45, 46, and 47, LED bulbs 930A (Example 22 and Example 23) and 930A-1 (Example 22) of Example 22 (and Example 23) will be described.

図45は、実施例22(および実施例23)を示し、複数の部分拡大断面図を含み、一部を正面図とした概略的な縦断面図である。 FIG. 45 is a schematic longitudinal sectional view showing Example 22 (and Example 23), including a plurality of partially enlarged sectional views, and a part of which is a front view.

図46は、図45に光路を記入した実施例22を示す概略的な縦断面図である。 FIG. 46 is a schematic longitudinal sectional view showing Example 22 in which the optical path is shown in FIG.

図45、図46に示すように、LED素子141として紫外光線、青色光線(または紫色光線)からなる短波長一次光線を放射する短波長形LED素子141を用い、この短波長一次光線によって励起され、より波長の長い二次可視光線に変換する蛍光体を蛍光カバー120Aと熱伝導性中空部材110Aの蛍光窓130Aに坦持し、それにより蛍光カバー120Aと蛍光窓130Aから白色照明光線を出射させることができる。 As shown in FIGS. 45 and 46, a short-wavelength LED element 141 that emits a short-wavelength primary light composed of ultraviolet light and blue light (or violet light) is used as the LED element 141, and is excited by the short-wavelength primary light. The phosphor that converts to a secondary visible light having a longer wavelength is carried on the fluorescent cover 120A and the fluorescent window 130A of the thermally conductive hollow member 110A, thereby emitting white illumination light from the fluorescent cover 120A and the fluorescent window 130A. be able to.

実施例22(および実施例23)のLED電球200Aは、上記実施例1と同様に、a)外面と光反射性内面と貫通孔111に蛍光体を含む光透過材料を有する複数のY蛍光窓130Aからなる熱伝導性円筒(熱伝導性中空部材)110Aと、少なくとも一つのLED素子141を回路基板142に実装した発光ユニット140と回路基板142を熱伝導接触して固定する熱伝導性基板150を備えるLEDランプと、b)ハウジング180に内蔵した点灯回路160と給電用口金170からなる。 In the LED bulb 200A of Example 22 (and Example 23), as in Example 1 above, a) a plurality of Y fluorescent windows having a light transmissive material including a phosphor in the outer surface, the light reflective inner surface, and the through-hole 111. A thermally conductive cylinder (thermally conductive hollow member) 110A made of 130A, a light emitting unit 140 on which at least one LED element 141 is mounted on the circuit board 142, and the thermally conductive substrate 150 for fixing the circuit board 142 in thermal conductive contact. And b) a lighting circuit 160 built in the housing 180 and a feeding base 170.

発光ユニット140を搭載した熱伝導性基板150は、熱伝導性円筒110Aの下端(光入射端)の内面110A−bと接触、近接して挿入して配置され、その環状側面が熱伝導性円筒110の下端部と全面的にまたは部分的に熱伝導接触して固定されるように、熱伝導性ネジ、熱伝導性接着材、熱伝導性リベット(鋲止め)、ピン止め、溶着、溶接などの任意の熱伝導性固定手段FMにより円筒110に固定される。 The thermally conductive substrate 150 on which the light emitting unit 140 is mounted is disposed in contact with and in close proximity to the inner surface 110A-b of the lower end (light incident end) of the thermally conductive cylinder 110A, and the annular side surface thereof is the thermally conductive cylinder. Heat conductive screws, heat conductive adhesives, heat conductive rivets (pinnacks), pinning, welding, welding, etc. so as to be fixed in thermal conduction contact with the lower end of 110 in full or partial It is fixed to the cylinder 110 by any thermal conductive fixing means FM.

したがって、発光ユニット140のLED素子141の発熱は、熱伝導経路H1で示すように熱伝導性基板150を経由して熱伝導性円筒110と間接的に熱結合される。 Therefore, the heat generated by the LED element 141 of the light emitting unit 140 is indirectly thermally coupled to the heat conductive cylinder 110 via the heat conductive substrate 150 as indicated by the heat conduction path H1.

これにより動作中にLED素子141で発生した熱は露出した外面110A−aから空気中へ効果的に放散H2され、発光ユニット140のLED素子141は冷却され、常時LED素子141は許容温度以下に保たれる。 As a result, the heat generated in the LED element 141 during operation is effectively dissipated H2 from the exposed outer surface 110A-a into the air, the LED element 141 of the light emitting unit 140 is cooled, and the LED element 141 is always below the allowable temperature. Kept.

図45の部分拡大断面図に示す蛍光カバー120Aは、蛍光カバー120A−1または蛍光カバー120A−2からなる。 The fluorescent cover 120A shown in the partial enlarged cross-sectional view of FIG. 45 includes the fluorescent cover 120A-1 or the fluorescent cover 120A-2.

蛍光カバー120A−1は蛍光カバー120A−1aの内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層120A−1aを形成したものである。 The fluorescent cover 120A-1 is obtained by forming a fluorescent layer 120A-1a made of a transparent material layer containing a plurality of fluorescent particles on the inner surface of the fluorescent cover 120A-1a.

蛍光カバー120A−2は、蛍光カバー120A−2aの内部に複数の蛍光体粒子120A−2bを分散して含有したものである。 The fluorescent cover 120A-2 includes a plurality of fluorescent particles 120A-2b dispersed in the fluorescent cover 120A-2a.

図45の部分拡大断面図に示す蛍光窓130Aは、蛍光窓130A−1、蛍光窓130A−2または蛍光窓130A−3からなる。 The fluorescent window 130A shown in the partial enlarged cross-sectional view of FIG. 45 includes a fluorescent window 130A-1, a fluorescent window 130A-2, or a fluorescent window 130A-3.

蛍光窓130A−1は、光透過性部材130A−1aの内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層130A−1bを形成したものである。 The fluorescent window 130A-1 is obtained by forming a fluorescent layer 130A-1b made of a transparent material layer containing a plurality of fluorescent particles on the inner surface of a light transmitting member 130A-1a.

蛍光窓130A−2は、光透過性部材130A −2aの内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層130A−2bを形成したものである。 The fluorescent window 130A-2 is obtained by forming a fluorescent layer 130A-2b made of a transparent material layer containing a plurality of fluorescent particles on the inner surface of the light transmitting member 130A-2a.

蛍光窓130A−3は、光透過性部材130A−3aの内部に複数の蛍光体粒子130A−3bを分散して含有したものである。 The fluorescent window 130A-3 includes a plurality of phosphor particles 130A-3b dispersed inside the light transmissive member 130A-3a.

図46に示すように、実施例22のLED電球930A−1においては、青色一次光線を放射する青色発光ダイオード素子BL−LED 141と、青色一次光線を黄色二次光線に波長変換する黄色蛍光体を含有する黄色(Y)蛍光カバー120Aと、青色一次光線を黄色二次光線に波長変換する黄色蛍光体を含有する黄色(Y)蛍光窓130Aの組み合わせを用いる。 As shown in FIG. 46, in the LED bulb 930A-1 of Example 22, a blue light emitting diode element BL-LED 141 that emits a blue primary light, and a yellow phosphor that converts the wavelength of the blue primary light into a yellow secondary light. A combination of a yellow (Y) fluorescent cover 120A containing a yellow fluorescent light and a yellow (Y) fluorescent window 130A containing a yellow phosphor that converts the wavelength of a blue primary light into a yellow secondary light is used.

LED素子141からの青色一次光線L1は、Y蛍光カバー120Aに直接向かう青色一次光線L1aと、円筒110のY蛍光窓130Aに向かう青色一次光線L1bと、円筒110の反射内面110A−bに向かう青色一次光線L1cとなる。 The blue primary light beam L1 from the LED element 141 is directly directed to the Y fluorescent cover 120A, the blue primary light beam L1b toward the Y fluorescent window 130A of the cylinder 110, and the blue light beam toward the reflective inner surface 110A-b of the cylinder 110. It becomes the primary light beam L1c.

円筒110の複数のY蛍光窓130Aに向かう青色一次光線L1bの一部は、Y蛍光窓130Aに含まれる黄色蛍光体を励起して黄色二次光線に波長変換され、黄色二次光線と青色一次光線L1bの残部がY蛍光窓130Aから外部に出射して、円筒110の側周面から外部に向かう黄色と青色光線が混色した疑似白色照明光線L2(W=Y+B)となる。 A part of the blue primary light beam L1b toward the plurality of Y fluorescent windows 130A of the cylinder 110 excites the yellow phosphor contained in the Y fluorescent window 130A and is wavelength-converted to the yellow secondary light, and the yellow secondary light and the blue primary light are converted. The remaining part of the light beam L1b is emitted to the outside from the Y fluorescent window 130A, and becomes a pseudo white illumination light beam L2 (W = Y + B) in which yellow and blue light beams are mixed from the side peripheral surface of the cylinder 110 to the outside.

Y蛍光カバー120Aに直接向かう青色一次光線L1aの一部は、Y蛍光カバー120Aに含まれる黄色蛍光体を励起して黄色二次光線に波長変換され、黄色二次光線と青色一次光線L1bの残部がY蛍光カバー120Aから外部に出射して、主としてY蛍光カバー120Aの上方向に向かう黄色と青色光線が混色した疑似白色照明光線L3(W=Y+B)となる。 A part of the blue primary light beam L1a that directly goes to the Y fluorescent cover 120A excites the yellow phosphor contained in the Y fluorescent cover 120A and is wavelength-converted into a yellow secondary light beam, and the remainder of the yellow secondary light beam and the blue primary light beam L1b. Is emitted to the outside from the Y fluorescent cover 120A, and becomes a pseudo white illumination light beam L3 (W = Y + B) in which yellow and blue light beams are mainly mixed in the upward direction of the Y fluorescent cover 120A.

反射内面110A−bに向かう青色一次光線L1cは反射して反射光線L1dとなってY蛍光カバー120A、円筒110の他の反射内面110A−bまたはY蛍光窓130Aに向かって進む。 The blue primary light beam L1c toward the reflective inner surface 110A-b is reflected and becomes a reflected light beam L1d and travels toward the Y fluorescent cover 120A, the other reflective inner surface 110A-b of the cylinder 110, or the Y fluorescent window 130A.

実施例23と前記実施例22の共通な記載はここでは省略する。 Description common to the twenty-third embodiment and the twenty-second embodiment is omitted here.

図47は、図45に光路を記入した実施例23を示す概略的な縦断面図である。 FIG. 47 is a schematic longitudinal sectional view showing Example 23 in which the optical path is shown in FIG.

図47に示すように、実施例23のLED電球930A−2においては、紫外一次光線を放射する紫外発光ダイオード素子UV−LED 141と、紫外一次光線をそれぞれR、G、B二次光線に波長変換する赤色、緑色および青色蛍光体からなる三原色蛍光体を含有するRGB蛍光カバー120Aと、紫外一次光線をR、G、B二次光線に波長変換する赤色、緑色および青色蛍光体からなる三原色蛍光体を含有するRGB蛍光窓130Aの組み合わせを用いる。 As shown in FIG. 47, in the LED bulb 930A-2 of Example 23, the ultraviolet light-emitting diode element UV-LED 141 that radiates the ultraviolet primary light, and the ultraviolet primary light into the R, G, and B secondary lights, respectively. RGB fluorescent cover 120A containing three primary color phosphors composed of red, green and blue phosphors to be converted, and three primary color phosphors composed of red, green and blue phosphors which convert wavelengths of ultraviolet primary light into R, G and B secondary light A combination of RGB fluorescent windows 130A containing body is used.

LED素子141からの紫外一次光線L1は、RGB蛍光カバー120Aに直接向かう紫外一次光線L1aと、円筒110のRGB蛍光窓130Aに向かう紫外一次光線L1bと、円筒110の反射内面110A−bに向かう紫外一次光線L1cとなる。 The ultraviolet primary light L1 from the LED element 141 is directly directed to the RGB fluorescent cover 120A, the ultraviolet primary light L1b directed to the RGB fluorescent window 130A of the cylinder 110, and the ultraviolet light directed to the reflective inner surface 110A-b of the cylinder 110. It becomes the primary light beam L1c.

円筒110の複数のRGB蛍光窓130Aに向かう紫外一次光線L1bは、RGB蛍光窓130Aに含まれるRGB蛍光体を励起してR、G、B二次光線に波長変換され、RGB蛍光窓130Aから外部に出射して、円筒110の側周面から外部に向かうRGB光線が混色した白色照明光線L2(W=Y+B)となる。 The ultraviolet primary light beam L1b directed to the plurality of RGB fluorescent windows 130A of the cylinder 110 excites the RGB phosphors included in the RGB fluorescent window 130A and is wavelength-converted into R, G, and B secondary light beams. The white illumination light beam L2 (W = Y + B) is obtained by mixing the RGB light beams emitted from the side peripheral surface of the cylinder 110 to the outside.

RGB蛍光カバー120Aに直接向かう紫外一次光線L1aは、RGB蛍光カバー120Aに含まれるRGB蛍光体を励起してR、G、B二次光線に波長変換され、RGB蛍光カバー120Aから外部に出射して、主としてRGB蛍光カバー120Aの上方向に向かうRGB光線が混色した白色照明光線L3(W=Y+B)となる。 The ultraviolet primary light beam L1a that goes directly to the RGB fluorescent cover 120A excites the RGB phosphors contained in the RGB fluorescent cover 120A, undergoes wavelength conversion into R, G, and B secondary light beams, and then exits from the RGB fluorescent cover 120A to the outside. The white light beam L3 (W = Y + B), which is a mixture of RGB light beams mainly directed upward in the RGB fluorescent cover 120A.

反射内面110A−bに向かう紫外一次光線L1cは反射して反射光線L1dとなってRGB蛍光カバー120A、円筒110の他の反射内面110A−bまたはRGB蛍光窓130Aに向かって進む。 The ultraviolet primary light beam L1c toward the reflective inner surface 110A-b is reflected and becomes a reflected light beam L1d and travels toward the RGB fluorescent cover 120A, the other reflective inner surface 110A-b of the cylinder 110, or the RGB fluorescent window 130A.

図48、図49を参照して実施例24のLED電球940Aについて記載する。 An LED bulb 940A according to Example 24 will be described with reference to FIGS.

図48は実施例24を示す概略的な縦断面図である。図49は図48に光路を記入した概略的な縦断面図である。 FIG. 48 is a schematic longitudinal sectional view showing Example 24. In FIG. FIG. 49 is a schematic longitudinal sectional view of the optical path shown in FIG.

実施例24のLED電球940Aは、図41を参照して記載した実施例18のLED電球890Aの一変形である。 The LED bulb 940A of Example 24 is a variation of the LED bulb 890A of Example 18 described with reference to FIG.

実施例24のLED電球940Aは、実施例18のLED電球890Aと同様に、熱伝導性かつ光透過性カバー120−5と同様な熱伝導性かつ光透過性カバー120−5を用いることができる。 Similarly to the LED bulb 890A of the eighteenth embodiment, the LED bulb 940A of the twenty-fourth embodiment can use the heat conductive and light transmissive cover 120-5 similar to the thermally conductive and light transmissive cover 120-5. .

実施例24のLED電球940Aは、実施例18のLED電球890Aと異なり、熱伝導性ロート状部材810の下端と熱結合して接続されたなほぼU字形断面を有する熱伝導性底蓋812を備え、熱伝導性底蓋812の底面の中心から内部空間に延びる熱伝導性中空支柱152の上部に熱伝導基板150の底面が熱結合して固定されている。 Unlike the LED bulb 890A of the eighteenth embodiment, the LED bulb 940A of the twenty-fourth embodiment includes a thermally conductive bottom lid 812 having a substantially U-shaped cross section that is thermally coupled to the lower end of the thermally conductive funnel-shaped member 810. The bottom surface of the heat conductive substrate 150 is fixed to the upper portion of the heat conductive hollow column 152 extending from the center of the bottom surface of the heat conductive bottom lid 812 to the internal space by thermal coupling.

熱伝導基板150の上面に、側面(サイド)放射形LED素子141−1、頂面(トップ)放射形LED素子141−2と回路基板142からなる発光ユニット140が熱結合して固定され、発光ユニット140は、熱伝導性中空支柱152の上部に配置され熱伝導性中空支柱152、熱伝導性底蓋812を経由して熱伝導経路H1に従い熱伝導性ロート状部材810と熱結合される。 A light emitting unit 140 comprising a side radiation LED element 141-1, a top radiation LED element 141-2, and a circuit board 142 is thermally coupled and fixed to the upper surface of the heat conductive substrate 150 to emit light. The unit 140 is disposed on the top of the heat conductive hollow support 152 and is thermally coupled to the heat conductive funnel-shaped member 810 through the heat conductive hollow support 152 and the heat conductive bottom cover 812 along the heat transfer path H1.

LED素子141は熱伝導性中空支柱152の線状中空部に配置された配線WRを経由して口金170の空洞に配置された点灯回路160の直流出力が供給され点灯される。 The LED element 141 is lit by being supplied with the DC output of the lighting circuit 160 disposed in the cavity of the base 170 via the wiring WR disposed in the linear hollow portion of the thermally conductive hollow support column 152.

発光ユニット140は、熱伝導性かつ光透過性カバー120−5と熱伝導性ドーム状部材110−1との結合部から横方向の距離d1離れて配置され、発光ユニット140の上部の空間HS1と下部空間HS2が連通し、光線の通過を許す光通路となる。 The light emitting unit 140 is disposed at a distance d1 in the lateral direction from the coupling portion between the heat conductive and light transmissive cover 120-5 and the heat conductive dome-shaped member 110-1, and the space HS1 above the light emitting unit 140 is disposed. The lower space HS2 communicates with each other and becomes an optical path that allows passage of light rays.

熱伝導性かつ光透過性カバー120−5は、複数の貫通孔111に複数の光散乱粒子(光拡散粒子)または複数の蛍光体粒子を含有した光透過性材料を充てんした複数の散乱性または蛍光性窓130−1を有する熱伝導性ドーム状部材110−1からなる。 The heat-conductive and light-transmissive cover 120-5 has a plurality of scattering properties in which a plurality of light-transmitting materials containing a plurality of light scattering particles (light diffusion particles) or a plurality of phosphor particles are filled in the plurality of through holes 111. It consists of a thermally conductive dome-shaped member 110-1 having a fluorescent window 130-1.

熱伝導性ロート状部材810は、複数の貫通孔111に(望ましくは複数の光散乱粒子(光拡散粒子)または複数の蛍光体粒子を含有した)光透過性材料を充てんした複数の光散乱性または蛍光性窓130を有する。 The thermally conductive funnel-shaped member 810 has a plurality of light scattering properties in which a plurality of through-holes 111 are filled with a light-transmitting material (desirably containing a plurality of light scattering particles (light diffusion particles) or a plurality of phosphor particles). Alternatively, a fluorescent window 130 is provided.

LED素子141からの放射光線L1−1、L1−2は、熱伝導性かつ光透過性カバー120−5に向って進み、放射光線L1の一部が熱伝導性かつ光透過性カバー120−5の光散乱性または蛍光性窓130−1から出射して照明光線L3となる。 The radiation rays L1-1 and L1-2 from the LED element 141 travel toward the thermally conductive and light transmissive cover 120-5, and a part of the radiation light L1 is thermally conductive and light transmissive cover 120-5. Is emitted from the light scattering or fluorescent window 130-1 to become an illumination light beam L3.

窓130−1が光散乱性粒子または蛍光性粒子を含有するときには、窓130−1に入射した放射光線L1−1、L1−2は、ほぼ無指向性、全方向性の光散乱性光線または蛍光性光線となるので、光散乱性光線または蛍光性光線は、照明光線L3として外部に出射するのみならず、一部が上部空間HS1に戻り、下部空間HS2に向かって進むことに留意されたい。 When the window 130-1 contains light-scattering particles or fluorescent particles, the radiation rays L1-1 and L1-2 incident on the window 130-1 are substantially omnidirectional, omnidirectional light-scattering rays or It should be noted that since it becomes a fluorescent ray, the light-scattering ray or the fluorescent ray not only exits to the outside as the illumination ray L3, but part thereof returns to the upper space HS1 and proceeds toward the lower space HS2. .

放射光線L1−1、L1−2の残部は、熱伝導性かつ光透過性カバー120−5の光反射性内面110−1bで反射してカバー120−5の内側の上部空間HS1から熱伝導性ロート状部材810の内側の下部空間HS2に進む。 The remaining portions of the radiation rays L1-1 and L1-2 are reflected by the light-reflecting inner surface 110-1b of the thermally conductive and light-transmissive cover 120-5, and are thermally conductive from the upper space HS1 inside the cover 120-5. Proceed to the lower space HS2 inside the funnel-shaped member 810.

熱伝導性ロート状部材810の下部空間HS2に進んだ放射光線L1−1、L1−2は、一部が熱伝導性ロート状部材810の窓130に向かって進み、窓130で散乱または波長変換されて熱伝導性ロート状部材810の周面から出射し照明光線L2となる。 The radiation rays L1-1 and L1-2 that have traveled to the lower space HS2 of the heat conductive funnel-shaped member 810 partially travel toward the window 130 of the heat conductive funnel-shaped member 810, and are scattered or wavelength-converted by the window 130. Then, it is emitted from the peripheral surface of the heat conductive funnel-shaped member 810 and becomes an illumination light beam L2.

熱伝導性ロート状部材810の下部空間HS2に進んだ放射光線L1−1、L1−2は、残部が熱伝導性ロート状部材810の反射内面110bに向かって進み、反射内面110bで反射して更に他の反射内面110bまたは他の窓130に向かって進む。 Radiation rays L1-1 and L1-2 that have traveled to the lower space HS2 of the heat conductive funnel-shaped member 810 travel toward the reflective inner surface 110b of the heat conductive funnel-shaped member 810, and are reflected by the reflective inner surface 110b. Further, it proceeds toward another reflective inner surface 110b or another window 130.

このようにして、LED電球940Aは熱伝導性かつ光透過性カバー120−5から出射する照明光線L3により上方向(または下方向)を照明するのみならず、ロート状部材810の周側面から出射する照明光線L2により側面方向(横方向)を照明できるので、ほぼ全方向を照明できるLED電球を提供できる。 In this way, the LED bulb 940A not only illuminates the upper direction (or the lower direction) with the illumination light beam L3 emitted from the thermally conductive and light-transmissive cover 120-5, but also emits from the peripheral side surface of the funnel-shaped member 810. Since the illumination light beam L2 can illuminate the side direction (lateral direction), an LED bulb that can illuminate almost all directions can be provided.

点灯中、LED素子141からの発熱は、熱伝導経路H1、H1aに従い、順次、回路基板142、熱伝導性部材150、熱伝導性中空支柱152、熱伝導性底蓋812を経由して、熱伝導性ロート状部材810に伝達、移送され、外面810aから外気に拡散され放熱HS2される。 During lighting, the heat generated from the LED element 141 follows the heat conduction paths H1 and H1a and sequentially passes through the circuit board 142, the heat conductive member 150, the heat conductive hollow column 152, and the heat conductive bottom cover 812. It is transmitted and transferred to the conductive funnel-shaped member 810, diffused from the outer surface 810a to the outside air, and dissipated heat HS2.

更に、LED素子141からの発熱は熱伝導性円筒810の上端から光透過性かつ熱伝導性カバー120−5に伝達、移送され、カバー120−5の外面110−1aから外気に拡散され放熱H3される。 Further, the heat generated from the LED element 141 is transmitted and transferred from the upper end of the heat conductive cylinder 810 to the light transmissive and heat conductive cover 120-5, diffused from the outer surface 110-1a of the cover 120-5 to the outside air, and radiated heat H3. Is done.

このようにして、LED電球940Aにおいては、LED素子141からの発熱は、伝導性ロート状部材810の外面810aと光透過性かつ熱伝導性カバー120−5のほぼ全面から放散されるので、LED素子141は常時、許容温度以下に保持される。 In this manner, in the LED bulb 940A, the heat generated from the LED element 141 is dissipated from the outer surface 810a of the conductive funnel-shaped member 810 and the almost entire surface of the light-transmissive and heat-conductive cover 120-5. The element 141 is always kept below the allowable temperature.

図50、図51を参照して実施例25のLED電球950Aについて記載する。 An LED bulb 950A of Example 25 will be described with reference to FIGS.

図50は実施例25を示す概略的な縦断面図である。図51は図50に光路を記入した概略的な縦断面図である。 50 is a schematic longitudinal sectional view showing Example 25. FIG. FIG. 51 is a schematic longitudinal sectional view of the optical path shown in FIG.

実施例25のLED電球950Aは、図45、図46を参照して記載した実施例23のLED電球940Aにおける蛍光カバー120Aと図49、図50を参照して記載した実施例24のLED電球940Aにおける熱伝導性ロート状部材810を組み合わせたものである。 The LED bulb 950A of Example 25 includes the fluorescent cover 120A in the LED bulb 940A of Example 23 described with reference to FIGS. 45 and 46, and the LED bulb 940A of Example 24 described with reference to FIGS. 49 and 50. The heat conductive funnel-shaped member 810 is combined.

実施例24のLED電球940Aにおいては熱伝導性かつ光透過性カバー120−5を用いているが、実施例25のLED電球950Aにおいては熱伝導性かつ光透過性カバー120−5の替わりに実施例23のLED電球940Aと同じ蛍光カバー120Aを用いている。 The LED light bulb 940A of Example 24 uses the heat conductive and light transmissive cover 120-5, but the LED light bulb 950A of Example 25 implements instead of the heat conductive and light transmissive cover 120-5. The same fluorescent cover 120A as the LED bulb 940A of Example 23 is used.

実施例25のLED電球950Aは、実施例24のLED電球940Aと同様に、熱伝導性ロート状部材810の下端と熱結合して接続されたほぼU字形断面を有する熱伝導性底蓋812を備え、熱伝導性底蓋812の底面の中心から内部空間に延びる熱伝導性中空支柱152の上部に熱伝導基板150の底面が熱結合して固定されている。 Similar to the LED bulb 940A of the twenty-fourth embodiment, the LED bulb 950A of the twenty-fifth embodiment includes a thermally conductive bottom lid 812 having a substantially U-shaped cross section connected in thermal coupling with the lower end of the thermally conductive funnel-shaped member 810. The bottom surface of the heat conductive substrate 150 is fixed to the upper portion of the heat conductive hollow column 152 extending from the center of the bottom surface of the heat conductive bottom lid 812 to the internal space by thermal coupling.

熱伝導基板150の上面に、側面(サイド)放射形LED素子141−1、頂面(トップ)放射形LED素子141−2と回路基板142からなる発光ユニット140が熱結合して固定され、発光ユニット140は、熱伝導性中空支柱152の上部に配置され、熱伝導性中空支柱152、熱伝導性底蓋812を経由して熱伝導経路H1に従い熱伝導性ロート状部材810と熱結合される。 A light emitting unit 140 comprising a side radiation LED element 141-1, a top radiation LED element 141-2, and a circuit board 142 is thermally coupled and fixed to the upper surface of the heat conductive substrate 150 to emit light. The unit 140 is disposed on the upper part of the heat conductive hollow support column 152 and is thermally coupled to the heat conductive funnel-shaped member 810 through the heat conductive hollow support column 152 and the heat conductive bottom cover 812 along the heat transfer path H1. .

LED素子141は熱伝導性中空支柱152の線状中空部に配置された配線WRを経由して口金170の空洞に配置された点灯回路160の直流出力が供給され点灯される。 The LED element 141 is lit by being supplied with the DC output of the lighting circuit 160 disposed in the cavity of the base 170 via the wiring WR disposed in the linear hollow portion of the thermally conductive hollow support column 152.

発光ユニット140は、蛍光カバー120Aと熱伝導性ロート状部材810との結合部から横方向に所定距離d1離れて配置され、発光ユニット140の上部の空間HS1と下部空間HS2が連通し、光線の通過を許す光通路となる。 The light emitting unit 140 is disposed at a predetermined distance d1 in the lateral direction from the coupling portion between the fluorescent cover 120A and the heat conductive funnel-shaped member 810, and the upper space HS1 and the lower space HS2 of the light emitting unit 140 communicate with each other. It becomes a light passage that allows passage.

図50における部分拡大断面図に示すように、蛍光カバー120Aとして蛍光カバー120A−1または蛍光カバー120A−2が用いられる。 As shown in the partially enlarged sectional view in FIG. 50, the fluorescent cover 120A-1 or the fluorescent cover 120A-2 is used as the fluorescent cover 120A.

蛍光カバー120A−1は蛍光カバー120A−1aの内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層120A−1aを形成したものである。 The fluorescent cover 120A-1 is obtained by forming a fluorescent layer 120A-1a made of a transparent material layer containing a plurality of fluorescent particles on the inner surface of the fluorescent cover 120A-1a.

蛍光カバー120A−2は、蛍光カバー120A−2aの内部に複数の蛍光体粒子120A−2bを分散して含有したものである。 The fluorescent cover 120A-2 includes a plurality of fluorescent particles 120A-2b dispersed in the fluorescent cover 120A-2a.

熱伝導性ロート状部材810は、複数の貫通孔111に複数の蛍光体粒子を含有した光透過性材料を充てんした複数の蛍光性窓130を有する。蛍光性窓130に、更に複数の光散乱粒子(光拡散粒子)を含有するのが望ましい。 The heat conductive funnel-shaped member 810 has a plurality of fluorescent windows 130 in which a plurality of through-holes 111 are filled with a light transmissive material containing a plurality of phosphor particles. It is desirable that the fluorescent window 130 further contain a plurality of light scattering particles (light diffusion particles).

青色(BL)一次光線L1−1、L1−2を放射するBL形LED素子141を用いる場合には、主として黄色蛍光体を坦持した蛍光カバー120Aを用いる。 When the BL type LED element 141 that emits the blue (BL) primary rays L1-1 and L1-2 is used, a fluorescent cover 120A that mainly carries a yellow phosphor is used.

紫外(UV)一次光線L1−1、L1−2を放射するUV形LED素子141を用いる場合には、三原色(RGB)蛍光体を坦持した蛍光カバー120Aを用いる。 When using the UV-type LED element 141 that emits ultraviolet (UV) primary rays L1-1 and L1-2, a fluorescent cover 120A carrying three primary color (RGB) phosphors is used.

青色(BL)または紫外光線(UV)からなる短波長光線を放射する短波長形LED素子141からのBL、UV一次光線L1−1、L1−2は、蛍光カバー120Aに向って進み、波長変換されてより波長の長い可視二次光線に変換される。 BL and UV primary light beams L1-1 and L1-2 from the short wavelength LED element 141 that emits a short wavelength light beam of blue (BL) or ultraviolet light (UV) proceed toward the fluorescent cover 120A, and wavelength conversion is performed. And converted into a visible secondary ray having a longer wavelength.

BL形LED素子141を用いる場合には、青色一次光線L1−1、L1−2によって励起された黄色蛍光体から発する可視二次光線は黄色光線であり、この黄色光線と透過した一部の青色一次光線と混色して蛍光カバー120Aの外部に出射し、疑似白色照明光線L3となる。残部が蛍光カバー120Aの内部空間HS1、HS2に戻る黄色光線L3'となる。 When the BL-type LED element 141 is used, the visible secondary light emitted from the yellow phosphor excited by the blue primary light L1-1 and L1-2 is a yellow light, and a part of the blue light transmitted through the yellow light is transmitted. It is mixed with the primary light and emitted to the outside of the fluorescent cover 120A to become a pseudo white illumination light L3. The remaining portion becomes the yellow light beam L3 ′ returning to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

黄色蛍光体から発する可視二次光線はほぼ無指向性、全方向性の光散乱性、光拡散性を有する黄色二次光線となるので、二次光線は、照明光線L3として外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む黄色二次光線L3'となる。 The visible secondary light emitted from the yellow phosphor becomes a yellow secondary light having almost omnidirectional, omnidirectional light scattering, and light diffusivity, so that the secondary light is only emitted to the outside as the illumination light L3. Instead, the remaining part returns to the internal space HS1 of the fluorescent cover 120A, and becomes the yellow secondary light L3 ′ that proceeds to the internal space HS2.

青色一次光線L1−1、L1−2の一部は、蛍光カバー120Aの蛍光体および、または散乱粒子で反射されて蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む。 Part of the blue primary light beams L1-1 and L1-2 is reflected by the phosphor of the fluorescent cover 120A and / or scattering particles, returns to the internal space HS1 of the fluorescent cover 120A, and proceeds to the internal space HS2.

熱伝導性ロート状部材810の内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、一部が熱伝導性ロート状部材810の窓130に向かって進み、窓130で熱伝導性ロート状部材810の周面から出射し照明光線L4となる。 Some of the yellow secondary light L3 ′ and the blue primary light that have traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travel toward the window 130 of the heat conductive funnel-shaped member 810, and the window 130 is thermally conductive. It emits from the peripheral surface of the funnel-shaped member 810 and becomes an illumination light beam L4.

熱伝導性ロート状部材810の内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、残部が熱伝導性ロート状部材810の反射内面810bに向かって進み、反射内面810bで反射して更に他の反射内面810bまたは他の窓130に向かって進む。 The yellow secondary light beam L3 ′ and the blue primary light beam that have traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travel toward the reflective inner surface 810b of the heat conductive funnel-shaped member 810, and are reflected by the reflective inner surface 810b. And proceed toward another reflective inner surface 810b or another window 130.

UV形LED素子141を用いる場合には、紫外一次光線L1−1、L1−2によって励起された三原色(RBG)蛍光体から発する可視二次光線は三原色(RBG)が混色した白色二次光線であり、白色二次光線は蛍光カバー120Aの外部に出射し、白色照明光線L3となる。残部が蛍光カバー120Aの内部空間HS1、HS2に戻る白色光線L3'となる。 When the UV LED element 141 is used, the visible secondary light emitted from the three primary color (RBG) phosphors excited by the ultraviolet primary light L1-1 and L1-2 is a white secondary light in which the three primary colors (RBG) are mixed. Yes, the white secondary light is emitted to the outside of the fluorescent cover 120A and becomes the white illumination light L3. The remaining portion becomes the white light beam L3 ′ that returns to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

RBG蛍光体から発する可視二次光線はほぼ光散乱性、光拡散性を有する無指向性、全方向性の白色二次光線となるので、白色二次光線は、白色照明光線L3として外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む白色光線L3'となる。 Visible secondary light emitted from the RBG phosphor is almost non-directional and omnidirectional white secondary light having light scattering properties and light diffusibility, so the white secondary light is emitted to the outside as white illumination light L3. In addition, the remaining portion returns to the internal space HS1 of the fluorescent cover 120A, and becomes a white light ray L3 ′ that proceeds to the internal space HS2.

UV形LED素子141を用いる場合には、紫外線が蛍光カバー120Aの外部に漏洩しないように、蛍光体の含有量を増加させ、または蛍光カバー120Aの外面に可視光線を透過し紫外線を遮断する紫外応答形光触媒膜または光学積層膜などからなる紫外線遮断層を設けるのが望ましい。 When using the UV-type LED element 141, the content of the phosphor is increased so that the ultraviolet rays do not leak outside the fluorescent cover 120A, or the ultraviolet rays that transmit visible light to the outer surface of the fluorescent cover 120A and block the ultraviolet rays. It is desirable to provide an ultraviolet blocking layer comprising a responsive photocatalytic film or an optical laminated film.

熱伝導性ロート状部材810の内部空間HS2に進んだ白色二次光線L3'は、一部が熱伝導性ロート状部材810の窓130に向かって進み、窓130で熱伝導性ロート状部材810の周面から出射し照明光線L4となる。 Part of the white secondary light L3 ′ that has traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travels toward the window 130 of the heat conductive funnel-shaped member 810, and the heat conductive funnel-shaped member 810 passes through the window 130. Is emitted from the peripheral surface to become an illumination light beam L4.

熱伝導性ロート状部材810の内部空間HS2に進んだ白色二次光線L3'は、残部が熱伝導性ロート状部材810の反射内面810bに向かって進み、反射内面810bで反射して更に他の反射内面810bまたは他の窓130に向かって進む。 The white secondary light L3 ′ that has traveled into the internal space HS2 of the heat conductive funnel-shaped member 810 travels toward the reflective inner surface 810b of the heat conductive funnel-shaped member 810, and is reflected by the reflective inner surface 810b to be further reflected. Proceed toward the reflective inner surface 810b or other window 130.

このようにして、LED電球950Aは、蛍光カバー120Aから出射する照明光線L3により上方向(または下方向)を照明するのみならず、ロート状部材810の周側面から出射する照明光線L4により側面方向(横方向)を照明できるので、ほぼ全方向を照明できるLED電球を提供できる。 In this way, the LED bulb 950A not only illuminates the upper direction (or the lower direction) with the illumination light beam L3 emitted from the fluorescent cover 120A, but also the side surface direction with the illumination light beam L4 emitted from the peripheral side surface of the funnel-shaped member 810. Since (horizontal direction) can be illuminated, an LED bulb capable of illuminating almost all directions can be provided.

点灯中、LED素子141からの発熱は、熱伝導経路H1、H1aに従い、順次、回路基板142、熱伝導性部材150、熱伝導性中空支柱152、熱伝導性底蓋812を経由して、熱伝導性ロート状部材810に伝達、移送され、外面810aから外気に拡散され放熱HS2される。 During lighting, the heat generated from the LED element 141 follows the heat conduction paths H1 and H1a and sequentially passes through the circuit board 142, the heat conductive member 150, the heat conductive hollow column 152, and the heat conductive bottom cover 812. It is transmitted and transferred to the conductive funnel-shaped member 810, diffused from the outer surface 810a to the outside air, and dissipated heat HS2.

このようにして、LED電球950Aにおいては、LED素子141からの発熱は、熱伝導性ロート状部材810の外面810aから放散されるので、LED素子141は常時、許容温度以下に保持される。 In this way, in the LED bulb 950A, the heat generated from the LED element 141 is dissipated from the outer surface 810a of the heat conductive funnel-shaped member 810, so that the LED element 141 is always kept below the allowable temperature.

図52、図53、図54を参照して実施例26のLED電球960Aについて記載する。 An LED light bulb 960A of Example 26 will be described with reference to FIGS.

図52は実施例26を示す概略的な縦断面図である。図53は発光ユニットの支持部材を示す概略的な平面図である。図54は図52に光路を記入した概略的な縦断面図である。 FIG. 52 is a schematic longitudinal sectional view showing Example 26. In FIG. FIG. 53 is a schematic plan view showing a support member of the light emitting unit. 54 is a schematic longitudinal sectional view in which the optical path is shown in FIG.

実施例26のLED電球960Aは、図50、図51を参照して記載した実施例25のLED電球950Aの一変形である。 An LED bulb 960A of Example 26 is a variation of the LED bulb 950A of Example 25 described with reference to FIGS.

実施例26のLED電球960Aは、実施例25のLED電球950Aと同様に、蛍光カバー120Aと熱伝導性ロート状部材810を組み合わせたものである。 The LED bulb 960A of Example 26 is a combination of the fluorescent cover 120A and the heat conductive funnel-like member 810, like the LED bulb 950A of Example 25.

発光ユニット140は、少なくとも一つのLED素子と回路基板142からなり、少なくとも一つのLED素子は側面(サイド)放射形LED素子141−1、頂面(トップ)放射形LED素子141−2からなることができる。 The light emitting unit 140 includes at least one LED element and a circuit board 142. The at least one LED element includes a side-emitting LED element 141-1 and a top-emitting LED element 141-2. Can do.

実施例25のLED電球950Aにおいては、発光ユニット140は熱伝導性底蓋812から中空空間に延びる熱伝導性中空支柱152の上部に支持され中空空間に配置されている。 In the LED light bulb 950A of Example 25, the light emitting unit 140 is supported on the upper part of the thermally conductive hollow support 152 extending from the thermally conductive bottom lid 812 to the hollow space, and is disposed in the hollow space.

これと異なり実施例26のLED電球960Aにおいては、発光ユニット140はそれと固定された高熱伝導基板156の周端から横方向に放射状に延びる複数(図53では4本)の熱伝導性線状部材(アーム、腕)157と線状部材157の先端に熱結合して固定された熱伝導性環状固定部157aからなる支持部材によって中空空間に配置されている。 In contrast, in the LED light bulb 960A of Example 26, the light emitting unit 140 has a plurality (four in FIG. 53) of thermally conductive linear members extending radially from the peripheral end of the high thermal conductive substrate 156 fixed thereto. (Arm, arm) 157 and a support member made of a thermally conductive annular fixing portion 157a fixed by thermal coupling to the tip of the linear member 157 are arranged in the hollow space.

環状固定部157aは熱伝導性ロート状部材810の内面に熱結合して固定されて、発光ユニット140は中空空間の所定位置に配置される。 The annular fixing portion 157a is thermally coupled and fixed to the inner surface of the heat conductive funnel-shaped member 810, and the light emitting unit 140 is disposed at a predetermined position in the hollow space.

このようにして、発光ユニット140は、熱伝導経路H1に従い高熱伝導基板156を経由して、熱伝導性線状部材157と熱結合され、更に熱伝導経路H1aに従い熱伝導性環状固定部157aを経由して熱伝導性ロート状部材810の熱伝導内面と熱結合される。 In this way, the light emitting unit 140 is thermally coupled to the heat conductive linear member 157 via the high heat conductive substrate 156 according to the heat conduction path H1, and further includes the heat conductive annular fixing portion 157a according to the heat conduction path H1a. Via, the heat conductive inner surface of the heat conductive funnel-shaped member 810 is thermally coupled.

図53に示すように、隣接する複数の線状部材157の間に複数の扇状の開口領域158が存在するので、発光ユニット140の上部の空間HS1と下部空間HS2が連通し、光線の通過を許す光通路となる。 As shown in FIG. 53, since there are a plurality of fan-shaped opening areas 158 between a plurality of adjacent linear members 157, the upper space HS1 and the lower space HS2 of the light emitting unit 140 communicate with each other, and the passage of light rays can be performed. It will be a light path to allow.

LED素子141は配線WRを経由して口金170の空洞に配置された点灯回路160の直流出力が供給され点灯される。 The LED element 141 is lit by the direct current output of the lighting circuit 160 disposed in the cavity of the base 170 via the wiring WR.

図52における部分拡大断面図に示すように、蛍光カバー120Aとして蛍光カバー120A−1または蛍光カバー120A−2が用いられる。 As shown in the partially enlarged sectional view in FIG. 52, the fluorescent cover 120A-1 or the fluorescent cover 120A-2 is used as the fluorescent cover 120A.

蛍光カバー120A−1は蛍光カバー120A−1aの内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層120A−1aを形成したものである。 The fluorescent cover 120A-1 is obtained by forming a fluorescent layer 120A-1a made of a transparent material layer containing a plurality of fluorescent particles on the inner surface of the fluorescent cover 120A-1a.

蛍光カバー120A−2は、蛍光カバー120A−2aの内部に複数の蛍光体粒子120A−2bを分散して含有したものである。 The fluorescent cover 120A-2 includes a plurality of fluorescent particles 120A-2b dispersed in the fluorescent cover 120A-2a.

熱伝導性ロート状部材810は、複数の貫通孔111に複数の蛍光体粒子を含有した光透過性材料を充てんした複数の蛍光性窓130を有する。蛍光性窓130に、更に複数の光散乱粒子(光拡散粒子)を含有するのが望ましい。 The heat conductive funnel-shaped member 810 has a plurality of fluorescent windows 130 in which a plurality of through-holes 111 are filled with a light transmissive material containing a plurality of phosphor particles. It is desirable that the fluorescent window 130 further contain a plurality of light scattering particles (light diffusion particles).

青色(BL)一次光線L1−1、L1−2を放射するBL形LED素子141を用いる場合には、主として黄色蛍光体を坦持した蛍光カバー120Aを用いる。 When the BL type LED element 141 that emits the blue (BL) primary rays L1-1 and L1-2 is used, a fluorescent cover 120A that mainly carries a yellow phosphor is used.

紫外(UV)一次光線L1−1、L1−2を放射するUV形LED素子141を用いる場合には、三原色(RGB)蛍光体を坦持した蛍光カバー120Aを用いる。 When using the UV-type LED element 141 that emits ultraviolet (UV) primary rays L1-1 and L1-2, a fluorescent cover 120A carrying three primary color (RGB) phosphors is used.

青色(BL)または紫外光線(UV)からなる短波長光線を放射する短波長形LED素子141からのBL、UV一次光線L1−1、L1−2は、蛍光カバー120Aに向って進み、波長変換されてより波長の長い可視二次光線に変換される。 BL and UV primary light beams L1-1 and L1-2 from the short wavelength LED element 141 that emits a short wavelength light beam of blue (BL) or ultraviolet light (UV) proceed toward the fluorescent cover 120A, and wavelength conversion is performed. And converted into a visible secondary ray having a longer wavelength.

BL形LED素子141を用いる場合には、青色一次光線L1−1、L1−2によって励起された黄色蛍光体から発する可視二次光線は黄色光線であり、この黄色光線と透過した一部の青色一次光線と混色して蛍光カバー120Aの外部に出射し、疑似白色照明光線L3となる。残部が蛍光カバー120Aの内部空間HS1、HS2に戻る黄色光線L3'となる。 When the BL-type LED element 141 is used, the visible secondary light emitted from the yellow phosphor excited by the blue primary light L1-1 and L1-2 is a yellow light, and a part of the blue light transmitted through the yellow light is transmitted. It is mixed with the primary light and emitted to the outside of the fluorescent cover 120A to become a pseudo white illumination light L3. The remaining portion becomes the yellow light beam L3 ′ returning to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

黄色蛍光体から発する可視二次光線はほぼ無指向性、全方向性の光散乱性、光拡散性を有する黄色二次光線となるので、二次光線は、照明光線L3として外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む黄色二次光線L3'となる。 The visible secondary light emitted from the yellow phosphor becomes a yellow secondary light having almost omnidirectional, omnidirectional light scattering, and light diffusivity, so that the secondary light is only emitted to the outside as the illumination light L3. Instead, the remaining part returns to the internal space HS1 of the fluorescent cover 120A, and becomes the yellow secondary light L3 ′ that proceeds to the internal space HS2.

青色一次光線L1−1、L1−2の一部は、蛍光カバー120Aの蛍光体および、または散乱粒子で反射されて蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む。 Part of the blue primary light beams L1-1 and L1-2 is reflected by the phosphor of the fluorescent cover 120A and / or scattering particles, returns to the internal space HS1 of the fluorescent cover 120A, and proceeds to the internal space HS2.

熱伝導性ロート状部材810の内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、一部が熱伝導性ロート状部材810の窓130に向かって進み、窓130で熱伝導性ロート状部材810の周面から出射し照明光線L4となる。 Some of the yellow secondary light L3 ′ and the blue primary light that have traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travel toward the window 130 of the heat conductive funnel-shaped member 810, and the window 130 is thermally conductive. It emits from the peripheral surface of the funnel-shaped member 810 and becomes an illumination light beam L4.

熱伝導性ロート状部材810の内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、残部が熱伝導性ロート状部材810の反射内面810bに向かって進み、反射内面810bで反射して更に他の反射内面810bまたは他の窓130に向かって進む。 The yellow secondary light beam L3 ′ and the blue primary light beam that have traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travel toward the reflective inner surface 810b of the heat conductive funnel-shaped member 810, and are reflected by the reflective inner surface 810b. And proceed toward another reflective inner surface 810b or another window 130.

UV形LED素子141を用いる場合には、紫外一次光線L1−1、L1−2によって励起された三原色(RBG)蛍光体から発する可視二次光線は三原色(RBG)が混色した白色二次光線であり、白色二次光線は蛍光カバー120Aの外部に出射し、白色照明光線L3となる。残部が蛍光カバー120Aの内部空間HS1、HS2に戻る白色光線L3'となる。 When the UV LED element 141 is used, the visible secondary light emitted from the three primary color (RBG) phosphors excited by the ultraviolet primary light L1-1 and L1-2 is a white secondary light in which the three primary colors (RBG) are mixed. Yes, the white secondary light is emitted to the outside of the fluorescent cover 120A and becomes the white illumination light L3. The remaining portion becomes the white light beam L3 ′ that returns to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

RBG蛍光体から発する可視二次光線はほぼ光散乱性、光拡散性を有する無指向性、全方向性の白色二次光線となるので、白色二次光線は、白色照明光線L3として外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む白色光線L3'となる。 Visible secondary light emitted from the RBG phosphor is almost non-directional and omnidirectional white secondary light having light scattering properties and light diffusibility, so the white secondary light is emitted to the outside as white illumination light L3. In addition, the remaining portion returns to the internal space HS1 of the fluorescent cover 120A, and becomes a white light ray L3 ′ that proceeds to the internal space HS2.

UV形LED素子141を用いる場合には、紫外線が蛍光カバー120Aの外部に漏洩しないように、蛍光体の含有量を増加させ、または蛍光カバー120Aの外面に可視光線を透過し紫外線を遮断する紫外応答形光触媒膜または光学積層膜などからなる紫外線遮断層を設けるのが望ましい。 When using the UV-type LED element 141, the content of the phosphor is increased so that the ultraviolet rays do not leak outside the fluorescent cover 120A, or the ultraviolet rays that transmit visible light to the outer surface of the fluorescent cover 120A and block the ultraviolet rays. It is desirable to provide an ultraviolet blocking layer comprising a responsive photocatalytic film or an optical laminated film.

熱伝導性ロート状部材810の内部空間HS2に進んだ白色二次光線L3'は、一部が熱伝導性ロート状部材810の窓130に向かって進み、窓130で熱伝導性ロート状部材810の周面から出射し照明光線L4となる。 Part of the white secondary light L3 ′ that has traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travels toward the window 130 of the heat conductive funnel-shaped member 810, and the heat conductive funnel-shaped member 810 passes through the window 130. Is emitted from the peripheral surface to become an illumination light beam L4.

熱伝導性ロート状部材810の内部空間HS2に進んだ白色二次光線L3'は、残部が熱伝導性ロート状部材810の反射内面810bに向かって進み、反射内面810bで反射して更に他の反射内面810bまたは他の窓130に向かって進む。 The white secondary light L3 ′ that has traveled into the internal space HS2 of the heat conductive funnel-shaped member 810 travels toward the reflective inner surface 810b of the heat conductive funnel-shaped member 810, and is reflected by the reflective inner surface 810b to be further reflected. Proceed toward the reflective inner surface 810b or other window 130.

このようにして、LED電球960Aは、蛍光カバー120Aから出射する照明光線L3により上方向(または下方向)を照明するのみならず、ロート状部材810の周側面から出射する照明光線L4により側面方向(横方向)を照明できるので、ほぼ全方向を照明できるLED電球を提供できる。 In this way, the LED bulb 960A not only illuminates the upper direction (or the lower direction) with the illumination light beam L3 emitted from the fluorescent cover 120A, but also the side surface direction with the illumination light beam L4 emitted from the peripheral side surface of the funnel-shaped member 810. Since (horizontal direction) can be illuminated, an LED bulb capable of illuminating almost all directions can be provided.

点灯中、LED素子141からの発熱は、熱伝導経路H1、H1aに従い、順次、回路基板142、熱伝導性部材150、熱伝導性線状部材157、熱伝導性環状固定部材157aを経由して、熱伝導性ロート状部材810に伝達、移送され、外面810aから外気に拡散され放熱HS2される。 During lighting, heat generated from the LED element 141 follows the heat conduction paths H1 and H1a sequentially through the circuit board 142, the heat conductive member 150, the heat conductive linear member 157, and the heat conductive annular fixing member 157a. Then, it is transmitted to and transferred to the heat conductive funnel-shaped member 810, diffused from the outer surface 810a to the outside air, and is radiated HS2.

このようにして、LED電球960Aにおいては、LED素子141からの発熱は、熱伝導性ロート状部材810の外周面810aから放散されるので、LED素子141は常時、許容温度以下に保持される。 In this manner, in the LED bulb 960A, the heat generated from the LED element 141 is dissipated from the outer peripheral surface 810a of the heat conductive funnel-shaped member 810, so that the LED element 141 is always kept below the allowable temperature.

図55、図56、(図53)を参照して実施例27のLED電球970Aについて記載する。 An LED bulb 970A of Example 27 will be described with reference to FIGS. 55, 56, and 53.

図55は実施例27を示す概略的な縦断面図である。図56は図55に光路を記入した概略的な縦断面図である。 FIG. 55 is a schematic longitudinal sectional view showing Example 27. In FIG. FIG. 56 is a schematic longitudinal sectional view of the optical path shown in FIG.

実施例27のLED電球970Aは、図48、図49を参照して記載した実施例24のLED電球940Aの一変形である。 An LED bulb 970A of Example 27 is a variation of the LED bulb 940A of Example 24 described with reference to FIGS.

実施例27のLED電球970Aは、実施例25のLED電球940Aと同様に、光透過性かつ熱伝導性カバー120−5と熱伝導性ロート状部材810を組み合わせたものである。 An LED bulb 970A of Example 27 is a combination of a light-transmissive and heat-conductive cover 120-5 and a heat-conductive funnel-like member 810, similar to the LED bulb 940A of Example 25.

発光ユニット140は、少なくとも一つのLED素子と回路基板142からなり、少なくとも一つのLED素子は側面(サイド)放射形LED素子141−1、頂面(トップ)放射形LED素子141−2からなることができる。 The light emitting unit 140 includes at least one LED element and a circuit board 142. The at least one LED element includes a side-emitting LED element 141-1 and a top-emitting LED element 141-2. Can do.

実施例24のLED電球940Aにおいては、発光ユニット140は熱伝導性底蓋812から中空空間に延びる熱伝導性中空支柱152の上部に支持され中空空間に配置されている。 In the LED bulb 940A of Example 24, the light emitting unit 140 is supported on the upper part of the thermally conductive hollow support 152 extending from the thermally conductive bottom lid 812 to the hollow space, and is disposed in the hollow space.

これと異なり実施例27のLED電球970Aにおいては、発光ユニット140はそれと固定された高熱伝導基板156の周端から放射状に配置され横方向に延びる複数(図53では4本)の熱伝導性線状部材(アーム、腕)157と線状部材157の先端に熱結合して固定された熱伝導性環状固定部157aからなる熱伝導性線状支持部材157によって中空空間に配置されている。 On the other hand, in the LED bulb 970A of Example 27, the light emitting unit 140 has a plurality of (four in FIG. 53) heat conductive wires extending radially from the peripheral edge of the high heat conductive substrate 156 fixed thereto. It is arranged in the hollow space by a heat conductive linear support member 157 composed of a heat conductive annular fixing portion 157a fixed by being thermally coupled to the tip of the linear member (arm, arm) 157 and the linear member 157.

環状固定部157aは熱伝導性ロート状部材810の内面に熱結合して固定されて、発光ユニット140は中空空間の所定位置に配置される。 The annular fixing portion 157a is thermally coupled and fixed to the inner surface of the heat conductive funnel-shaped member 810, and the light emitting unit 140 is disposed at a predetermined position in the hollow space.

このようにして、発光ユニット140は、熱伝導経路H1に従い高熱伝導基板156を経由して、熱伝導性線状支持部材157と熱結合され、更に熱伝導経路H1aに従い熱伝導性環状固定部157aを経由して熱伝導性ロート状部材810の熱伝導内面と熱結合されて固定される。 In this way, the light emitting unit 140 is thermally coupled to the heat conductive linear support member 157 via the high heat conductive substrate 156 according to the heat conduction path H1, and further, according to the heat conduction path H1a, the heat conductive annular fixing portion 157a. The heat conductive inner surface of the heat conductive funnel-shaped member 810 is fixed by being thermally coupled.

熱伝導性ロート状部材810は、複数の貫通孔111に(望ましくは複数の光散乱粒子(光拡散粒子)または複数の蛍光体粒子を含有した)光透過性材料を充てんした複数の光散乱性または蛍光性窓130を有し、海状の熱伝導性ロート状部材810に複数の互いに孤立した複数の窓130が存在している。 The thermally conductive funnel-shaped member 810 has a plurality of light scattering properties in which a plurality of through-holes 111 are filled with a light-transmitting material (desirably containing a plurality of light scattering particles (light diffusion particles) or a plurality of phosphor particles). Alternatively, a plurality of windows 130 that are isolated from each other exist in the sea-like thermally conductive funnel-shaped member 810 having a fluorescent window 130.

熱伝導性かつ光透過性カバー120−5は、熱伝導性ロート状部材810と同様に、複数の貫通孔に複数の光散乱粒子(光拡散粒子)または複数の蛍光体粒子を含有した光透過性材料を充てんした複数の散乱性または蛍光性窓130−1を有する熱伝導性ドーム状部材110−1からなり、海状のドーム状の熱伝導性カバー110−1に複数の互いに孤立した複数の窓130−1が存在している。 Similar to the heat conductive funnel-shaped member 810, the heat conductive and light transmissive cover 120-5 includes a plurality of light scattering particles (light diffusion particles) or a plurality of phosphor particles in a plurality of through holes. A thermally conductive dome-shaped member 110-1 having a plurality of scattering or fluorescent windows 130-1 filled with a conductive material, and a plurality of island-shaped thermally conductive covers 110-1 that are isolated from each other. Window 130-1 is present.

熱伝導性カバー110−1は、熱伝導性ロート状部材810の上部開口を覆うように、熱伝導性ロート状部材810の上部の環状端部に熱結合して固定されて、熱伝導性カバー110−1と熱伝導性ロート状部材810は熱結合される。 The heat conductive cover 110-1 is thermally coupled and fixed to the upper annular end of the heat conductive funnel-shaped member 810 so as to cover the upper opening of the heat conductive funnel-shaped member 810. 110-1 and the thermally conductive funnel-shaped member 810 are thermally coupled.

図53に示すように、隣接する複数の線状部材157の間に複数の開口領域158が存在するので、発光ユニット140の上部の空間HS1と下部空間HS2が連通し、光線の通過を許す光通路となる。 As shown in FIG. 53, since there are a plurality of opening regions 158 between a plurality of adjacent linear members 157, the upper space HS1 and the lower space HS2 of the light emitting unit 140 communicate with each other and allow light to pass therethrough. It becomes a passage.

LED素子141は配線WRを経由して口金170の空洞に配置された点灯回路160の直流出力が供給され点灯される。 The LED element 141 is lit by the direct current output of the lighting circuit 160 disposed in the cavity of the base 170 via the wiring WR.

熱伝導性ロート状部材810は、複数の貫通孔111に複数の蛍光体粒子を含有した光透過性材料を充てんした複数の蛍光性窓130を有する。蛍光性窓130に、更に複数の光散乱粒子(光拡散粒子)を含有するのが望ましい。 The heat conductive funnel-shaped member 810 has a plurality of fluorescent windows 130 in which a plurality of through-holes 111 are filled with a light transmissive material containing a plurality of phosphor particles. It is desirable that the fluorescent window 130 further contain a plurality of light scattering particles (light diffusion particles).

熱伝導性かつ光透過性カバー120−5は、複数の貫通孔111に複数の光散乱粒子(光拡散粒子)または複数の蛍光体粒子を含有した光透過性材料を充てんした複数の散乱性または蛍光性窓130−1を有する熱伝導性ドーム状部材110−1からなる。 The heat-conductive and light-transmissive cover 120-5 has a plurality of scattering properties in which a plurality of light-transmitting materials containing a plurality of light scattering particles (light diffusion particles) or a plurality of phosphor particles are filled in the plurality of through holes 111. It consists of a thermally conductive dome-shaped member 110-1 having a fluorescent window 130-1.

熱伝導性ロート状部材810は、複数の貫通孔111に(望ましくは複数の光散乱粒子(光拡散粒子)または複数の蛍光体粒子を含有した)光透過性材料を充てんした複数の光散乱性または蛍光性窓130を有する。 The thermally conductive funnel-shaped member 810 has a plurality of light scattering properties in which a plurality of through-holes 111 are filled with a light-transmitting material (desirably containing a plurality of light scattering particles (light diffusion particles) or a plurality of phosphor particles). Alternatively, a fluorescent window 130 is provided.

LED素子141からの放射光線L1−1、L1−2は、熱伝導性かつ光透過性カバー120−5に向って進み、放射光線L1の一部が熱伝導性かつ光透過性カバー120−5の光散乱性または蛍光性窓130−1から出射して照明光線L3となる。 The radiation rays L1-1 and L1-2 from the LED element 141 travel toward the thermally conductive and light transmissive cover 120-5, and a part of the radiation light L1 is thermally conductive and light transmissive cover 120-5. Is emitted from the light scattering or fluorescent window 130-1 to become an illumination light beam L3.

窓130−1が光散乱性粒子または蛍光性粒子を含有するときには、窓130−1に入射した放射光線L1−1、L1−2は、ほぼ無指向性、全方向性の光散乱性光線または蛍光性光線となるので、光散乱性光線または蛍光性光線は、照明光線L3として外部に出射するのみならず、一部が上部空間HS1に戻り、下部空間HS2に向かって進むことに留意されたい。 When the window 130-1 contains light-scattering particles or fluorescent particles, the radiation rays L1-1 and L1-2 incident on the window 130-1 are substantially omnidirectional, omnidirectional light-scattering rays or It should be noted that since it becomes a fluorescent ray, the light-scattering ray or the fluorescent ray not only exits to the outside as the illumination ray L3, but part thereof returns to the upper space HS1 and proceeds toward the lower space HS2. .

青色(BL)一次光線L1−1、L1−2を放射するBL形LED素子141を用いる場合には、主として黄色蛍光体を坦持した蛍光カバー120Aを用いる。 When the BL type LED element 141 that emits the blue (BL) primary rays L1-1 and L1-2 is used, a fluorescent cover 120A that mainly carries a yellow phosphor is used.

紫外(UV)一次光線L1−1、L1−2を放射するUV形LED素子141を用いる場合には、三原色(RGB)蛍光体を坦持した蛍光カバー120Aを用いる。 When using the UV-type LED element 141 that emits ultraviolet (UV) primary rays L1-1 and L1-2, a fluorescent cover 120A carrying three primary color (RGB) phosphors is used.

青色(BL)または紫外光線(UV)からなる短波長光線を放射する短波長形LED素子141からのBL、UV一次光線L1−1、L1−2は、蛍光カバー120Aに向って進み、波長変換されてより波長の長い可視二次光線に変換される。 BL and UV primary light beams L1-1 and L1-2 from the short wavelength LED element 141 that emits a short wavelength light beam of blue (BL) or ultraviolet light (UV) proceed toward the fluorescent cover 120A, and wavelength conversion is performed. And converted into a visible secondary ray having a longer wavelength.

BL形LED素子141を用いる場合には、青色一次光線L1−1、L1−2によって励起された黄色蛍光体から発する可視二次光線は黄色光線であり、この黄色光線と透過した一部の青色一次光線と混色して蛍光カバー120Aの外部に出射し、疑似白色照明光線L3となる。残部が蛍光カバー120Aの内部空間HS1、HS2に戻る黄色光線L3'となる。 When the BL-type LED element 141 is used, the visible secondary light emitted from the yellow phosphor excited by the blue primary light L1-1 and L1-2 is a yellow light, and a part of the blue light transmitted through the yellow light is transmitted. It is mixed with the primary light and emitted to the outside of the fluorescent cover 120A to become a pseudo white illumination light L3. The remaining portion becomes the yellow light beam L3 ′ returning to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

黄色蛍光体から発する可視二次光線はほぼ無指向性、全方向性の光散乱性、光拡散性を有する黄色二次光線となるので、二次光線は、照明光線L3として外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む黄色二次光線L3'となる。 The visible secondary light emitted from the yellow phosphor becomes a yellow secondary light having almost omnidirectional, omnidirectional light scattering, and light diffusivity, so that the secondary light is only emitted to the outside as the illumination light L3. Instead, the remaining part returns to the internal space HS1 of the fluorescent cover 120A, and becomes the yellow secondary light L3 ′ that proceeds to the internal space HS2.

青色一次光線L1−1、L1−2の一部は、蛍光カバー120Aの蛍光体および、または散乱粒子で反射されて蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む。 Part of the blue primary light beams L1-1 and L1-2 is reflected by the phosphor of the fluorescent cover 120A and / or scattering particles, returns to the internal space HS1 of the fluorescent cover 120A, and proceeds to the internal space HS2.

熱伝導性ロート状部材810の内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、一部が熱伝導性ロート状部材810の窓130に向かって進み、窓130で熱伝導性ロート状部材810の周面から出射し照明光線L4となる。 Some of the yellow secondary light L3 ′ and the blue primary light that have traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travel toward the window 130 of the heat conductive funnel-shaped member 810, and the window 130 is thermally conductive. It emits from the peripheral surface of the funnel-shaped member 810 and becomes an illumination light beam L4.

熱伝導性ロート状部材810の内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、残部が熱伝導性ロート状部材810の反射内面810bに向かって進み、反射内面810bで反射して更に他の反射内面810bまたは他の窓130に向かって進む。 The yellow secondary light beam L3 ′ and the blue primary light beam that have traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travel toward the reflective inner surface 810b of the heat conductive funnel-shaped member 810, and are reflected by the reflective inner surface 810b. And proceed toward another reflective inner surface 810b or another window 130.

UV形LED素子141を用いる場合には、紫外一次光線L1−1、L1−2によって励起された三原色(RBG)蛍光体から発する可視二次光線は三原色(RBG)が混色した白色二次光線であり、白色二次光線は蛍光カバー120Aの外部に出射し、白色照明光線L3となる。残部が蛍光カバー120Aの内部空間HS1、HS2に戻る白色光線L3'となる。 When the UV LED element 141 is used, the visible secondary light emitted from the three primary color (RBG) phosphors excited by the ultraviolet primary light L1-1 and L1-2 is a white secondary light in which the three primary colors (RBG) are mixed. Yes, the white secondary light is emitted to the outside of the fluorescent cover 120A and becomes the white illumination light L3. The remaining portion becomes the white light beam L3 ′ that returns to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

RBG蛍光体から発する可視二次光線はほぼ光散乱性、光拡散性を有する無指向性、全方向性の白色二次光線となるので、白色二次光線は、白色照明光線L3として外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む白色光線L3'となる。 Visible secondary light emitted from the RBG phosphor is almost non-directional and omnidirectional white secondary light having light scattering properties and light diffusibility, so the white secondary light is emitted to the outside as white illumination light L3. In addition, the remaining portion returns to the internal space HS1 of the fluorescent cover 120A, and becomes a white light ray L3 ′ that proceeds to the internal space HS2.

UV形LED素子141を用いる場合には、紫外線が蛍光カバー120Aの外部に漏洩しないように、蛍光体の含有量を増加させ、または蛍光カバー120Aの外面に可視光線を透過し紫外線を遮断する紫外応答形光触媒膜または光学積層膜などからなる紫外線遮断層を設けるのが望ましい。 When using the UV-type LED element 141, the content of the phosphor is increased so that the ultraviolet rays do not leak outside the fluorescent cover 120A, or the ultraviolet rays that transmit visible light to the outer surface of the fluorescent cover 120A and block the ultraviolet rays. It is desirable to provide an ultraviolet blocking layer comprising a responsive photocatalytic film or an optical laminated film.

熱伝導性ロート状部材810の内部空間HS2に進んだ白色二次光線L3'は、一部が熱伝導性ロート状部材810の窓130に向かって進み、窓130で熱伝導性ロート状部材810の周面から出射し照明光線L4となる。 Part of the white secondary light L3 ′ that has traveled to the internal space HS2 of the heat conductive funnel-shaped member 810 travels toward the window 130 of the heat conductive funnel-shaped member 810, and the heat conductive funnel-shaped member 810 passes through the window 130. Is emitted from the peripheral surface to become an illumination light beam L4.

熱伝導性ロート状部材810の内部空間HS2に進んだ白色二次光線L3'は、残部が熱伝導性ロート状部材810の反射内面810bに向かって進み、反射内面810bで反射して更に他の反射内面810bまたは他の窓130に向かって進む。 The white secondary light L3 ′ that has traveled into the internal space HS2 of the heat conductive funnel-shaped member 810 travels toward the reflective inner surface 810b of the heat conductive funnel-shaped member 810, and is reflected by the reflective inner surface 810b to be further reflected. Proceed toward the reflective inner surface 810b or other window 130.

このようにして、LED電球970Aは、蛍光カバー120Aから出射する照明光線L3により上方向(または下方向)を照明するのみならず、ロート状部材810の周側面から出射する照明光線L4により側面方向(横方向)を照明できるので、ほぼ全方向を照明できるLED電球を提供できる。 In this way, the LED bulb 970A not only illuminates the upper direction (or the lower direction) with the illumination light beam L3 emitted from the fluorescent cover 120A, but also the side surface direction with the illumination light beam L4 emitted from the peripheral side surface of the funnel-shaped member 810. Since (horizontal direction) can be illuminated, an LED bulb capable of illuminating almost all directions can be provided.

点灯中、LED素子141からの発熱は、熱伝導経路H1、H1aに従い、順次、回路基板142、熱伝導性部材150、熱伝導性線状部材157、熱伝導性環状固定部材157aを経由して、熱伝導性ロート状部材810および熱伝導性かつ光透過性カバー120−5に伝達、移送される。 During lighting, heat generated from the LED element 141 follows the heat conduction paths H1 and H1a sequentially through the circuit board 142, the heat conductive member 150, the heat conductive linear member 157, and the heat conductive annular fixing member 157a. The heat conductive funnel-shaped member 810 and the heat conductive and light transmissive cover 120-5 are transmitted and transferred.

このようにして、LED電球970Aにおいては、LED素子141からの発熱は、熱伝導性ロート状部材810の外面810aおよび熱伝導性かつ光透過性カバー120−5の外面110−1aの両方から外気に拡散され放熱HS2、 HS3されるので、LED素子141は常時、許容温度以下に保持される。 In this manner, in the LED bulb 970A, heat generated from the LED element 141 is generated from both the outer surface 810a of the heat conductive funnel-shaped member 810 and the outer surface 110-1a of the heat conductive and light-transmissive cover 120-5. The LED element 141 is always kept below the allowable temperature because it is diffused and radiated HS2 and HS3.

図57、図58、図59を参照して実施例28のLED電球980Aについて記載する。 An LED bulb 980A of Example 28 will be described with reference to FIGS. 57, 58, and 59. FIG.

図57は実施例28を示す概略的な縦断面図である。図58は発光ユニットの支持部材を示す概略的な平面図である。図59は図57に光路を記入した概略的な縦断面図である。 FIG. 57 is a schematic longitudinal sectional view showing Example 28. In FIG. FIG. 58 is a schematic plan view showing a support member of the light emitting unit. FIG. 59 is a schematic longitudinal sectional view in which the optical path is shown in FIG.

実施例28のLED電球980Aは、図52、図53、図54を参照して記載した実施例26のLED電球960Aの一変形である。 An LED bulb 980A of Example 28 is a variation of the LED bulb 960A of Example 26 described with reference to FIGS. 52, 53, and 54.

実施例26のLED電球960Aは、ドーム状カバー120Aとロート状部材810からなり、全体的に一般的な茄子または西洋梨形を有する白熱電球と類似した外形を有しているが、実施例28のLED電球980Aは、ドーム状カバー120Aとほぼ逆ドーム状部材からなり、全体的にほぼ球(ボール)形殻を有する白熱電球と類似した外形を有しており、外形が異なる点を除いて基本的に両者960A、980Aの構成は同じである。 An LED light bulb 960A of Example 26 includes a dome-shaped cover 120A and a funnel-shaped member 810, and has an outer shape similar to that of an incandescent light bulb having a general lion or pear shape as a whole. The LED bulb 980A is composed of a dome-shaped cover 120A and a substantially inverted dome-shaped member, and has an outer shape similar to that of an incandescent bulb having a generally spherical (ball) -shaped shell, except that the outer shape is different. Basically, the configurations of both 960A and 980A are the same.

発光ユニット140は、回路基板142の上面に実装された少なくとも一つのLED素子141とからなり、回路基板142の底面は高熱伝導基板156の上面に熱伝導接触して固定される。 The light emitting unit 140 includes at least one LED element 141 mounted on the upper surface of the circuit board 142, and the bottom surface of the circuit board 142 is fixed to the upper surface of the high thermal conductive substrate 156 by heat conductive contact.

発光ユニット140はそれと固定された高熱伝導基板156の周端から横方向に放射状に延びる複数(図58では4本)の熱伝導性線状部材(アーム、腕)157と線状部材157の先端に熱結合して固定された熱伝導性環状固定部157aからなる支持部材によって中空空間に配置されている。 The light emitting unit 140 includes a plurality (four in FIG. 58) of thermally conductive linear members (arms, arms) 157 extending radially from the peripheral end of the high thermal conductive substrate 156 fixed thereto and the tips of the linear members 157. It is arrange | positioned in the hollow space by the support member which consists of the heat conductive cyclic | annular fixing | fixed part 157a fixed by thermal coupling to.

環状固定部157aは熱伝導性逆ドーム状部材813の内面に熱結合して固定されて、発光ユニット140は中空空間の所定位置に配置される。 The annular fixing portion 157a is thermally coupled and fixed to the inner surface of the thermally conductive reverse dome-shaped member 813, and the light emitting unit 140 is disposed at a predetermined position in the hollow space.

このようにして、発光ユニット140は、熱伝導経路H1に従い高熱伝導基板156を経由して、熱伝導性線状部材157と熱結合され、更に熱伝導経路H1aに従い熱伝導性環状固定部157aを経由して熱伝導性逆ドーム状部材813の熱伝導性内面110−2と熱結合される。 In this way, the light emitting unit 140 is thermally coupled to the heat conductive linear member 157 via the high heat conductive substrate 156 according to the heat conduction path H1, and further includes the heat conductive annular fixing portion 157a according to the heat conduction path H1a. Via, it is thermally coupled to the heat conductive inner surface 110-2 of the heat conductive reverse dome-shaped member 813.

隣接する複数の線状部材157の間に複数の扇状の開口領域158が存在するので、発光ユニット140の上部の空間HS1と下部空間HS2が連通し、光線の通過を許す光通路となる。 Since there are a plurality of fan-shaped opening regions 158 between a plurality of adjacent linear members 157, the upper space HS1 and the lower space HS2 of the light emitting unit 140 communicate with each other to provide an optical path that allows the passage of light.

熱伝導性逆ドーム状部材813の底部は、内部空洞に点灯回路160を収容したハウジング180の上部に固定され、ハウジング180の底部に給電用口金170が固定される。 The bottom of the thermally conductive reverse dome-shaped member 813 is fixed to the top of the housing 180 that houses the lighting circuit 160 in the internal cavity, and the power supply cap 170 is fixed to the bottom of the housing 180.

口金170を交流電力供給用の外部ソケットに取り付けたときに、点灯回路160は交流電力を直流に変換し、LED素子141は配線WRを経由して直流出力が供給され点灯される。 When the base 170 is attached to an external socket for supplying AC power, the lighting circuit 160 converts AC power into DC, and the LED element 141 is supplied with a DC output via the wiring WR and is lit.

図57における部分拡大断面図に示すように、蛍光カバー120Aとして蛍光カバー120A−1または蛍光カバー120A−2が用いられる。 As shown in the partially enlarged sectional view in FIG. 57, the fluorescent cover 120A-1 or the fluorescent cover 120A-2 is used as the fluorescent cover 120A.

蛍光カバー120A−1は蛍光カバー120A−1aの内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層120A−1aを形成したものである。 The fluorescent cover 120A-1 is obtained by forming a fluorescent layer 120A-1a made of a transparent material layer containing a plurality of fluorescent particles on the inner surface of the fluorescent cover 120A-1a.

蛍光カバー120A−2は、蛍光カバー120A−2aの内部に複数の蛍光体粒子120A−2bを分散して含有したものである。 The fluorescent cover 120A-2 includes a plurality of fluorescent particles 120A-2b dispersed in the fluorescent cover 120A-2a.

熱伝導性逆ドーム状部材813は、複数の貫通孔111に光透過性材料を充てんした、または光透過性材料に複数の蛍光体粒子を含有した複数の光透過性または蛍光性窓130−2を有する。光透過性または蛍光性窓130−2に、更に複数の光散乱粒子(光拡散粒子)を含有するのが望ましい。 The thermally conductive reverse dome-shaped member 813 includes a plurality of light transmissive or fluorescent windows 130-2 in which a plurality of through-holes 111 are filled with a light transmissive material or a light transmissive material contains a plurality of phosphor particles. Have It is desirable that the light transmissive or fluorescent window 130-2 further contains a plurality of light scattering particles (light diffusion particles).

青色(BL)一次光線L1を放射するBL形LED素子141を用いる場合には、主として黄色蛍光体を坦持した蛍光カバー120Aを用いる。 When the BL type LED element 141 that emits the blue (BL) primary light L1 is used, a fluorescent cover 120A that mainly carries a yellow phosphor is used.

紫外(UV)一次光線L1を放射するUV形LED素子141を用いる場合には、三原色(RGB)蛍光体を坦持した蛍光カバー120Aを用いる。 When the UV-type LED element 141 that emits the ultraviolet (UV) primary light L1 is used, a fluorescent cover 120A carrying three primary color (RGB) phosphors is used.

青色(BL)または紫外光線(UV)からなる短波長光線を放射する短波長形LED素子141からのBL、UV一次光線L1は、蛍光カバー120Aに向って進み、波長変換されてより波長の長い可視二次光線に変換される。 BL and UV primary light L1 from the short-wavelength LED element 141 that emits a short-wavelength light composed of blue (BL) or ultraviolet light (UV) travels toward the fluorescent cover 120A and is wavelength-converted to have a longer wavelength. Converted to a visible secondary ray.

BL形LED素子141を用いる場合には、青色一次光線L1によって励起された黄色蛍光体から発する可視二次光線は黄色光線であり、この黄色光線と透過した一部の青色一次光線と混色して蛍光カバー120Aの外部に出射し、疑似白色照明光線L3となる。残部が蛍光カバー120Aの内部空間HS1、HS2に戻る黄色光線L3'となる。 When the BL-type LED element 141 is used, the visible secondary light emitted from the yellow phosphor excited by the blue primary light L1 is a yellow light, and the yellow light and a part of the transmitted blue primary light are mixed. The light is emitted to the outside of the fluorescent cover 120A and becomes a pseudo white illumination light beam L3. The remaining portion becomes the yellow light beam L3 ′ returning to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

蛍光カバー120Aの蛍光体から発する可視二次光線はほぼ無指向性、全方向性の光散乱性、光拡散性を有する二次光線となるので、二次光線は、照明光線L3として外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む黄色二次光線L3'となる。 The visible secondary ray emitted from the phosphor of the fluorescent cover 120A becomes a secondary ray having almost omnidirectional, omnidirectional light scattering, and light diffusivity, so the secondary ray is emitted to the outside as an illumination ray L3. In addition, the remaining portion returns to the internal space HS1 of the fluorescent cover 120A and becomes the yellow secondary light L3 ′ that proceeds to the internal space HS2.

青色一次光線L1の一部は、蛍光カバー120Aの蛍光体および、または散乱粒子で散乱反射されて蛍光カバー120Aの内部空間HS1に戻り、熱伝導性逆ドーム状部材813の内部空間HS2に進む。 Part of the blue primary light beam L1 is scattered and reflected by the phosphor of the fluorescent cover 120A and / or scattering particles, returns to the internal space HS1 of the fluorescent cover 120A, and proceeds to the internal space HS2 of the thermally conductive reverse dome-shaped member 813.

内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、一部が熱伝導性逆ドーム状部材813の窓130−2に向かって進み、窓130−2で熱伝導性逆ドーム状部材813の周面から出射し疑似白色照明光線L4となる。 Part of the yellow secondary light L3 ′ and the blue primary light that have traveled into the internal space HS2 travels toward the window 130-2 of the heat conductive reverse dome-shaped member 813, and the heat conductive reverse dome shape at the window 130-2. The light is emitted from the peripheral surface of the member 813 and becomes a pseudo white illumination light beam L4.

熱伝導性逆ドーム状部材813の内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、残部が熱伝導性逆ドーム状部材813の反射内面110−2bに向かって進み、反射内面110−2bで反射して更に他の反射内面110−2bまたは他の窓130−2に向かって進む。 The yellow secondary light beam L3 ′ and the blue primary light beam that have traveled to the internal space HS2 of the heat conductive reverse dome-shaped member 813 travel toward the reflective inner surface 110-2b of the heat conductive reverse dome-shaped member 813. The light is reflected by 110-2b and further travels toward another reflective inner surface 110-2b or another window 130-2.

UV形LED素子141を用いる場合には、紫外一次光線L1によって励起された三原色(RBG)蛍光体から発する可視二次光線は三原色(RBG)が混色した白色二次光線であり、一部の白色二次光線は蛍光カバー120Aの外部に出射し、白色照明光線L3となる。白色二次光線の残部が蛍光カバー120Aの内部空間HS1、HS2に戻る白色光線L3'となる。 When the UV-type LED element 141 is used, the visible secondary light emitted from the three primary color (RBG) phosphors excited by the ultraviolet primary light L1 is a white secondary light in which the three primary colors (RBG) are mixed, and some white light The secondary light is emitted to the outside of the fluorescent cover 120A and becomes a white illumination light L3. The remainder of the white secondary light becomes white light L3 ′ that returns to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

RBG蛍光体から発する可視二次光線はほぼ光散乱性、光拡散性を有する無指向性、全方向性の白色二次光線となるので、白色二次光線は、白色照明光線L3として蛍光カバー120Aの外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む白色光線L3'となる。 Since the visible secondary light emitted from the RBG phosphor is almost a light scattering, non-directional, light diffusive, and omnidirectional white secondary light, the white secondary light is used as the white illumination light L3 and the fluorescent cover 120A. And the remaining part returns to the internal space HS1 of the fluorescent cover 120A and becomes a white light ray L3 ′ that proceeds to the internal space HS2.

UV形LED素子141を用いる場合には、紫外線が蛍光カバー120Aの外部に漏洩しないように、蛍光体の含有量を増加させ、または蛍光カバー120Aの外面に可視光線を透過し紫外線を遮断する紫外応答形光触媒膜、光学積層膜または透過性吸収膜などからなる可視光線透過性紫外線遮断層を設けるのが望ましい。 When using the UV-type LED element 141, the content of the phosphor is increased so that the ultraviolet rays do not leak outside the fluorescent cover 120A, or the ultraviolet rays that transmit visible light to the outer surface of the fluorescent cover 120A and block the ultraviolet rays. It is desirable to provide a visible light transmissive ultraviolet blocking layer comprising a responsive photocatalytic film, an optical laminated film, or a transmissive absorbing film.

熱伝導性逆ドーム状部材813の内部空間HS2に進んだ白色二次光線L3'は、一部が熱伝導性逆ドーム状部材813の窓130−2に向かって進み、熱伝導性逆ドーム状部材813の周面に分布された複数の光透過性窓130−2から出射し白色照明光線L4となる。 Part of the white secondary light L3 ′ that has traveled into the internal space HS2 of the heat conductive reverse dome-shaped member 813 travels toward the window 130-2 of the heat conductive reverse dome-shaped member 813, and the heat conductive reverse dome-shaped member 813 The light is emitted from a plurality of light transmissive windows 130-2 distributed on the peripheral surface of the member 813, and becomes a white illumination light beam L 4.

熱伝導性逆ドーム状部材813の内部空間HS2に進んだ白色二次光線L3'は、残部が熱伝導性逆ドーム状部材813の反射内面110−2bに向かって進み、反射内面110−2bで反射して更に他の反射内面110−2bまたは他の窓130−2に向かって進む。 The white secondary light beam L3 ′ that has traveled into the internal space HS2 of the heat conductive reverse dome-shaped member 813 has the remaining portion traveling toward the reflective inner surface 110-2b of the heat conductive reverse dome-shaped member 813, and is reflected on the reflective inner surface 110-2b. Reflected and travels further toward another reflective inner surface 110-2b or another window 130-2.

このようにして、ほぼ球形のLED電球980Aは、蛍光ドーム状カバー120Aと熱伝導性逆ドーム状部材813からなる球形殻のほぼ全方向から疑似白色光線、白色光線からなる照明光線L3およびL4を出射して照明できる球形LED電球を提供できる。 In this manner, the substantially spherical LED bulb 980A receives the illumination light beams L3 and L4 composed of pseudo white light and white light from almost all directions of the spherical shell formed of the fluorescent dome-shaped cover 120A and the heat conductive reverse dome-shaped member 813. A spherical LED bulb that can emit and illuminate can be provided.

点灯中、LED素子141からの発熱は、熱伝導経路H1、H1aに従い、順次、回路基板142、熱伝導性部材150、熱伝導性線状部材157、熱伝導性環状固定部材157aを経由して、熱伝導性逆ドーム状部材813に伝達、移送され、外面110−2aから外気に拡散され放熱H3される。 During lighting, heat generated from the LED element 141 follows the heat conduction paths H1 and H1a sequentially through the circuit board 142, the heat conductive member 150, the heat conductive linear member 157, and the heat conductive annular fixing member 157a. Then, it is transmitted and transferred to the thermally conductive reverse dome-shaped member 813, diffused from the outer surface 110-2a to the outside air, and radiated heat H3.

このようにして、LED電球980Aにおいては、LED素子141からの発熱は、熱伝導性逆ドーム状部材813のドーム状外周面110−2aから放散されるので、LED素子141は常時、許容温度以下に保持される。 Thus, in the LED bulb 980A, the heat generated from the LED element 141 is dissipated from the dome-shaped outer peripheral surface 110-2a of the thermally conductive reverse dome-shaped member 813. Therefore, the LED element 141 is always below the allowable temperature. Retained.

図60、図61を参照して実施例29のLED電球990Aについて記載する。 The LED bulb 990A of Example 29 will be described with reference to FIGS.

図60は実施例29を示す概略的な縦断面図である。図61は図60に光路を記入した概略的な縦断面図である。 FIG. 60 is a schematic longitudinal sectional view showing Example 29. 61 is a schematic longitudinal sectional view in which the optical path is shown in FIG.

実施例29のLED電球990Aは、図57、図58、図59を参照して記載した実施例28のLED電球980Aの一変形である。 An LED bulb 990A of Example 29 is a modification of the LED bulb 980A of Example 28 described with reference to FIGS. 57, 58, and 59.

実施例29のLED電球990Aは、実施例28のLED電球980Aと同様に、ドーム状蛍光カバー120Aとほぼ逆ドーム状熱伝導部材120−6からなるほぼ球(ボール)形の殻を有し、ほぼ球(ボール)形の殻を有する白熱電球と類似した外形を有している。 Similar to the LED bulb 980A of Example 28, the LED bulb 990A of Example 29 has a substantially spherical (ball) -shaped shell composed of a dome-shaped fluorescent cover 120A and a substantially inverted dome-shaped heat conducting member 120-6. It has an external shape similar to an incandescent bulb having a substantially spherical (ball) shaped shell.

実施例28のLED電球980Aの発光ユニット140においては、LED素子141の光出射面がドーム状蛍光カバー120Aと対面するように殻内に配置され、LED素子141からの放射光線L1はドーム状蛍光カバー120Aを照射している。 In the light emitting unit 140 of the LED light bulb 980A of Example 28, the light emitting surface of the LED element 141 is disposed in the shell so as to face the dome-shaped fluorescent cover 120A, and the emitted light L1 from the LED element 141 is the dome-shaped fluorescent light. The cover 120A is irradiated.

これに対して、実施例29のLED電球990Aの発光ユニット140においては、実施例28のLED電球980Aと異なり、LED素子141の光出射面が逆ドーム状熱伝導部材120−6と対面するように殻内に配置されており、発光ユニット140の上下の位置が実施例28の発光ユニット140と反転している。 On the other hand, in the light emitting unit 140 of the LED bulb 990A of Example 29, unlike the LED bulb 980A of Example 28, the light emitting surface of the LED element 141 faces the reverse dome-shaped heat conducting member 120-6. The upper and lower positions of the light emitting unit 140 are reversed from those of the light emitting unit 140 of Example 28.

図60、図61に示すように実施例29の発光ユニット140は、回路基板142の底面に実装された少なくとも一つのLED素子141とからなり、回路基板142の上面は高熱伝導基板156の底面に熱伝導接触して固定される。 As shown in FIGS. 60 and 61, the light emitting unit 140 of Example 29 is composed of at least one LED element 141 mounted on the bottom surface of the circuit board 142, and the top surface of the circuit board 142 is on the bottom surface of the high thermal conductive substrate 156. Fixed in thermal contact.

発光ユニット140はそれと固定された高熱伝導基板156の周端から横方向に放射状に延びる複数の熱伝導性線状部材(アーム、腕)157と線状部材157の先端に熱結合して固定された熱伝導性環状固定部157aからなる支持部材によって中空空間に配置されている。 The light emitting unit 140 is fixed by thermal coupling to a plurality of heat conductive linear members (arms, arms) 157 extending radially from the peripheral edge of the high heat conductive substrate 156 fixed thereto and the tips of the linear members 157. The support member made of the thermally conductive annular fixing portion 157a is disposed in the hollow space.

環状固定部157aは熱伝導性逆ドーム状部材813の内面に熱結合して固定されて、発光ユニット140は上部中空空間HS1およびHS2からなるほぼ球状の中空空間のほぼ中央に配置される。 The annular fixing portion 157a is thermally coupled and fixed to the inner surface of the thermally conductive reverse dome-shaped member 813, and the light emitting unit 140 is disposed at substantially the center of the substantially spherical hollow space composed of the upper hollow spaces HS1 and HS2.

このようにして、発光ユニット140は、熱伝導経路H1に従い高熱伝導基板156を経由して、熱伝導性線状部材157と熱結合され、更に熱伝導経路H1aに従い熱伝導性環状固定部157aを経由して熱伝導性逆ドーム状部材813の熱伝導内面と熱結合される。 In this way, the light emitting unit 140 is thermally coupled to the heat conductive linear member 157 via the high heat conductive substrate 156 according to the heat conduction path H1, and further includes the heat conductive annular fixing portion 157a according to the heat conduction path H1a. Via, it is thermally coupled to the heat conductive inner surface of the heat conductive reverse dome-shaped member 813.

隣接する複数の線状部材157の間に複数の扇状の開口領域158(図58参照)が存在するので、発光ユニット140の上部の空間HS1と下部空間HS3が連通し、光線の通過を許す光通路となる。 Since there are a plurality of fan-shaped opening regions 158 (see FIG. 58) between a plurality of adjacent linear members 157, the upper space HS1 and the lower space HS3 of the light emitting unit 140 communicate with each other and allow light to pass therethrough. It becomes a passage.

熱伝導性逆ドーム状部材813の底部に円錐形、多角錐形などの錐形リフレクタ158を設けるのが望ましく、これにより上記底部に向かう光線L1を熱伝導性逆ドーム状部材813の内面または蛍光カバー120Aに向けて方向変換できる。 It is desirable to provide a conical reflector 158 such as a conical shape or a polygonal pyramid shape at the bottom of the heat conductive reverse dome-shaped member 813, so that the light beam L1 directed to the bottom is directed to the inner surface of the heat conductive reverse dome-shaped member 813 or the fluorescence. The direction can be changed toward the cover 120A.

熱伝導性逆ドーム状部材813の底部は、内部空洞に点灯回路160を収容したハウジング180の上部に固定され、ハウジング180の底部に給電用口金170が固定される。 The bottom of the thermally conductive reverse dome-shaped member 813 is fixed to the top of the housing 180 that houses the lighting circuit 160 in the internal cavity, and the power supply cap 170 is fixed to the bottom of the housing 180.

口金170を交流電力供給用の外部ソケットに取り付けたときに、点灯回路160は交流電力を直流に変換し、LED素子141は配線WRを経由して直流出力が供給され点灯される。 When the base 170 is attached to an external socket for supplying AC power, the lighting circuit 160 converts AC power into DC, and the LED element 141 is supplied with a DC output via the wiring WR and is lit.

図60における部分拡大断面図に示すように、蛍光カバー120Aとして蛍光カバー120A−1または蛍光カバー120A−2が用いられる。 As shown in the partially enlarged sectional view of FIG. 60, the fluorescent cover 120A-1 or the fluorescent cover 120A-2 is used as the fluorescent cover 120A.

蛍光カバー120A−1は蛍光カバー120A−1aの内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層120A−1aを形成したものである。 The fluorescent cover 120A-1 is obtained by forming a fluorescent layer 120A-1a made of a transparent material layer containing a plurality of fluorescent particles on the inner surface of the fluorescent cover 120A-1a.

蛍光カバー120A−2は、蛍光カバー120A−2aの内部に複数の蛍光体粒子120A−2bを分散して含有したものである。 The fluorescent cover 120A-2 includes a plurality of fluorescent particles 120A-2b dispersed in the fluorescent cover 120A-2a.

熱伝導性逆ドーム状部材813は、海状の逆ドーム状熱伝導性体110−2に島状に孤立して設けられた複数の貫通孔111に光透過性材料に複数の蛍光体粒子を含有した複数の蛍光性窓130−2を有する。蛍光性窓130−2に、更に複数の光散乱粒子(光拡散粒子)を含有するのが望ましい。 The thermally conductive reverse dome-shaped member 813 is formed by applying a plurality of phosphor particles to a light transmitting material in a plurality of through holes 111 provided in an island shape in the sea-shaped reverse dome-shaped thermal conductive body 110-2. It has a plurality of fluorescent windows 130-2 contained. It is desirable that the fluorescent window 130-2 further contains a plurality of light scattering particles (light diffusion particles).

青色(BL)一次光線L1−1、L1−2を放射するBL形LED素子141を用いる場合には、主として黄色蛍光体を坦持した蛍光性窓130−2および蛍光カバー120Aを用いる。 When the BL-type LED element 141 that emits the blue (BL) primary rays L1-1 and L1-2 is used, the fluorescent window 130-2 and the fluorescent cover 120A that mainly carry a yellow phosphor are used.

紫外(UV)一次光線L1−1、L1−2を放射するUV形LED素子141を用いる場合には、三原色(RGB)蛍光体を坦持した蛍光性窓130−2および蛍光カバー120Aを用いる。 In the case of using the UV-type LED element 141 that emits ultraviolet (UV) primary rays L1-1 and L1-2, a fluorescent window 130-2 and a fluorescent cover 120A carrying three primary color (RGB) phosphors are used.

青色(BL)または紫外光線(UV)からなる短波長光線を放射する短波長形LED素子141からのBL、UV一次光線L1は、熱伝導性逆ドーム状部材813の蛍光性窓130−2に向って進み、波長変換されてより波長の長い可視二次光線に変換される。 BL and UV primary light L1 from the short wavelength LED element 141 that emits a short wavelength light composed of blue (BL) or ultraviolet light (UV) is incident on the fluorescent window 130-2 of the thermally conductive reverse dome-shaped member 813. Proceeding toward the wavelength, the wavelength is converted into a visible secondary ray having a longer wavelength.

BL形LED素子141を用いる場合には、青色一次光線L1によって励起された熱伝導性逆ドーム状部材813の蛍光性窓130−2の黄色蛍光体から発する可視二次光線は黄色光線であり、この黄色光線と透過した一部の青色一次光線と混色して蛍光性窓130−2の外部に出射し、疑似白色照明光線L2となる。 When using the BL-type LED element 141, the visible secondary light emitted from the yellow phosphor of the fluorescent window 130-2 of the thermally conductive reverse dome-shaped member 813 excited by the blue primary light L1 is a yellow light. The yellow light beam and a part of the transmitted blue primary light beam are mixed and emitted to the outside of the fluorescent window 130-2 to become a pseudo white illumination light beam L2.

黄色蛍光体から発する可視二次光線はほぼ無指向性、全方向性の光散乱性、光拡散性を有する黄色二次光線となるので、二次光線は、照明光線L2として外部に出射するのみならず、残部の黄色二次光線が熱伝導性逆ドーム状部材813の下方の内部空間HS2に戻り、次いでドーム状蛍光カバー120Aの上方の内部空間HS1に進み、ドーム状蛍光カバー120Aに入射する。 Since the visible secondary light emitted from the yellow phosphor becomes a yellow secondary light having almost omnidirectional, omnidirectional light scattering, and light diffusibility, the secondary light is only emitted to the outside as the illumination light L2. Instead, the remaining yellow secondary light beam returns to the internal space HS2 below the thermally conductive reverse dome-shaped member 813, then proceeds to the internal space HS1 above the dome-shaped fluorescent cover 120A, and enters the dome-shaped fluorescent cover 120A. .

青色一次光線L1の一部は、熱伝導性逆ドーム状部材813の光反射性内面110−2bで反射されて下方の内部空間HS2に戻り、更に上方の内部空間HS1を経由してドーム状蛍光カバー120Aに入射する。 Part of the blue primary light beam L1 is reflected by the light-reflecting inner surface 110-2b of the thermally conductive reverse dome-shaped member 813, returns to the lower internal space HS2, and further passes through the upper internal space HS1 to form a dome-shaped fluorescent light. Incident on the cover 120A.

ドーム状蛍光カバー120Aに入射した青色一次光線L1の一部が黄色光線に波長変換され、その一部が透過してドーム状蛍光カバー120Aから外部に出射して青色および黄色光線が混色して疑似白色照明光線L3となる。 A part of the blue primary light beam L1 incident on the dome-shaped fluorescent cover 120A is converted into a yellow light beam, and a part of the blue primary light beam L1 is transmitted and emitted to the outside from the dome-shaped fluorescent cover 120A. It becomes the white illumination light beam L3.

UV形LED素子141を用いる場合には、紫外一次光線L1によって励起された三原色(RBG)蛍光体から発する可視二次光線は三原色(RBG)が混色した白色二次光線である。 When the UV-type LED element 141 is used, the visible secondary light emitted from the three primary color (RBG) phosphors excited by the ultraviolet primary light L1 is a white secondary light in which the three primary colors (RBG) are mixed.

UV形LED素子141から下方に放射された紫外一次光線L1は、その一部が熱伝導性逆ドーム状部材813の蛍光窓130−2に入射してほぼ全方向に散乱、拡散する白色二次光線となり、蛍光窓130−2から出射して白色照明光線L2となる。 A part of the ultraviolet primary light L1 emitted downward from the UV-type LED element 141 is incident on the fluorescent window 130-2 of the thermally conductive reverse dome-shaped member 813 and scattered and diffused in almost all directions. A light beam is emitted from the fluorescent window 130-2 and becomes a white illumination beam L2.

紫外一次光線L1は、その一部が熱伝導性逆ドーム状部材813の光反射性内面110−2bで反射されて下方の内部空間HS2に戻り、蛍光窓130−2に入射、他の光反射性内面110−2bで反射、または更に上方の内部空間HS1を経由してドーム状蛍光カバー120Aに入射する。 A part of the ultraviolet primary light beam L1 is reflected by the light-reflecting inner surface 110-2b of the heat conductive reverse dome-shaped member 813, returns to the lower internal space HS2, enters the fluorescent window 130-2, and reflects other light. The light is reflected from the inner surface 110-2b or incident on the dome-shaped fluorescent cover 120A via the internal space HS1 further above.

ドーム状蛍光カバー120Aに入射した紫外一次光線L1は白色二次光線に波長変換され、ドーム状蛍光カバー120Aから外部に出射してRGB光線が混色して白色照明光線L3となる。 The ultraviolet primary light L1 incident on the dome-shaped fluorescent cover 120A is wavelength-converted into a white secondary light, emitted from the dome-shaped fluorescent cover 120A to the outside, and the RGB light is mixed to form a white illumination light L3.

UV形LED素子141を用いる場合には、近紫外線が蛍光カバー120Aの蛍光窓130−2、熱伝導性逆ドーム状部材813の外部に漏洩しないように、蛍光体の含有量を増加させ、または蛍光カバー120A、蛍光窓130−2の外面に可視光線を透過し紫外線を遮断する紫外応答形光触媒膜、光学積層膜または紫外吸収、可視透過膜などからなる可視透過性紫外線遮断層を設けるのが望ましい。 When the UV LED element 141 is used, the phosphor content is increased so that near ultraviolet rays do not leak outside the fluorescent window 130-2 of the fluorescent cover 120A and the thermally conductive reverse dome-shaped member 813, or A visible light transmissive ultraviolet blocking layer made of an ultraviolet response photocatalyst film that transmits visible light and blocks ultraviolet light, an optical laminated film, or an ultraviolet absorption and visible transmission film is provided on the outer surface of the fluorescent cover 120A and the fluorescent window 130-2. desirable.

このようにして、ほぼ球形のLED電球990Aは、蛍光ドーム状カバー120Aから出射する照明光線L3と熱伝導性逆ドーム状部材813の周側面から出射する照明光線L2により、球形殻のほぼ全方向を照明できる球形LED電球を提供できる。 In this manner, the substantially spherical LED bulb 990A has a spherical shell almost in all directions by the illumination light beam L3 emitted from the fluorescent dome-shaped cover 120A and the illumination light beam L2 emitted from the peripheral side surface of the thermally conductive reverse dome-shaped member 813. Can provide a spherical LED bulb.

点灯中、LED素子141からの発熱は、熱伝導経路H1、H1aに従い、順次、回路基板142、熱伝導性部材150、熱伝導性線状部材157、熱伝導性環状固定部材157aを経由して、熱伝導性逆ドーム状部材813に伝達、移送され、逆ドーム状外周面110−2aから外気に拡散され放熱H3されるので、LED素子141は常時、許容温度以下に保持される。 During lighting, heat generated from the LED element 141 follows the heat conduction paths H1 and H1a sequentially through the circuit board 142, the heat conductive member 150, the heat conductive linear member 157, and the heat conductive annular fixing member 157a. The LED element 141 is always kept below the allowable temperature because it is transmitted and transferred to the heat conductive reverse dome-shaped member 813 and diffused from the reverse dome-shaped outer peripheral surface 110-2a to the outside air and dissipated H3.

この実施例29において、BL、UV一次光線L1を放射する上記のBL、UV形LED素子141の替わりに、白色一次光線L1を放射する白色形LED素子141を用いることができる。 In Example 29, a white LED element 141 that emits a white primary light beam L1 can be used in place of the BL and UV LED elements 141 that emit a BL and UV primary light beam L1.

白色形LED素子141を用いる場合には、ドーム状の蛍光カバー120Aの替わりに図1などを参照し実施例1などに開示した蛍光体を含まない透明または光散乱性ドーム状カバー120を用い、熱伝導性逆ドーム状部材813の蛍光窓130−2の替わりに、複数の蛍光体を含まない透明または光散乱性を有する光透過性窓130を用いる。 When using the white LED element 141, instead of the dome-shaped fluorescent cover 120A, a transparent or light-scattering dome-shaped cover 120 that does not include the phosphor disclosed in Example 1 with reference to FIG. Instead of the fluorescent window 130-2 of the thermally conductive reverse dome-shaped member 813, a transparent or light-scattering light-transmitting window 130 that does not include a plurality of phosphors is used.

光透過性窓130に入射した白色光線、疑似白色光線L1は、全方向に拡散、散乱するので一部が熱伝導性逆ドーム状部材813の光透過性窓130から出射して白色光線L2となり、一部が下方の内部空間HS2に戻り、上方の内部空間HS1を経由して光散乱性ドーム状カバー120から出射して白色光線L2となる。 Since the white light ray and the pseudo white light ray L1 incident on the light transmissive window 130 are diffused and scattered in all directions, a part of the light is emitted from the light transmissive window 130 of the thermally conductive reverse dome-shaped member 813 and becomes the white light ray L2. , A part returns to the lower internal space HS2, and is emitted from the light-scattering dome-shaped cover 120 via the upper internal space HS1 to become white light L2.

図62、図63を参照して実施例30のLED電球991Aについて記載する。 An LED bulb 991A of Example 30 will be described with reference to FIGS.

図62は実施例30を示す概略的な縦断面図である。図63は図62に光路を記入した概略的な縦断面図である。 FIG. 62 is a schematic longitudinal sectional view showing Example 30. FIG. FIG. 63 is a schematic longitudinal sectional view in which the optical path is shown in FIG.

実施例30のLED電球991Aは、図57、図58、図59を参照して記載した実施例28のLED電球980Aの一変形である。 The LED bulb 991A of Example 30 is a modification of the LED bulb 980A of Example 28 described with reference to FIGS. 57, 58, and 59.

実施例30のLED電球991Aの外形は、実施例28のLED電球980Aの外形と同様に、ドーム状(半球形)部材とほぼ逆ドーム状(半球形)部材からなるほぼ球(ボール)形の殻を有し、ほぼ球形の殻を有するボール形白熱電球と類似した外形を有している。 The external shape of the LED bulb 991A of Example 30 is substantially spherical (ball) formed of a dome-shaped (hemispherical) member and an approximately inverted dome-shaped (hemispherical) member, similar to the external shape of the LED bulb 980A of Example 28. It has a shell and has an external shape similar to a ball-shaped incandescent bulb having a substantially spherical shell.

実施例30のLED電球991Aは、実施例28のLED電球980Aと同様に、発光ユニット140は、そのLED素子141の光出射面がドーム状(半球形) 部材と対面するように殻内に配置され、LED素子141からの放射光線L1はドーム状(半球形)部材を照射している。 Similar to the LED bulb 980A of Example 28, the LED bulb 991A of Example 30 is arranged in the shell such that the light emitting surface of the LED element 141 faces the dome-shaped (hemispherical) member. The radiated light beam L1 from the LED element 141 irradiates a dome-shaped (hemispherical) member.

図62、図63に示すように実施例30の発光ユニット140は、回路基板142の上面に実装された少なくとも一つのLED素子141とからなり、回路基板142の底面は熱伝導基板156の上面に熱伝導接触して固定される。 As shown in FIGS. 62 and 63, the light emitting unit 140 of Example 30 includes at least one LED element 141 mounted on the upper surface of the circuit board 142, and the bottom surface of the circuit board 142 is on the upper surface of the heat conductive substrate 156. Fixed in thermal contact.

発光ユニット140はそれと固定された熱伝導基板156の周端から横方向に放射状に延びる複数の熱伝導性線状部材(アーム、腕)157と線状部材157の先端に熱結合して固定された熱伝導性環状固定部157aからなる支持部材によって中空空間に配置されている。 The light emitting unit 140 is fixed by being thermally coupled to a plurality of heat conductive linear members (arms, arms) 157 extending radially from a peripheral end of the heat conductive substrate 156 fixed thereto and the tips of the linear members 157. The support member made of the thermally conductive annular fixing portion 157a is disposed in the hollow space.

環状固定部157aは熱伝導性ドーム状部材120−6Aの内面に熱結合して固定されて、発光ユニット140は上部中空空間HS1およびHS2からなるほぼ球状の中空空間のほぼ中央に配置される。 The annular fixing portion 157a is thermally coupled and fixed to the inner surface of the thermally conductive dome-shaped member 120-6A, and the light emitting unit 140 is disposed at substantially the center of the substantially spherical hollow space composed of the upper hollow spaces HS1 and HS2.

このようにして、発光ユニット140は、熱伝導経路H1に従い熱伝導基板156を経由して、熱伝導性線状部材157と熱結合され、更に熱伝導経路H1aに従い熱伝導性環状固定部157aを経由して熱伝導性ドーム状部材120−6Aの熱伝導内面と熱結合される。 In this manner, the light emitting unit 140 is thermally coupled to the heat conductive linear member 157 via the heat conductive substrate 156 according to the heat conduction path H1, and further includes the heat conductive annular fixing portion 157a according to the heat conduction path H1a. Via, it is thermally coupled to the heat conductive inner surface of the heat conductive dome-shaped member 120-6A.

隣接する複数の線状部材157の間に複数の扇状の開口領域158(図58参照)が存在するので、発光ユニット140の上部の空間HS1と下部空間HS3が連通し、光線の通過を許す光通路となる。 Since there are a plurality of fan-shaped opening regions 158 (see FIG. 58) between a plurality of adjacent linear members 157, the upper space HS1 and the lower space HS3 of the light emitting unit 140 communicate with each other and allow light to pass therethrough. It becomes a passage.

逆ドーム状部材120A'は、逆ドーム状光透過性部材の内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層を形成した蛍光性逆ドーム状部材120A'、または逆ドーム状光透過性部材の内部に複数の蛍光体粒子を分散して含有した蛍光性逆ドーム状部材120A'とすることができる。 The reverse dome-shaped member 120A ′ is a fluorescent reverse dome-shaped member 120A ′ in which a fluorescent layer made of a transparent material layer containing a plurality of phosphor particles is formed on the inner surface of the reverse dome-shaped light transmissive member, or reverse dome-shaped light. The fluorescent reverse dome-shaped member 120A ′ can be formed by dispersing and containing a plurality of phosphor particles inside the transmissive member.

これと異なり、逆ドーム状光透過性部材の内面に蛍光体粒子の替わりに複数の光散乱性粒子を含有した透明材料層からなる光散乱層を形成した散乱性逆ドーム状部材120A'、または逆ドーム状光透過性部材の内部に蛍光体粒子の替わりに複数の光散乱性粒子を分散して含有した散乱性逆ドーム状部材120A'とすることができる。 Unlike this, a scattering reverse dome-shaped member 120A ′ in which a light scattering layer made of a transparent material layer containing a plurality of light scattering particles instead of phosphor particles is formed on the inner surface of the reverse dome-shaped light transmissive member, or A scattering reverse dome-shaped member 120A ′ in which a plurality of light scattering particles are dispersed and contained inside the reverse dome-shaped light transmissive member instead of the phosphor particles can be obtained.

図63に示すように、逆ドーム状部材120A'の底部に円錐形、多角錐形などの錐形リフレクタ158を設けるのが望ましく、これにより上記底部に向かう光線L1を逆ドーム状部材120A'の内面または熱伝導性ドーム状部材120−6Aに向けて方向変換できる。 As shown in FIG. 63, it is desirable to provide a conical reflector 158 such as a conical shape or a polygonal pyramid shape at the bottom of the inverted dome-shaped member 120A ′, so that the light beam L1 directed toward the bottom is directed to the inverted dome-shaped member 120A ′. The direction can be changed toward the inner surface or the heat conductive dome-shaped member 120-6A.

逆ドーム状部材120A'の底部は、内部空洞に点灯回路160を収容したハウジング180の上部に固定され、ハウジング180の底部に給電用口金170が固定される。 The bottom of the inverted dome-shaped member 120 </ b> A ′ is fixed to the top of the housing 180 that houses the lighting circuit 160 in the internal cavity, and the power supply cap 170 is fixed to the bottom of the housing 180.

口金170を交流電力供給用の外部ソケットに取り付けたときに、点灯回路160は交流電力を直流に変換し、LED素子141は配線WRを経由して直流出力が供給され点灯される。 When the base 170 is attached to an external socket for supplying AC power, the lighting circuit 160 converts AC power into DC, and the LED element 141 is supplied with a DC output via the wiring WR and is lit.

熱伝導性ドーム状部材120−6Aは、海状のドーム状熱伝導性体110−2Aに島状に孤立して設けられた複数の貫通孔111に光透過性材料に複数の蛍光体粒子または光散乱粒子を含有した複数の窓130−2Aを有する。 The thermally conductive dome-shaped member 120-6A is composed of a plurality of phosphor particles or a plurality of fluorescent particles or light transmitting materials in a plurality of through holes 111 provided in an island shape in the sea-shaped dome-shaped thermally conductive body 110-2A. It has a plurality of windows 130-2A containing light scattering particles.

青色(BL)一次光線L1を放射するBL形LED素子141を用いる場合には、熱伝導性ドーム状部材120−6Aの窓130−2Aと逆ドーム状部材120A'は黄色蛍光体(黄色蛍光体粒子)を含む。 When the BL-type LED element 141 that emits the blue (BL) primary light L1 is used, the window 130-2A and the reverse dome-shaped member 120A ′ of the thermally conductive dome-shaped member 120-6A are yellow phosphors (yellow phosphors). Particles).

紫外(UV)一次光線L1を放射するUV形LED素子141を用いる場合には、熱伝導性ドーム状部材120−6Aの窓130−2Aと逆ドーム状部材120A'は三原色(RGB)蛍光体(RGB蛍光体粒子)を含む。 In the case of using the UV-type LED element 141 that emits the ultraviolet (UV) primary light L1, the window 130-2A and the reverse dome-shaped member 120A ′ of the heat conductive dome-shaped member 120-6A are three primary color (RGB) phosphors ( RGB phosphor particles).

白色一次光線L1を放射する白色形LED素子141を用いる場合には、熱伝導性ドーム状部材120−6Aの窓130−2Aに光散乱体(光散乱粒子)を含む。窓130−2Aと逆ドーム状部材120A'の両方に光散乱体(光散乱粒子)を含めても良い。 When the white LED element 141 that emits the white primary light beam L1 is used, a light scatterer (light scattering particle) is included in the window 130-2A of the thermally conductive dome-shaped member 120-6A. A light scatterer (light scattering particle) may be included in both the window 130-2A and the inverted dome-shaped member 120A ′.

青色(BL)または紫外光線(UV)からなる短波長光線を放射する短波長形LED素子141からのBL、UV一次光線L1は、熱伝導性ドーム状部材120−6Aの蛍光性窓130−2Aに向って進み、波長変換されてより波長の長い可視二次光線に変換される。 BL and UV primary light L1 from the short wavelength LED element 141 that emits short wavelength light consisting of blue (BL) or ultraviolet light (UV) is a fluorescent window 130-2A of the thermally conductive dome-shaped member 120-6A. The wavelength is converted and converted into a visible secondary light having a longer wavelength.

BL形LED素子141を用いる場合には、青色一次光線L1によって励起された熱伝導性ドーム状部材120−6Aの蛍光性窓130−2Aの黄色蛍光体から発する可視二次光線は黄色光線であり、この黄色光線と透過した一部の青色一次光線と混色して蛍光性窓130−2Aの外部に出射し、疑似白色照明光線L3となる。 When the BL type LED element 141 is used, the visible secondary light emitted from the yellow phosphor of the fluorescent window 130-2A of the heat conductive dome-shaped member 120-6A excited by the blue primary light L1 is a yellow light. The yellow light beam and a part of the transmitted blue primary light beam are mixed and emitted to the outside of the fluorescent window 130-2A to become a pseudo white illumination light beam L3.

黄色蛍光体から発する可視二次光線はほぼ無指向性、全方向性の光散乱性、光拡散性を有する黄色二次光線となるので、二次光線は、照明光線L3として蛍光性窓130−2Aの外部に出射するのみならず、残部の黄色二次光線L3'が熱伝導性ドーム状部材120−6Aの内部空間HS1に戻り、次いで蛍光性逆ドーム状部材120A'の内部空間HS2に進み、蛍光性逆ドーム状部材120A'に入射し蛍光性逆ドーム状部材120A'を透過する。 Since the visible secondary ray emitted from the yellow phosphor becomes a yellow secondary ray having almost omnidirectional, omnidirectional light scattering, and light diffusibility, the secondary ray is used as the illumination ray L3 in the fluorescent window 130-. 2A, the remaining yellow secondary light beam L3 ′ returns to the internal space HS1 of the thermally conductive dome-shaped member 120-6A, and then proceeds to the internal space HS2 of the fluorescent reverse dome-shaped member 120A ′. Then, the light enters the fluorescent reverse dome-shaped member 120A ′ and passes through the fluorescent reverse dome-shaped member 120A ′.

青色一次光線L1の一部は、熱伝導性ドーム状部材120−6Aの反射性内面110−2bで反射して熱伝導性ドーム状部材120−6Aの内部空間HS1に戻り、次いで蛍光性逆ドーム状部材120A'の内部空間HS2に進み、蛍光性逆ドーム状部材120A'に入射する。 A part of the blue primary light beam L1 is reflected by the reflective inner surface 110-2b of the heat conductive dome-shaped member 120-6A and returns to the internal space HS1 of the heat conductive dome-shaped member 120-6A, and then the fluorescent reverse dome. It proceeds to the internal space HS2 of the member 120A ′ and enters the fluorescent reverse dome member 120A ′.

蛍光性逆ドーム状部材120A'に入射した青色一次光線L1は一部が波長変換されて黄色二次光線となり、黄色二次光線と一部の青色一次光線L1が蛍光性逆ドーム状部材120A'を透過し、疑似白色照明光線L4となる。 The blue primary light beam L1 incident on the fluorescent reverse dome-shaped member 120A ′ is partly wavelength-converted to become a yellow secondary light beam, and the yellow secondary light beam and a part of the blue primary light beam L1 are fluorescent reverse dome-shaped member 120A ′. And becomes a pseudo white illumination light beam L4.

UV形LED素子141を用いる場合には、紫外一次光線L1によって励起された三原色(RBG)蛍光体から発する可視二次光線は三原色(RBG)が混色した白色二次光線である。 When the UV-type LED element 141 is used, the visible secondary light emitted from the three primary color (RBG) phosphors excited by the ultraviolet primary light L1 is a white secondary light in which the three primary colors (RBG) are mixed.

UV形LED素子141から放射された紫外一次光線L1は、その一部が熱伝導性ドーム状部材120−6Aの蛍光窓130−2Aに入射してほぼ全方向に散乱、拡散する白色二次光線となり、一部が蛍光窓130−2Aから出射して白色照明光線L3となる。 A part of the ultraviolet primary light beam L1 emitted from the UV-type LED element 141 is incident on the fluorescent window 130-2A of the thermally conductive dome-shaped member 120-6A and scattered and diffused in almost all directions. Then, a part of the light is emitted from the fluorescent window 130-2A and becomes a white illumination light beam L3.

紫外一次光線L1は、その一部が熱伝導性ドーム状部材120−6Aの光反射性内面110−2bで反射されて上方の内部空間HS1に戻り、蛍光窓130−2Aに入射、他の光反射性内面110−2bで反射、または更に下方の内部空間HS2を経由して蛍光性逆ドーム状部材120A'に入射する。 A part of the ultraviolet primary light beam L1 is reflected by the light reflective inner surface 110-2b of the heat conductive dome-shaped member 120-6A, returns to the upper internal space HS1, enters the fluorescent window 130-2A, and other light. The light is reflected by the reflective inner surface 110-2b, or enters the fluorescent reverse dome-shaped member 120A ′ via the lower internal space HS2.

蛍光性逆ドーム状部材120A'に入射した紫外一次光線L1は白色二次光線に波長変換され、外部に出射してRGB光線が混色して白色照明光線L4となる。 The ultraviolet primary light beam L1 incident on the fluorescent reverse dome-shaped member 120A ′ is wavelength-converted into a white secondary light beam, is emitted to the outside, and the RGB light is mixed to form a white illumination light beam L4.

UV形LED素子141を用いる場合には、近紫外線が熱伝導性ドーム状部材120−6Aの蛍光窓130−2A、蛍光性逆ドーム状部材120A'の外部に漏洩しないように、蛍光体の含有量を増加させ、または蛍光窓130−2A、蛍光性逆ドーム状部材120A'の外面に可視光線を透過し紫外線を遮断する紫外応答形光触媒膜、光学積層膜または紫外吸収、可視透過膜などからなる可視透過性紫外線遮断層を設けるのが望ましい。 In the case of using the UV-type LED element 141, the inclusion of the phosphor so that near ultraviolet rays do not leak to the outside of the fluorescent window 130-2A of the heat conductive dome-shaped member 120-6A and the fluorescent reverse dome-shaped member 120A ′. From an ultraviolet response photocatalyst film that increases the amount or transmits visible light to the outer surface of the fluorescent window 130-2A, the fluorescent reverse dome-shaped member 120A ′ and blocks ultraviolet light, an optical laminated film or ultraviolet absorption, visible transmission film, etc. It is desirable to provide a visible transparent ultraviolet blocking layer.

白色一次光線L1を放射する白色形LED素子141を用いる場合には、光散乱性窓130−2Aと光散乱性逆ドーム状部材120A'としている場合には、白色形LED素子141から放射された白色光線L1は、その一部が熱伝導性ドーム状部材120−6Aの光散乱性窓130−2Aに入射してほぼ全方向に散乱、拡散する白色光線となる。 When the white LED element 141 that emits the white primary light beam L1 is used, when the light scattering window 130-2A and the light scattering reverse dome-shaped member 120A ′ are used, the white LED element 141 is emitted from the white LED element 141. A part of the white light ray L1 enters the light scattering window 130-2A of the heat conductive dome-shaped member 120-6A, and becomes a white light ray that is scattered and diffused in almost all directions.

この白色光線の一部が光散乱性窓130−2Aから出射して白色照明光線L3となり、残りの白色光線L3'は内部空間HS1に戻り、更に下方の内部空間HS2を経由して光散乱性逆ドーム状部材120A'に入射し、光散乱性逆ドーム状部材120A'から外部へ出射して照明光線L4となる。 A part of the white light beam is emitted from the light scattering window 130-2A to become a white illumination light beam L3, and the remaining white light beam L3 ′ returns to the internal space HS1 and further passes through the lower internal space HS2 to be light scattering. The light enters the reverse dome-shaped member 120A ′, exits from the light-scattering reverse dome-shaped member 120A ′, and becomes an illumination light beam L4.

白色光線L1は、その一部が熱伝導性ドーム状部材120−6Aの光反射性内面110−2bで反射されて上方の内部空間HS1に戻り、更に下方の内部空間HS2を経由して光散乱性逆ドーム状部材120A'に入射し、光散乱性逆ドーム状部材120A'から外部へ出射して照明光線L4となる。 A part of the white light ray L1 is reflected by the light-reflecting inner surface 110-2b of the heat conductive dome-shaped member 120-6A, returns to the upper internal space HS1, and further scatters light via the lower internal space HS2. Is incident on the negative reverse dome-shaped member 120A ′, is emitted to the outside from the light-scattering reverse dome-shaped member 120A ′, and becomes an illumination light beam L4.

このようにして、ほぼ球形のLED電球991Aは、熱伝導性ドーム状部材120−6Aから出射する照明光線L3と逆ドーム状部材120A'から出射する照明光線L4により、球形殻のほぼ全方向を照明できる球形LED電球を提供できる。 In this way, the substantially spherical LED bulb 991A has an almost all direction of the spherical shell by the illumination light beam L3 emitted from the heat conductive dome-shaped member 120-6A and the illumination light beam L4 emitted from the reverse dome-shaped member 120A ′. A spherical LED bulb that can be illuminated can be provided.

点灯中、LED素子141からの発熱は、熱伝導経路H1、H1aに従い、順次、回路基板142、熱伝導性部材150、熱伝導性線状部材157、熱伝導性環状固定部材157aを経由して、熱伝導性ドーム状部材120−6Aに伝達、移送され、その外周面110−2aから外気に拡散され放熱H3されるので、LED素子141は常時、許容温度以下に保持される。 During lighting, heat generated from the LED element 141 follows the heat conduction paths H1 and H1a sequentially through the circuit board 142, the heat conductive member 150, the heat conductive linear member 157, and the heat conductive annular fixing member 157a. Then, it is transmitted to and transferred to the heat conductive dome-shaped member 120-6A and diffused from the outer peripheral surface 110-2a to the outside air to dissipate heat H3, so that the LED element 141 is always kept below the allowable temperature.

図64を参照して実施例31のLED電球992Aについて記載する。 The LED bulb 992A of Example 31 will be described with reference to FIG.

図64は実施例31を示す概略的な縦断面図である。 FIG. 64 is a schematic longitudinal sectional view showing Example 31. In FIG.

実施例31のLED電球992Aは、図62、図63に示すドーム状部材と、図57、図59に示す逆ドーム状部材とを組み合わせたほぼ球(ボール)形の殻を有し、ほぼ球形の殻を有するボール形白熱電球と類似した外形を有している。 The LED bulb 992A of Example 31 has a substantially spherical (ball) -shaped shell in which the dome-shaped member shown in FIGS. 62 and 63 and the inverted dome-shaped member shown in FIGS. 57 and 59 are combined. The external shape is similar to that of a ball-shaped incandescent lamp having a shell.

実施例31のLED電球992Aは、海状のドーム状熱伝導性体110−2Aに島状に孤立して設けられた複数の貫通孔に光透過性材料に複数の蛍光体粒子または光散乱粒子を含有した複数の窓130−2Aを有する熱伝導性ドーム状部材120−6Aと、海状のドーム状熱伝導性体110−2Bに島状に孤立して設けられた複数の貫通孔に光透過性材料に複数の蛍光体粒子または光散乱粒子を含有した複数の窓130−2Bを有する半球形状の逆ドーム状部材120−6Bを組み合わせてほぼ球(ボール)形の殻を備える。 The LED bulb 992A of Example 31 has a plurality of phosphor particles or light scattering particles in a light transmissive material in a plurality of through holes provided in an island shape in the sea-like dome-shaped heat conductive body 110-2A. The heat-conducting dome-shaped member 120-6A having a plurality of windows 130-2A containing light and a plurality of through-holes provided in an island-like manner in the sea-shaped dome-shaped heat conducting body 110-2B. A semi-spherical inverted dome-shaped member 120-6B having a plurality of windows 130-2B containing a plurality of phosphor particles or light scattering particles in a transmissive material is combined to provide a substantially spherical (ball) -shaped shell.

この実施例では、光出射面がドーム状熱伝導性部材120−6Aと対面する少なくとも一つの第一のLED素子141とLED素子141を実装した第一の回路基板142からなる第一の発光ユニット140と、光出射面が逆ドーム状熱伝導性部材120−6Bと対面する少なくとも一つの第二のLED素子141'とLED素子141'を実装した第二の回路基板142'からなる第二の発光ユニット140'が、それぞれ共通の熱伝導性基板156の上面と下面に熱伝導接触して固定されている。 In this embodiment, the first light-emitting unit comprising the first circuit board 142 on which the LED element 141 and the at least one first LED element 141 on which the light emission surface faces the dome-shaped thermally conductive member 120-6A is mounted. 140, and a second circuit board 142 ′ mounted with at least one second LED element 141 ′ whose light emission surface faces the inverted dome-shaped thermally conductive member 120-6B and the LED element 141 ′. The light emitting unit 140 ′ is fixed in thermal conductive contact with the upper and lower surfaces of the common thermally conductive substrate 156.

発光ユニット140、140'は、それらと固定された熱伝導基板156の周端から横方向に放射状に延びる複数の熱伝導性線状部材157と線状部材157の先端に熱結合して固定された熱伝導性環状固定部157aからなる支持部材によってドーム状熱伝導性部材120−6A、逆ドーム状熱伝導性部材120−6Bとに熱結合して固定され、殻の中空空間のほぼ中央位置に配置されている。 The light emitting units 140 and 140 ′ are fixed by thermal coupling to a plurality of heat conductive linear members 157 and the ends of the linear members 157 that extend radially from the peripheral end of the heat conductive substrate 156 fixed thereto. The heat conductive annular fixing portion 157a is connected to the dome-shaped heat conductive member 120-6A and the reverse dome-shaped heat conductive member 120-6B by the support member, and is fixed at a substantially central position of the hollow space of the shell. Is arranged.

このようにして、発光ユニット140、140'は、熱伝導経路H1に従い熱伝導基板156を経由して、熱伝導性線状部材157と熱結合され、更に熱伝導経路H1aに従い熱伝導性環状固定部157aを経由してドーム状熱伝導性部材120−6A、逆ドーム状熱伝導性部材120−6Bの熱伝導内面と熱結合される。 In this way, the light emitting units 140 and 140 ′ are thermally coupled to the heat conductive linear member 157 via the heat conductive substrate 156 according to the heat conduction path H1, and further, the heat conductive ring-shaped fixing according to the heat conduction path H1a. It is thermally coupled to the heat conducting inner surfaces of the dome-shaped heat conductive member 120-6A and the reverse dome-shaped heat conductive member 120-6B via the portion 157a.

逆ドーム状熱伝導性部材120−6Bの底部は、内部空洞に点灯回路160を収容したハウジング180の上部に固定され、ハウジング180の底部に給電用口金170が固定される。 The bottom of the inverted dome-shaped heat conductive member 120-6B is fixed to the upper part of the housing 180 that houses the lighting circuit 160 in the internal cavity, and the power supply cap 170 is fixed to the bottom of the housing 180.

口金170を交流電力供給用の外部ソケットに取り付けたときに、点灯回路160は交流電力を直流に変換し、LED素子141は配線WRを経由して直流出力が供給され点灯される。 When the base 170 is attached to an external socket for supplying AC power, the lighting circuit 160 converts AC power into DC, and the LED element 141 is supplied with a DC output via the wiring WR and is lit.

青色(BL)一次光線L1を放射するBL形LED素子141を用いる場合には、ドーム状熱伝導性部材120−6A、逆ドーム状熱伝導性部材120−6Bの窓130−2A、130−2Bは黄色蛍光体(黄色蛍光体粒子)を含む。 When the BL-type LED element 141 that emits the blue (BL) primary light L1 is used, the windows 130-2A and 130-2B of the dome-shaped heat conductive member 120-6A and the reverse dome-shaped heat conductive member 120-6B are used. Includes yellow phosphors (yellow phosphor particles).

紫外(UV)一次光線L1を放射するUV形LED素子141を用いる場合には、ドーム状熱伝導性部材120−6A、逆ドーム状熱伝導性部材120−6Bの窓130−2A、130−2Bは三原色(RGB)蛍光体(RGB蛍光体粒子)を含む。 When the UV-type LED element 141 that emits the ultraviolet (UV) primary light L1 is used, the windows 130-2A and 130-2B of the dome-shaped heat conductive member 120-6A and the reverse dome-shaped heat conductive member 120-6B are used. Includes three primary color (RGB) phosphors (RGB phosphor particles).

白色一次光線L1を放射する白色形LED素子141を用いる場合には、ドーム状熱伝導性部材120−6A、逆ドーム状熱伝導性部材120−6Bの窓130−2A、130−2Bは光散乱体(光散乱粒子)を含む。 When the white LED element 141 that emits the white primary light beam L1 is used, the windows 130-2A and 130-2B of the dome-shaped heat conductive member 120-6A and the reverse dome-shaped heat conductive member 120-6B are light-scattering. Including the body (light scattering particles).

ほぼ球形のLED電球992Aは、ドーム状熱伝導性部材120−6Aから出射する照明光線L3と逆ドーム状熱伝導性部材120−6Bから出射する照明光線L4により、球形殻のほぼ全方向を照明できる球形LED電球を提供できる。 The substantially spherical LED bulb 992A illuminates almost all directions of the spherical shell by the illumination light beam L3 emitted from the dome-shaped heat conductive member 120-6A and the illumination light beam L4 emitted from the reverse dome-shaped heat conductive member 120-6B. A spherical LED bulb can be provided.

点灯中、LED素子141、141'からの発熱は、熱伝導経路H1、H1aに従い、順次、回路基板142、142'、熱伝導性部材150、熱伝導性線状部材157、熱伝導性環状固定部材157aを経由して、ドーム状熱伝導性部材120−6Aおよび逆ドーム状熱伝導性部材120−6Bに伝達、移送され、それらの外面110−2aおよび110'−2aから外気に拡散され放熱H3されるので、LED素子141、141'は常時、許容温度以下に保持される。 During lighting, the heat generated from the LED elements 141 and 141 ′ is sequentially followed by the circuit boards 142 and 142 ′, the heat conductive member 150, the heat conductive linear member 157, and the heat conductive annular fixing in accordance with the heat conduction paths H1 and H1a. Via the member 157a, the dome-shaped heat conductive member 120-6A and the reverse dome-shaped heat conductive member 120-6B are transferred to and transferred from the outer surfaces 110-2a and 110′-2a to the outside air to dissipate heat. Since it is H3, LED element 141, 141 'is always hold | maintained below permissible temperature.

通常の照明用途では、第一の発光ユニット140と第二の発光ユニット140'の両方を点灯回路160により同時に点灯しているが、これに限定されず用いているが、第一の発光ユニット140と第二の発光ユニット140'のいずれか一方または両方を点灯回路160により切り替えて点灯させて、LED電球992Aの照明範囲(配光特性、指向特性)を変化させることができる。 In a normal lighting application, both the first light emitting unit 140 and the second light emitting unit 140 ′ are simultaneously turned on by the lighting circuit 160. However, the first light emitting unit 140 is used without being limited thereto. One or both of the second light-emitting unit 140 ′ and the second light-emitting unit 140 ′ can be switched and turned on by the lighting circuit 160 to change the illumination range (light distribution characteristics, directivity characteristics) of the LED bulb 992A.

例えば第一の発光ユニット140のみを点灯した場合でも、LED素子141からの光線L1は対応するドーム状熱伝導性部材120−6Aの散乱性または蛍光性窓130−2Aにおいて無指向性の散乱光線となり、一部の散乱光線が窓130−2から外部に出射して照明光線L3となる。 For example, even when only the first light-emitting unit 140 is turned on, the light beam L1 from the LED element 141 is scattered in the corresponding dome-shaped thermally conductive member 120-6A or non-directional scattered light in the fluorescent window 130-2A. Thus, a part of the scattered light is emitted to the outside from the window 130-2 and becomes the illumination light L3.

そして残部の散乱光線とドーム状熱伝導性部材120−6Aの反射性内面110−2bで反射した光線L1がドーム状熱伝導性部材120−6Aの内部空間HS1に戻り、更に内部空間HS2を経由して逆ドーム状熱伝導性部材120−6Bの散乱性または蛍光性窓130−2Bにおいて上記残部の散乱光線が透過し、または無指向性の散乱光線となり、窓130−2Bから出射して照明光線L4となる。 The remaining scattered light and the light beam L1 reflected by the reflective inner surface 110-2b of the dome-shaped heat conductive member 120-6A return to the internal space HS1 of the dome-shaped heat conductive member 120-6A, and further pass through the internal space HS2. Then, the remaining scattered light is transmitted through the scattering or fluorescent window 130-2B of the reverse dome-shaped heat conductive member 120-6B or becomes a non-directional scattered light, and is emitted from the window 130-2B for illumination. It becomes the light ray L4.

照明用途によっては、第一の発光ユニット140と第二の発光ユニット140'のいずれか一方を当初から省略しても良く、この場合でも上記の説明から照明光線L3および照明光線L4が得られる。
Depending on the illumination application, one of the first light emitting unit 140 and the second light emitting unit 140 ′ may be omitted from the beginning, and in this case as well, the illumination light beam L3 and the illumination light beam L4 are obtained from the above description.

図65、図66を参照して実施例32のLED電球993Aについて記載する。 An LED bulb 993A of Example 32 will be described with reference to FIGS.

図65は実施例32を示す概略的な縦断面図である。図66は発光ユニットの支持部材を示す概略的な平面図である。 FIG. 65 is a schematic longitudinal sectional view showing Example 32. FIG. FIG. 66 is a schematic plan view showing a support member of the light emitting unit.

実施例32のLED電球993Aは、図57、図58、図59を参照して記載した実施例28のLED電球980Aの一変形である。 An LED bulb 993A of Example 32 is a modification of the LED bulb 980A of Example 28 described with reference to FIGS. 57, 58, and 59.

実施例32のLED電球993Aは、実施例28のLED電球980Aと同様に、ドーム状蛍光カバー120Aとほぼ逆ドーム状熱伝導性中空部材813からなり、全体的にほぼ球(ボール)形殻を有する白熱電球と類似した外形を有している。 Similar to the LED bulb 980A of the embodiment 28, the LED bulb 993A of the embodiment 32 includes a dome-shaped fluorescent cover 120A and a substantially reverse dome-shaped thermally conductive hollow member 813, and has a substantially spherical (ball) shell as a whole. It has an external shape similar to that of an incandescent lamp.

図65、図66に示すように、この実施例32のLED電球993Aは、実施例28のLED電球980Aと異なり、線状回路基板142の上面に少なくとも一つのLED素子141を実装した複数(4セットなど)の線状発光ユニット140Aが、中心から横方向に放射状に延びる複数(4本など)の熱伝導性線状部材(アーム、腕)からなり全体として「十」字または「X」字形の熱伝導性支持部材157Aの表面に複数(4本など)の発光ユニット140Aが熱伝導接触して搭載されている。 As shown in FIGS. 65 and 66, the LED bulb 993A of the thirty-second embodiment differs from the LED bulb 980A of the twenty-eighth embodiment in that a plurality of (4 (4)) mounting at least one LED element 141 on the upper surface of the linear circuit board 142 is provided. A linear light emitting unit 140A of a set or the like is composed of a plurality of (eg, four) thermally conductive linear members (arms, arms) extending radially in the lateral direction from the center, and is generally “ten” or “X”. A plurality of (for example, four) light emitting units 140A are mounted in thermal conductive contact with the surface of the heat conductive support member 157A.

熱伝導性支持部材157Aの複数(4本など)の先端は、熱伝導性逆ドーム状部材813の上部の熱伝導部110−2に熱結合して固定され複数の発光ユニット140Aは中空空間HS1、HS2に保持されるように配置されている。 A plurality of (four, etc.) tips of the heat conductive support members 157A are thermally coupled and fixed to the heat conductive portion 110-2 at the top of the heat conductive reverse dome-shaped member 813, and the light emitting units 140A are formed in the hollow space HS1. , Arranged to be held by HS2.

更に、底部152aから上部152bに延びる熱伝導性支柱152を設けても良く、この場合に底部152aと熱伝導性逆ドーム状部材813の底部と熱伝導接触させ、上部152bに上記熱伝導性支持部材の底部の中心に熱伝導接触させて、熱伝導性支柱152により複数の発光ユニット140Aを支持させても良い。 Further, a thermally conductive support column 152 extending from the bottom 152a to the upper portion 152b may be provided. In this case, the bottom portion 152a and the bottom portion of the thermally conductive reverse dome-shaped member 813 are brought into thermal conductive contact, and the upper conductive portion is supported on the upper portion 152b. The plurality of light emitting units 140 </ b> A may be supported by the heat conductive support 152 in thermal conductive contact with the center of the bottom of the member.

このようにして、発光ユニット140Aは、熱伝導経路H1aに従い熱伝導性支持部材157Aを経由して、熱伝導性逆ドーム状部材813の上部の熱伝導性内面110−2と熱結合される。 In this way, the light emitting unit 140A is thermally coupled to the heat conductive inner surface 110-2 on the top of the heat conductive reverse dome-shaped member 813 via the heat conductive support member 157A according to the heat conductive path H1a.

更に、熱伝導性支柱152を設ける場合には、発光ユニット140Aは、熱伝導性支持部材157Aを経由して、熱伝導経路H1b、H1cに従い、熱伝導性逆ドーム状部材813の底部の熱伝導性内面110−2と熱結合される。 Further, in the case where the thermally conductive support 152 is provided, the light emitting unit 140A passes through the thermally conductive support member 157A and follows the thermally conductive paths H1b and H1c to conduct heat at the bottom of the thermally conductive reverse dome-shaped member 813. It is thermally coupled to the inner surface 110-2.

図66に示すように、熱伝導性支持部材157Aにおける隣接する複数の線状部分の間に複数の扇状の開口領域158が存在するので、上部の空間HS1と下部空間HS2が連通し、光線の通過を許す光通路となる。 As shown in FIG. 66, since there are a plurality of fan-shaped opening regions 158 between a plurality of adjacent linear portions in the heat conductive support member 157A, the upper space HS1 and the lower space HS2 communicate with each other, It becomes a light passage that allows passage.

熱伝導性逆ドーム状部材813の底部は、内部空洞に点灯回路160を収容したハウジング180の上部に固定され、ハウジング180の底部に給電用口金170が固定される。 The bottom of the thermally conductive reverse dome-shaped member 813 is fixed to the top of the housing 180 that houses the lighting circuit 160 in the internal cavity, and the power supply cap 170 is fixed to the bottom of the housing 180.

口金170を交流電力供給用の外部ソケットに取り付けたときに、点灯回路160は交流電力を直流に変換し、LED素子141は配線WRを経由して直流出力が供給され点灯される。 When the base 170 is attached to an external socket for supplying AC power, the lighting circuit 160 converts AC power into DC, and the LED element 141 is supplied with a DC output via the wiring WR and is lit.

蛍光カバー120Aとして蛍光カバー120A−1または蛍光カバー120A−2が用いられる。 The fluorescent cover 120A-1 or the fluorescent cover 120A-2 is used as the fluorescent cover 120A.

蛍光カバー120A−1は蛍光カバー120A−1aの内面に複数の蛍光体粒子を含有した透明材料層からなる蛍光層120A−1aを形成したものである。 The fluorescent cover 120A-1 is obtained by forming a fluorescent layer 120A-1a made of a transparent material layer containing a plurality of fluorescent particles on the inner surface of the fluorescent cover 120A-1a.

蛍光カバー120A−2は、蛍光カバー120A−2aの内部に複数の蛍光体粒子120A−2bを分散して含有したものである。 The fluorescent cover 120A-2 includes a plurality of fluorescent particles 120A-2b dispersed in the fluorescent cover 120A-2a.

熱伝導性逆ドーム状部材813は、複数の貫通孔111に光透過性材料を充てんした、または光透過性材料に複数の蛍光体粒子を含有した複数の光透過性または蛍光性窓130−2を有する。 The thermally conductive reverse dome-shaped member 813 includes a plurality of light transmissive or fluorescent windows 130-2 in which a plurality of through-holes 111 are filled with a light transmissive material or a light transmissive material contains a plurality of phosphor particles. Have

青色(BL)一次光線L1を放射するBL形LED素子141を用いる場合には、主として黄色蛍光体を坦持した蛍光カバー120Aを用いる。 When the BL type LED element 141 that emits the blue (BL) primary light L1 is used, a fluorescent cover 120A that mainly carries a yellow phosphor is used.

紫外(UV)一次光線L1を放射するUV形LED素子141を用いる場合には、三原色(RGB)蛍光体を坦持した蛍光カバー120Aを用いる。 When the UV-type LED element 141 that emits the ultraviolet (UV) primary light L1 is used, a fluorescent cover 120A carrying three primary color (RGB) phosphors is used.

青色(BL)または紫外光線(UV)からなる短波長光線を放射する短波長形LED素子141からのBL、UV一次光線L1は、蛍光カバー120Aに向って進み、波長変換されてより波長の長い可視二次光線に変換される。 BL and UV primary light L1 from the short-wavelength LED element 141 that emits a short-wavelength light composed of blue (BL) or ultraviolet light (UV) travels toward the fluorescent cover 120A and is wavelength-converted to have a longer wavelength. Converted to a visible secondary ray.

BL形LED素子141を用いる場合には、青色一次光線L1によって励起された黄色蛍光体から発する可視二次光線は黄色光線であり、この黄色光線と透過した一部の青色一次光線と混色して蛍光カバー120Aの外部に出射し、疑似白色照明光線L3となる。残部が蛍光カバー120Aの内部空間HS1、HS2に戻る黄色光線L3'となる。 When the BL-type LED element 141 is used, the visible secondary light emitted from the yellow phosphor excited by the blue primary light L1 is a yellow light, and the yellow light and a part of the transmitted blue primary light are mixed. The light is emitted to the outside of the fluorescent cover 120A and becomes a pseudo white illumination light beam L3. The remaining portion becomes the yellow light beam L3 ′ returning to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

蛍光カバー120Aの蛍光体から発する可視二次光線はほぼ無指向性、全方向性の光散乱性、光拡散性を有する二次光線となるので、二次光線は、照明光線L3として外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む黄色二次光線L3'となる。 The visible secondary ray emitted from the phosphor of the fluorescent cover 120A becomes a secondary ray having almost omnidirectional, omnidirectional light scattering, and light diffusivity, so the secondary ray is emitted to the outside as an illumination ray L3. In addition, the remaining portion returns to the internal space HS1 of the fluorescent cover 120A and becomes the yellow secondary light L3 ′ that proceeds to the internal space HS2.

青色一次光線L1の一部は、蛍光カバー120Aの蛍光体および、または散乱粒子で散乱反射されて蛍光カバー120Aの内部空間HS1に戻り、熱伝導性逆ドーム状部材813の内部空間HS2に進む。 Part of the blue primary light beam L1 is scattered and reflected by the phosphor of the fluorescent cover 120A and / or scattering particles, returns to the internal space HS1 of the fluorescent cover 120A, and proceeds to the internal space HS2 of the thermally conductive reverse dome-shaped member 813.

内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、一部が熱伝導性逆ドーム状部材813の窓130−2に向かって進み、窓130−2で熱伝導性逆ドーム状部材813の周面から出射し疑似白色照明光線L4となる。 Part of the yellow secondary light L3 ′ and the blue primary light that have traveled into the internal space HS2 travels toward the window 130-2 of the heat conductive reverse dome-shaped member 813, and the heat conductive reverse dome shape at the window 130-2. The light is emitted from the peripheral surface of the member 813 and becomes a pseudo white illumination light beam L4.

熱伝導性逆ドーム状部材813の内部空間HS2に進んだ黄色二次光線L3'と青色一次光線は、残部が熱伝導性逆ドーム状部材813の反射内面110−2bに向かって進み、反射内面110−2bで反射して更に他の反射内面110−2bまたは他の窓130−2に向かって進む。 The yellow secondary light beam L3 ′ and the blue primary light beam that have traveled to the internal space HS2 of the heat conductive reverse dome-shaped member 813 travel toward the reflective inner surface 110-2b of the heat conductive reverse dome-shaped member 813. The light is reflected by 110-2b and further travels toward another reflective inner surface 110-2b or another window 130-2.

UV形LED素子141を用いる場合には、紫外一次光線L1によって励起された三原色(RBG)蛍光体から発する可視二次光線は三原色(RBG)が混色した白色二次光線であり、一部の白色二次光線は蛍光カバー120Aの外部に出射し、白色照明光線L3となる。白色二次光線の残部が蛍光カバー120Aの内部空間HS1、HS2に戻る白色光線L3'となる。 When the UV-type LED element 141 is used, the visible secondary light emitted from the three primary color (RBG) phosphors excited by the ultraviolet primary light L1 is a white secondary light in which the three primary colors (RBG) are mixed, and some white light The secondary light is emitted to the outside of the fluorescent cover 120A and becomes a white illumination light L3. The remainder of the white secondary light becomes white light L3 ′ that returns to the internal spaces HS1 and HS2 of the fluorescent cover 120A.

RBG蛍光体から発する可視二次光線はほぼ光散乱性、光拡散性を有する無指向性、全方向性の白色二次光線となるので、白色二次光線は、白色照明光線L3として蛍光カバー120Aの外部に出射するのみならず、残部が蛍光カバー120Aの内部空間HS1に戻り、内部空間HS2に進む白色光線L3'となる。 Since the visible secondary light emitted from the RBG phosphor is almost a light scattering, non-directional, light diffusive, and omnidirectional white secondary light, the white secondary light is used as the white illumination light L3 and the fluorescent cover 120A. And the remaining part returns to the internal space HS1 of the fluorescent cover 120A and becomes a white light ray L3 ′ that proceeds to the internal space HS2.

UV形LED素子141を用いる場合には、紫外線が蛍光カバー120Aの外部に漏洩しないように、蛍光体の含有量を増加させ、または蛍光カバー120Aの外面に可視光線を透過し紫外線を遮断する紫外応答形光触媒膜、光学積層膜または透過性吸収膜などからなる可視光線透過性紫外線遮断層を設けるのが望ましい。 When using the UV-type LED element 141, the content of the phosphor is increased so that the ultraviolet rays do not leak outside the fluorescent cover 120A, or the ultraviolet rays that transmit visible light to the outer surface of the fluorescent cover 120A and block the ultraviolet rays. It is desirable to provide a visible light transmissive ultraviolet blocking layer comprising a responsive photocatalytic film, an optical laminated film, or a transmissive absorbing film.

熱伝導性逆ドーム状部材813の内部空間HS2に進んだ白色二次光線L3'は、一部が熱伝導性逆ドーム状部材813の窓130−2に向かって進み、熱伝導性逆ドーム状部材813の周面に分布された複数の光透過性窓130−2から出射し白色照明光線L4となる。 Part of the white secondary light L3 ′ that has traveled into the internal space HS2 of the heat conductive reverse dome-shaped member 813 travels toward the window 130-2 of the heat conductive reverse dome-shaped member 813, and the heat conductive reverse dome-shaped member 813 The light is emitted from a plurality of light transmissive windows 130-2 distributed on the peripheral surface of the member 813, and becomes a white illumination light beam L 4.

熱伝導性逆ドーム状部材813の内部空間HS2に進んだ白色二次光線L3'は、残部が熱伝導性逆ドーム状部材813の反射内面110−2bに向かって進み、反射内面110−2bで反射して更に他の反射内面110−2bまたは他の窓130−2に向かって進む。 The white secondary light beam L3 ′ that has traveled into the internal space HS2 of the heat conductive reverse dome-shaped member 813 has the remaining portion traveling toward the reflective inner surface 110-2b of the heat conductive reverse dome-shaped member 813, and is reflected on the reflective inner surface 110-2b. Reflected and travels further toward another reflective inner surface 110-2b or another window 130-2.

このようにして、ほぼ球形のLED電球993Aは、蛍光ドーム状カバー120Aと熱伝導性逆ドーム状部材813からなる球形殻のほぼ全方向から疑似白色光線、白色光線からなる照明光線L3およびL4を出射して照明できる球形LED電球を提供できる。 In this way, the substantially spherical LED bulb 993A emits the illumination light beams L3 and L4 composed of pseudo white light and white light from almost all directions of the spherical shell formed of the fluorescent dome-shaped cover 120A and the heat conductive reverse dome-shaped member 813. A spherical LED bulb that can emit and illuminate can be provided.

点灯中、LED素子141からの発熱は、熱伝導経路H1aおよび、または (H1b、H1c)に従い、熱伝導性逆ドーム状部材813に伝達、移送され、外面110−2aから外気に拡散され放熱H3され、LED素子141は常時、許容温度以下に保持される。 During lighting, the heat generated from the LED element 141 is transmitted and transferred to the heat conductive reverse dome-shaped member 813 according to the heat conduction path H1a and / or (H1b, H1c), and diffused to the outside air from the outer surface 110-2a to dissipate heat H3. Thus, the LED element 141 is always kept below the allowable temperature.

この実施例32において、発光ユニット140Aを、熱伝導性支持部材157Aの上面に搭載する替わりに、熱伝導性支持部材157Aの底面に搭載しても良く、または熱伝導性支持部材157Aの両面に搭載しても良い。 In Example 32, instead of mounting the light emitting unit 140A on the upper surface of the heat conductive support member 157A, it may be mounted on the bottom surface of the heat conductive support member 157A, or on both surfaces of the heat conductive support member 157A. May be installed.

この実施例32において、熱伝導性逆ドーム状部材813とドーム状蛍光カバー120Aの上下の配置を反転させても良い。 In Example 32, the upper and lower arrangements of the thermally conductive reverse dome-shaped member 813 and the dome-shaped fluorescent cover 120A may be reversed.

以上に開示した各種の実施の形態、実施例における各種の構成要素、構成部分を任意に組み合わせても良い。 Various components and components in the various embodiments and examples disclosed above may be arbitrarily combined.

以上に添付図面を参照して本発明の各種の実施の形態を説明したが、本発明はこれらの実施の形態に限定されず、本発明の精神と特許請求の範囲に基づいて各種の変形、設計変更、改良および均等物の構築が可能であることに留意されたい。 Various embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to these embodiments, and various modifications, based on the spirit of the present invention and the claims, It should be noted that design changes, improvements, and equivalent constructions are possible.

全ての図において、同一の構成要素、構成部分には同一の参照符号を付してある。 In all the drawings, the same reference numerals are assigned to the same components and components.

100:LEDランプ、
100A、100A−1、100A−2、200A、300A、400A、500A、700A、800A、810A、820A、830A、840A、850A、860A、870A、880A、890A、900A、910A、920A、930A、930A−1、930A−2、940A、950A、960A、970A、980A、990A、991A、992A:LED電球(電球形LEDランプ)、
110:熱伝導性円筒(熱伝導性中空部材、外囲部材)、
111:貫通孔(スルーホール、アパーチャー、開口、スリット)、
110a、110−1a、110−2a:外面、放熱外面
110b、110−1b、110−2b:光反射性内面(正反射性内面、散乱反射性内面)、反射性内面、
120、120A、120−1、120−2、120−3、120−4:120−5、120−6、120−7、120−8:光透過性カバー、蛍光カバー、
130、130−1、130−2、130−3:窓、
140:発光ユニット、
141:LED(発光ダイオード)素子、
142:回路基板、
150,151,150−1:熱伝導性基板(ヒートシンク)、
150−2:熱伝導性底蓋(ヒートシンク)、
152:熱伝導性中空支柱
155:熱伝導性底蓋(ヒートシンク)、
157:熱伝導性線状部材、
157a:熱伝導性環状固定部、
160:点灯回路、
170:口金(給電端子)、
180、182:ハウジング、
190、190':放熱フィン、
191:レンズ(光路変換素子)、
192:プリズム(光路変換素子)、
210:熱伝導性円筒(熱伝導性中空部材)、
210a:外面、放熱外面
210b:光反射性内面、反射性内面
230:光透過性円筒(光透過性中空部材)。
810:ロート状熱伝導性中空部材(熱伝導性中空部材)、
811:多角形熱伝導性中空部材(熱伝導性中空部材)、
812:球形熱伝導性中空部材(熱伝導性中空部材)、
813:逆ドーム形熱伝導性中空部材(熱伝導性中空部材)、
L1:放射光線、
L2、L3、L4:照明光線、
H1、H1a:熱伝導経路、
H2、H3:放熱経路、
HS、HS1、HS2:内部空間、
FM:固定手段(ネジ、接着材、リベット、ピン、はんだ、溶着など)、
100: LED lamp,
100A, 100A-1, 100A-2, 200A, 300A, 400A, 500A, 700A, 800A, 810A, 820A, 830A, 840A, 850A, 860A, 870A, 880A, 890A, 900A, 910A, 920A, 930A, 930A- 1, 930A-2, 940A, 950A, 960A, 970A, 980A, 990A, 991A, 992A: LED bulb (bulb-shaped LED lamp),
110: Thermally conductive cylinder (thermally conductive hollow member, surrounding member),
111: Through hole (through hole, aperture, opening, slit),
110a, 110-1a, 110-2a: outer surface, heat radiating outer surface 110b, 110-1b, 110-2b: light reflective inner surface (regular reflective inner surface, scattering reflective inner surface), reflective inner surface,
120, 120A, 120-1, 120-2, 120-3, 120-4: 120-5, 120-6, 120-7, 120-8: light-transmitting cover, fluorescent cover,
130, 130-1, 130-2, 130-3: window,
140: light emitting unit,
141: LED (light emitting diode) element,
142: circuit board,
150, 151, 150-1: Thermally conductive substrate (heat sink),
150-2: Thermally conductive bottom cover (heat sink),
152: Thermally conductive hollow strut 155: Thermally conductive bottom lid (heat sink),
157: Thermally conductive linear member,
157a: a thermally conductive annular fixing part,
160: lighting circuit,
170: base (power supply terminal),
180, 182: housing,
190, 190 ′: radiating fins,
191: Lens (optical path conversion element),
192: Prism (optical path conversion element),
210: Thermally conductive cylinder (thermally conductive hollow member),
210a: outer surface, heat radiating outer surface 210b: light-reflective inner surface, reflective inner surface 230: light-transmitting cylinder (light-transmitting hollow member).
810: Funnel-like thermally conductive hollow member (thermally conductive hollow member),
811: Polygonal heat conductive hollow member (heat conductive hollow member),
812: spherical heat conductive hollow member (heat conductive hollow member),
813: Reverse dome-shaped thermally conductive hollow member (thermally conductive hollow member),
L1: emitted light,
L2, L3, L4: Illumination rays
H1, H1a: heat conduction path,
H2, H3: heat dissipation path,
HS, HS1, HS2: internal space,
FM: Fixing means (screws, adhesives, rivets, pins, solder, welding, etc.),

Claims (13)

a)放熱外面と光反射性内面と複数の蛍光窓からなり内部空間を有する熱伝導性中空部材と、
b)一次光線を放射する少なくとも一つの発光ダイオード(LED)素子を含み、前記熱伝導性中空部材と熱結合して前記内部空間に配置された、発光ユニットと、
c)前記熱伝導性中空部材の上端の開口を覆うように配置された蛍光カバーを備え、
d)前記蛍光窓と前記蛍光カバーに含まれる蛍光材料が前記一次光線を二次可視光線に波長変換する、LEDランプ。
a) a thermally conductive hollow member comprising a heat radiating outer surface, a light reflecting inner surface and a plurality of fluorescent windows and having an internal space;
b) saw including at least one light emitting diode (LED) element that emits primary light, the thermally conductive hollow member and thermally coupled to disposed in the interior space, a light emitting unit,
c) comprising a fluorescent cover arranged to cover the opening at the upper end of the thermally conductive hollow member ;
d) An LED lamp in which the fluorescent material contained in the fluorescent window and the fluorescent cover converts the wavelength of the primary light into secondary visible light .
a)放熱外面と光反射性内面と複数の第一の蛍光窓からなり内部空間を有する熱伝導性中空部材と、
b)一次光線を放射する少なくとも一つの発光ダイオード(LED)素子を含み、前記熱伝導性中空部材と熱結合して前記内部空間に配置された、発光ユニットと、
c)前記熱伝導性中空部材の上端の開口を覆うように配置された蛍光カバーを備え、
d)前記蛍光窓と前記蛍光カバーに含まれる蛍光材料が前記一次光線を二次可視光線に波長変換し、
e)更にe1)前記蛍光カバーは、光透過性蛍光カバーまたはe2)放熱外面と光反射性内面と複数の第二の蛍光窓からなる熱伝導性兼光透過性蛍光カバーからなる、LEDランプ。
a) a heat conductive hollow member having an internal space composed of a heat radiation outer surface, a light reflective inner surface and a plurality of first fluorescent windows;
b) a light emitting unit including at least one light emitting diode (LED) element that emits a primary beam, and is disposed in the internal space in thermal coupling with the thermally conductive hollow member;
c) comprising a fluorescent cover arranged to cover the opening at the upper end of the thermally conductive hollow member;
d) The fluorescent material contained in the fluorescent window and the fluorescent cover wavelength-converts the primary light into secondary visible light,
e) Further, e1) the fluorescent cover is a light transmissive fluorescent cover, or e2) a heat conductive and light transmissive fluorescent cover comprising a heat radiating outer surface, a light reflective inner surface and a plurality of second fluorescent windows .
a)放熱外面と光反射性内面と複数の第一の蛍光窓からなり内部空間を有する熱伝導性中空部材と、
b)一次光線を放射する少なくとも一つの発光ダイオード(LED)素子を含み、前記熱伝導性中空部材と熱結合して前記内部空間に配置された、発光ユニットと、
c)前記熱伝導性中空部材の上端の開口を覆うように配置された蛍光カバーを備え、
d)前記蛍光窓と前記蛍光カバーに含まれる蛍光材料が前記一次光線を二次可視光線に波長変換し、
e)更にe1)前記蛍光カバーは、光透過性蛍光カバーまたはe2)放熱外面と光反射性内面と複数の第二の蛍光窓からなる熱伝導性兼光透過性蛍光カバーからなり、
f)前記第一および第二の蛍光窓は前記熱伝導性中空部材または前記熱伝導性兼光透過性蛍光カバーに形成された複数の貫通孔と前記貫通孔と対応して配置された蛍光材料を含む光透過性材料からなる、LEDランプ。」
a) a heat conductive hollow member having an internal space composed of a heat radiation outer surface, a light reflective inner surface and a plurality of first fluorescent windows;
b) a light emitting unit including at least one light emitting diode (LED) element that emits a primary beam, and is disposed in the internal space in thermal coupling with the thermally conductive hollow member;
c) comprising a fluorescent cover arranged to cover the opening at the upper end of the thermally conductive hollow member;
d) The fluorescent material contained in the fluorescent window and the fluorescent cover wavelength-converts the primary light into secondary visible light,
e) Further, e1) the fluorescent cover comprises a light transmissive fluorescent cover or e2) a heat conductive and light transmissive fluorescent cover comprising a heat radiating outer surface, a light reflective inner surface and a plurality of second fluorescent windows,
f) The first and second fluorescent windows are made of a plurality of through holes formed in the heat conductive hollow member or the heat conductive / light transmissive fluorescent cover, and a fluorescent material arranged corresponding to the through holes. An LED lamp made of a light transmissive material . "
前記発光ユニットは、前記一次光線が前記内部空間へ入射するように前記熱伝導性中空部材の下端の近辺に配置された、請求項1ないし請求項3のいずれかに記載の、LEDランプ。
4. The LED lamp according to claim 1 , wherein the light emitting unit is disposed in the vicinity of a lower end of the heat conductive hollow member so that the primary light beam enters the internal space .
前記発光ユニットは、前記熱伝導性中空部材の下端から前記内部空間へ延びる熱伝導性支柱(152)の上部に熱結合して配置された、請求項1ないし請求項3のいずれかに記載の、LEDランプ。
4. The light emitting unit according to any one of claims 1 to 3, wherein the light emitting unit is disposed in thermal coupling with an upper portion of a thermally conductive support post (152) extending from a lower end of the thermally conductive hollow member to the internal space. , LED lamp.
前記発光ユニットから前記熱伝導性中空部材まで放射状に延びる複数の線形熱伝導部材(157)を設け、前記発光ユニットは前記内部空間内に配置された請求項1ないし請求項3のいずれかに記載の、LEDランプ。
A plurality of linear heat conduction member extending radially from said light emitting unit to the heat-conductive hollow member (157) is provided, wherein the light-emitting unit disposed in said interior space, in any one of claims 1 to 3 LED lamp of description .
前記蛍光窓と前記蛍光カバーは、蛍光体を混入した透明材料または表面に蛍光体を含む蛍光層を有する透明材料からなる、請求項1ないし請求項3のいずれかに記載の、LEDランプ。
4. The LED lamp according to claim 1, wherein the fluorescent window and the fluorescent cover are made of a transparent material mixed with a fluorescent material or a transparent material having a fluorescent layer containing a fluorescent material on a surface thereof .
前記LED素子は一次青色光線を放射する青色LED素子からなり、前記蛍光窓または前記蛍光カバーは、一次青色光線を二次黄色光線に波長変換する黄色蛍光材料を含み、ほぼ白色の照明光線を出射する、請求項1ないし請求項3のいずれかに記載の、LEDランプ。
The LED element includes a blue LED element that emits a primary blue light, and the fluorescent window or the fluorescent cover includes a yellow fluorescent material that converts the wavelength of the primary blue light into a secondary yellow light, and emits a substantially white illumination light. The LED lamp according to any one of claims 1 to 3 .
前記LED素子は紫色または紫外からなる短波長一次光線を放射する短波長LED素子からなり、前記蛍光窓または前記蛍光カバーは、短波長一次光線を3原色二次光線に波長変換する3原色蛍光材料を含み、白色の照明光線を出射する、請求項1ないし請求項3のいずれかに記載の、LEDランプ。
The LED element is composed of a short wavelength LED element that emits a short wavelength primary beam composed of purple or ultraviolet, and the fluorescent window or the fluorescent cover is a three primary color fluorescent material that converts the wavelength of the short wavelength primary beam into a three primary color secondary beam. The LED lamp according to claim 1, wherein the LED lamp emits a white illumination light beam .
複数の前記蛍光窓または前記貫通孔の開口面積および、または分布密度は、前記熱伝導性中空部材または前記熱伝導性兼光透過性カバーの異なる領域で一定または可変する、請求項1ないし請求項3のいずれかに記載の、LEDランプ。
4. The opening area and / or distribution density of the plurality of fluorescent windows or the through holes are constant or variable in different regions of the heat conductive hollow member or the heat conductive / light transmissive cover. The LED lamp according to any one of the above .
複数の前記窓または前記貫通孔の開口率は、前記熱伝導性中空部材または前記熱伝導性兼光透過性カバーの異なる領域で一定または可変する、請求項1ないし請求項3のいずれかに記載の、LEDランプ。
4. The aperture ratio of the plurality of windows or the through holes is constant or variable in different regions of the heat conductive hollow member or the heat conductive / light transmissive cover. , LED lamps.
請求項1ないし請求項11のいずれかに記載のLEDランプと、給電端子と、交流を直流に変換する点灯回路からなり、前記LEDランプと前記給電端子と前記点灯回路を結合して一体化した、LED電球。12. The LED lamp according to any one of claims 1 to 11, a power supply terminal, and a lighting circuit that converts alternating current into direct current. The LED lamp, the power supply terminal, and the lighting circuit are combined and integrated. LED bulb.
請求項1ないし請求項12のいずれかに記載の前記LEDランプまたは前記LED電球に用いられる前記熱伝導性中空部材。13. The thermally conductive hollow member used for the LED lamp or the LED bulb according to any one of claims 1 to 12.
JP2013075457A 2013-03-30 2013-03-30 LED lamp and LED bulb Expired - Fee Related JP5627145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075457A JP5627145B2 (en) 2013-03-30 2013-03-30 LED lamp and LED bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075457A JP5627145B2 (en) 2013-03-30 2013-03-30 LED lamp and LED bulb

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010244950A Division JP2012099297A (en) 2010-11-01 2010-11-01 Led lamp and led bulb

Publications (2)

Publication Number Publication Date
JP2013175467A true JP2013175467A (en) 2013-09-05
JP5627145B2 JP5627145B2 (en) 2014-11-19

Family

ID=49268165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075457A Expired - Fee Related JP5627145B2 (en) 2013-03-30 2013-03-30 LED lamp and LED bulb

Country Status (1)

Country Link
JP (1) JP5627145B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359044A (en) * 2014-10-21 2015-02-18 泰州市华强照明器材有限公司 LED down lamp
CN110319361A (en) * 2018-03-27 2019-10-11 骆玉 Fitting structure
KR102228831B1 (en) * 2020-08-20 2021-03-17 장순조 Purifying lamp for environmental sanitation
KR102267166B1 (en) * 2020-11-19 2021-06-21 장순조 Purifying lamp for environmental sanitation comprising the led assembly for black light blue lamp

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038304A (en) * 2007-08-03 2009-02-19 Stanley Electric Co Ltd Lamp for lighting
JP3153766U (en) * 2008-07-08 2009-09-17 築光光電股▲ふん▼有限公司 lighting equipment
JP2010086946A (en) * 2008-09-04 2010-04-15 Panasonic Corp Light source for illumination and luminaire with reflector using the same
WO2010084546A1 (en) * 2009-01-20 2010-07-29 パナソニック株式会社 Illuminating apparatus
JP2010205553A (en) * 2009-03-03 2010-09-16 Sharp Corp Lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038304A (en) * 2007-08-03 2009-02-19 Stanley Electric Co Ltd Lamp for lighting
JP3153766U (en) * 2008-07-08 2009-09-17 築光光電股▲ふん▼有限公司 lighting equipment
JP2010086946A (en) * 2008-09-04 2010-04-15 Panasonic Corp Light source for illumination and luminaire with reflector using the same
WO2010084546A1 (en) * 2009-01-20 2010-07-29 パナソニック株式会社 Illuminating apparatus
JP2010205553A (en) * 2009-03-03 2010-09-16 Sharp Corp Lighting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359044A (en) * 2014-10-21 2015-02-18 泰州市华强照明器材有限公司 LED down lamp
CN110319361A (en) * 2018-03-27 2019-10-11 骆玉 Fitting structure
KR102228831B1 (en) * 2020-08-20 2021-03-17 장순조 Purifying lamp for environmental sanitation
KR102267166B1 (en) * 2020-11-19 2021-06-21 장순조 Purifying lamp for environmental sanitation comprising the led assembly for black light blue lamp

Also Published As

Publication number Publication date
JP5627145B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP2012099297A (en) Led lamp and led bulb
CA2765106C (en) Solid state light source light bulb
US9995453B2 (en) Lamp bulb with internal reflector
US8297797B2 (en) Lighting apparatus
US9638408B2 (en) Lighting device
JP2013533583A (en) LED spotlight
US8931929B2 (en) Light emitting diode primary optic for beam shaping
JP6217972B2 (en) lighting equipment
WO2012032951A1 (en) Metal base lamp and lighting equipment
JP6311856B2 (en) lighting equipment
JP5627145B2 (en) LED lamp and LED bulb
JP5427977B2 (en) Illumination light source and illumination device
JP5243883B2 (en) Light emitting device and lighting apparatus
JP2015090775A (en) Lighting fixture
JP2013012453A (en) Led lamp
JP5742629B2 (en) LIGHT EMITTING DEVICE AND LIGHTING APPARATUS HAVING THE SAME
JP6590304B2 (en) lighting equipment
JP2016091745A (en) Luminaire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5627145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees