[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013161139A - 電力供給システムおよび電源装置 - Google Patents

電力供給システムおよび電源装置 Download PDF

Info

Publication number
JP2013161139A
JP2013161139A JP2012020259A JP2012020259A JP2013161139A JP 2013161139 A JP2013161139 A JP 2013161139A JP 2012020259 A JP2012020259 A JP 2012020259A JP 2012020259 A JP2012020259 A JP 2012020259A JP 2013161139 A JP2013161139 A JP 2013161139A
Authority
JP
Japan
Prior art keywords
power
output
voltage
current
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012020259A
Other languages
English (en)
Other versions
JP5929258B2 (ja
Inventor
Kazutaka Takagi
和貴 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2012020259A priority Critical patent/JP5929258B2/ja
Priority to US14/373,431 priority patent/US9729083B2/en
Priority to CN201380006518.XA priority patent/CN104067193A/zh
Priority to EP13707456.3A priority patent/EP2810136A2/en
Priority to PCT/JP2013/052290 priority patent/WO2013115343A2/en
Publication of JP2013161139A publication Critical patent/JP2013161139A/ja
Application granted granted Critical
Publication of JP5929258B2 publication Critical patent/JP5929258B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】蓄電装置の出力電力を所望のものに制御する。
【解決手段】複数の蓄電素子を有する蓄電装置と、蓄電装置と接続される電圧または電流の変換部と、変換部の直流出力が供給され、交流電力を発生する電力制御部とを備える。電力制御部から出力される交流電力が所定の交流電力となるように、変換部の直流出力が制御される。好ましくは、電力制御部がパワーコンディショナであり、パワーコンディショナの出力交流電力が系統に供給される。
【選択図】図2

Description

本開示は、電力供給システムおよび電源装置に関する。
最近では、化石燃料に対する依存からの脱却を目指して再生可能エネルギーの利用に関する研究・開発が盛んになされている。再生可能エネルギーを利用した発電としては、太陽光発電、風力発電、燃料電池、バイオマス発電、波力発電等が開発されている。再生可能エネルギーを利用した場合、発電量が自然条件によって変動し、かつ消費電力量との過不足が生じる問題がある。例えば家庭内の消費電力量は、1日の中でも特定の時間帯に多くなるが、その時間帯が発電量が多い時間帯と一致するとは限らない。
この問題を解決するために、蓄電池システムを各家庭に導入し、太陽光発電等の出力を蓄電池システムに一旦蓄積し、蓄電池システムの出力を消費に合わせ使用することが考えられる。具体的には、消費電力ピークの時間帯に蓄電池システムの出力を系統に流して電力をフラット化したり、電力が安価な時間帯に蓄電し、高価な時間帯に放電・消費する時間シフトを行ったり、太陽電池等の発電装置で発電した余剰電力を蓄電池システムに蓄電することなどがなされる。
電力を需要家の受電設備に供給するための発電、変電、送電、配電を統合したシステムは、電力系統(または系統)と称される。需要家側から電力系統へ流す電力のことが逆潮流と称され、需要家側から電力系統へ流すことが回生と称される。例えば太陽光発電システムで発電した電力を電力会社に供給することがなされる。この場合、太陽光発電システムと電力系統の間に、パワーコンディショナが配置される。パワーコンディショナは、太陽電池の不安定な直流出力電圧を安定な直流電圧に変換し、さらに、直流電圧を交流電圧に変換する。パワーコンディショナは、太陽電池が発電する電力の変動に追従して、常に最大の電力点を追いかける制御(最大電力点追従制御(Maximum Power Point Tracking(MPPT))を行う。
太陽電池と蓄電池システムとの両方を使用する電力システムにおいては、パワーコンディショナに対して蓄電池システムが接続される。このような構成においては、蓄電池システムの直流電力がパワーコンディショナによって全て交流電力に変換されて出力される。しかしながら、系統の必要とする電力は、一定ではなく、蓄電池システムの電池の消耗を防止するために、系統の必要とする電力に応じた電力がパワーコンディショナから出力されることが好ましい。さらに、パワーコンディショナの出力電力を系統に対して回生する場合、系統の安定化のために、回生する電力が制御されることが必要とされる。さらに、市販されているパワーコンディショナの構成を変更することなく、電力制御を可能とできることが実用化の点で好ましい。
特許文献1には、従来のパワーコンディショナにおいて、出力電圧が規定範囲外の値になった時点、すなわち、給電異常が発生した場合に連系を解除するようになされており、連系解除が頻発することを防止することが記載されている。つまり、連系接続点の電圧(出力電圧)を監視して、出力電圧が上限電圧に近づいたときには、動作点が最大電力点から離れるように出力電流を設定するようになされている。
特開平06−332553号公報
特許文献1は、給電異常が発生して連系が解除されることをなるべく抑えることを目的とするもので、動作点を意図的に最大電力点から離れるように制御するものである。かかる特許文献1に記載の従来のシステムは、給電異常が生じない範囲で最大電力を回生してしまう。太陽光発電(売電)の面では、問題が少ないが、蓄電装置の目的とする計画的エネルギー利用には、不向きである。さらに、パワーコンディショナ自体に変更を加える必要があり、汎用性が乏しい問題があった。
したがって、本開示は、出力される交流電力が設定値となるように制御することができる電力供給システムおよび電源装置の提供を目的とする。
上述の課題を解決するために、本開示は、複数の蓄電素子を有する蓄電装置と、
蓄電装置と接続される電圧または電流の変換部と、
変換部の直流出力が供給され、交流電力を発生する電力制御部とを備え、
電力制御部から出力される交流電力が所定の交流電力となるように、変換部の直流出力が制御される電力供給システムである。好ましくは、本開示において、電力制御部がパワーコンディショナであり、パワーコンディショナの出力交流電力が系統に供給される。
本開示は、複数の蓄電素子を有する蓄電装置と、
蓄電装置と接続される電圧または電流の変換部とを有し、
変換部の直流出力が電力制御部に供給され、
変換部の直流出力が制御される電源装置である。
本開示は、蓄電装置からの出力電力を適切な値に制御することができ、系統に供給される電力が過大となったり、蓄電装置の無駄な消耗を防止することができる。さらに、電力制御部としてのパワーコンディショナとして既存の典型的な構成のものを使用でき、パワーコンディショナの出力構成電力を設定値に制御することができる。
本開示を適用できる電力システムの一例のブロック図である。 本開示の電力供給システムの第1の例のブロック図である。 本開示の電力供給システムの第1の例におけるパワーコンディショナの入力電圧対出力電力の特性の一例を示す略線図である。 可変出力昇圧回路の一例の接続図である。 本開示の電力供給システムの第1の例におけるマイクロコンピュータの機能を表すブロック図である。 本開示の電力供給システムの第2の例の説明に用いるブロック図である。 本開示の電力供給システムの第2の例の説明に用いる略線図である。 本開示の電力供給システムの第2の例における擬似PV電源の説明に用いるブロック図である。 本開示の電力供給システムの第2の例の説明に用いる略線図である。 本開示の電力供給システムの第2の例のブロック図である。 本開示の電力供給システムの第2の例におけるマイクロコンピュータの機能を表すブロック図である。
以下に説明する実施の形態は、本開示の好適な具体例であり、技術的に好ましい種々の限定が付されている。しかしながら、本開示の範囲は、以下の説明において、特に本開示を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。
「電力供給システムの一例」
図1を参照して本開示による電力供給システムの一例について説明する。このシステムでは、太陽電池1と蓄電装置2とが備えられている。太陽電池1は、太陽光のエネルギーを電気エネルギーに変換する。太陽電池1は、太陽電池セルの複数個を直列接続したモジュールを複数個直列接続してストリングを構成し、複数のストリングを並列接続してアレイの単位としたものである。
蓄電装置2は、大出力を発生するために多数の蓄電素子例えば電池セルを使用したものである。電池セルを複数の蓄電ユニットに分割し、複数の蓄電ユニットに対して共通に制御装置が設けられている。蓄電素子としては、リチウムイオン二次電池等の二次電池以外にキャパシタ等の蓄電素子を使用しても良い。
太陽電池1の発電出力(直流電圧)がスイッチ回路3を通じて電力制御部としてのパワーコンディショナ4に供給されると共に、充電器7に供給される。パワーコンディショナ4の出力交流電力が系統入力5に供給される。系統入力5には、図示しないが、電力会社からの配電経路が接続されている。さらに、系統入力5からの交流電力が構内電力6として使用される。構内電力6の一例は、家庭内電力である。
充電器7は、太陽電池1の出力によって蓄電装置2を充電するためのものである。充電器7として、パワーコンディショナ4と同様に、最大電力点追従制御(Maximum Power Point Tracking:MPPT)と称される制御を行うものを使用しても良い。なお、蓄電装置2を太
陽電池1の出力のみならず、構内電力6によっても充電するようにしても良い。蓄電装置2の出力が変換部としての電圧変換回路8に供給され、電圧変換回路8の出力がスイッチ3を介してパワーコンディショナ4に供給される。
電圧変換回路8は、蓄電装置2からの直流電圧を異なる直流電圧に変換する。電圧変換回路8に対して端子9から制御信号が供給される。制御信号は、パワーコンディショナ4から出力される交流電力が所定の交流電力となるように、電圧変換回路8の直流出力を制御するための信号である。
スイッチ回路3は、図示しない制御信号発生部からのコントロール信号によって切り替えられる。例えば電力系統における消費電力が増大する時間帯であって、太陽電池1の発電能力が充分でない場合に、スイッチ回路3が蓄電装置2(電圧変換回路8)の出力を選択する。なお、スイッチ回路3の代わりに、太陽電池1の出力と蓄電装置2(電圧変換回路8)の出力とを加算(混合)するようにしても良い。
パワーコンディショナ4は、DC−DCコンバータ部と、DC−ACインバータ部とからなる電力変換部を有する。DC−DCコンバータ部は、入力直流電圧を昇圧し、DC−ACインバータ部に供給する。DC−ACインバータ部は、DC−DCコンバータ部からの直流電圧を交流電力に変換する。さらに、パワーコンディショナ4は、最大電力点追従制御(Maximum Power Point Tracking:MPPT)と称される制御を行う。この制御は、太陽電
池1の発電電力の変動に追従して、常に最大の電力点を追いかける方式である。
「電力制御の第1の方法」
本開示の一実施の形態においては、上述したように、パワーコンディショナ4から出力される交流電力が所定の交流電力となるように、電圧変換回路8の直流出力を制御するようになされている。かかる構成をより具体的に図2に示す。なお、図2においては、スイッチ回路3については、省略されている。他のブロック図においても同様である。
電圧変換回路8に対応して可変出力昇圧回路11が設けられている。可変出力昇圧回路11は、一例として、40V〜60Vの蓄電装置2の出力直流電圧を80V〜200Vに昇圧するものである。
可変出力昇圧回路11の出力直流電圧がパワーコンディショナ4に対して入力される。パワーコンディショナ4は、系統に対して電力を供給する。この系統に供給される電力が電力測定器12によって測定される。電力測定器12は、例えば非接触電流センサによって測定された電流値と、電圧センサによって測定された電圧値とから現在の電力を測定する。
電力測定器12からの現在の電力の情報が電力制御用マイクロコンピュータ13および制御部14に供給される。制御部14もマイクロコンピュータによって構成されている。例えば制御部14と関連して設けられた表示装置に現在の電力が表示される。制御部14が目標とする設定電力の情報をマイクロコンピュータ13に対して出力する。
マイクロコンピュータ13は、現在の電力の情報と、設定電力の情報とから電圧設定用コントロール信号を生成し、このコントロール信号を可変出力昇圧回路11に対して供給する。可変出力昇圧回路11が出力する直流電圧は、コントロール信号に応じた値とされる。
図3に示すように、パワーコンディショナ4は、入力直流電圧に応じて出力電力が変化する特性を有するので、可変出力昇圧回路11の出力直流電圧に応じた出力電力がパワーコンディショナ4から系統に供給される。図3に示すパワーコンディショナ4の(入力電圧対出力電力)特性28において、150V近辺から200Vの入力電圧の範囲では、出力電力が入力電圧に応じて増加する。したがって、入力電圧の値を制御することによって、出力電力を適切な値に制御することができる。入力電圧が200V以上となると、出力電力に対してリミッタが働いて一定の出力電力とされる。
可変出力昇圧回路11の一例(DC−DCコンバータ)を図4に示す。蓄電装置2の一方の出力端子がコイル21を介してMOS(Metal Oxide Semiconductor)FET(Field Effect Transistor)22のドレインに接続される。MOSFET22のソースは、蓄電装置2の他方の出力端子と接続される。MOSFET22のゲートに対してスイッチング信号生成回路23からのスイッチング信号が供給される。
MOSFET22のドレインがダイオード24を介して負荷としてのパワーコンディショナ4の一方の入力端子に接続されると共に、コンデンサ25を介してパワーコンディショナ4の他方の入力端子に接続される。コンデンサ25の両端電圧がパワーコンディショナ4の入力直流電圧である。
コンデンサ25の両端電圧が抵抗26およびデジタルポテンショメータ27の直列回路に供給される。デジタルポテンショメータ27は、マイクロコンピュータ13からの制御信号によってその抵抗値が設定されるものである。抵抗26およびデジタルポテンショメータ27の接続点の電圧(フィードバック電圧)がスイッチング信号生成回路23に供給される。
スイッチング信号生成回路23が生成するスイッチング信号は、パルス幅変調された信号であり、そのデューティに応じて出力直流電圧が可変される。例えば抵抗26およびデジタルポテンショメータ27の接続点のフィードバック電圧が基準電圧と等しい時にデューティが50%とすると、出力電圧が低下して接続点の電圧が基準電圧より低下すると、デューティが50%より大きくなり、MOSFET22のオン期間が長くなり、出力電圧が増大し、出力電圧を一定に保つ。一方、出力電圧が増加してフィードバック電圧が基準電圧より大きくなると、デューティが50%より小さくなり、MOSFET22のオン期間が短くなり、出力電圧が低下し、出力電圧を一定に保つ。
このようにフィードバック電圧が基準電圧と等しい場合に、所定の出力電圧が発生するような定電圧機能を有している。したがって、デジタルポテンショメータ27の抵抗値をより小に変更すると、変更前の出力電圧より高い出力電圧でないと、フィードバック電圧が基準電圧と等しくならないので、出力電圧をより高い電圧に可変することができる。一方、デジタルポテンショメータ27の抵抗値をより大に変更すると、変更前の出力電圧より低い出力電圧でないと、フィードバック電圧が基準電圧と等しくならないので、出力電圧をより低い電圧に可変することができる。このようにデジタルポテンショメータ27の抵抗値の制御によって、出力電圧を可変することができる。
デジタルポテンショメータ27の抵抗値がマイクロコンピュータ13によって可変されるので、マイクロコンピュータ13によって可変出力昇圧回路11の出力電圧を可変することができる。したがって、パワーコンディショナ4から系統に供給される電力をマイクロコンピュータ13によって可変することができる。なお、図4に示す可変出力昇圧回路11の具体的構成は、単なる一例であり、降圧型、昇降圧型のDC−DCコンバータ、一次側と二次側とが絶縁されるDC−DCコンバータ等の構成を使用できる。
本開示においては、可変出力昇圧回路11に対する制御として、目標とする設定電力の情報を与えるオープンループの制御方式を採用しても良い。図2の構成においては、電力制御用マイクロコンピュータ13を含むフィードバックループを設けている。フィードバックループを設けることによって、パワーコンディショナ4の損失分や、損失分の環境変化(温度等による変動)を補償することができる。マイクロコンピュータ13は、現在の電力の情報と設定電力の情報とを使用して電圧設定用コントロール信号を形成する。
マイクロコンピュータ13における処理を機能的ブロック図によって示すと、図5に示すものとなる。電力測定器12からの現在電力情報が入力端子31に供給される。設定電力情報が入力端子32に供給される。設定電力情報が減算器33および減算器34に供給される。
減算器34は、現在電力情報から設定電力情報を減算することによって、誤差を計算する。誤差が積分器35によって積分され、積分器35の出力が誤差ゲイン回路36に供給される。誤差ゲイン回路36は、誤差用のゲイン(1よりかなり小さい値)を乗じる。誤差ゲイン回路36の出力が減算器33に供給される。
減算器33の出力が変換テーブル37に供給される。変換テーブル37は、電力値を電圧値設定用のコントロール信号に変換するためのデジタルデータからなるテーブルであり、このテーブルは、パワーコンディショナ4の特性に応じて作成され、不揮発性メモリに記憶されている。使用するパワーコンディショナ4に応じてテーブルが作成される。電圧値設定用のコントロール信号は、図4の構成においては、デジタルポテンショメータ27の抵抗値を制御する信号である。パワーコンディショナ4が例えば図3に示すような(入力直流電圧対出力電力)特性を有する場合、変換テーブル37は、この特性に基づいて(出力電力対入力電圧設定用のコントロール信号)の関係にある場合を想定する。
例えばパワーコンディショナ4の特性において、出力電力が入力電圧に応じて増加する範囲のほぼ中央の基準電圧の時に、出力電力が設定電力となるような関係とされている。誤差がない場合では、変換テーブル37から出力されるコントロール信号によって、可変出力昇圧回路11が基準電圧をパワーコンディショナ4に対して入力する。一方、現在電力が設定電力より高い場合に発生する誤差によって、変換テーブル37からは、可変出力昇圧回路11の出力する直流電圧を低下するようなコントロール信号が発生する。さらに、現在電力が設定電力より低い場合に発生する誤差によって、変換テーブル37からは、可変出力昇圧回路11の出力する直流電圧を上昇するようなコントロール信号が発生する。このような制御によって、パワーコンディショナ4の出力電力を設定電力となるように制御することができる。なお、電圧変換回路8および可変出力昇圧回路11は、パワーコンディショナ4に設けられても良い。
「電力制御の第2の方法」
電力制御の第2の方法について以下説明する。第2の方法は、太陽電池に似せた振る舞いをする直流電源(以下、擬似PV電源と適宜称する)によってパワーコンディショナ4に対する入力直流電圧を生成するものである。擬似PV電源を構成するのは、既存の全ての太陽電池PV用のパワーコンディショナが太陽電池の出力に対するものであるからである。仮に、太陽電池以外の発電装置例えば風力発電の対するパワーコンディショナを使用する場合には、風力発電に似せた振る舞いの電源を構成するようになされる。
第2の方法の理解のために、図6に示すように、太陽電池PVに接続されたパワーコンディショナ4の動作について説明する。太陽電池PVの出力特性は、図7Aに示すようなI−Vカーブ(電流−電圧カーブ)38で表される。出力を開放した時の電圧を開放電圧Vocと呼び、出力を短絡した時の電流を短絡電流Iscと呼ぶ。開放電圧Vocと短絡電流Iscとは、太陽電池PVの最大電圧および最大電流である。太陽電池PVのI−Vカーブ38は、日射量や気温などの外部環境によって変化し、開放電圧Vocと短絡電流Iscとも一定ではない。
I−Vカーブ38は、負荷に対して出力する電流を増やすと、電圧が低下していくことを表している。開放電圧Vocと、短絡電流Iscにおける出力電力が0であるので、電流値が0からIscの間のどこかに最大電力点がある。これを表しているのがP−Vカーブ(電力−電圧カーブ)39である。出力電圧Vpmにおいて、P−Vカーブ39が最大となる。すなわち、出力電圧がVpmとなるようにすると、太陽電池PVから取り出せる電力が最大となる。
パワーコンディショナ4は、太陽電池PVの電力を電力系統に出力する装置である。通常動作時、パワーコンディショナ4は、太陽電池PVから取り出せる電力(すなわち、電力系統に出力できる電力)が最大となるように動作する(最大電力点追従制御)。
最大電力点電圧より動作点の電圧が大きい場合には、図7Bに示すように、動作点がaのとき、隣り合った動作点bとcとを比較して、出力電力が高い方向へ移動するように、電流値が変更される。動作点は、例えば負荷電流によって定まる。次に、動作点bと隣り合った動作点dとaとを比較して、出力電力が高い方向へ移動するように、電流値が変更される。この操作を繰り返して最終的に最大電力点Pmaxに到達する。一方、最大電力点
電圧より動作点の電圧が小さい場合には、図7Cに示すように、最大電力点Pmaxを追い
かける制御を行う。
上述した太陽電池PVと同様の特性を有する擬似PV電源の一例を図8に示す。可変電圧電源41の出力直流電圧がパワーコンディショナ4に入力される。可変電圧電源41は、後述するように、例えば蓄電装置と可変電圧出力回路とから構成されている。パワーコンディショナ4の出力電力が系統に供給される。可変電圧電源41の出力電流(パワーコンディショナ4の負荷電流)が電流センサ42によって検出される。電流センサ42としては、非接触センサを使用できる。
電流センサ42によって検出された現在の電流値がPV演算器43に供給される。PV演算器43は、図7Aに示すような太陽電池PVのI−Vカーブ38と同様のI−Vカーブを実現するための電流−出力電圧設定用コントロール信号の変換テーブルを有する。具体的には、テーブルを持つマイクロコンピュータ等によってPV演算器43が実現される。
PV演算器43に対して現在の電流値が入力されると、I−Vカーブの電流値に対応する電圧値が求まり、そのような電圧値を出力するためのコントロール信号がP−V演算器43から出力される。このコントロール信号が可変電圧電源41に対して供給され、可変電圧電源41の出力電圧値がI−Vカーブ上の電圧値に設定される。可変電圧電源41は、上述した可変出力昇圧回路11と同様に、例えばDC−DCコンバータによって構成される。このようにして擬似PV電源が構成される。
パワーコンディショナ4は、擬似PV電源の出力電流および出力電圧が入力され、電流値を変更することによって、上述した最大電力点追従制御の動作を行い、最大電力点Pmaxを追いかける制御を行う。すなわち、最終的には、可変電圧電源41からパワーコンデ
ィショナ4に対して最大電力点Pmaxを出力するための直流電圧Vpmが供給される。なお
、上述した擬似PV電源の例は、出力電流を検出して所定の直流電圧を出力するようにしたものである。これと逆に、出力電圧を検出して所定の出力電流を発生するようにしても良い。
本開示では、パワーコンディショナ4の出力電力を制御するものであり、この制御のためには、擬似PV電源からパワーコンディショナ4に与える最大電力値を変化させることが必要とされる。パワーコンディショナ4は、太陽電池PVからの入力を想定しているものであるから、最大電力値の変化は、太陽電池PVと同じように変化することが望ましい。
図9に示すように、太陽電池PVは、日射強度によって最大電力値が変化する。P−Vカーブ(電力−電圧カーブ)45aおよびI−Vカーブ(電流−電圧カーブ)46aは、日射強度が強い場合、例えば日射強度が1000W/m2 の場合のものである。P−Vカーブ45bおよびI−Vカーブ46bは、日射強度がやや強い場合、例えば日射強度が750W/m2 の場合のものである。P−Vカーブ45cおよびI−Vカーブ46cは、日射強度がやや弱い場合、例えば日射強度が500W/m2 の場合のものである。P−Vカーブ45dおよびI−Vカーブ46dは、日射強度が弱い場合、例えば日射強度が250W/m2 の場合のものである。
図9に示すように、日射量の変化は、最大電流の変化としてあらわれていることが分かる。また、P−Vカーブ上の頂点である最大電力点における電圧は、ほとんど変化せず、電流の変化のみが最大電力点の電力の値を変化させているとみなして良い。
(電力=電圧×電流)であるので、電圧が一定であれば、電流と電力とが比例する。最大電力点の電流値は、最大電流に比例しているので、最大電流と最大電力とが比例している。すなわち、最大電力は、最大電流に比例しており、パワーコンディショナ4は、最大電流の変化を日射量の変化として捉えている。
パワーコンディショナ4は、太陽電池PVの最大電力で動作しようとするので、日射量によるI−Vカーブの変化のそれぞれに対して最大電力点で動作する。したがって、以下の式の関係が成り立つ。
(パワーコンディショナの出力する電力≒パワーコンディショナの入力電力=最大電力点電力∝最大電流)
この関係からパワーコンディショナ4の出力電力は、太陽電池PVの最大電流に比例することが分かる。最大電流を制御することによって、パワーコンディショナの出力電力を制御することができる。
上述の点から可変出力の擬似PV電源を実現するためには、複数のI−Vカーブのテーブルを記憶する方法では、実現できるI−Vカーブの個数に限界があるので、ソフトウェア処理(計算処理)によってI−Vカーブを作成するようになされる。すなわち、最大電流値を与えることによって、所望のI−Vカーブを作成できる。
上述した第2の制御方法は、例えば図10に示す構成によって実現される。蓄電装置2の出力が可変電圧出力回路51に供給される。可変電圧出力回路51は、図8に示す可変電圧電源41のような出力電圧を可変できる電圧変換回路である。可変電圧出力回路51の出力がパワーコンディショナ4に供給される。可変電圧出力回路51の出力直流電流(現在のパワーコンディショナ4の負荷電流)が電流センサ52によって検出される。
パワーコンディショナ4は、系統に対して電力を供給する。この系統に供給される電力が電力測定器53によって測定される。電力測定器53は、例えば非接触電流センサによって測定された電流値と、電圧センサによって測定された電圧値とから現在の電力を測定する。
電流センサ52からの現在の直流電流値と、電力測定器53からの現在の電力の情報が電力制御用マイクロコンピュータ54および制御部55に供給される。制御部55もマイクロコンピュータによって構成されている。例えば制御部55と関連して設けられた表示装置に現在の電力が表示される。制御部55が目標とする設定電力の情報をマイクロコンピュータ54に対して出力する。
マイクロコンピュータ54は、現在の電力の情報と、設定電力の情報とから制御用電力値を計算し、制御用電力値を最大電流値に変換し、最大電流値と対応するI−Vカーブを計算し、I−Vカーブと現在の直流電流値とから出力電圧値を設定するコントロール信号を生成する。この電圧設定用コントロール信号を可変電圧出力回路51に対して供給する。可変電圧出力回路51が出力する電圧は、コントロール信号に応じた値とされる。
図10の構成においては、電力制御用マイクロコンピュータ54を含むフィードバックループによって、パワーコンディショナ4の損失分を補償することができ、精度の高い制御が可能となる。マイクロコンピュータ54における処理を機能的ブロック図によって示すと、図11に示すものとなる。電力測定器53からの現在電力情報が入力端子61に供給される。設定電力情報が入力端子62に供給される。設定電力情報が減算器63および減算器64に供給される。
減算器63は、現在電力情報から設定電力情報を減算することによって、誤差を計算する。誤差が積分器65によって積分され、積分器65の出力が誤差ゲイン回路66に供給される。誤差ゲイン回路66は、誤差用のゲイン(1よりかなり小さい値)を乗じる。誤差ゲイン回路66の出力が減算器63に供給される。
減算器63の出力が制御用電力値に対応している。制御用電力値が定数Kを乗じる乗算回路67に供給される。定数Kは、電力電流変換定数であって、制御用電力値を擬似PV電源の最大電流を変換するために使用される。定数Kは、下記の式で表されるものである。
K=(現在模擬している太陽電池PVの最大電流/現在模擬している太陽電池PVの最大電力)
乗算回路67の出力が最大電流値としてPV演算器68に対して入力される。PV演算器68は、最大電流値と対応するI−Vカーブをソフトウェア処理によって作成する。PV演算器68に対して端子69から検出された直流電流値(負荷電流値)が供給され、直流電流値に対応する電圧値が求められる。そして、求められた電圧値を可変電圧出力回路51が出力するようなコントロール信号がPV演算器68から出力される。このコントロール信号が可変電圧出力回路51に供給される。
パワーコンディショナ4は、最大電力点追従制御の動作を行うので、電流値が変化する。変化した電流値に応じて上述したように、電圧値が可変され、最終的にパワーコンディショナ4に対する入力電力が最大電力となり、パワーコンディショナ4の出力電力も最大電力となる。この最大電力は、設定電力に対応したものである。
上述した第2の制御方法は、既存のパワーコンディショナに広く適用できる汎用性を有する。前述の第1の制御方法は、構成が簡単な反面、使用するパワーコンディショナ毎にテーブルを作成することが必要となる。
なお、本開示は、以下のような構成も取ることができる。
(1)
複数の蓄電素子を有する蓄電装置と、
前記蓄電装置と接続される電圧または電流の変換部と、
前記変換部の直流出力が供給され、交流電力を発生する電力制御部とを備え、
前記電力制御部から出力される前記交流電力が所定の交流電力となるように、前記変換部の直流出力が制御される電力供給システム。
(2)
前記電力制御部がパワーコンディショナであり、
前記パワーコンディショナの出力交流電力が系統に供給される(1)に記載の電力供給システム。
(3)
前記電力制御部が入力電圧に応じて出力電力が変化する特性を有する(1)(2)の何れかに記載の電力供給システム。
(4)
前記変換部が前記蓄電装置からの直流電圧を前記電力制御部の入出力特性を基に異なる値の直流出力電圧に変換し、
前記直流出力電圧に応じて前記所定の交流電力を前記電力制御部が出力する(1)(2)(3)の何れかに記載の電力供給システム。
(5)
前記変換部が太陽電池と同一または類似の電流−電圧出力特性を有する(1)(2)(3)(4)の何れかに記載の電力供給システム。
(6)
前記電力制御部が最大電力点追従制御機能を有し、
所定の交流電力に対応する最大電力点を求め、
求められた最大電力点に対応する電流−電圧出力特性に応じて前記所定の交流電力を出力する(1)(2)(3)(4)(5)の何れかに記載の電力供給システム。
(7)
前記変換部の直流出力を検出する出力検出部と、
太陽電池と同一または類似の電流−電圧出力特性を記憶する記憶部と、
前記出力検出部の検出結果および前記電流−電圧出力特性に応じて前記変換部の出力を変更する出力制御部とを有し、
前記電力制御部は、前記変換部の直流出力を最大電力点追従制御することにより、交流電力を発生する(1)(2)(3)(4)(5)(6)の何れかに記載の電力供給システム。
(8)
作成された前記電流−電圧変化特性に対して現在の出力電流値を適用して前記変換部が出力する電圧値を求める(1)(2)(3)(4)(5)(6)(7)の何れかに記載の電力供給システム。
(9)
前記電力制御部および前記変換部を制御するコントロール回路部を備える(1)(2)(3)(4)(5)(6)(7)(8)の何れかに記載の電力供給システム。
(10)
前記電力制御部の出力電力を検出する電力検出部と、
前記電力検出部の検出結果が入力され、入力された前記検出結果に応じて前記変換部の出力を変更するフィードバック系統を有する(1)(2)(3)(4)(5)(6)(7)(8)(9)の何れかに記載の電力供給システム。
(11)
複数の蓄電素子を有する蓄電装置と、
前記蓄電装置と接続される電圧または電流の変換部とを有し、
前記変換部の直流出力が電力制御部に供給され、
前記変換部の直流出力が制御される電源装置。
(12)
前記変換部が前記蓄電装置からの直流電圧を前記電力制御部の入出力特性を基に異なる値の直流出力電圧に変換する(11)に記載の電源装置。
(13)
前記変換部が太陽電池と同一または類似の電流−電圧出力特性を有する(11)(12)の何れかに記載の電源装置。
(14)
作成された前記電流−電圧変化特性に対して現在の出力電流値を適用して前記変換部が出力する電圧値を求める(11)(12)(13)の何れかに記載の電源装置。
「変形例」
以上、本開示の実施形態について具体的に説明したが、上述の各実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
また、上述の実施形態の構成、方法、工程、形状、材料および数値などは、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
1・・・太陽電池
2・・・蓄電装置
4・・・パワーコンディショナ
11・・・可変出力昇圧回路
12・・・電力測定器
13・・・電力制御用マイクロコンピュータ
14・・・制御部
37・・・変換テーブル
41・・・可変電圧電源
42・・・電流センサ
43・・・PV演算器
51・・・可変電圧出力回路
52・・・電流検出センサ
54・・・電力制御用マイクロコンピュータ
55・・・制御部

Claims (14)

  1. 複数の蓄電素子を有する蓄電装置と、
    前記蓄電装置と接続される電圧または電流の変換部と、
    前記変換部の直流出力が供給され、交流電力を発生する電力制御部とを備え、
    前記電力制御部から出力される前記交流電力が所定の交流電力となるように、前記変換部の直流出力が制御される電力供給システム。
  2. 前記電力制御部がパワーコンディショナであり、
    前記パワーコンディショナの出力交流電力が系統に供給される請求項1に記載の電力供給システム。
  3. 前記電力制御部が入力電圧に応じて出力電力が変化する特性を有する請求項1に記載の電力供給システム。
  4. 前記変換部が前記蓄電装置からの直流電圧を前記電力制御部の入出力特性を基に異なる値の直流出力電圧に変換し、
    前記直流出力電圧に応じて前記所定の交流電力を前記電力制御部が出力する請求項3に記載の電力供給システム。
  5. 前記変換部が太陽電池と同一または類似の電流−電圧出力特性を有する請求項1に記載の電力供給システム。
  6. 前記電力制御部が最大電力点追従制御機能を有し、
    所定の交流電力に対応する最大電力点を求め、
    求められた最大電力点に対応する電流−電圧出力特性に応じて前記所定の交流電力を出力する請求項5に記載の電力供給システム。
  7. 前記変換部の直流出力を検出する出力検出部と、
    太陽電池と同一または類似の電流−電圧出力特性を記憶する記憶部と、
    前記出力検出部の検出結果および前記電流−電圧出力特性に応じて前記変換部の出力を変更する出力制御部とを有し、
    前記電力制御部は、前記変換部の直流出力を最大電力点追従制御することにより、交流電力を発生する請求項1に記載の電力供給システム。
  8. 作成された前記電流−電圧変化特性に対して現在の出力電流値を適用して前記変換部が出力する電圧値を求める請求項6に記載の電力供給システム。
  9. 前記電力制御部および前記変換部を制御するコントロール回路部を備える請求項3に記載の電力供給システム。
  10. 前記電力制御部の出力電力を検出する電力検出部と、
    前記電力検出部の検出結果が入力され、入力された前記検出結果に応じて前記変換部の出力を変更するフィードバック系統を有する請求項1に記載の電力供給システム。
  11. 複数の蓄電素子を有する蓄電装置と、
    前記蓄電装置と接続される電圧または電流の変換部とを有し、
    前記変換部の直流出力が電力制御部に供給され、
    前記変換部の直流出力が制御される電源装置。
  12. 前記変換部が前記蓄電装置からの直流電圧を前記電力制御部の入出力特性を基に異なる値の直流出力電圧に変換する請求項11に記載の電源装置。
  13. 前記変換部が太陽電池と同一または類似の電流−電圧出力特性を有する請求項11に記載の電源装置。
  14. 作成された前記電流−電圧変化特性に対して現在の出力電流値を適用して前記変換部が出力する電圧値を求める請求項13に記載の電源装置。
JP2012020259A 2012-02-01 2012-02-01 電力供給システムおよび電源装置 Active JP5929258B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012020259A JP5929258B2 (ja) 2012-02-01 2012-02-01 電力供給システムおよび電源装置
US14/373,431 US9729083B2 (en) 2012-02-01 2013-01-25 Power supply system and power source apparatus
CN201380006518.XA CN104067193A (zh) 2012-02-01 2013-01-25 供电系统和电源设备
EP13707456.3A EP2810136A2 (en) 2012-02-01 2013-01-25 Power supply system and power source apparatus
PCT/JP2013/052290 WO2013115343A2 (en) 2012-02-01 2013-01-25 Power supply system and power source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020259A JP5929258B2 (ja) 2012-02-01 2012-02-01 電力供給システムおよび電源装置

Publications (2)

Publication Number Publication Date
JP2013161139A true JP2013161139A (ja) 2013-08-19
JP5929258B2 JP5929258B2 (ja) 2016-06-01

Family

ID=47790419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020259A Active JP5929258B2 (ja) 2012-02-01 2012-02-01 電力供給システムおよび電源装置

Country Status (5)

Country Link
US (1) US9729083B2 (ja)
EP (1) EP2810136A2 (ja)
JP (1) JP5929258B2 (ja)
CN (1) CN104067193A (ja)
WO (1) WO2013115343A2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149783A1 (ja) * 2016-03-04 2017-09-08 株式会社東芝 電力貯蔵システム
JP2017192191A (ja) * 2016-04-12 2017-10-19 サンケン電気株式会社 Dc/dcコンバータ及び太陽発電システム
CN111506147A (zh) * 2019-01-30 2020-08-07 广达电脑股份有限公司 感测和补偿系统和补偿温度效应的方法
JP2020123135A (ja) * 2019-01-30 2020-08-13 パナソニックIpマネジメント株式会社 電力システム
JP2020137154A (ja) * 2019-02-13 2020-08-31 パナソニックIpマネジメント株式会社 電力システムおよび直流電力供給システム
JP2020137304A (ja) * 2019-02-21 2020-08-31 パナソニックIpマネジメント株式会社 電力システムおよび直流電力供給システム
JP2020188603A (ja) * 2019-05-15 2020-11-19 パナソニックIpマネジメント株式会社 電力システム
WO2020255351A1 (ja) * 2019-06-20 2020-12-24 東芝三菱電機産業システム株式会社 直流直流変換システムおよび太陽光発電システム
JP7572096B1 (ja) 2024-04-22 2024-10-23 株式会社Yanekara 電力変換装置及び電力変換方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015124448A1 (en) * 2014-02-21 2015-08-27 Koninklijke Philips N.V. Power point tracking via solar-battery-converter
WO2017142905A1 (en) * 2016-02-15 2017-08-24 Pitt-Ohio Express LLC Combination wind/solar dc power system
US9973090B1 (en) * 2016-10-20 2018-05-15 Silicon Mitus, Inc. Buck boost converter and control method thereof
CN107608332A (zh) * 2017-09-04 2018-01-19 西安微电子技术研究所 一种加速器模拟源单粒子辐照试验用电源切换控制装置
US11527909B2 (en) 2018-05-11 2022-12-13 Assembled Products Corporation Magnetic charging device
HUP1900275A1 (hu) * 2019-08-05 2021-03-01 Juellich Tech Innovacios Kft Készülék napelem panel inverterhez történõ csatlakoztatására
KR102245969B1 (ko) * 2019-11-21 2021-04-29 연세대학교 산학협력단 태양광 발전 시스템의 일정 출력 제어를 위한 장치 및 방법
KR102553045B1 (ko) * 2021-02-22 2023-07-06 주식회사 현대케피코 연료전지 스택의 전압 감지 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354677A (ja) * 2001-05-28 2002-12-06 Japan Storage Battery Co Ltd 太陽光発電用パワーコンディショナ
US20100091532A1 (en) * 2008-10-10 2010-04-15 Enphase Energy, Inc. Method and apparatus for improved burst mode during power conversion
JP2011200096A (ja) * 2010-02-26 2011-10-06 Sanyo Electric Co Ltd 蓄電システム
WO2012014182A1 (en) * 2010-07-30 2012-02-02 Bitron S.P.A. Method and device for maximizing the electrical power produced by a generator, particularly a generator based on a renewable power source

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311424B2 (ja) 1993-05-24 2002-08-05 三洋電機株式会社 太陽光発電システムの電力制御方法および電力制御装置
US6369461B1 (en) * 2000-09-01 2002-04-09 Abb Inc. High efficiency power conditioner employing low voltage DC bus and buck and boost converters
US6914418B2 (en) * 2003-04-21 2005-07-05 Phoenixtec Power Co., Ltd. Multi-mode renewable power converter system
US7256566B2 (en) * 2003-05-02 2007-08-14 Ballard Power Systems Corporation Method and apparatus for determining a maximum power point of photovoltaic cells
US7319313B2 (en) * 2005-08-10 2008-01-15 Xantrex Technology, Inc. Photovoltaic DC-to-AC power converter and control method
CN102082443B (zh) * 2009-11-27 2013-10-02 通用电气公司 直流-交流转换系统和方法
GB2482653B (en) * 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
JP5492040B2 (ja) * 2010-09-22 2014-05-14 株式会社豊田中央研究所 電源システム
CN102570868B (zh) * 2010-12-22 2015-04-01 通用电气公司 电力转换系统和方法
CN102904273B (zh) * 2011-07-29 2015-05-20 通用电气公司 能量转换系统的最大功率点追踪控制和相关方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354677A (ja) * 2001-05-28 2002-12-06 Japan Storage Battery Co Ltd 太陽光発電用パワーコンディショナ
US20100091532A1 (en) * 2008-10-10 2010-04-15 Enphase Energy, Inc. Method and apparatus for improved burst mode during power conversion
JP2012505630A (ja) * 2008-10-10 2012-03-01 エンフェイズ エナジー インコーポレイテッド 電力変換中のバーストモード改善のための方法及び装置
JP2011200096A (ja) * 2010-02-26 2011-10-06 Sanyo Electric Co Ltd 蓄電システム
WO2012014182A1 (en) * 2010-07-30 2012-02-02 Bitron S.P.A. Method and device for maximizing the electrical power produced by a generator, particularly a generator based on a renewable power source

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149783A1 (ja) * 2016-03-04 2017-09-08 株式会社東芝 電力貯蔵システム
JP2017192191A (ja) * 2016-04-12 2017-10-19 サンケン電気株式会社 Dc/dcコンバータ及び太陽発電システム
JP7038309B2 (ja) 2019-01-30 2022-03-18 パナソニックIpマネジメント株式会社 電力システム
CN111506147A (zh) * 2019-01-30 2020-08-07 广达电脑股份有限公司 感测和补偿系统和补偿温度效应的方法
JP2020123135A (ja) * 2019-01-30 2020-08-13 パナソニックIpマネジメント株式会社 電力システム
JP2020123312A (ja) * 2019-01-30 2020-08-13 廣達電腦股▲ふん▼有限公司Quanta Computer Inc. 温度上昇の影響を補償する方法およびシステム
JP2020137154A (ja) * 2019-02-13 2020-08-31 パナソニックIpマネジメント株式会社 電力システムおよび直流電力供給システム
JP7138306B2 (ja) 2019-02-13 2022-09-16 パナソニックIpマネジメント株式会社 電力システムおよび直流電力供給システム
JP2020137304A (ja) * 2019-02-21 2020-08-31 パナソニックIpマネジメント株式会社 電力システムおよび直流電力供給システム
JP2020188603A (ja) * 2019-05-15 2020-11-19 パナソニックIpマネジメント株式会社 電力システム
JP7174897B2 (ja) 2019-05-15 2022-11-18 パナソニックIpマネジメント株式会社 電力システム
WO2020255351A1 (ja) * 2019-06-20 2020-12-24 東芝三菱電機産業システム株式会社 直流直流変換システムおよび太陽光発電システム
JP7127741B2 (ja) 2019-06-20 2022-08-30 東芝三菱電機産業システム株式会社 直流直流変換システムおよび太陽光発電システム
JPWO2020255351A1 (ja) * 2019-06-20 2021-12-23 東芝三菱電機産業システム株式会社 直流直流変換システムおよび太陽光発電システム
US11502539B2 (en) 2019-06-20 2022-11-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation DC/DC converter system and photovoltaic system
CN112823463A (zh) * 2019-06-20 2021-05-18 东芝三菱电机产业系统株式会社 直流直流转换系统以及太阳能发电系统
JP7572096B1 (ja) 2024-04-22 2024-10-23 株式会社Yanekara 電力変換装置及び電力変換方法

Also Published As

Publication number Publication date
US9729083B2 (en) 2017-08-08
JP5929258B2 (ja) 2016-06-01
WO2013115343A2 (en) 2013-08-08
WO2013115343A3 (en) 2014-07-10
EP2810136A2 (en) 2014-12-10
CN104067193A (zh) 2014-09-24
US20150009733A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP5929258B2 (ja) 電力供給システムおよび電源装置
Sharma et al. Dynamic power management and control of a PV PEM fuel-cell-based standalone ac/dc microgrid using hybrid energy storage
Tamalouzt et al. Performances analysis of WT-DFIG with PV and fuel cell hybrid power sources system associated with hydrogen storage hybrid energy system
Tummuru et al. Dynamic energy management of hybrid energy storage system with high-gain PV converter
US8410634B2 (en) Grid-connected power storage system and method for controlling grid-connected power storage system
KR101097266B1 (ko) 전력 저장 시스템 및 그 제어방법
US9413185B2 (en) Energy storage device and method for controlling the same
Chtita et al. An improved control strategy for charging solar batteries in off-grid photovoltaic systems
CN108599136B (zh) 一种直流微电网光伏系统的模式切换方法
Park et al. Power weakening control of the photovoltaic-battery system for seamless energy transfer in microgrids
JP5915619B2 (ja) 太陽光発電装置及び太陽光発電装置の制御方法
Debnath et al. Transformer coupled multi-input two stage standalone solar photovoltaic scheme for rural areas
Singh et al. Power management in solar PV fed microgrid system with battery support
Yan et al. Reduced battery usage in a hybrid battery and photovoltaic stand-alone DC microgrid with flexible power point tracking
Abdulelah et al. Improve Lifespan of Battery Energy Storage in Remote Area Power System
Alassi et al. Design of an intelligent energy management system for standalone PV/battery DC microgrids
Parsekar et al. A novel strategy for battery placement in standalone solar photovoltaic converter system
Alagammal et al. Combination of modified P&O with power management circuit to exploit reliable power from autonomous PV-battery systems
KR20150085227A (ko) 에너지 저장 시스템 및 그의 제어 방법
Abuagreb et al. Energy management of a battery combined with PV generation
Bhunia et al. Cascaded DC-DC converter for a reliable standalone PV fed DC load
KR101256376B1 (ko) 상이한 충방전 경로를 이용한 에너지 저장 장치 및 그 에너지 저장 시스템
Tran et al. A robust power management strategy entrenched with multi-mode control features for an integrated residential PV and energy storage system to take the advantage of time-of-use electricity pricing
Hu et al. Modeling of a new multiple input converter configuration for PV/battery system with MPPT
de Carvalho Neto et al. One Cycle Control applied to a stand-alone photovoltaic system for DC microgrid applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5929258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250