[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013147370A - Method for manufacturing carbonated slag - Google Patents

Method for manufacturing carbonated slag Download PDF

Info

Publication number
JP2013147370A
JP2013147370A JP2012008155A JP2012008155A JP2013147370A JP 2013147370 A JP2013147370 A JP 2013147370A JP 2012008155 A JP2012008155 A JP 2012008155A JP 2012008155 A JP2012008155 A JP 2012008155A JP 2013147370 A JP2013147370 A JP 2013147370A
Authority
JP
Japan
Prior art keywords
slag
water
steelmaking slag
carbon dioxide
steelmaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012008155A
Other languages
Japanese (ja)
Other versions
JP5783057B2 (en
Inventor
Koichi Torii
孝一 鳥井
Takeshi Okada
剛 岡田
Masaaki Yamade
雅章 山出
Masato Jinbo
正人 神保
Hidetoshi Ogawa
英俊 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012008155A priority Critical patent/JP5783057B2/en
Publication of JP2013147370A publication Critical patent/JP2013147370A/en
Application granted granted Critical
Publication of JP5783057B2 publication Critical patent/JP5783057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a carbonated slag from a steelmaking slag by a simple, high-productivity and low-cost method.SOLUTION: A steelmaking slag 15 is immersed in water 16 in a reaction tank body 10; a carbon dioxide gas 12 is blown in the water 16 under stirring; and the blowing-in of the gas 12 is finished when pH of the water 16 at this time falls in the range of 11.8 or lower and 8.5 or higher.

Description

本発明は、炭酸化スラグの製造方法に関し、特に、主に製鋼工程で副生するスラグから炭酸化スラグを製造する方法に関する。詳述すれば、本発明は、製鋼プロセスで副生するスラグの有効なリサイクルを促進する技術の開発に関し、さらに具体的には、製鋼スラグの効率的な炭酸化処理、および炭酸化スラグの製造方法に関する。   The present invention relates to a method for producing carbonated slag, and more particularly, to a method for producing carbonated slag from slag produced mainly as a by-product in a steelmaking process. More specifically, the present invention relates to the development of technology for promoting effective recycling of slag produced as a by-product in a steelmaking process, and more specifically, efficient carbonation treatment of steelmaking slag, and production of carbonated slag. Regarding the method.

製鋼プロセスにおいて発生する製鋼スラグは、鉄分、マグネシウム、カルシウム、リン(燐)、珪素といった、生物環境にとって有効なミネラルを含む。例えば、脱リンスラグのように、リンを含む場合には、肥料としての利用価値が高い。   Steelmaking slag generated in the steelmaking process contains minerals that are effective for the biological environment, such as iron, magnesium, calcium, phosphorus, and silicon. For example, when phosphorus is contained like dephosphorization slag, the utility value as a fertilizer is high.

しかし、一方で、そのようなスラグは、再利用にあたって、遊離性カルシウムに起因するアルカリ水の生成、海水の白濁などの問題を引き起こし、生物などの環境に悪影響を与える可能性がある。   However, on the other hand, such slag may cause problems such as generation of alkaline water due to free calcium and white turbidity of seawater upon reuse, and may adversely affect the environment such as living organisms.

ここで、遊離性カルシウムとは、他の酸化物と結晶体を構成していないCaO(以下、「f−CaO」と記述することもある)である。
遊離性カルシウムを安定化させる有力な方法の1つとして、f−CaOをCaCOとする炭酸化処理がある。炭酸カルシウム(CaCO)は遊離性カルシウムが炭酸化することにより得られ、天然には、炭酸カルシウムを主成分とする大理石、石灰石等として安定に存在する。このため、遊離性カルシウムを炭酸化することにより、環境への影響が小さくなるのは容易に想像できる。このように炭酸化によりスラグ中の遊離性カルシウムを安定化させるという考え方は、化学工学的に自然な発想であり、従来から多くの提案がなされている。
Here, free calcium is CaO that does not form a crystal with other oxides (hereinafter also referred to as “f-CaO”).
One effective method for stabilizing free calcium is a carbonation treatment in which f-CaO is CaCO 3 . Calcium carbonate (CaCO 3 ) is obtained by carbonation of free calcium, and naturally exists stably as marble, limestone and the like mainly composed of calcium carbonate. For this reason, it can be easily imagined that the influence on the environment is reduced by carbonating free calcium. Thus, the idea of stabilizing free calcium in slag by carbonation is a natural idea in terms of chemical engineering, and many proposals have been made.

特許文献1には、製鋼スラグを、水の共存下において機械攪拌を付与しつつ、CO含有ガスを供給し、炭酸化反応を行わせる製鋼スラグの処理方法が記載されている。また、製鋼スラグ中の遊離CaOの濃度を1質量%以下とするために、40分から1時間程度の処理を行う技術が開示されている。 Patent Document 1, a steel slag, while applying mechanical stirring in the presence of water, and supplies the CO 2 containing gas, method of processing steel slag to perform the carbonation reaction are described. Moreover, in order to make the density | concentration of the free CaO in steelmaking slag into 1 mass% or less, the technique which performs the process for about 40 minutes to about 1 hour is disclosed.

特許文献2には、水槽に超音波印加設備を設置することにより、大型の機械攪拌や加圧装置を必要とせずに、製鋼スラグを炭酸化処理する方法が開示されている。
特許文献3には、CO又はCO含有ガスを直径1μm以下の気泡の状態で水中に分散させたナノバブル含有水を製鋼スラグと接触させることによって、製鋼スラグを炭酸化処理する方法が開示されている。
Patent Document 2 discloses a method for carbonizing steelmaking slag without installing a large mechanical stirring or pressurizing device by installing ultrasonic application equipment in a water tank.
Patent Document 3 discloses a method for carbonizing steelmaking slag by bringing nanobubble-containing water in which CO 2 or a CO 2 -containing gas is dispersed in water in the form of bubbles having a diameter of 1 μm or less into contact with the steelmaking slag. ing.

特許文献4には、特許文献3と同様に、CO含有ガスをマイクロバブルとして分散させた水で鉄鋼スラグ粉末の流動層を形成させることによって、鉄鋼スラグを炭酸化処理する方法が開示されている。 Patent Document 4 discloses a method for carbonizing steel slag by forming a fluidized bed of steel slag powder with water in which CO 2 -containing gas is dispersed as microbubbles, as in Patent Document 3. Yes.

特許文献5には、スラグと水との質量比(スラグ/水)を0.6以下として水中に保持した粒状製鋼スラグと、二酸化炭素含有ガスを吹き込み、炭酸イオンを溶解させた水とを、水温を60℃以下に維持し、0.5時間以上接触させることにより、製鋼スラグ粒子表層に炭酸カルシウム層を形成させる製鋼スラグの炭酸化処理方法が開示されている。   In Patent Document 5, a granular steelmaking slag held in water with a mass ratio of slag to water (slag / water) of 0.6 or less, and water in which carbon dioxide-containing gas was blown and carbonate ions were dissolved, A carbonation treatment method for steelmaking slag is disclosed in which a calcium carbonate layer is formed on the steelmaking slag particle surface layer by maintaining the water temperature at 60 ° C. or lower and making contact for 0.5 hour or more.

特許第4328215号公報Japanese Patent No. 4328215 特開2009−057257号公報JP 2009-057257 A 特開2010−120782号公報JP 2010-120882 A 特開2011−016710号公報JP 2011-016710 A 特開2011−051831号公報JP 2011-051831 A

しかし、これらの従来技術では、スラグをなるべく円滑に炭酸化処理することに注力されているため、結果として、高額な設備投資や複雑な処理条件やその制御が必要である。このため、工業的規模で広く普及を図るうえでは更なる改善が望まれる。また、これらの従来技術のなかで、粒状スラグと水との溶液に炭酸ガス含有ガスを吹き込む炭酸化処理方法が記載されているものがあるが、炭酸化処理を工業的に実施可能とすることについては一切開示されていない。このことは、製鋼スラグの炭酸化処理(炭酸カルシウムの生成)に関して、生産性の低下及びロスコストを招くという問題を有している。   However, since these conventional technologies are focused on carbonation treatment of slag as smoothly as possible, as a result, expensive equipment investment, complicated treatment conditions and control thereof are necessary. For this reason, further improvement is desired for widespread use on an industrial scale. In addition, among these conventional techniques, there is a carbonation treatment method in which a carbon dioxide-containing gas is blown into a solution of granular slag and water, but the carbonation treatment can be industrially implemented. Is not disclosed at all. This has the problem of incurring a reduction in productivity and a loss cost with respect to the carbonation treatment (production of calcium carbonate) of steelmaking slag.

本発明は、従来の技術が有するこのような課題に鑑みてなされたものであり、遊離CaOを含むスラグ(以下、製鋼スラグとも云う)を炭酸化処理して炭酸化スラグを製造するにあたり、簡便で、高生産性であり、かつ低コスト化が可能な実用性の高いスラグの炭酸化処理方法を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and it is easy to produce carbonated slag by carbonating slag containing free CaO (hereinafter also referred to as steelmaking slag). Therefore, an object of the present invention is to provide a highly practical slag carbonation method that is highly productive and can be reduced in cost.

製鋼スラグを浸漬させた水の中に炭酸ガス含有ガスを吹き込む手法において、炭酸化処理中の反応は下記式(1)及び(2)に示す通りである。
CaO + HO ⇔ Ca(OH) (1)
Ca(OH) + CO ⇔ CaCO + HO (2)
しかし、過剰に二酸化炭素を供給すると、下記式(3)に示す反応のように炭酸水素カルシウムとなり、ほぼ完全に電離して炭酸水素カルシウム溶液となる。
In the method of blowing a carbon dioxide-containing gas into water in which steelmaking slag is immersed, the reaction during the carbonation treatment is as shown in the following formulas (1) and (2).
CaO + H 2 O Ca Ca (OH) 2 (1)
Ca (OH) 2 + CO 2 Ca CaCO 3 + H 2 O (2)
However, if carbon dioxide is supplied excessively, it becomes calcium hydrogen carbonate as shown in the following formula (3), and is almost completely ionized to give a calcium hydrogen carbonate solution.

CaCO + HO + CO ⇔ Ca(HCO (3)
ここに、炭酸化スラグの製造という点に着目すると、炭酸化処理の終了判定は非常に重要である。
CaCO 3 + H 2 O + CO 2 Ca Ca (HCO 3 ) 2 (3)
Here, if attention is paid to the production of carbonated slag, it is very important to determine whether the carbonation treatment has ended.

炭酸化反応が不足の場合には、未反応CaOやCa(OH)が残留し、アルカリ水問題や固結等が生じ、本発明が解決しようとする課題が解決できない。
一方、過剰に二酸化炭素を供給すると、生成した炭酸カルシウムが水溶性の炭酸水素カルシウムとなり、炭酸化スラグの製造法としては、生産性や歩留が低下してロスコストを招くという新たな問題が発生するので、この問題を解決する手法も望まれている。
When the carbonation reaction is insufficient, unreacted CaO or Ca (OH) 2 remains, causing an alkaline water problem or consolidation, and the problem to be solved by the present invention cannot be solved.
On the other hand, if carbon dioxide is supplied excessively, the generated calcium carbonate becomes water-soluble calcium hydrogen carbonate, and a new problem arises in the production method of carbonated slag that productivity and yield are reduced, resulting in loss costs. Therefore, a method for solving this problem is also desired.

過不足なく炭酸化処理を行う為には、処理中の製鋼スラグを浸漬させた水からサンプルを採水し、Ca2+、CO 2−、HCO の濃度を分析し、その分析値から炭酸化処理の進行具合を確認する必要があるが、分析値判明までの時間とその費用がかかる為、現実的ではない。 In order to perform carbonation without excess or deficiency, a sample is taken from the water in which the steelmaking slag being processed is immersed, and the concentrations of Ca 2+ , CO 3 2− , HCO 3 are analyzed, and the analysis value is obtained. Although it is necessary to confirm the progress of the carbonation treatment, it takes time to find the analysis value and its cost, which is not realistic.

そこで、本発明者らは、鋭意検討の結果、製鋼スラグ粒子を浸漬させた水の中に炭酸ガス含有ガスを吹き込む手法において、浸漬水のpH推移に着目することにより、簡便で、高生産性かつ低コスト化が可能である炭酸化スラグの製造方法が実現できるという知見に至った。   Therefore, as a result of intensive studies, the present inventors have focused on the pH transition of the immersion water in the method of blowing carbon dioxide-containing gas into the water in which the steelmaking slag particles are immersed, and are simple and high productivity. Furthermore, the inventors have come to the knowledge that a carbonized slag manufacturing method capable of reducing costs can be realized.

ここに、本発明は、広義には、製鋼スラグを浸漬した水の中に二酸化炭素含有ガスを吹き込み、この二酸化炭素含有ガスの吹き込みを続け、当該水のpHが11.8以下、8.5以上となった時点で二酸化炭素含有ガスの吹き込みを終了することを特徴とする炭酸化スラグの製造方法である。   Here, in a broad sense, the present invention blows carbon dioxide-containing gas into water in which steelmaking slag is immersed, and continues to blow this carbon dioxide-containing gas, so that the pH of the water is 11.8 or less, 8.5. The carbonated slag manufacturing method is characterized in that the blowing of the carbon dioxide-containing gas is terminated at the time when the above is reached.

本発明は、より具体的には、次の通りである。
(1)反応槽内において、製鋼スラグを浸漬させた水に、二酸化炭素含有ガスの吹き込みを行うこと、前記反応槽内において、二酸化炭素含有ガスを前記水の中に吹き込みながら、前記製鋼スラグと水との撹拌を行うこと、前記二酸化炭素ガスの吹き込みおよび撹拌を行っている間、当該水のpHを測定すること、そして、pHの測定値が11.8以下かつ8.5以上の範囲内になったときに、前記二酸化炭素含有ガスの吹き込みを終了することを特徴とする、製鋼スラグからの炭酸化スラグの製造方法。
More specifically, the present invention is as follows.
(1) In the reaction tank, blowing the carbon dioxide-containing gas into the water in which the steelmaking slag is immersed. In the reaction tank, while blowing the carbon dioxide-containing gas into the water, the steelmaking slag and While stirring with water, measuring the pH of the water while blowing and stirring the carbon dioxide gas, and the measured value of the pH is in the range of 11.8 or less and 8.5 or more The method for producing carbonated slag from steelmaking slag is characterized in that the blowing of the carbon dioxide-containing gas is terminated.

(2)前記製鋼スラグの粒度は粒径40mm以下であることを特徴とする上記(1)に記載の炭酸化スラグの製造方法。
(3)前記水と前記製鋼スラグとの質量比は、製鋼スラグ/水として、0.10以上、1.0以下であることを特徴とする上記(1)または(2)に記載の炭酸化スラグの製造方法。
(2) The method for producing carbonated slag as described in (1) above, wherein the steelmaking slag has a particle size of 40 mm or less.
(3) Carbonation as described in said (1) or (2) characterized by the mass ratio of the said water and the said steelmaking slag being 0.10 or more and 1.0 or less as steelmaking slag / water A method for producing slag.

(4)前記攪拌は、前記反応槽内に固定された攪拌羽または前記水の中に設けられたインペラを用いて行なわれ、前記反応槽またはインペラの毎分あたりの回転数は10rpm以上、50rpm以下であることを特徴とする上記(1)乃至(3)のいずれか1項に記載の炭酸化スラグの製造方法。   (4) The stirring is performed using a stirring blade fixed in the reaction tank or an impeller provided in the water, and the number of revolutions per minute of the reaction tank or the impeller is 10 rpm or more and 50 rpm. The method for producing carbonated slag according to any one of the above (1) to (3), characterized in that:

本発明によれば、製鋼スラグを炭酸化処理して炭酸化スラグを製造するにあたり、簡便で、高生産性であり、かつ低コスト化が可能な炭酸化スラグの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in manufacturing carbonation slag by carbonizing steelmaking slag, the manufacturing method of carbonation slag which is simple, is highly productive, and can reduce cost can be provided. .

本発明に係る製鋼スラグからの炭酸化スラグの製造方法に用いる反応槽の模式図である。It is a schematic diagram of the reaction tank used for the manufacturing method of carbonation slag from the steelmaking slag concerning this invention.

本発明を実施するための形態を、添付図面を参照しながら説明する。
図1は、本発明に係る製鋼スラグ15の炭酸化処理に用いる反応槽1の模式図である。反応槽1は、反応槽本体10、攪拌羽11、二酸化炭素含有ガス12を槽内の水中に吹き込むガス吹き込み管13、pH電極14を備える。図示例では、反応槽本体10の内部には攪拌羽11が設けられており、反応槽が回転するようになっている。
A mode for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic view of a reaction tank 1 used for carbonation treatment of a steelmaking slag 15 according to the present invention. The reaction tank 1 includes a reaction tank body 10, a stirring blade 11, a gas blowing pipe 13 for blowing a carbon dioxide-containing gas 12 into the water in the tank, and a pH electrode 14. In the illustrated example, a stirring blade 11 is provided inside the reaction vessel main body 10 so that the reaction vessel rotates.

ガス吹き込み管13は、反応槽本体10に導入された水16に二酸化炭素含有ガス12を吹き込む。pH電極14は、炭酸化処理の終了判定で必要な水16のpHを測定する。図中、符号20はデータ処理装置を示す。   The gas blowing pipe 13 blows the carbon dioxide-containing gas 12 into the water 16 introduced into the reaction tank body 10. The pH electrode 14 measures the pH of the water 16 necessary for determining whether the carbonation treatment is complete. In the figure, reference numeral 20 denotes a data processing device.

本発明に係る製鋼スラグ15からの炭酸化スラグ製造方法は、反応槽本体10内に製鋼スラグ15と水16とを導入し、水16の中に製鋼スラグ15を浸漬させること、反応槽本体10内において二酸化炭素含有ガス12を水16の中に吹き込みながら、製鋼スラグ15および水16を攪拌すること、そして、撹拌している最中の水16のpHを測定し、pHが11.8以下かつ8.5以上の範囲内となったとき二酸化炭素含有ガス12の吹き込みを終了することからなる。以下、詳述する。   The method for producing carbonated slag from the steelmaking slag 15 according to the present invention introduces the steelmaking slag 15 and the water 16 into the reaction tank body 10 and immerses the steelmaking slag 15 in the water 16. The steelmaking slag 15 and the water 16 are stirred while the carbon dioxide-containing gas 12 is blown into the water 16, and the pH of the water 16 being stirred is measured, and the pH is 11.8 or less. And when it becomes in the range of 8.5 or more, the blowing of the carbon dioxide-containing gas 12 is terminated. Details will be described below.

まず、反応槽本体10内に製鋼スラグ15と水16とを導入し、原料となる製鋼スラグ15を水16中に浸漬させる。製鋼スラグ15は、遊離性カルシウムを含有するものであり、溶銑予備処理スラグ(脱硫スラグ、脱珪スラグ、脱リンスラグ)、転炉スラグ、電気炉スラグ、ステンレススラグ等が例示されるが、溶鋼を溶製するために利用可能なあらゆる精錬容器で形成されたスラグである。製鋼スラグ15の粒度は、反応性を向上させる観点から直径40mm以下であることが好ましく、炭酸化されたスラグの再利用先でのハンドリングを考慮すると5mm以下であることがさらに好ましい。   First, the steelmaking slag 15 and the water 16 are introduced into the reaction tank body 10, and the steelmaking slag 15 as a raw material is immersed in the water 16. The steelmaking slag 15 contains free calcium, and includes hot metal pretreatment slag (desulfurization slag, desiliconization slag, dephosphorization slag), converter slag, electric furnace slag, stainless slag, etc. Slag formed in any smelting vessel that can be used for melting. The particle size of the steelmaking slag 15 is preferably 40 mm or less from the viewpoint of improving reactivity, and more preferably 5 mm or less in consideration of handling at the reuse destination of the carbonated slag.

水16としては、例えば、水道水、純水等が挙げられる。反応槽本体10には、浸漬した製鋼スラグ15が肉眼で見えなくなる程度の量が導入されている。反応槽本体10に導入された水16と製鋼スラグ15との質量比は、製鋼スラグ/水として、0.10以上であり1.0以下であることが好ましい。質量比が0.10より小さいと、製鋼スラグ15の質量と比較して水16の質量が多くなるので、設備や動力が必要以上に過剰になるためである。一方、質量比が1.0を超えると、撹拌操作等において製鋼スラグ15が安定に水16中に浸漬できない可能性がある。より好ましくは、0.25〜0.40である。   Examples of the water 16 include tap water and pure water. The reaction tank body 10 is introduced with such an amount that the immersed steelmaking slag 15 is not visible to the naked eye. The mass ratio of the water 16 introduced into the reaction vessel main body 10 and the steelmaking slag 15 is preferably 0.10 or more and 1.0 or less as steelmaking slag / water. This is because if the mass ratio is smaller than 0.10, the mass of the water 16 increases as compared with the mass of the steelmaking slag 15, so that facilities and power are excessive more than necessary. On the other hand, if the mass ratio exceeds 1.0, the steelmaking slag 15 may not be stably immersed in the water 16 in a stirring operation or the like. More preferably, it is 0.25 to 0.40.

次に、反応槽本体10内において二酸化炭素含有ガス12を水16の中に吹き込みながら、製鋼スラグ15および水16を攪拌する。図1に示すように、製鋼スラグ15および水16の攪拌は、反応槽本体10が回転することにより攪拌羽11で行われる。攪拌は、攪拌羽11の代わりにインペラを反応槽本体10内に設けて行ってもよい。   Next, the steelmaking slag 15 and the water 16 are stirred while the carbon dioxide-containing gas 12 is blown into the water 16 in the reaction vessel body 10. As shown in FIG. 1, the steelmaking slag 15 and the water 16 are stirred by the stirring blade 11 as the reaction vessel body 10 rotates. Stirring may be performed by providing an impeller in the reaction vessel main body 10 instead of the stirring blade 11.

攪拌が反応槽本体10を用いて行われる場合、反応槽本体10の毎分あたりの回転数は、10rpm以上であり50rpm以下であることが好ましい。毎分あたりの回転数が10rpmより小さいと撹拌力が十分でなく炭酸化処理が十分に進まないおそれがある。一方、毎分あたりの回転数が50rpmを超えると、設備や動力が必要以上に過剰となるとともに、効果が飽和することになる。攪拌がインペラを用いて行われる場合、インペラの径にもよるが、概ね反応槽本体10の回転数と同程度の回転数で行う。   When stirring is performed using the reaction vessel body 10, the number of rotations per minute of the reaction vessel body 10 is preferably 10 rpm or more and 50 rpm or less. If the rotational speed per minute is less than 10 rpm, the stirring force is not sufficient and the carbonation treatment may not proceed sufficiently. On the other hand, when the rotational speed per minute exceeds 50 rpm, the equipment and power become excessive more than necessary, and the effect is saturated. When stirring is performed using an impeller, although depending on the diameter of the impeller, it is performed at a rotational speed that is approximately the same as the rotational speed of the reaction vessel body 10.

攪拌している最中の水16のpHを測定し、pHが11.8以下かつ8.5以上の範囲内で二酸化炭素含有ガス12の吹き込みを終了し、炭酸化処理を終了する。
攪拌している最中の水16のpHは、11.8以下であり8.5以上であることが好ましい。
The pH of the water 16 being stirred is measured, and the blowing of the carbon dioxide-containing gas 12 is finished within the range of pH 11.8 or less and 8.5 or more, and the carbonation treatment is finished.
During the stirring, the pH of the water 16 is 11.8 or less, and preferably 8.5 or more.

pHが11.8より大きいと未反応CaOやCa(OH)が残留し、アルカリ水問題や固結が発生してしまう。一方、pHが8.5より小さいと、一旦生成した炭酸カルシウムが水溶性の炭酸水素カルシウムとなってしまう。 If the pH is higher than 11.8, unreacted CaO and Ca (OH) 2 remain, causing an alkaline water problem and caking. On the other hand, if the pH is less than 8.5, the calcium carbonate once produced becomes water-soluble calcium bicarbonate.

このように、本発明によれば、製鋼スラグ15の炭酸化処理中に水16のpHを測定し、所定の範囲に入ったときに二酸化炭素含有ガス12の吹き込みを終了させるため、製鋼スラグ15の炭酸化処理を過不足なく行うことができる。また、本実施の形態では、従来の攪拌装置1にpH電極14を設けるだけでよく、また、攪拌している最中の水16のpH値に応じて炭酸化処理を終了する。このため、製鋼スラグ15を炭酸化処理するにあたり、簡便で、高生産性であり、かつ低コスト化を実現することが可能となる。   As described above, according to the present invention, the pH of the water 16 is measured during the carbonation treatment of the steelmaking slag 15, and the blowing of the carbon dioxide-containing gas 12 is terminated when entering the predetermined range. The carbonation treatment can be carried out without excess or deficiency. Moreover, in this Embodiment, the pH electrode 14 should just be provided in the conventional stirring apparatus 1, and the carbonation process is complete | finished according to the pH value of the water 16 in the middle of stirring. For this reason, when carbonizing the steelmaking slag 15, it is simple, high productivity, and low cost can be realized.

本発明にあっては、pHが8.5から11.8の範囲は、反応が前述の式(2)から(3)へ遷移する領域で、その範囲内でガス吹込みを停止すれば、過不足なく炭酸化処理を終了でき、生産性が高まり、低コストが実現できる。   In the present invention, the pH range of 8.5 to 11.8 is a region where the reaction transitions from the above formula (2) to (3), and if the gas blowing is stopped within that range, Carbonation treatment can be completed without excess or deficiency, productivity can be increased, and low cost can be realized.

本例では、製鋼スラグとして、脱リン工程で発生した下記表1に示す物性の脱リンスラグを使用した。この脱リンスラグ45kgと水道水(水16)140kgを図1に示す反応槽本体10(コンクリートミキサ)に導入し、反応槽本体10を15rpmで回転させつつ、純度99.99%の二酸化炭素ガスを100Nl/minで吹き込み、炭酸化処理を行った。   In this example, the dephosphorization slag having the physical properties shown in the following Table 1 generated in the dephosphorization process was used as the steelmaking slag. 45 kg of this dephosphorization slag and 140 kg of tap water (water 16) are introduced into the reaction tank main body 10 (concrete mixer) shown in FIG. 1, and carbon dioxide gas having a purity of 99.99% is produced while rotating the reaction tank main body 10 at 15 rpm. Carbonation was performed by blowing at 100 Nl / min.

Figure 2013147370
Figure 2013147370

表2に脱リンスラグの炭酸化処理中のpH推移及び成分推移を示す。   Table 2 shows pH transition and component transition during carbonation treatment of dephosphorized slag.

Figure 2013147370
Figure 2013147370

処理時間が45分以下では、pHは12.4〜12.5とほぼ一定で、Ca2+=702〜749mg/L、CO 2−=3.3〜7.2mg/Lであった。またHCO <0.1mg/Lでほとんど存在しなかった。この領域では、前述の式(1)(2)に示すように、スラグと水道水で生成したCa(OH)と吹き込んだCOが反応し、CaCOが生成するので、Ca2+やCO 2−は存在するが、HCO はほとんど存在しない。 When the treatment time was 45 minutes or less, the pH was almost constant at 12.4 to 12.5, and Ca 2+ = 702 to 749 mg / L and CO 3 2− = 3.3 to 7.2 mg / L. Further, HCO 3 <0.1 mg / L was hardly present. In this region, as shown in the above formula (1) (2), CO 2 blown with Ca (OH) 2 generated in the slag and tap water are reacted, since the CaCO 3 to produce, Ca 2+ and CO 3 2− is present but HCO 3 is hardly present.

処理開始が45分から75分以下では、pHは12.4から8.5に低下し、Ca2+が702から20.2mg/Lに減少し、CO 2−は3.3から0.5mg/Lに減少した。HCO は0.1未満から34.1mg/Lに増加した。この領域では、スラグからのCa(OH)の供給が停滞し、反応が前述の式(2)から(3)に変化する為、Ca2+、CO 2−及びHCO が存在し、その濃度が最小となった。 At the start of treatment from 45 minutes to 75 minutes or less, the pH decreases from 12.4 to 8.5, Ca 2+ decreases from 702 to 20.2 mg / L, and CO 3 2− decreases from 3.3 to 0.5 mg / L. Decreased to L. HCO 3 increased from less than 0.1 to 34.1 mg / L. In this region, the supply of Ca (OH) 2 from the slag stagnates, and the reaction changes from the above formula (2) to (3), so Ca 2+ , CO 3 2− and HCO 3 exist, The concentration was minimized.

処理時間が75分から180分までは、pHは8.5から6.8に低下し、Ca2+が20.2から48.9mg/Lに増加し、HCO 2−は34.1から541mg/Lに増加した。また、CO 2−は0.2から0.5mg/Lで低位一定であった。この領域における反応は、前述の式(3)が支配的で、吹き込んだCOは生成したCaCOと反応してCa(HCOを生成し、生成したCa(HCOが解離してCa2+とHCO となり増加する。 From 75 minutes to 180 minutes treatment time, the pH decreased from 8.5 to 6.8, Ca 2+ increased from 20.2 to 48.9 mg / L, and HCO 3 2− increased from 34.1 to 541 mg / L. Increased to L. In addition, CO 3 2− was low and constant at 0.2 to 0.5 mg / L. In the reaction in this region, the above-described formula (3) is dominant, and the blown CO 2 reacts with the produced CaCO 3 to produce Ca (HCO 3 ) 2, and the produced Ca (HCO 3 ) 2 is dissociated. As a result, Ca 2+ and HCO 3 increase.

以上のことから、8.5≦pH≦11.8で処理終了するのが最も効率が良いことが確認できた。
次いで、上述の炭酸化処理後の炭酸化スラグを回収し、この炭酸化スラグ10gに純水を通水し、通水後の溶液のpHを測定した。また、比較のため、炭酸化処理を行っていない脱リンスラグについても同様のpH測定を行った。pH測定は市販の測定器((株)堀場製作所製D−54S)を使用して行った。
From the above, it was confirmed that it is most efficient to end the treatment at 8.5 ≦ pH ≦ 11.8.
Subsequently, the carbonated slag after the above-mentioned carbonation treatment was collected, pure water was passed through 10 g of the carbonated slag, and the pH of the solution after passing through was measured. For comparison, the same pH measurement was also performed on dephosphorized slag that was not carbonized. The pH was measured using a commercially available measuring instrument (D-54S manufactured by Horiba, Ltd.).

炭酸化処理後の炭酸化スラグの物性を表3に示す。炭酸化処理後のスラグの通水試験結果を表4に示す。炭酸化処理を行っていない脱リンスラグの通水試験結果を表5に示す。表4及び表5中、液固比とは、スラグの質量とスラグを通過した純水の質量との比(純水/スラグ)である。   Table 3 shows the physical properties of the carbonated slag after the carbonation treatment. Table 4 shows the slag water passing test results after the carbonation treatment. Table 5 shows the results of the water removal test of the dephosphorized slag not subjected to the carbonation treatment. In Tables 4 and 5, the liquid-solid ratio is the ratio (pure water / slag) between the mass of slag and the mass of pure water that has passed through the slag.

Figure 2013147370
Figure 2013147370

Figure 2013147370
Figure 2013147370

Figure 2013147370
Figure 2013147370

表4より、炭酸化スラグでは通水初期から概ねpH<10を示した。また、表5より、炭酸化処理を行っていない脱リンスラグでは通水初期からpH>11の高い推移を示した。このように、炭酸化スラグでは通水量を増加させてもpHの増加は認められず、長期的なアルカリ溶出も低減できていることが確認された。   From Table 4, the carbonated slag generally showed pH <10 from the beginning of water flow. Further, from Table 5, the dephosphorization slag not subjected to the carbonation treatment showed a high transition of pH> 11 from the initial stage of water flow. Thus, in carbonated slag, even if it increased water flow volume, the increase in pH was not recognized and it was confirmed that long-term alkali elution can also be reduced.

1 反応槽
10 反応槽本体
11 攪拌羽
12 二酸化炭素含有ガス
13 二酸化炭素含有ガス吹き込み管
14 pH電極
15 製鋼スラグ
16 水
DESCRIPTION OF SYMBOLS 1 Reaction tank 10 Reaction tank main body 11 Stirring blade 12 Carbon dioxide containing gas 13 Carbon dioxide containing gas blowing pipe 14 pH electrode 15 Steelmaking slag 16 Water

Claims (4)

反応槽内において、製鋼スラグを浸漬させた水に、二酸化炭素含有ガスの吹き込みを行うこと、前記反応槽内において、二酸化炭素含有ガスを前記水の中に吹き込みながら、前記製鋼スラグと水との撹拌を行うこと、前記二酸化炭素ガスの吹き込みおよび撹拌を行っている間、当該水のpHを測定すること、そして、pHの測定値が11.8以下かつ8.5以上の範囲内になったときに、前記二酸化炭素含有ガスの吹き込みを終了することを特徴とする、製鋼スラグからの炭酸化スラグの製造方法。 In the reaction tank, carbon dioxide-containing gas is blown into the water in which the steelmaking slag is immersed. In the reaction tank, while blowing the carbon dioxide-containing gas into the water, the steelmaking slag and water While stirring, blowing the carbon dioxide gas and stirring, the pH of the water was measured, and the measured pH value was within the range of 11.8 or less and 8.5 or more. Sometimes, the carbon dioxide-containing gas blowing is terminated, and a method for producing carbonated slag from steelmaking slag. 前記製鋼スラグの粒度は粒径40mm以下であることを特徴とする請求項1に記載の炭酸化スラグの製造方法。 The carbonized slag manufacturing method according to claim 1, wherein the steelmaking slag has a particle size of 40 mm or less. 前記水と前記製鋼スラグとの質量比は、製鋼スラグ/水として、0.10以上、1.0以下であることを特徴とする請求項1または2に記載の炭酸化スラグの製造方法。 The mass ratio of the said water and the said steelmaking slag is 0.10 or more and 1.0 or less as steelmaking slag / water, The manufacturing method of the carbonated slag of Claim 1 or 2 characterized by the above-mentioned. 前記攪拌は、前記反応槽内に固定された攪拌羽または前記水の中に設けられたインペラを用いて行なわれ、前記反応槽またはインペラの毎分あたりの回転数は10rpm以上、50rpm以下であることを特徴とする請求項1〜3のいずれか1項に記載の炭酸化スラグの製造方法。 The stirring is performed using a stirring blade fixed in the reaction tank or an impeller provided in the water, and the number of rotations per minute of the reaction tank or the impeller is 10 rpm or more and 50 rpm or less. The method for producing carbonated slag according to any one of claims 1 to 3.
JP2012008155A 2012-01-18 2012-01-18 Carbonated slag manufacturing method Active JP5783057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008155A JP5783057B2 (en) 2012-01-18 2012-01-18 Carbonated slag manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008155A JP5783057B2 (en) 2012-01-18 2012-01-18 Carbonated slag manufacturing method

Publications (2)

Publication Number Publication Date
JP2013147370A true JP2013147370A (en) 2013-08-01
JP5783057B2 JP5783057B2 (en) 2015-09-24

Family

ID=49045276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008155A Active JP5783057B2 (en) 2012-01-18 2012-01-18 Carbonated slag manufacturing method

Country Status (1)

Country Link
JP (1) JP5783057B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114703A1 (en) * 2014-01-28 2015-08-06 日新製鋼株式会社 Phosphorus and calcium collection method, and mixture produced by said collection method
CN115232969A (en) * 2022-06-28 2022-10-25 北京科技大学 Method for saving alkali consumption of indirect carbonation process by using steel slag alkalinity
WO2024070961A1 (en) * 2022-09-26 2024-04-04 株式会社トクヤマ Geopolymer composition manufacturing method and geopolymer cured body manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095709A (en) * 2001-09-27 2003-04-03 Kokan Kogyo Kk Civil engineering structure
JP2005179170A (en) * 2003-11-25 2005-07-07 Jfe Steel Kk Method of manufacturing carbonated solid
JP2009057257A (en) * 2007-09-03 2009-03-19 Nippon Steel Corp Carbonated slag, and carbonation treatment method for slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095709A (en) * 2001-09-27 2003-04-03 Kokan Kogyo Kk Civil engineering structure
JP2005179170A (en) * 2003-11-25 2005-07-07 Jfe Steel Kk Method of manufacturing carbonated solid
JP2009057257A (en) * 2007-09-03 2009-03-19 Nippon Steel Corp Carbonated slag, and carbonation treatment method for slag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114703A1 (en) * 2014-01-28 2015-08-06 日新製鋼株式会社 Phosphorus and calcium collection method, and mixture produced by said collection method
US9783418B2 (en) 2014-01-28 2017-10-10 Nisshin Steel Co., Ltd. Phosphorus and calcium collection method, and mixture produced by said collection method
CN115232969A (en) * 2022-06-28 2022-10-25 北京科技大学 Method for saving alkali consumption of indirect carbonation process by using steel slag alkalinity
WO2024070961A1 (en) * 2022-09-26 2024-04-04 株式会社トクヤマ Geopolymer composition manufacturing method and geopolymer cured body manufacturing method

Also Published As

Publication number Publication date
JP5783057B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
Said et al. Enhancement of calcium dissolution from steel slag by ultrasound
TW201831697A (en) Method for eluting calcium from steelmaking slag and method for recovering calcium from steelmaking slag
JP5783057B2 (en) Carbonated slag manufacturing method
JP6299375B2 (en) Carbonation treatment method for steelmaking slag
CN105980326B (en) The recovery method of phosphorus and calcium
Bodor et al. Impacts of nickel nanoparticles on mineral carbonation
TW201638339A (en) Method for recovering calcium-containing solid component from steelmaking slag and recovered solid component
JP2010120782A (en) Method for producing low alkali elution property slag
CN101759207B (en) Process for producing high-purity magnesium hydroxide through brine-lime method
JP4734167B2 (en) Steelmaking slag treatment method
JP2013142046A (en) Method of recovering raw material for slag phosphatic fertilizer
JP4616790B2 (en) Steelmaking slag treatment method
Liu et al. Mechanism of ultrasonic enhanced acetic acid efficiently leaching of steel slag and synthesis of calcium carbonate whiskers
JP4676829B2 (en) Steelmaking slag treatment method
JP5533628B2 (en) Steelmaking slag treatment method
KR101157909B1 (en) Methods of forming carbonate using steel slags
JP2009114023A (en) Method of treating steelmaking slag
CN110201525A (en) A method of sulfur-containing smoke gas desulfurization is carried out using alkaline scrap material
JP5573024B2 (en) Steelmaking slag treatment method
JP2007031810A (en) Desulfurizing treatment method for molten iron
JP2008214150A (en) Method of stabilizing powdery steel making slag and stabilized steel making slag
WO2019107116A1 (en) Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag
WO2018058952A1 (en) Method of removing carbon in copper-containing molten iron by using vortex to draw in limestone
JP2000140651A (en) Fixing method of carbon dioxide
KR20190000198A (en) Method for treating byproduct

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R151 Written notification of patent or utility model registration

Ref document number: 5783057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350