JP2010120782A - Method for producing low alkali elution property slag - Google Patents
Method for producing low alkali elution property slag Download PDFInfo
- Publication number
- JP2010120782A JP2010120782A JP2008293213A JP2008293213A JP2010120782A JP 2010120782 A JP2010120782 A JP 2010120782A JP 2008293213 A JP2008293213 A JP 2008293213A JP 2008293213 A JP2008293213 A JP 2008293213A JP 2010120782 A JP2010120782 A JP 2010120782A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- water
- carbon dioxide
- nanobubble
- low alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002893 slag Substances 0.000 title claims abstract description 128
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000003513 alkali Substances 0.000 title abstract description 18
- 238000010828 elution Methods 0.000 title abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 95
- 239000002101 nanobubble Substances 0.000 claims abstract description 60
- 238000009628 steelmaking Methods 0.000 claims abstract description 39
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 72
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 36
- 239000001569 carbon dioxide Substances 0.000 abstract description 36
- 238000000034 method Methods 0.000 description 31
- 239000007789 gas Substances 0.000 description 20
- 239000002245 particle Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
- C04B5/06—Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
- C04B18/142—Steelmaking slags, converter slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00008—Obtaining or using nanotechnology related materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/10—Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
- C04B2111/1025—Alkali-free or very low alkali-content materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、遊離CaOや遊離MgOを含む製鋼スラグを炭酸化処理することによりアルカリ溶出性が小さいスラグとする、低アルカリ溶出性スラグの製造方法に関する。 The present invention relates to a method for producing a low alkali-eluting slag, in which a steelmaking slag containing free CaO or free MgO is carbonized to form a slag having low alkali elution.
鉄鋼製造プロセスの製鋼工程では、精錬剤としてCaOが使用され、生成するスラグの一部となる。また、精錬容器に内張りされる耐火物の多くはMgOを含有しており、このMgOが耐火物の溶損に伴いスラグに移行する。これらの結果、転炉スラグなどの製鋼スラグは、遊離CaOや遊離MgOを多く含むことになる。このような製鋼スラグが冷却・凝固した状態で水と接触すると、遊離CaOや遊離MgOの水和反応が生じ、それぞれCa(OH)2、Mg(OH)2となる。これらの水酸化物は強いアルカリ性を示すため、雨水などと反応した場合に強アルカリ水を生成し、生物などの環境に悪影響を与える可能性がある。 In the steel making process of the steel manufacturing process, CaO is used as a refining agent and becomes part of the slag to be generated. Further, most of the refractory lining the refining vessel contains MgO, and this MgO shifts to slag as the refractory melts. As a result, steelmaking slag such as converter slag contains a large amount of free CaO and free MgO. When such a steelmaking slag is brought into contact with water in a cooled and solidified state, a hydration reaction of free CaO or free MgO occurs, resulting in Ca (OH) 2 and Mg (OH) 2 , respectively. Since these hydroxides show strong alkalinity, when they react with rainwater or the like, strong alkaline water is generated, which may adversely affect the environment such as living things.
遊離CaOや遊離MgOを安定化させる有力な方法の1つとして、炭酸化処理がある。遊離CaOが炭酸化したものは、天然にはCaCO3を主成分とする大理石、石灰石等として安定に存在しており、環境への影響が小さくなるのは容易に想像できる。MgOは、CaOに比べてそのままでも安定であるが、炭酸化によってさらにアルカリが浸出しにくい状態にすることが可能となる。このように炭酸化によりスラグ中の遊離CaOや遊離MgOを安定化させるという考え方は、化学工学的に自然な発想であり、従来から多くの提案がなされている。 One effective method for stabilizing free CaO and free MgO is carbonation treatment. Naturally carbonated free CaO exists stably as marble, limestone and the like mainly composed of CaCO 3 , and it can be easily imagined that the influence on the environment is reduced. MgO is more stable as it is than CaO, but it becomes possible to make it more difficult for alkali to leach out by carbonation. Thus, the idea of stabilizing free CaO and free MgO in slag by carbonation is a natural idea in chemical engineering, and many proposals have been made heretofore.
例えば、特許文献1では、高温での炭酸化方法が開示されている。この方法は、溶融スラグを粒滴化し、凝固させた後、800〜300℃の温度領域をCO2雰囲気下に保持し、遊離CaOをCaCO3に炭酸化させる方法である。しかし、この方法では、スラグを高温で保持する必要があるため、その実施には特殊な装置が必要となる。
また、特許文献2には、スラグを水蒸気雰囲気でエージングした後、水蒸気とCO2ガスの混合雰囲気で保持し、炭酸化させる方法が開示されている。この方法は、工業的に利用されている水蒸気エージングの手法を利用できるため有用な方法であるが、一方において、エージング設備の使用時間が延び、処理効率は若干低下する問題がある。
また、これらの2つの方法では、スラグ表面の炭酸化は進行するものの、スラグ内部に遊離CaOや遊離MgOが残存し、長期的なアルカリ化を抑制することは難しい。
For example,
In these two methods, although carbonation of the slag surface proceeds, free CaO and free MgO remain in the slag, and it is difficult to suppress long-term alkalization.
特許文献3では、スラグに機械的撹拌を与えながらCO2含有ガスを導入し、炭酸化させる方法が開示されている。この方法により、スラグ表面のCaCO3層の破壊や亀裂導入により、内部まで炭酸化が進行するとされている。これが、記載の通りに反応が進行すれば有効な炭酸化方法であると言えるが、大量に発生する製鋼スラグを処理し、炭酸化処理するためには特殊な装置が必要となり、さらに、それを回転させるための多大なエネルギーが必要となる。
したがって本発明の目的は、以上のような従来技術の課題を解決し、特殊な大型装置を使用することなく且つ少ないエネルギーで、製鋼スラグをその内部まで効率的に炭酸化し、アルカリ溶出性の小さいスラグとすることができる、低アルカリ溶出性スラグの製造方法を提供することにある。 Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art, efficiently carbonize the steelmaking slag to the inside without using a special large-sized apparatus and with less energy, and have a low alkali elution property. It is providing the manufacturing method of the low alkali elution slag which can be used as slag.
スラグの炭酸化処理を特殊な装置類を用いないで行う一つの条件としては、常温に近い温度域で反応を進行させることである。スラグなどに含まれる遊離CaOや遊離MgOと炭酸ガス(CO2)との反応は、高温域では直接反応するものの、常温に近い領域では、各スラグ粒子の周囲に存在する水を介して進行するものと考えられている。すなわち、スラグ粒子の表面に存在する付着水にスラグ粒子の周囲を流れるCO2が溶解するとともに、スラグ粒子側からはCaイオン、Mgイオンが溶出し、これらが反応することにより、炭酸化が進行すると考えられている。 One condition for performing slag carbonation without using special equipment is to allow the reaction to proceed in a temperature range close to room temperature. The reaction of free CaO or free MgO contained in slag and the like and carbon dioxide (CO 2 ) directly reacts at a high temperature range, but proceeds through water existing around each slag particle in a region close to normal temperature. It is considered a thing. That is, CO 2 flowing around the slag particles dissolves in the adhering water present on the surface of the slag particles, and Ca ions and Mg ions elute from the slag particle side and react with each other, so that carbonation proceeds. It is considered to be.
本発明者らは、このように水を介して炭酸化反応が進行することから、炭酸ガスを先に水に溶解させておくことにより、炭酸化反応を促進させることを検討した。一般に、炭酸ガスは水に対する溶解度が高く、このプロセスは有効に機能すると期待されたが、実際にはあまり効果が発現しなかった。この原因は必ずしも明確ではないが、単純に炭酸ガスを吹き込んだ場合、ミリサイズの泡となってガスの大半が放出してしまうこと、また、水中に溶存していた炭酸ガスも、スラグ粒子に接触するとすぐに析出し、スラグ粒子の表面部のみで反応が進行して内部まで到達できないこと、などが原因であると推定される。
そこで、本発明者らは、炭酸ガスを単純に溶解させるのではなく、炭酸ガスを水中に安定して分散させ、且つ残存させて反応させる方法について鋭意検討した結果、炭酸ガスの気泡をナノサイズまで微小化させてスラグと接触させることにより、スラグの内部まで炭酸化を進行させることができ、低アルカリ溶出性のスラグにできることを見出した。
Since the carbonation reaction proceeds through water as described above, the present inventors studied to promote the carbonation reaction by dissolving carbon dioxide gas in water first. In general, carbon dioxide has a high solubility in water, and this process was expected to function effectively, but was not very effective in practice. The cause of this is not necessarily clear, but when carbon dioxide is simply blown, most of the gas is released as a bubble of millimeter size, and carbon dioxide dissolved in water is also added to the slag particles. It is presumed that it is precipitated as soon as it comes into contact, the reaction proceeds only on the surface portion of the slag particles, and it cannot reach the inside.
Therefore, the present inventors have intensively studied a method of stably dispersing carbon dioxide gas in water and allowing it to react without simply dissolving carbon dioxide gas. It has been found that carbonization can proceed to the inside of the slag by reducing the size to a minimum and bringing the slag into contact with the slag, so that a slag having a low alkali elution can be obtained.
水に分散させる炭酸ガスの気泡の大きさを小さくし、この水を高炉スラグに接触させる技術が、特開2007−186364号公報に開示されている。高炉スラグは、高炉から発生する溶融状態のスラグを冷却して得られるもので、水を使用して急冷するものを高炉水砕スラグ、ヤード等に放流してゆっくりと冷却するものを高炉徐冷スラグと呼んでいる。このうち高炉水砕スラグは、急冷されるためガラス状の非晶質構造をもち、且つ形状は砂状になるため、コンクリートの細骨材の代替材料などとして使用されているが、潜在水硬性(セメントのように硬化する能力)を有するため、使用するまでの間に固結現象が発生する問題がある。この対策として、上記特開2007−186364号公報では、溶融状態の高炉スラグを急冷するための水に炭酸ガスをマイクロバブルとして添加することにより、スラグ粒子表面を炭酸化し、炭酸化層で被覆する技術を提案している。 Japanese Laid-Open Patent Publication No. 2007-186364 discloses a technique for reducing the size of carbon dioxide gas bubbles dispersed in water and bringing the water into contact with blast furnace slag. Blast furnace slag is obtained by cooling molten slag generated from the blast furnace. Blast furnace gradual slag is cooled by slowly discharging water that is cooled rapidly using blast furnace slag, yard, etc. It is called slug. Among them, granulated blast furnace slag has a glassy amorphous structure because it is cooled rapidly, and its shape is sandy, so it is used as an alternative material for concrete fine aggregates, but it has latent hydraulic properties. Therefore, there is a problem that a caking phenomenon occurs before use. As a countermeasure, in JP-A-2007-186364, the surface of the slag particles is carbonated by adding carbon dioxide as microbubbles to the water for rapidly cooling the molten blast furnace slag, and is coated with a carbonation layer. Proposing technology.
しかしながら、本発明が対象とする製鋼スラグは、高炉スラグとは異なり、溶融状態で鉄が含有されていることが一般的であり、これを直接水冷すると爆裂する危険があるため、水冷処理自体がほとんど実施されていない。換言すると、製鋼スラグは冷却後に炭酸化処理することが必須となり、上記提案の方法を適用することはできない。
また、上記提案の方法が対象としている高炉スラグは、スラグ中のCaOの割合がせいぜい40mass%強であるのに対し、製鋼スラグは60mass%に達することもあり、高炉スラグとは全く異なった成分を持っている。そのため、高炉スラグでは接触水のpHはさほど高くならず、上記提案でも全く検討されていないのに対して、製鋼スラグは接触水がアルカリを呈する可能性が高く、上記提案では検討されていない観点からの検討が必要となる。
However, the steelmaking slag targeted by the present invention, unlike the blast furnace slag, generally contains iron in a molten state, and there is a risk of explosion when directly cooled with water. It is hardly implemented. In other words, the steelmaking slag must be carbonized after cooling, and the proposed method cannot be applied.
In addition, the blast furnace slag targeted by the proposed method has a CaO ratio in the slag of at most 40 mass%, whereas the steelmaking slag may reach 60 mass%, which is completely different from the blast furnace slag. have. Therefore, the pH of contact water is not so high in blast furnace slag, and the above proposal has not been studied at all, whereas steelmaking slag has a high possibility that the contact water will exhibit alkali, and is not considered in the above proposal. It is necessary to study from.
さらに、上述したように高炉水砕スラグは非晶質となり、マクロ的には粗度が高いが、ミクロ的にはガラスビーズのように滑らかでほぼ均質な形態となり、微細亀裂内への炭酸化を考慮する必要がない。これに対して、製鋼スラグは結晶質であり、その表面はマクロ的にもミクロ的にも粗く、加えて、結晶間などでも剥離が起こりやすいことから、微細亀裂が数多く入っている。したがって、アルカリを抑制するためには、その内部まで炭酸化を進行させることが重要となる。
本発明者らは、マイクロサイズの炭酸ガスの気泡を分散させたマイクロバブル含有水を用いて、冷却後の製鋼スラグを炭酸化処理する実験を行い、処理後スラグのアルカリ溶出性について調べたところ、一時的にpHは低下するものの、長時間水に浸漬すると直ぐにpHが上昇してくることを確認した。言い換えれば、冷却後の製鋼スラグを特開2007−186364号公報が開示するようなマイクロバブル含有水で炭酸化処理しても、十分な効果が得られないことが判った。
In addition, as mentioned above, granulated blast furnace slag is amorphous and macroscopically high in roughness, but microscopically, it is smooth and almost homogeneous like glass beads, and is carbonated into fine cracks. There is no need to consider. On the other hand, steelmaking slag is crystalline, and its surface is rough both macroscopically and microscopically. In addition, peeling is likely to occur between crystals, and therefore many fine cracks are present. Therefore, in order to suppress alkali, it is important to advance carbonation to the inside.
The present inventors conducted an experiment to carbonize steelmaking slag after cooling using microbubble-containing water in which bubbles of micro-sized carbon dioxide gas were dispersed, and examined alkali elution of the treated slag. Although the pH was temporarily lowered, it was confirmed that the pH immediately increased when immersed in water for a long time. In other words, it has been found that even if the steelmaking slag after cooling is carbonized with water containing microbubbles as disclosed in JP-A-2007-186364, a sufficient effect cannot be obtained.
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]CO2またはCO2含有ガスを直径1μm以下の気泡の状態で水中に分散させたナノバブル含有水を、製鋼スラグと接触させることを特徴とする低アルカリ溶出性スラグの製造方法。
[2]上記[1]の製造方法において、ナノバブル含有水は、CO2またはCO2含有ガスの直径1μm以下の気泡を0.1体積%以上分散させたものであることを特徴とする低アルカリ溶出性スラグの製造方法。
[3]上記[1]または[2]の製造方法において、ナノバブル含有水に製鋼スラグを浸漬することを特徴とする低アルカリ溶出性スラグの製造方法。
[4]上記[1]または[2]の製造方法において、ナノバブル含有水を製鋼スラグに散水することを特徴とする低アルカリ溶出性スラグの製造方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] A method for producing a low alkali-eluting slag, characterized in that nanobubble-containing water in which CO 2 or a CO 2 -containing gas is dispersed in water in the form of bubbles having a diameter of 1 μm or less is brought into contact with steelmaking slag.
[2] In the production method of the above [1], the nanobubble-containing water is obtained by dispersing 0.1% by volume or more of CO 2 or CO 2 -containing gas bubbles having a diameter of 1 μm or less. Method for producing eluting slag.
[3] A method for producing low alkali-eluting slag, wherein the steelmaking slag is immersed in nanobubble-containing water in the production method of [1] or [2].
[4] A method for producing a low alkali-eluting slag, characterized in that, in the production method of [1] or [2], nanobubble-containing water is sprinkled on steel slag.
本発明法によれば、炭酸ガスのナノバブル含有水は、炭酸ガスの気泡(ナノバブル)が長時間安定して水中に存在できるため、炭酸ガスを含む水がスラグ内部まで適切に浸透して長時間保持され、スラグ内部の遊離CaOや遊離MgOを適切に炭酸化させることができ、しかも、特別な装置を用いることなく、簡便な手段で低コストに実施できる利点がある。このため本発明法は、製鋼スラグからアルカリ溶出性が小さいスラグを、効率的且つ低コストに製造することができる。そして、製造された低アルカリ溶出性スラグは、天然砕石や骨材の代替品などとして有効利用することができる。 According to the method of the present invention, carbon dioxide-containing nanobubble-containing water has carbon dioxide bubbles (nanobubbles) that can be stably present in water for a long time, so that water containing carbon dioxide appropriately penetrates into the slag for a long time. The free CaO and free MgO inside the slag can be appropriately carbonated, and there is an advantage that it can be carried out at a low cost by a simple means without using a special device. For this reason, this invention method can manufacture slag with small alkali elution from steel-making slag efficiently and at low cost. The produced low alkali-eluting slag can be effectively used as a substitute for natural crushed stone or aggregate.
本発明は、CO2またはCO2含有ガス(以下、説明の便宜上、これらを総称して「炭酸ガス」という)を直径1μm以下の気泡の状態で水中に分散させてナノバブル含有水とし、このナノバブル含有水を製鋼スラグと接触させることにより、その炭酸化処理を行うものである。
本発明では、炭酸ガスをミクロン以下のサイズまで微細化した気泡(ナノバブル)として水中に分散させることにより、ガスどうし或いはガスと固体との接触による気泡の粗大化と浮上を抑制し、炭酸ガスを長時間安定して水中に保持させることが可能となる。その結果、炭酸ガスを含む水がスラグ内部まで適切に浸透して長時間保持され、スラグ内部の遊離CaO、遊離MgOを適切に炭酸化させることができる。
本発明で処理の対象となる製鋼スラグとしては、例えば、転炉スラグ(脱炭スラグ)、溶銑予備処理スラグ(脱燐スラグ、脱硫スラグ、脱珪スラグなど)などが挙げられるが、これらに限定されるものではない。
対象となるスラグの粒度も特に限定されるものではないが、反応の効率性の観点から、粒径40mm以下に破砕されたものが望ましい。
In the present invention, CO 2 or a CO 2 -containing gas (hereinafter collectively referred to as “carbon dioxide gas” for convenience of explanation) is dispersed in water in the form of bubbles having a diameter of 1 μm or less to form nanobubble-containing water. The carbonation treatment is performed by bringing the contained water into contact with the steelmaking slag.
In the present invention, carbon dioxide gas is dispersed in water as bubbles (nanobubbles) refined to a size of less than a micron, thereby suppressing the bubble from becoming coarse and rising due to contact between gases or from a gas and a solid. It becomes possible to keep it stably in water for a long time. As a result, water containing carbon dioxide gas appropriately penetrates into the slag and is retained for a long time, and free CaO and free MgO inside the slag can be appropriately carbonated.
Examples of the steelmaking slag to be treated in the present invention include converter slag (decarburization slag), hot metal pretreatment slag (dephosphorization slag, desulfurization slag, desiliconization slag, etc.), but are not limited thereto. Is not to be done.
The particle size of the target slag is not particularly limited, but is preferably crushed to a particle size of 40 mm or less from the viewpoint of reaction efficiency.
直径1μm以下の炭酸ガスの気泡(以下、単に「ナノバブル」という)を含む水、すなわちナノバブル含有水は、どのような製法で得られたものであってもよいが、例えば、特開2005−245817号公報や特開2008−73658号公報に示されるような公知の方法および装置で得ることができる。例えば、微小気泡発生装置により水中に炭酸ガスの微小気泡を発生させ、この微小気泡に物理的刺激を加えて急激に縮小させることにより、ナノバブルを生成させることができる。微小気泡に物理的刺激を加える方法としては、例えば、(i)放電発生装置を用いて微小気泡に放電する方法、(ii)回転体を備えた容器内に微小気泡を含んだ水を入れ、回転体により水を流動させ、この流動時に生じる圧縮、膨張および渦流を利用する方法、(iii)円筒容器内に水と炭酸ガスを高速旋回するように導入し、流動時に生じる圧縮、膨張および渦流を利用する方法、(iv)流路内にオリフィスまたは多孔板を備えた循環路内で、微小気泡を含んだ水を循環させ、その途中で前記オリフィスまたは多孔板を通過させることにより、圧縮、膨張および渦流を生じさせる方法、などを適用できる。 Water containing carbon dioxide bubbles (hereinafter simply referred to as “nanobubbles”) having a diameter of 1 μm or less, that is, nanobubble-containing water may be obtained by any manufacturing method. For example, Japanese Patent Application Laid-Open No. 2005-245817 And a known method and apparatus as disclosed in JP-A-2008-73658. For example, nanobubbles can be generated by generating microbubbles of carbon dioxide in water with a microbubble generator, and applying a physical stimulus to the microbubbles to rapidly reduce them. As a method of applying physical stimulation to microbubbles, for example, (i) a method of discharging into microbubbles using a discharge generator, (ii) putting water containing microbubbles in a container equipped with a rotating body, A method of using water by a rotating body and utilizing compression, expansion and vortex generated during the flow, (iii) Compression, expansion and vortex generated during flow by introducing water and carbon dioxide into a cylindrical container so as to swirl at high speed. (Iv) by circulating water containing microbubbles in a circulation path having an orifice or a porous plate in the flow path, and passing the orifice or the porous plate in the middle, thereby compressing, A method for generating expansion and vortex flow can be applied.
炭酸ガスのナノバブルを分散させたナノバブル含有水について、気泡径分布の一例を図1に示す。この例は、回転体に炭酸ガスの気泡を含む水を入れ、渦流によって気泡をナノバブル化する方法により超純水中で炭酸ガスのナノバブルを発生させ、1週間経過後の気泡径分布をレーザー回折散乱式の粒度分布測定により調べたものである。図1に示すように、1週間経過後でも直径1μm以下(特に直径500nm以下)のナノバブルが水中に適切に保持されていることが判る。 An example of bubble size distribution is shown in FIG. 1 for nanobubble-containing water in which carbon dioxide nanobubbles are dispersed. In this example, water containing carbon dioxide bubbles is put into a rotating body, and nanobubbles of carbon dioxide are generated in ultrapure water by a method of making bubbles into nanobubbles by eddy current. It was investigated by a scattering type particle size distribution measurement. As shown in FIG. 1, it can be seen that nanobubbles having a diameter of 1 μm or less (particularly, a diameter of 500 nm or less) are appropriately retained in water even after one week has elapsed.
本発明で用いるナノバブル含有水は、炭酸ガスのナノバブルの分散量に特に制限はないが、炭酸化処理の効率の面からは、水中に炭酸ガスのナノバブルを0.1体積%以上、より望ましくは0.35体積%以上分散させることが好ましい。ナノバブル含有水でのナノバブルの分散量は、ナノバブルを発生させてから1時間以上放置した後、振動をかけて大きな気泡を完全に浮上させた後、ナノバブル含有水の比重を調べることにより測定することができる。本発明者らによる実験では、水の比重が0.9977であるときに、比重が0.9966のナノバブル含有水(ナノバブル分散量:0.1体積%)を用いることにより、製鋼スラグのアルカリ溶出抑制効果が得られることを確認している。また、さらにナノバブルの分散量を増やし、ナノバブル含有水の比重を0.9940(ナノバブル分散量:0.35体積%)とした場合には、より顕著なアルカリ溶出抑制効果が得られることを確認している。以上の理由から、水中での炭酸ガスのナノバブルの分散量は0.1体積%以上、より望ましくは0.35体積%以上が好ましい。 The nanobubble-containing water used in the present invention is not particularly limited in the amount of carbon dioxide nanobubbles dispersed, but from the viewpoint of the efficiency of carbonation treatment, carbon dioxide nanobubbles in water are 0.1 vol% or more, more preferably It is preferable to disperse 0.35% by volume or more. The amount of nanobubbles dispersed in the water containing nanobubbles should be measured by leaving the nanobubbles to stand for 1 hour or more and then allowing the large bubbles to rise completely by vibration and then examining the specific gravity of the water containing nanobubbles. Can do. In the experiments by the present inventors, when water has a specific gravity of 0.9977, by using nanobubble-containing water having a specific gravity of 0.9966 (nanobubble dispersion amount: 0.1% by volume), the elution of steelmaking slag with alkali is performed. It has been confirmed that the suppression effect can be obtained. In addition, when the amount of nanobubble dispersion was further increased and the specific gravity of the water containing nanobubbles was set to 0.9940 (nanobubble dispersion amount: 0.35% by volume), it was confirmed that a more remarkable alkali elution suppression effect was obtained. ing. For these reasons, the dispersion amount of carbon dioxide nanobubbles in water is preferably 0.1% by volume or more, more preferably 0.35% by volume or more.
ナノバブル含有水に含まれる炭酸ガスは、CO2濃度が高いほうが望ましいが、ボイラー排ガスや加熱炉排ガスなど、適度なCO2濃度(好ましくは10vol%以上の濃度)があればよい。図2は、ナノバブル含有水に含まれる炭酸ガスのCO2濃度の影響について調査した結果を示すものであり、転炉スラグ(遊離CaO:8mass%)を粒径10mm以下に粉砕して、これを様々なCO2濃度のナノバブル含有水に24時間浸漬する処理を行い、処理後のスラグを質量比10倍の水に浸漬して到達pHを調査した結果を示している。図2によれば、CO2濃度が高いほどアルカリ溶出の抑制効果は高くなっているが、10vol%程度の濃度でも効果が得られることが判る。 The carbon dioxide gas contained in the nanobubble-containing water desirably has a high CO 2 concentration, but may have an appropriate CO 2 concentration (preferably a concentration of 10 vol% or more) such as boiler exhaust gas or heating furnace exhaust gas. FIG. 2 shows the results of investigation on the influence of CO 2 concentration of carbon dioxide contained in nanobubble-containing water. Converter slag (free CaO: 8 mass%) was pulverized to a particle size of 10 mm or less. It shows the results of investigating the pH reached by immersing the slag after treatment in nanobubble-containing water with various CO 2 concentrations for 24 hours and immersing the treated slag in water having a mass ratio of 10 times. According to FIG. 2, the higher the CO 2 concentration, the higher the alkali elution suppression effect, but it can be seen that the effect can be obtained even at a concentration of about 10 vol%.
ナノバブル含有水を製鋼スラグと接触させる方法に特別な制限はないが、
通常、(i)ナノバブル含有水に製鋼スラグを浸漬する方法、(ii)ナノバブル含有水を製鋼スラグに散水する方法、のいずれかで行われる。
上記(i)の浸漬法の場合、スラグ内部まで炭酸化が十分に進行するようにするため、浸漬時間は2時間以上、望ましくは6時間以上とすることが好ましい。また、上記(ii)の散水法の場合、製鋼スラグの一般的な含水量である5mass%以上、望ましくは10mass%以上の含水量となるように散水するのが好ましい。
There are no special restrictions on the method of bringing nanobubble-containing water into contact with steelmaking slag,
Usually, it is performed by either (i) a method of immersing steelmaking slag in water containing nanobubbles, or (ii) a method of spraying water containing nanobubbles into steelmaking slag.
In the case of the above immersion method (i), the immersion time is preferably 2 hours or longer, more preferably 6 hours or longer so that carbonation proceeds sufficiently to the inside of the slag. Moreover, in the case of the watering method of said (ii), it is preferable to water so that it may become the water content of 5 mass% or more which is the general water content of steelmaking slag, desirably 10 mass% or more.
本発明では、以上のようにナノバブル含有水を製鋼スラグと接触させることにより、炭酸ガスを含む水がスラグ内部まで適切に浸透して長時間保持され、スラグ内部の遊離CaOや遊離MgOを適切に炭酸化させることができる。このため製鋼スラグからアルカリ溶出性が小さいスラグを効率的に製造することができる。
また、ナノバブル含有水は、気泡(ナノバブル)の安定性が高いため、水に機械的応力を加えても気泡が安定して存在し続ける。このためスラグに接触させる際も、特別な配慮をすることなく散水などの簡便な方法を用いても、ナノバブル含有水としての特性が失われることがない。したがって、ナノバブル含有水に対して、製鋼スラグを順次投入したり、逆に、製鋼スラグにナノバブル含有水を散布する、というような極く簡便な方法により、スラグの炭酸化反応を進行させることができる。
In the present invention, by bringing the nanobubble-containing water into contact with the steelmaking slag as described above, water containing carbon dioxide gas appropriately penetrates into the slag and is retained for a long time, and the free CaO and free MgO inside the slag are appropriately retained. Can be carbonated. For this reason, slag with small alkali elution property can be efficiently manufactured from steelmaking slag.
In addition, since water containing nanobubbles has high stability of bubbles (nanobubbles), the bubbles continue to exist stably even when mechanical stress is applied to the water. For this reason, even if it makes it contact with slag, even if it uses simple methods, such as sprinkling, without giving special consideration, the characteristic as nanobubble content water is not lost. Therefore, it is possible to advance the carbonation reaction of slag by a very simple method such as sequentially adding steelmaking slag to nanobubble-containing water or conversely spraying nanobubble-containing water on steelmaking slag. it can.
また特に、ナノバブルは、同じ気泡体積では、通常の気泡に較べて表面積が非常に大きいため反応活性を高くすることができ、加えて、CO2は分子としては無極性であるが、ナノサイズ化することでC=O間の極性の影響が現れ、Ca2+やMg2+との反応が進みやすくなる。これらの要因により、製鋼スラグの炭酸化処理に炭酸ガスのナノバブル含有水を用いることにより、スラグ内部の遊離CaOや遊離MgOを効率的に炭酸化させることができる。 In particular, nanobubbles have a larger surface area than normal bubbles in the same bubble volume, so that the reaction activity can be increased. In addition, although CO 2 is nonpolar as a molecule, it is nanosized. By doing so, the influence of the polarity between C = O appears, and the reaction with Ca 2+ or Mg 2+ easily proceeds. Due to these factors, carbon dioxide-containing nanobubble-containing water is used for carbonation treatment of steelmaking slag, whereby free CaO and free MgO inside the slag can be efficiently carbonated.
表1に示す成分組成の溶銑予備処理スラグ(遊離CaO含有量:1.5mass%)と転炉スラグ(遊離CaO含有量:7.7mass%)を炭酸化処理し、低アルカリ溶出性スラグを製造した。いずれの製鋼スラグもヤードに放流して冷却した後、粒径10mm以下に破砕したものである。
本実施例では、水:25Lと炭酸ガス:7Lをミキシングポンプで同時吸引し、これを高速旋回するように円筒容器に導入して炭酸ガスを分散させたナノバブル含有水とした。このナノバブル含有水の気泡体積は0.36%であった。このナノバブル含有水を用い、表2で示す条件で、ナノバブル含有水中に製鋼スラグを浸漬する方法と、ナノバブル含有水を製鋼スラグに散水する方法により、製鋼スラグの炭酸化処理を行った。なお、ナノバブル含有水を散水する方法では、製鋼スラグ質量の5mass%に相当するナノバブル含有水の散水を、表2に示す処理時間内で1時間ごとに繰り返し行った。
Hot metal pretreatment slag (free CaO content: 1.5 mass%) and converter slag (free CaO content: 7.7 mass%) having the component composition shown in Table 1 are carbonized to produce low alkali-eluting slag. did. Any steelmaking slag is discharged into the yard, cooled, and then crushed to a particle size of 10 mm or less.
In this example, water: 25 L and carbon dioxide: 7 L were simultaneously sucked with a mixing pump, and introduced into a cylindrical container so as to swirl at high speed to obtain nanobubble-containing water in which carbon dioxide was dispersed. The bubble volume of this nanobubble-containing water was 0.36%. Carbonation treatment of steelmaking slag was performed by using this nanobubble-containing water under the conditions shown in Table 2 by immersing steelmaking slag in nanobubble-containing water and by spraying nanobubble-containing water into steelmaking slag. In addition, in the method of sprinkling nanobubble containing water, the sprinkling of nanobubble containing water corresponding to 5 mass% of the steelmaking slag mass was repeatedly performed every hour within the treatment time shown in Table 2.
処理後のスラグを質量比10倍の純水に浸漬し、6時間経過後のpHを測定した。また、比較のために未処理の製鋼スラグについても、同様のpH測定を行った。それらの結果を表2に示す。また、表2のNo.3とNo.6(未処理の転炉スラグ)について、純水に浸漬した際のpHの経時変化を図3に示す。
処理前の溶銑予備処理スラグと転炉スラグは、純水浸漬6時間後のpHはそれぞれ11.5、12.6であり、特に転炉スラグは図3に示されるように、極めて短時間で高いpHに到達していることが判る。これに対して本発明例では、2時間程度の炭酸化処理(浸漬または散水)によってpHが0.4〜0.6も低下し、さらに処理時間を延ばすと、処理前のスラグに較べてpHが0.8〜1.1程度も低下している。また、このpH変化の挙動からしてpH値はほぼ飽和に達しており、長期的なアルカリ溶出も低減できていることが確認される。
The treated slag was immersed in pure water having a mass ratio of 10 times, and the pH after 6 hours was measured. Moreover, the same pH measurement was performed also about the untreated steelmaking slag for the comparison. The results are shown in Table 2. In Table 2, No. 3 and no. FIG. 3 shows the change over time in pH when 6 (untreated converter slag) was immersed in pure water.
The hot metal pretreatment slag and the converter slag before treatment have pH values of 11.5 and 12.6 after 6 hours of immersion in pure water, respectively. In particular, the converter slag is extremely short as shown in FIG. It can be seen that a high pH has been reached. On the other hand, in the example of the present invention, the pH is lowered by 0.4 to 0.6 by carbonation treatment (immersion or watering) for about 2 hours, and when the treatment time is further extended, the pH is compared with the slag before treatment. Is reduced by about 0.8 to 1.1. Moreover, from the behavior of this pH change, the pH value has almost reached saturation, and it is confirmed that long-term alkali elution can also be reduced.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008293213A JP2010120782A (en) | 2008-11-17 | 2008-11-17 | Method for producing low alkali elution property slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008293213A JP2010120782A (en) | 2008-11-17 | 2008-11-17 | Method for producing low alkali elution property slag |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010120782A true JP2010120782A (en) | 2010-06-03 |
Family
ID=42322459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008293213A Pending JP2010120782A (en) | 2008-11-17 | 2008-11-17 | Method for producing low alkali elution property slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010120782A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012131651A (en) * | 2010-12-20 | 2012-07-12 | Nisshin Steel Co Ltd | Method for manufacturing modified steel-making slag |
DE102011117599B3 (en) * | 2011-11-04 | 2013-01-17 | Wolfgang Beyer | Process for the integration and use of environmentally harmful carbon dioxide |
JP2013189330A (en) * | 2012-03-13 | 2013-09-26 | Taisei Corp | Method for producing low alkali cement milk |
JP2014214030A (en) * | 2013-04-22 | 2014-11-17 | 国立大学法人東京大学 | Method for producing material comprising cement hardened body |
WO2015114703A1 (en) * | 2014-01-28 | 2015-08-06 | 日新製鋼株式会社 | Phosphorus and calcium collection method, and mixture produced by said collection method |
JP2017185453A (en) * | 2016-04-06 | 2017-10-12 | 中越パルプ工業株式会社 | Method for producing biomass resource having reduced calcium content from biomass resource and method for producing calcium carbonate from biomass resource |
JP2020099878A (en) * | 2018-12-25 | 2020-07-02 | 鹿島建設株式会社 | Waste stabilization treatment system and waste stabilization treatment method |
JP2021134285A (en) * | 2020-02-27 | 2021-09-13 | 太平洋セメント株式会社 | Foundation improvement material and production method thereof |
CN114453402A (en) * | 2022-01-23 | 2022-05-10 | 浙江大学 | Method for efficient carbonation and harmless disposal of waste incineration fly ash |
-
2008
- 2008-11-17 JP JP2008293213A patent/JP2010120782A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012131651A (en) * | 2010-12-20 | 2012-07-12 | Nisshin Steel Co Ltd | Method for manufacturing modified steel-making slag |
DE102011117599B3 (en) * | 2011-11-04 | 2013-01-17 | Wolfgang Beyer | Process for the integration and use of environmentally harmful carbon dioxide |
JP2013189330A (en) * | 2012-03-13 | 2013-09-26 | Taisei Corp | Method for producing low alkali cement milk |
JP2014214030A (en) * | 2013-04-22 | 2014-11-17 | 国立大学法人東京大学 | Method for producing material comprising cement hardened body |
WO2015114703A1 (en) * | 2014-01-28 | 2015-08-06 | 日新製鋼株式会社 | Phosphorus and calcium collection method, and mixture produced by said collection method |
US9783418B2 (en) | 2014-01-28 | 2017-10-10 | Nisshin Steel Co., Ltd. | Phosphorus and calcium collection method, and mixture produced by said collection method |
JP2017185453A (en) * | 2016-04-06 | 2017-10-12 | 中越パルプ工業株式会社 | Method for producing biomass resource having reduced calcium content from biomass resource and method for producing calcium carbonate from biomass resource |
JP2020099878A (en) * | 2018-12-25 | 2020-07-02 | 鹿島建設株式会社 | Waste stabilization treatment system and waste stabilization treatment method |
JP7108528B2 (en) | 2018-12-25 | 2022-07-28 | 鹿島建設株式会社 | WASTE STABILIZATION SYSTEM AND WASTE STABILIZATION METHOD |
JP2021134285A (en) * | 2020-02-27 | 2021-09-13 | 太平洋セメント株式会社 | Foundation improvement material and production method thereof |
JP7488059B2 (en) | 2020-02-27 | 2024-05-21 | 太平洋セメント株式会社 | Ground improvement material and its manufacturing method |
CN114453402A (en) * | 2022-01-23 | 2022-05-10 | 浙江大学 | Method for efficient carbonation and harmless disposal of waste incineration fly ash |
CN114453402B (en) * | 2022-01-23 | 2023-03-14 | 浙江大学 | Method for efficient carbonation and harmless disposal of waste incineration fly ash |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010120782A (en) | Method for producing low alkali elution property slag | |
CN103924025B (en) | A kind of method of top and bottom complex blowing molten iron pre-desulfurization in hot metal ladle | |
JP6841830B2 (en) | Catalytically active foam forming powder | |
JP4328215B2 (en) | Steelmaking slag treatment method | |
TW202012643A (en) | Method for recovering calcium from steelmaking slag | |
JP2010013315A (en) | Manufacturing method of civil engineering material using steel slag | |
JP4676829B2 (en) | Steelmaking slag treatment method | |
JP6044565B2 (en) | Acid soil improvement material | |
JP2011093946A (en) | Soil conditioner | |
JP4549429B2 (en) | Foamed glass material containing porcelain powder and water treatment method, bottom quality improving method and soil improving material using the same | |
CN102776310B (en) | Pretreating dephosphorizing agent for molten iron containing metallic magnesium residues | |
JP5751823B2 (en) | Method for producing modified steel slag | |
JP4435083B2 (en) | Manufacturing method of foam glass material | |
JP2000350976A (en) | Method for solidifying granular steel-making slag | |
JP4467530B2 (en) | Method for producing foamed glass material containing porcelain powder | |
CN1201023C (en) | Aluminium-calcium composite desulfurizing agent, and producing method and using method thereof | |
JP5473494B2 (en) | Method for producing modified steel slag | |
WO2019107116A1 (en) | Method for eluting calcium from steel-making slag, method for collecting calcium from steel-making slag, and device for eluting calcium from steel-making slag | |
JP2013028488A (en) | Production method of steelmaking slag granule | |
CN113388716B (en) | Fluorine-free composite molten iron desulfurizing agent and preparation method thereof | |
JP2007063061A (en) | Method for aging slag | |
CN109457170A (en) | A kind of long-acting inovulant of molten iron and preparation method thereof | |
JP2009062222A (en) | Aggregate using reduced slag and method of producing the same | |
JP3606107B2 (en) | Method for producing stabilizer | |
JP2017036201A (en) | Method for processing slag |