[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013024368A - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2013024368A
JP2013024368A JP2011161832A JP2011161832A JP2013024368A JP 2013024368 A JP2013024368 A JP 2013024368A JP 2011161832 A JP2011161832 A JP 2011161832A JP 2011161832 A JP2011161832 A JP 2011161832A JP 2013024368 A JP2013024368 A JP 2013024368A
Authority
JP
Japan
Prior art keywords
support beam
outer ring
toroidal
continuously variable
trunnion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011161832A
Other languages
Japanese (ja)
Other versions
JP5803378B2 (en
Inventor
Akihiro Fukuda
晃大 福田
Toshiro Toyoda
俊郎 豊田
Yuya Oguro
優也 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011161832A priority Critical patent/JP5803378B2/en
Publication of JP2013024368A publication Critical patent/JP2013024368A/en
Application granted granted Critical
Publication of JP5803378B2 publication Critical patent/JP5803378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure for facilitating manufacturing, management and assembling of parts, while easily reducing cost and stabilizing a transmission operation.SOLUTION: An outer ring 16b constituting a thrust ball bearing 13a to rotatably support a power roller 6a is supported on a support beam portion 23a of a trunnion 7b in a rockable and displaceable manner. An anchor pin 27 supported and fixed on the support beam portion 23a is engaged with recessed grooves 28 formed on an outside face of the outer ring 16b to support a force 2Ft to be applied to the outer ring 16b during operation. Accordingly, a structure for supporting the force 2Ft is easily machined.

Description

この発明は、例えば車両(自動車)用の自動変速機、建設機械(建機)用の自動変速機、航空機(固定翼機、回転翼機、飛行船等)等で使用されるジェネレータ(発電機)用の自動変速機、ポンプ等の各種産業機械の運転速度を調節する為の自動変速機として利用する、ハーフトロイダル型のトロイダル型無段変速機の改良に関する。   The present invention relates to a generator (generator) used in, for example, an automatic transmission for a vehicle (automobile), an automatic transmission for a construction machine (construction machine), an aircraft (a fixed wing aircraft, a rotary wing aircraft, an airship, etc.), etc. The present invention relates to improvement of a half toroidal toroidal continuously variable transmission that is used as an automatic transmission for adjusting the operating speed of various industrial machines such as automatic transmissions and pumps.

自動車用変速装置としてハーフトロイダル型のトロイダル型無段変速機を使用する事が、特許文献1〜4等の多くの刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献5等、やはり多くの刊行物に記載されて、従来から広く知られている。図25〜26は、これら各特許文献に記載されて従来から広く知られているトロイダル型無段変速機の第1例を示している。この従来構造の第1例の場合、入力回転軸1の両端寄り部分の周囲に1対の入力ディスク2、2を、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で、前記入力回転軸1と同期した回転を可能に支持している。又、この入力回転軸1の中間部周囲に出力筒3を、この入力回転軸1に対する回転を可能に支持している。又、この出力筒3の外周面には、軸方向中央部に出力歯車4を固設すると共に、軸方向両端部に1対の出力ディスク5、5を、スプライン係合により、前記出力筒3と同期した回転を可能に支持している。又、この状態で、それぞれがトロイド曲面である、前記両出力ディスク5、5の内側面を、前記両入力ディスク2、2の内側面に対向させている。   The use of a half-toroidal toroidal continuously variable transmission as a transmission for an automobile is described in many publications such as Patent Documents 1 to 4 and partially implemented, and is well known. Further, a structure in which a toroidal type continuously variable transmission and a planetary gear mechanism are combined to widen the adjustment range of the gear ratio is also described in many publications such as Patent Document 5 and has been widely known. 25 to 26 show a first example of a toroidal type continuously variable transmission described in these patent documents and widely known in the past. In the case of the first example of this conventional structure, a pair of input disks 2 and 2 are disposed around the portions near both ends of the input rotation shaft 1 in a state where the inner surfaces, each of which is a toroidal curved surface, face each other. The rotation synchronized with the rotating shaft 1 is supported. An output tube 3 is supported around the intermediate portion of the input rotary shaft 1 so as to be rotatable with respect to the input rotary shaft 1. Further, on the outer peripheral surface of the output cylinder 3, an output gear 4 is fixed at the center in the axial direction, and a pair of output disks 5 and 5 are connected to both ends in the axial direction by spline engagement. Supports the rotation synchronized with. In this state, the inner surfaces of the output disks 5 and 5, each of which is a toroidal curved surface, are opposed to the inner surfaces of the input disks 2 and 2.

又、前記両入力ディスク2、2と前記両出力ディスク5、5との間に、それぞれの周面を球状凸面とした複数個のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、それぞれトラニオン7、7に回転自在に支持されており、これら各トラニオン7、7は、それぞれ前記各ディスク2、5の中心軸に対し捩れの位置にある傾転軸8、8を中心とする揺動変位自在に支持されている。即ち、これら各トラニオン7、7は、それぞれの軸方向両端部に互いに同心に設けられた1対の傾転軸8、8と、これら各傾転軸8、8同士の間に存在する支持梁部9、9とを備えており、これら各傾転軸8、8が、支持板10、10に対し、ラジアルニードル軸受11、11を介して枢支されている。   Further, a plurality of power rollers 6, 6 each having a spherical convex surface are sandwiched between the input disks 2, 2 and the output disks 5, 5. The power rollers 6 and 6 are rotatably supported by trunnions 7 and 7, respectively. The trunnions 7 and 7 are tilted with respect to the central axes of the disks 2 and 5, respectively. The shafts 8 and 8 are supported so as to be swingable and displaceable. That is, each of the trunnions 7 and 7 includes a pair of tilting shafts 8 and 8 provided concentrically with each other at both axial ends, and a supporting beam existing between the tilting shafts 8 and 8. These tilting shafts 8 and 8 are pivotally supported with respect to the support plates 10 and 10 via radial needle bearings 11 and 11, respectively.

又、前記各パワーローラ6、6は、前記各トラニオン7、7を構成する支持梁部9、9の内側面に、基半部と先半部とが互いに偏心した支持軸12、12と、複数の転がり軸受とを介して、これら各支持軸12、12の先半部回りの回転、及び、これら各支持軸12、12の基半部を中心とする若干の揺動変位可能に支持されている。この様な各パワーローラ6、6の外側面と、前記各トラニオン7、7を構成する支持梁部9、9の内側面との間には、それぞれが前記複数の転がり軸受の一部である、スラスト玉軸受13、13と、スラストニードル軸受14、14とを、前記各パワーローラ6、6の側から順番に設けている。このうちのスラスト玉軸受13、13は、前記各パワーローラ6、6に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ6、6の回転を許容するものである。これら各スラスト玉軸受13、13は、前記各パワーローラ6、6の外側面に形成された内輪軌道15と、外輪16の内側面に形成された外輪軌道17との間に複数個の玉18、18を、転動可能に設けて成る。又、前記各スラストニードル軸受14、14は、前記各パワーローラ6、6から前記各スラスト玉軸受13、13を構成する外輪16、16に加わるスラスト荷重を支承しつつ、これら各外輪16、16及び前記各支持軸12、12の先半部が、これら各支持軸12、12の基半部を中心に揺動する事を許容するものである。   Each of the power rollers 6 and 6 includes support shafts 12 and 12 in which the base half portion and the tip half portion are eccentric to each other on the inner surface of the support beam portions 9 and 9 constituting the trunnions 7 and 7, respectively. Via a plurality of rolling bearings, the support shafts 12 and 12 are supported so as to be able to rotate around the front half of each of the support shafts 12 and 12 and to be slightly oscillated and displaced around the base half of each of the support shafts 12 and 12. ing. Between the outer side surfaces of the power rollers 6 and 6 and the inner side surfaces of the support beam portions 9 and 9 constituting the trunnions 7 and 7, each is a part of the plurality of rolling bearings. The thrust ball bearings 13 and 13 and the thrust needle bearings 14 and 14 are provided in order from the power rollers 6 and 6 side. Of these, the thrust ball bearings 13, 13 allow the power rollers 6, 6 to rotate while supporting a load in the thrust direction applied to the power rollers 6, 6. Each of these thrust ball bearings 13, 13 has a plurality of balls 18 between an inner ring raceway 15 formed on the outer side surface of each of the power rollers 6, 6 and an outer ring raceway 17 formed on the inner side surface of the outer ring 16. , 18 are provided to be able to roll. The thrust needle roller bearings 14, 14 support thrust loads applied to the outer rings 16, 16 constituting the thrust ball bearings 13, 13 from the power rollers 6, 6. The front half of each of the support shafts 12 and 12 is allowed to swing around the base half of each of the support shafts 12 and 12.

上述の様なトロイダル型無段変速機の運転時には、駆動軸19により一方(図25の左方)の入力ディスク2を、押圧装置20を介して回転駆動する。この結果、前記入力回転軸1の両端部に支持された1対の入力ディスク2、2が、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ6、6を介して前記両出力ディスク5、5に伝わり、前記出力歯車4から取り出される。前記入力回転軸1とこの出力歯車4との間の変速比を変える場合は、油圧式のアクチュエータ21、21により前記各トラニオン7、7を前記各傾転軸8、8の軸方向に変位させる。この結果、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化する(転がり接触部にサイドスリップが発生する)。そして、この力の向きの変化に伴って前記各トラニオン7、7が、自身の傾転軸8、8を中心に揺動し、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との接触位置が変化する。これら各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向外寄り部分と、前記両出力ディスク5、5の内側面の径方向内寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が増速側になる。これに対して、前記各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向内寄り部分と、前記両出力ディスク5、5の内側面の径方向外寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が減速側になる。   During operation of the toroidal type continuously variable transmission as described above, one input disk 2 (left side in FIG. 25) is rotationally driven by the drive shaft 19 via the pressing device 20. As a result, the pair of input disks 2 and 2 supported at both ends of the input rotating shaft 1 rotate synchronously while being pressed in a direction approaching each other. The rotation is transmitted to the output disks 5 and 5 through the power rollers 6 and 6 and is taken out from the output gear 4. When changing the gear ratio between the input rotary shaft 1 and the output gear 4, the trunnions 7, 7 are displaced in the axial direction of the tilt shafts 8, 8 by hydraulic actuators 21, 21. . As a result, the direction of the tangential force acting on the rolling contact portion (traction portion) between the peripheral surface of each of the power rollers 6 and 6 and the inner surface of each of the disks 2 and 5 changes (in the rolling contact portion). Side slip occurs). As the direction of the force changes, the trunnions 7 and 7 swing around their tilting shafts 8 and 8, and the peripheral surfaces of the power rollers 6 and 6 and the disks 2 and 8. The contact position with the inner surface of 5 changes. The circumferential surfaces of the power rollers 6 and 6 are in rolling contact with the radially outer portions of the inner surfaces of the input disks 2 and 2 and the radially inner portions of the inner surfaces of the output disks 5 and 5. By doing so, the gear ratio between the input rotary shaft 1 and the output gear 4 is increased. On the other hand, the peripheral surfaces of the power rollers 6 and 6 are arranged radially inwardly on the inner side surfaces of the input disks 2 and 2 and radially outwardly on the inner side surfaces of the output disks 5 and 5. If it is brought into rolling contact with the portion, the gear ratio between the input rotary shaft 1 and the output gear 4 becomes the deceleration side.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、前記入力、出力各ディスク2、5と前記各パワーローラ6、6とが、前記押圧装置20が発生する押圧力に基づいて弾性変形する。そして、この弾性変形に伴って、前記入力、出力各ディスク2、5が軸方向に変位する。又、前記押圧装置20が発生する押圧力は、前記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材2、5、6の弾性変形量も多くなる。従って、前記トルクの変動に拘らず、前記入力、出力各ディスク2、5の内側面と前記各パワーローラ6、6の周面との接触状態を適正に維持する為に、前記各トラニオン7、7に対してこれら各パワーローラ6、6を、前記各ディスク2、5の軸方向に変位させる機構が必要になる。上述した従来構造の第1例の場合には、前記各パワーローラ6、6を支持した前記各支持軸12、12の先半部を、同じく基半部を中心として揺動変位させる事により、前記各パワーローラ6、6を前記軸方向に変位させる様にしている。   When the toroidal type continuously variable transmission as described above is operated, the members used for power transmission, that is, the input and output disks 2 and 5 and the power rollers 6 and 6 are connected to the pressing device 20. It is elastically deformed based on the pressing force generated. In accordance with this elastic deformation, the input and output disks 2 and 5 are displaced in the axial direction. The pressing force generated by the pressing device 20 increases as the torque transmitted by the toroidal continuously variable transmission increases, and the amount of elastic deformation of the members 2, 5, 6 increases accordingly. Accordingly, in order to properly maintain the contact state between the inner surface of each of the input and output disks 2 and 5 and the peripheral surface of each of the power rollers 6 and 6 regardless of the fluctuation of the torque, the trunnions 7 and 7 7, a mechanism for displacing the power rollers 6 and 6 in the axial direction of the disks 2 and 5 is required. In the case of the above-described first example of the conventional structure, the tip half of each of the support shafts 12 and 12 that support the power rollers 6 and 6 is also oscillated and displaced about the base half as well. The power rollers 6 and 6 are displaced in the axial direction.

上述の様な従来構造の第1例の場合、前記各パワーローラ6、6を前記軸方向に変位させる為の構造が複雑で、部品製作、部品管理、組立作業が何れも面倒になり、コストが嵩む事が避けられない。この様な問題を解決する為の技術として前記特許文献3には、図27〜32に示す様な構造が記載されている。本発明は、この図27〜32に示した従来構造の第2例を改良するものであるから、次に、この従来構造の第2例に就いて説明する。この従来構造の第2例の特徴は、トラニオン7aに対してパワーローラ6aを、入力、出力各ディスク2、5(図25参照)の軸方向の変位を可能に支持する部分の構造にあり、トロイダル型無段変速機全体としての基本的構造及び作用は、前述の図25〜26に示した従来構造の第1例と同様である。   In the case of the first example of the conventional structure as described above, the structure for displacing each of the power rollers 6 and 6 in the axial direction is complicated, and parts manufacturing, parts management, and assembly work are all troublesome and costly. It is inevitable that the volume increases. As a technique for solving such a problem, Patent Document 3 describes a structure as shown in FIGS. Since the present invention improves the second example of the conventional structure shown in FIGS. 27 to 32, the second example of the conventional structure will be described next. The feature of the second example of this conventional structure is the structure of the portion that supports the trunnion 7a so that the power roller 6a can be displaced in the axial direction of the input and output disks 2, 5 (see FIG. 25). The basic structure and operation of the toroidal-type continuously variable transmission as a whole are the same as those of the first example of the conventional structure shown in FIGS.

前記従来構造の第2例を構成するトラニオン7aは、両端部に互いに同心に設けられた1対の傾転軸8a、8bと、これら両傾転軸8a、8b同士の間に存在し、少なくとも入力、出力各ディスク2、5(図25参照)の径方向(図28、31〜32の上下方向)に関する内側(図28、31〜32の上側)の側面を円筒状凸面22とした、支持梁部23とを備える。前記両傾転軸8a、8bは、それぞれラジアルニードル軸受11a、11aを介して、支持板10、10(図26参照)に、揺動及び軸方向の変位を可能に支持する。   The trunnion 7a constituting the second example of the conventional structure exists between a pair of tilting shafts 8a and 8b concentrically provided at both ends, and between these tilting shafts 8a and 8b, and at least Supporting the cylindrical convex surface 22 on the inner side (upper side of FIGS. 28, 31 to 32) of the input and output disks 2 and 5 (see FIG. 25) in the radial direction (vertical direction of FIGS. 28 and 31 to 32). And a beam portion 23. Both the tilting shafts 8a and 8b are supported on the support plates 10 and 10 (see FIG. 26) through radial needle bearings 11a and 11a, respectively, so as to be swingable and axially displaceable.

又、前記円筒状凸面22の中心軸イは、図28、31に示す様に、前記両傾転軸8a、8bの中心軸ロと平行で、これら両傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側(図28、31〜32の下側)に存在する。又、前記支持梁部23とパワーローラ6aの外側面との間に設けるスラスト玉軸受13aを構成する外輪16aの外側面に、部分円筒面状の凹部24を、この外側面を径方向に横切る状態で設けている。そして、この凹部24と、前記支持梁部23の円筒状凸面22とを係合させ、前記トラニオン7aに対して前記外輪16aを、前記各ディスク2、5の軸方向に関する揺動変位を可能に支持している。   Further, as shown in FIGS. 28 and 31, the center axis A of the cylindrical convex surface 22 is parallel to the center axis B of the both tilt axes 8a and 8b, and the center axis B of the both tilt axes 8a and 8b. Rather than the outer side (the lower side of FIGS. 28, 31 to 32) in the radial direction of the disks 2 and 5. Further, a concave portion 24 having a partially cylindrical surface is radially crossed on the outer surface of the outer ring 16a constituting the thrust ball bearing 13a provided between the support beam portion 23 and the outer surface of the power roller 6a. It is provided in the state. And this recessed part 24 and the cylindrical convex surface 22 of the said support beam part 23 are engaged, and the said outer ring 16a is rockable displacement about the axial direction of each said disks 2 and 5 with respect to the said trunnion 7a. I support it.

又、前記外輪16aの内側面中央部に支持軸12aを、この外輪16aと一体に固設して、前記パワーローラ6aをこの支持軸12aの周囲に、ラジアルニードル軸受25を介して、回転自在に支持している。更に、前記トラニオン7aの内側面のうち、前記支持梁部23の両端部と1対の傾転軸8a、8bとの連続部に、互いに対向する1対の段差面26、26を設けている。そして、これら両段差面26、26と、前記スラスト玉軸受13aを構成する外輪16aの外周面とを、当接若しくは近接対向させて、前記パワーローラ6aからこの外輪16aに加わるトラクション力を、何れかの段差面26、26で支承可能としている。   Further, a support shaft 12a is fixed to the center of the inner surface of the outer ring 16a integrally with the outer ring 16a, and the power roller 6a is rotatable around the support shaft 12a via a radial needle bearing 25. I support it. Furthermore, a pair of stepped surfaces 26 and 26 facing each other are provided on the inner surface of the trunnion 7a at a continuous portion between both end portions of the support beam portion 23 and the pair of tilting shafts 8a and 8b. . Then, these stepped surfaces 26, 26 and the outer peripheral surface of the outer ring 16a constituting the thrust ball bearing 13a are brought into contact with or in close proximity to each other, and any traction force applied from the power roller 6a to the outer ring 16a is selected. These step surfaces 26 and 26 can be supported.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、前記パワーローラ6aを前記各ディスク2、5の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ6aの周面と前記各ディスク2、5との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、入力、出力各ディスク2、5、各パワーローラ6a等の弾性変形に基づき、これら各パワーローラ6aをこれら各ディスク2、5の軸方向に変位させる必要が生じると、これら各パワーローラ6aを回転自在に支持している前記スラスト玉軸受13aの外輪16aが、外側面に設けた部分円筒面状の凹部24と支持梁部23の円筒状凸面22との当接面を滑らせつつ、この円筒状凸面22の中心軸イを中心として揺動変位する。この揺動変位に基づき、前記各パワーローラ6aの周面のうちで、前記各ディスク2、5の軸方向片側面と転がり接触する部分が、これら各ディスク2、5の軸方向に変位し、前記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 6a is displaced in the axial direction of each of the disks 2 and 5, and the amount of elastic deformation of each constituent member is increased. Regardless of the change, a structure capable of appropriately maintaining the contact state between the peripheral surface of the power roller 6a and the disks 2 and 5 can be configured simply and at low cost.
That is, during operation of the toroidal continuously variable transmission, the power rollers 6a are displaced in the axial direction of the disks 2 and 5 based on elastic deformation of the input and output disks 2 and 5 and the power rollers 6a. When necessary, the outer ring 16a of the thrust ball bearing 13a that rotatably supports each of the power rollers 6a is provided with a concave portion 24 having a partial cylindrical surface provided on the outer surface and a cylindrical convex surface 22 of the support beam portion 23. The sliding surface of the cylindrical convex surface 22 is oscillated and displaced about the central axis a. Based on this oscillating displacement, a portion of the peripheral surface of each power roller 6a that is in rolling contact with one axial side surface of each disk 2, 5 is displaced in the axial direction of each disk 2, 5; The contact state is properly maintained.

前述した通り、前記円筒状凸面22の中心軸イは、変速動作の際に各トラニオン7aの揺動中心となる傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側に存在する。従って、前記円筒状凸面22の中心軸イを中心とする揺動変位の半径は、前記変速動作の際の揺動半径よりも大きく、前記両入力ディスク2、2と前記両出力ディスク5、5との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis A of the cylindrical convex surface 22 is larger in diameter than the central axes B of the tilting shafts 8a and 8b, which are the oscillation centers of the trunnions 7a during the shifting operation. Exists with respect to the direction. Therefore, the radius of the rocking displacement about the central axis A of the cylindrical convex surface 22 is larger than the rocking radius at the time of the speed change operation, and both the input disks 2 and 2 and the both output disks 5, 5 Has little effect on the change in the transmission ratio between (and can be neglected or remain within an easily modifiable range).

図27〜32に示した従来構造の第2例の場合、図25〜26に示した同第1例に比べて、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易いが、変速動作を安定させる面からは、改良の余地がある。この理由は、前記各支持梁部23を中心とする前記各外輪16aの揺動変位を円滑に行わせる為、これら各支持梁部23の両端部分に1対ずつ設けた、前記各段差面26、26同士の間隔Dを、前記各外輪16aの外径dよりも少し大きく(D>d)する為である。これら各外輪16a、及び、この外輪16aと同心に支持された前記各パワーローラ6aは、前記間隔Dと前記外径dとの差(D−d)分だけ、前記各支持梁部23の軸方向に変位可能になる。   In the case of the second example of the conventional structure shown in FIGS. 27 to 32, compared with the first example shown in FIGS. Although easy to achieve, there is room for improvement in terms of stabilizing the shifting operation. The reason for this is that each step surface 26 is provided in a pair at each end of each support beam 23 so that the outer ring 16a can be smoothly moved and displaced about each support beam 23. , 26 to make the distance D between the outer rings 16a slightly larger than the outer diameter d (D> d). The outer rollers 16a and the power rollers 6a supported concentrically with the outer ring 16a have shafts of the support beam portions 23 corresponding to a difference (D−d) between the distance D and the outer diameter d. Displaceable in the direction.

一方、トロイダル型無段変速機を搭載した車両の運転時、前記各パワーローラ6aには前記各ディスク2、5から、加速時と減速時(エンジンブレーキの作動時)とで逆方向の力(トロイダル型無段変速機の技術分野で周知の「2Ft」)が加わる。そして、この力2Ftにより、前記各パワーローラ6aが、前記各外輪16aと共に、前記各支持梁部23の軸方向に変位する。この変位の方向は、前述した各アクチュエータ21、21による各トラニオン7、7(図26参照)の変位方向と同じであり、変位量が0.1mm程度であっても、変速動作が開始される可能性を生じる。そして、この様な原因で変速動作が開始された場合には、運転動作とは直接関連しない変速動作となり、何れ修正されるにしても、運転者に違和感を与える。特に、トロイダル型無段変速機が伝達するトルクが低い状態で、上述の様な、運転者が意図しない変速が行われると、運転者に与える違和感が大きくなり易い。   On the other hand, during operation of a vehicle equipped with a toroidal-type continuously variable transmission, each power roller 6a receives a force in the opposite direction from the respective disks 2 and 5 during acceleration and deceleration (when the engine brake is activated) ( "2Ft", which is well known in the technical field of toroidal-type continuously variable transmissions, is added. Then, the force 2Ft causes the power rollers 6a to be displaced in the axial direction of the support beam portions 23 together with the outer rings 16a. The direction of this displacement is the same as the direction of displacement of each trunnion 7 and 7 (see FIG. 26) by each actuator 21 and 21 described above, and the shifting operation is started even if the amount of displacement is about 0.1 mm. Create a possibility. When the shifting operation is started for such a reason, the shifting operation is not directly related to the driving operation, and the driver feels uncomfortable regardless of any correction. In particular, when a shift that is not intended by the driver as described above is performed in a state where the torque transmitted by the toroidal-type continuously variable transmission is low, a sense of discomfort given to the driver tends to increase.

上述の様にして生じる、運転動作とは直接関連しない変速動作の発生を抑える為には、前記間隔Dと前記外径dとの差(D−d)を僅少に(例えば数十μm程度に)抑える事が考えられる。但し、ハーフトロイダル型のトロイダル型無段変速機の運転時には、トラクション部から前記各パワーローラ6a、前記各外輪16aを介して前記各支持梁部23に加わるスラスト荷重により、前記各トラニオン7aが、図33に誇張して示す様に、前記各外輪16aを設置した側が凹となる方向に弾性変形する。そして、この弾性変形の結果、前記各トラニオン7a毎に1対ずつ設けた段差面26、26同士の間隔が縮まる。この様な状態でも、これら両段差面26、26同士の間隔Dが前記各外輪16aの外径d以下にならない様にする為には、通常状態(前記各トラニオン7aが弾性変形していない状態)での、前記間隔Dと前記外径dとの差を或る程度確保する必要がある。この結果、特に違和感が大きくなり易い、低トルクでの運転時に、上述の様な、運転動作とは直接関連しない変速動作が発生し易くなる。   In order to suppress the occurrence of the speed change operation that is not directly related to the driving operation as described above, the difference (D−d) between the distance D and the outer diameter d is made small (for example, about several tens of μm). ) Can be suppressed. However, during the operation of the half-toroidal toroidal continuously variable transmission, each trunnion 7a is caused by a thrust load applied to each support beam portion 23 from the traction portion via each power roller 6a and each outer ring 16a. As exaggeratedly shown in FIG. 33, the side on which each outer ring 16a is installed is elastically deformed in a concave direction. As a result of this elastic deformation, the distance between the step surfaces 26, 26 provided in pairs for each trunnion 7a is reduced. Even in such a state, in order to prevent the distance D between the two step surfaces 26 and 26 from becoming smaller than the outer diameter d of each outer ring 16a, the normal state (the state where each trunnion 7a is not elastically deformed). It is necessary to ensure a certain difference between the distance D and the outer diameter d. As a result, a shift operation that is not directly related to the driving operation as described above is likely to occur particularly during driving at a low torque, which tends to increase the sense of discomfort.

一方、前記特許文献3には、支持梁部側に設けた円筒状凸面の一部に係止したアンカ駒と、外輪側の凹部の内面に形成したアンカ溝とを係合させる事により、前記力2Ftを支承する構造が記載されている。又、円筒状凸面と凹部との互いに整合する部分に形成された、それぞれが断面円弧形である転動溝同士の間に複数個の玉を掛け渡して、前記力2Ftを支承する構造も記載されている。但し、前者の構造の場合には、前記アンカ駒を前記支持梁部に、前記力2Ftを支承できる程度の強度及び剛性を確保して支持固定する事が難しく、低コスト化と十分な信頼性確保とを図りにくい。又、後者の場合には、前記力2Ftが大きくなり、前記各玉の転動面と前記各転動溝との転がり接触部の面圧が上昇すると、これら各転動溝の内面に圧痕が形成され、各トラニオンに対して各内輪が揺動変位する際に振動が発生する可能性がある。   On the other hand, in Patent Document 3, the anchor piece locked to a part of the cylindrical convex surface provided on the support beam part side and the anchor groove formed on the inner surface of the concave part on the outer ring side are engaged with each other. A structure for supporting a force 2Ft is described. There is also a structure for supporting the force 2Ft by forming a plurality of balls between the rolling grooves each having an arcuate cross section formed in a portion where the cylindrical convex surface and the concave portion are aligned with each other. Are listed. However, in the case of the former structure, it is difficult to support and fix the anchor piece to the support beam portion with sufficient strength and rigidity to support the force 2Ft, and it is possible to reduce the cost and to provide sufficient reliability. It is difficult to secure. In the latter case, when the force 2Ft increases and the surface pressure of the rolling contact portion between the rolling surface of each ball and each rolling groove increases, an indentation is formed on the inner surface of each rolling groove. As a result, vibration may occur when each inner ring swings and displaces with respect to each trunnion.

特開2003−214516号公報JP 2003-214516 A 特開2007−315595号公報JP 2007-315595 A 特開2008−25821号公報JP 2008-25821 A 特開2008−275088号公報JP 2008-275088 A 特開2004−169719号公報JP 2004-169719 A

本発明は、上述の様な事情に鑑み、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a structure that facilitates parts production, parts management, and assembly work, facilitates cost reduction, and stabilizes the speed change operation. is there.

本発明のトロイダル型無段変速機は、少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受とを備える。
特に、本発明のトロイダル型無段変速機に於いては、前記各トラニオンの支持梁部の幅方向中央位置から外れた1箇所乃至複数箇所に、これら各支持梁部の外周面から突出した状態で設けられた凸部と、前記各スラスト軸受の外輪の外側面に設けられた凹溝とを備える。そして、これら凸部と凹溝との係合部で、前記各ディスクの回転に伴って前記各パワーローラに加わるトルクを支承可能としている。又、前記係合部に、前記各外輪の前記各トラニオンに対する揺動変位を可能とするだけの隙間を設けている。
The toroidal-type continuously variable transmission of the present invention includes at least a pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, and the same number of thrust rolling bearings.
In particular, in the toroidal-type continuously variable transmission of the present invention, one or a plurality of locations that deviate from the center position in the width direction of the support beam portion of each trunnion are projected from the outer peripheral surface of each support beam portion. And a concave groove provided on the outer surface of the outer ring of each thrust bearing. The engaging portions between the convex portions and the concave grooves can support the torque applied to the power rollers as the disks rotate. In addition, a gap is provided in the engaging portion to enable the rocking displacement of each outer ring with respect to each trunnion.

上述の様な本発明を実施する場合に好ましくは、請求項2に記載した発明の様に、前記凸部を、前記各支持梁部の幅方向2箇所位置で、これら各支持梁部の円筒状凸面の中心軸の軸方向に関する位置が互いに一致する部分に形成する。   When the present invention as described above is carried out, preferably, as in the invention described in claim 2, the convex portions are arranged at two positions in the width direction of the respective support beam portions, and the cylinders of these respective support beam portions. It forms in the part which the position regarding the axial direction of the central axis of a convex surface corresponds mutually.

又、上述の様な本発明を実施する場合に、例えば請求項3に記載した発明の様に、前記各支持梁部の一部に断面円形の保持孔を形成する。そして、この保持孔にアンカピンを、端部を前記各支持梁部の外周面から突出させた状態で圧入固定し、前記凸部とする。   When implementing the present invention as described above, for example, as in the invention described in claim 3, a holding hole having a circular cross section is formed in a part of each of the supporting beam portions. Then, the anchor pin is press-fitted and fixed to the holding hole in a state where the end portion protrudes from the outer peripheral surface of each of the support beam portions, thereby forming the convex portion.

上述の様に構成する本発明のトロイダル型無段変速機によれば、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現できる。
このうちのコスト低廉化は、前述の図27〜32に示した従来構造の第2例と同様の理由により、図り易い。
又、変速動作の安定化は、各外輪側に設けた凹溝の一部と、各トラニオン側に設けた凸部との係合に基づき、これら各外輪がこれら各トラニオンに対し、各支持梁部の軸方向に変位するのを防止する事により図れる。
又、前記凸部と前記凹溝との係合部を、前記各トラニオンの支持梁部の幅方向中央位置から外れた位置としている為、各パワーローラの回転に伴いスラスト転がり軸受を介して前記各外輪に加わるモーメントに対する支持剛性を高くできる。
According to the toroidal-type continuously variable transmission of the present invention configured as described above, it is easy to manufacture parts, manage parts, and assemble work, easily reduce costs, and stabilize the speed change operation. realizable.
Of these, cost reduction is easy to achieve for the same reason as in the second example of the conventional structure shown in FIGS.
Further, the stabilization of the speed change operation is based on the engagement between a part of the concave groove provided on each outer ring side and the convex part provided on each trunnion side, so that each outer ring supports each trunnion with each support beam. This can be achieved by preventing displacement in the axial direction of the part.
Further, since the engaging portion between the convex portion and the concave groove is located at a position deviating from the center position in the width direction of the support beam portion of each trunnion, the thrust roller bearing is interposed via the thrust rolling bearing as each power roller rotates. Support rigidity against the moment applied to each outer ring can be increased.

特に、請求項2に記載した発明によれば、前記係合部を、前記各支持梁部の幅方向2箇所位置としている為、前記モーメントに対する支持剛性をより一層高くできる。
又、請求項3に記載した発明によれば、前記各トラニオンの支持梁部に前記凸部を設ける為の構造の加工が容易で、製造コストを低く抑えられる。
In particular, according to the second aspect of the present invention, since the engaging portions are located at two positions in the width direction of the support beam portions, the support rigidity with respect to the moment can be further increased.
According to the invention described in claim 3, the structure for providing the convex portions on the support beam portions of the trunnions can be easily processed, and the manufacturing cost can be kept low.

本発明の実施の形態の第1例を、トラニオンと外輪とを組み合わせた状態で示す斜視図。The perspective view which shows the 1st example of embodiment of this invention in the state which combined the trunnion and the outer ring | wheel. 同じく、トラニオンと外輪とを組み合わせる以前の状態で示す斜視図。Similarly, the perspective view shown in the state before combining a trunnion and an outer ring | wheel. 同じく、トラニオンと外輪とを組み合わせて、図28と同方向から見た状態で示す側面図。Similarly, the side view shown in the state seen from the same direction as FIG. 28 combining a trunnion and an outer ring | wheel. 図3のa−a断面図。FIG. 4 is a cross-sectional view taken along the line aa in FIG. 3. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同じく、図2と同様の図。Similarly, the same figure as FIG. 同じく、図3と同様の図。Similarly, the same figure as FIG. 図7のb−b断面図。Bb sectional drawing of FIG. 本発明の実施の形態の第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example of embodiment of this invention. 同じく、図2と同様の図。Similarly, the same figure as FIG. 同じく、図3と同様の図。Similarly, the same figure as FIG. 図11のc−c断面図。Cc sectional drawing of FIG. 本発明の実施の形態の第4例を示す、外輪を取り出して凹部側から見た平面図。The top view which took out the outer ring | wheel and showed it from the recessed part side which shows the 4th example of embodiment of this invention. 同じく、図13のd部拡大図。Similarly, the d section enlarged view of FIG. 本発明の実施の形態の第5例を示す、図4と同様の図。The figure similar to FIG. 4 which shows the 5th example of embodiment of this invention. 同じく、図15のe−e断面図。Similarly, ee sectional drawing of FIG. 同じく、図15のf部拡大図。Similarly, the f section enlarged view of FIG. 同じく、図16のg部拡大図。Similarly, the g section enlarged view of FIG. 本発明の実施の形態の第6例を示す、図3と同様の図。The figure similar to FIG. 3 which shows the 6th example of embodiment of this invention. 同じく、図19のh部拡大図。Similarly, the h section enlarged view of FIG. 本発明の実施の形態の第7例を示す、図13と同様の図。The figure similar to FIG. 13 which shows the 7th example of embodiment of this invention. 同じく、図21のi−i断面図。Similarly, ii sectional drawing of FIG. 本発明の実施の形態の第8例を示す、図3と同様の図。The figure similar to FIG. 3 which shows the 8th example of embodiment of this invention. 同じく、図23のj−j断面図。Similarly, jj sectional drawing of FIG. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 図25のk−k断面図。Kk sectional drawing of FIG. 従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows the 2nd example of the conventional structure from the radial direction outer side of each disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 図28の上方から見た平面図。The top view seen from the upper part of FIG. 図29の右方から見た側面図。The side view seen from the right side of FIG. 図29のm−m断面図。FIG. 30 is a cross-sectional view taken along the line m-m in FIG. 29. 図28のn−n断面図。Nn sectional drawing of FIG. パワーローラから加わるスラスト荷重に基づいてトラニオンが弾性変形した状態を誇張して示す、図31と同方向から見た断面図。FIG. 32 is a cross-sectional view seen from the same direction as FIG. 31, exaggeratingly showing a state where the trunnion is elastically deformed based on a thrust load applied from the power roller.

[実施の形態の第1例]
図1〜4は、請求項1〜4に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、変速動作を安定させるべく、トラニオン7bの支持梁部23aに対し、スラスト玉軸受13aを構成する外輪16bを、この支持梁部23aに対する揺動変位を可能に支持しつつ、この支持梁部23aの軸方向に変位しない様にする為の構造にある。その他の部分の構造及び作用は、前述の図27〜32に示した従来構造の第2例と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 to 4 show a first example of an embodiment of the present invention corresponding to claims 1 to 4. The feature of this example is that the outer ring 16b constituting the thrust ball bearing 13a is supported by the support beam portion 23a of the trunnion 7b so as to be able to swing and displace with respect to the support beam portion 23a in order to stabilize the speed change operation. However, the support beam portion 23a is structured so as not to be displaced in the axial direction. Since the structure and operation of the other parts are the same as those of the second example of the conventional structure shown in FIGS. 27 to 32 described above, the illustration and description of the equivalent parts are omitted or simplified. The explanation will be focused on.

本例の構造の場合、前記支持梁部23aに支持固定したアンカピン27と、前記外輪16bの外側面に形成した1対の凹溝28、28とを係合させている。前記トラニオン7bの一部で、前記支持梁部23aの両端部に設けた1対の段差面26、26同士の間隔Dは、前記外輪16bの外径d(図3参照)よりも十分に(例えば1〜2mm程度)大きくしている。   In the case of the structure of this example, the anchor pin 27 supported and fixed to the support beam portion 23a is engaged with a pair of concave grooves 28 and 28 formed on the outer surface of the outer ring 16b. A distance D between the pair of step surfaces 26 and 26 provided at both ends of the support beam portion 23a in a part of the trunnion 7b is sufficiently larger than the outer diameter d (see FIG. 3) of the outer ring 16b (see FIG. 3). For example, about 1-2 mm).

前記アンカピン27を支持固定する為、前記トラニオン7bの支持梁部23aの一部に、断面円形の保持孔29を、この支持梁部23aの円筒状凸面22の中心軸の方向に対し直角方向に、両端部がこの支持梁部23aの幅方向両側面に開口する状態で形成している。
前記アンカピン27は、軸受鋼、高速度鋼等の硬質金属製で、全体を円柱状とすると共に、軸方向両端面の外周縁部に、断面形状が四分の一円弧形の面取り部を形成している。それぞれの自由状態での、前記保持孔29の内径は、前記アンカピン27の外径よりも僅かに小さく、このアンカピン27は、前記保持孔29内に圧入する事で、軸方向中間部を前記トラニオン7bに対し締り嵌めで内嵌固定している。この状態で、前記アンカピン27の両端部が、前記トラニオン7bの支持梁部23aの幅方向両側面から突出した状態となる。
In order to support and fix the anchor pin 27, a retaining hole 29 having a circular cross section is formed in a part of the support beam portion 23a of the trunnion 7b in a direction perpendicular to the direction of the central axis of the cylindrical convex surface 22 of the support beam portion 23a. Both end portions are formed so as to open on both side surfaces in the width direction of the support beam portion 23a.
The anchor pin 27 is made of a hard metal such as bearing steel or high-speed steel, and has a cylindrical shape as a whole, and a chamfered portion having a quarter arc shape in cross section at the outer peripheral edge portion of both axial end surfaces. Forming. The inner diameter of the holding hole 29 in each free state is slightly smaller than the outer diameter of the anchor pin 27, and the anchor pin 27 is press-fitted into the holding hole 29, so that the axially intermediate portion is connected to the trunnion. The inner fitting is fixed to 7b with an interference fit. In this state, both end portions of the anchor pin 27 protrude from both side surfaces in the width direction of the support beam portion 23a of the trunnion 7b.

又、前記各凹溝28、28は、前記外輪16bの外側面の中間部で、この外輪16bと前記トラニオン7bとを組み合わせた状態で、前記アンカピン27の両端部に整合する部分に、それぞれ形成している。前記各凹溝28、28の幅方向寸法は、前記アンカピン27の外径寸法と同じか、これよりも僅かに(例えば十数μm〜数十μm程度)大きくしている。又、前記各凹溝28、28の深さ寸法を規制して、前記各凹溝28、28の底面と、前記アンカピン27の内側面との間に隙間を設けている。そして、前記アンカピン27の両端部とこれら各凹溝28、28とが係合した状態で、前記円筒状凸面22の中心軸周りの回転方向に関して、前記外輪16bが前記トラニオン7bに対し揺動変位するのを可能としている。   Each of the concave grooves 28 and 28 is formed at an intermediate portion of the outer surface of the outer ring 16b, and in a portion aligned with both end portions of the anchor pin 27 in a state where the outer ring 16b and the trunnion 7b are combined. is doing. The dimension in the width direction of each of the concave grooves 28, 28 is the same as or slightly larger than the outer diameter dimension of the anchor pin 27 (for example, about several tens μm to several tens μm). Further, the depth dimension of each of the concave grooves 28, 28 is regulated, and a gap is provided between the bottom surface of each of the concave grooves 28, 28 and the inner side surface of the anchor pin 27. The outer ring 16b is oscillated and displaced with respect to the trunnion 7b with respect to the rotational direction around the central axis of the cylindrical convex surface 22 in a state where both end portions of the anchor pin 27 and the respective concave grooves 28, 28 are engaged. It is possible to do.

上述の様に構成する本例のトロイダル無段変速機は、前記トラニオン7bと前記外輪16bとを、図2に示した状態から図1に示した状態にまで互いに近づけて、前記アンカピン27と前記各凹溝28、28とを係合させた状態で組み合わせる。この状態で前記トロイダル型無段変速機を運転すると、前記トラニオン7bに加わる力2Ftを、前記アンカピン27の軸方向両端部と前記各凹溝28、28との係合部で支承する。又、伝達するトルクの変動に伴って前記外輪16bが前記トラニオン7bに対し揺動変位する際には、前記各凹溝28、28の底面と前記アンカピン27の内側面との間に設けた隙間の範囲内で、このアンカピン27が傾斜する(実際には、このアンカピン27を設けたトラニオン7bに対して、前記各凹溝28、28を設けた外輪16bが揺動変位する)。   In the toroidal continuously variable transmission of this example configured as described above, the trunnion 7b and the outer ring 16b are brought close to each other from the state shown in FIG. 2 to the state shown in FIG. The concave grooves 28 and 28 are combined in an engaged state. When the toroidal continuously variable transmission is operated in this state, the force 2Ft applied to the trunnion 7b is supported by the engaging portions between the axial end portions of the anchor pin 27 and the concave grooves 28, 28. Further, when the outer ring 16b swings and displaces with respect to the trunnion 7b in accordance with a change in the torque to be transmitted, a gap provided between the bottom surface of each of the concave grooves 28 and 28 and the inner side surface of the anchor pin 27. In this range, the anchor pin 27 is inclined (in practice, the outer ring 16b provided with the concave grooves 28 and 28 is oscillated and displaced with respect to the trunnion 7b provided with the anchor pin 27).

又、本例の場合、前記各凹溝28、28を前記支持梁部23aの円筒状凸面22の幅方向中央位置から外れた2箇所位置に設けている為、パワーローラ6aの回転に伴いスラスト玉軸受13aを介して前記外輪16bに加わるモーメントに対する支持剛性を、前述した特許文献3に記載のアンカ駒とアンカ溝とを係合させる構造の場合よりも向上させる事ができる。
又、前記支持梁部23aに加わるスラスト荷重により前記トラニオン7bが変形(図33参照)した場合にも、前記1対の段差面26、26が前記外輪16bを強く挟持する事も、前記各凹溝28、28が前記アンカピン27を強く狭持する事もない。この為、前記支持梁部23aを中心とする、前記外輪16bの揺動変位に対する摺動抵抗が大きくならず、この揺動変位を円滑に行う事ができる。
Further, in the case of this example, since the respective concave grooves 28 are provided at two positions deviating from the center position in the width direction of the cylindrical convex surface 22 of the support beam portion 23a, a thrust is generated with the rotation of the power roller 6a. The support rigidity with respect to the moment applied to the outer ring 16b via the ball bearing 13a can be improved as compared with the structure in which the anchor piece and the anchor groove described in Patent Document 3 are engaged.
In addition, even when the trunnion 7b is deformed (see FIG. 33) due to a thrust load applied to the support beam portion 23a, the pair of stepped surfaces 26 and 26 may strongly hold the outer ring 16b. The grooves 28, 28 do not strongly hold the anchor pin 27. For this reason, the sliding resistance with respect to the rocking displacement of the outer ring 16b around the support beam portion 23a does not increase, and the rocking displacement can be performed smoothly.

前述の様に構成し、上述の様に作用する本例の構造は、前記円柱状のアンカピン27を前記トラニオン7bに支持固定する為に、このトラニオン7bに断面円形の保持孔29を形成すれば足りる。円柱状のアンカピン27を所定の寸法精度で造る事も、断面円形状の保持孔29を所定の精度で造る事も、何れも容易である。又、この保持孔29に前記アンカピン27を支持固定する作業も、この保持孔29にこのアンカピン27を直線状に圧入するだけで足りる。そして、圧入後は、このアンカピン27が軸方向中間部で前記トラニオン7bに対し支持固定され、前記力2Ftはこのアンカピン27の軸方向両端部に加わる構造となって、この力2Ftに対する剛性が大きくなる。これらにより本例の構造は、大きなトルクを伝達するトロイダル型無段変速機で実施した場合でも、十分な耐久性及び信頼性を確保できる構造を、低コストで実現できる。   The structure of the present example configured as described above and acting as described above is provided by forming a retaining hole 29 having a circular cross section in the trunnion 7b in order to support and fix the cylindrical anchor pin 27 to the trunnion 7b. It ’s enough. It is easy to manufacture the cylindrical anchor pin 27 with a predetermined dimensional accuracy and to manufacture the holding hole 29 having a circular cross section with a predetermined accuracy. In addition, the operation of supporting and fixing the anchor pin 27 in the holding hole 29 is only required to press-fit the anchor pin 27 into the holding hole 29 linearly. After the press-fitting, the anchor pin 27 is supported and fixed to the trunnion 7b at the axial intermediate portion, and the force 2Ft is applied to both end portions of the anchor pin 27 in the axial direction, and the rigidity against the force 2Ft is large. Become. As a result, the structure of this example can realize a structure that can secure sufficient durability and reliability at a low cost even when implemented with a toroidal-type continuously variable transmission that transmits a large torque.

[実施の形態の第2例]
図5〜8は、請求項1〜2に対応する、本発明の実施の形態の第2例を示している。本例の場合には、トラニオン7cの支持梁部23bの幅方向両側面に凸部30、30を、この支持梁部23bと一体に設けている。これら各凸部30、30を形成する位置は、前記支持梁部23bの円筒状凸面22の中心軸の軸方向に関する位置が互いに一致する部分としている。又、前記各凸部30、30の方向は、この中心軸に対して直角方向としている。そして、これら各凸部30、30を、外輪16cに設けた凹溝28a、28aに係合させて、前記トラニオン7bに加わる力2Ftを支承する様にしている。
その他の部分の構成及び作用は、上述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Second Example of Embodiment]
FIGS. 5-8 has shown the 2nd example of embodiment of this invention corresponding to Claims 1-2. In the case of this example, convex portions 30 and 30 are provided integrally with the support beam portion 23b on both side surfaces in the width direction of the support beam portion 23b of the trunnion 7c. The positions where these convex portions 30, 30 are formed are portions where the positions of the central axis of the cylindrical convex surface 22 of the support beam portion 23b coincide with each other. Further, the direction of each of the convex portions 30, 30 is a direction perpendicular to the central axis. These convex portions 30 and 30 are engaged with concave grooves 28a and 28a provided in the outer ring 16c to support a force 2Ft applied to the trunnion 7b.
Since the configuration and operation of the other parts are the same as in the first example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

[実施の形態の第3例]
図9〜12は、請求項1〜3、5に対応する、本発明の実施の形態の第3例を示している。本例の場合には、トラニオン7dの支持梁部23cの幅方向2箇所位置に、これら各支持梁部23cの外側面と円筒状凸面22とに、それぞれの両端部を開口する保持孔29a、29aを形成している。これら各保持孔29a、29aを形成する位置は、前記円筒状凸面22の中心軸の軸方向に関する位置が互いに一致する部分としている。又、前記各保持孔29a、29aの方向は、前記トラニオン7dに対し中立位置に存在する状態での、外輪16dの内側面に設けた支持軸12aの中心軸の軸方向と同じ(平行)としている。そして、前記各保持孔29a、29aに、それぞれアンカピン27a、27aを、前記支持梁部23cの外側面側の開口より、締り嵌めで圧入して、これら各アンカピン27a、27aを、前記トラニオン7dに対し固定している。尚、これら各アンカピン27a、27aを圧入する際に、これら各アンカピン27a、27aが前記円筒状凸面22側の開口から過度に突出しない(適正位置に留まる)様に、これら各アンカピン27a、27aの後端部(図12の下側)に設けた鍔部31、31を、前記各保持孔29a、29aの中間部に設けた段差部32、32に突き当てている。
[Third example of embodiment]
9 to 12 show a third example of the embodiment of the invention corresponding to claims 1 to 5. In the case of this example, holding holes 29a that open both ends of the outer surface of each support beam 23c and the cylindrical convex surface 22 at two positions in the width direction of the support beam 23c of the trunnion 7d, 29a is formed. The positions where these holding holes 29a and 29a are formed are portions where the positions of the central axis of the cylindrical convex surface 22 in the axial direction coincide with each other. The directions of the holding holes 29a, 29a are the same (parallel) as the axial direction of the central axis of the support shaft 12a provided on the inner side surface of the outer ring 16d in a state of being neutral with respect to the trunnion 7d. Yes. Then, the anchor pins 27a and 27a are respectively press-fitted into the holding holes 29a and 29a from the opening on the outer surface side of the support beam portion 23c, and the anchor pins 27a and 27a are inserted into the trunnion 7d. It is fixed against. When the anchor pins 27a, 27a are press-fitted, the anchor pins 27a, 27a are not protruded excessively from the opening on the cylindrical convex surface 22 side (stay in an appropriate position). The flange portions 31, 31 provided at the rear end portion (lower side in FIG. 12) are abutted against the step portions 32, 32 provided in the intermediate portions of the holding holes 29a, 29a.

又、前記外輪16dの凹部24の内面には、この外輪16dと前記トラニオン7dとを組み合わせた状態で、前記各アンカピン27a、27aに整合する部分に、凹溝28bを設けている。そして、これら各アンカピン27a、27aの先端部外周面と、この凹溝28bの内面のうち幅方向両端面との間、及び、この凹溝28bの底面と前記各アンカピン27a、27aの先端面との間に、前記外輪16dの前記トラニオン7dに対する揺動変位を可能とする隙間を設けている。前記凹溝28bの幅寸法は、前記各アンカピン27a、27aの先端部の外径寸法よりも僅かに大きい。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
Further, on the inner surface of the concave portion 24 of the outer ring 16d, a concave groove 28b is provided in a portion aligned with the anchor pins 27a and 27a in a state where the outer ring 16d and the trunnion 7d are combined. And between the tip part outer peripheral surface of each of these anchor pins 27a, 27a and the width direction both end surfaces of the inner surface of this concave groove 28b, and the bottom surface of this concave groove 28b and the front end surface of each said anchor pin 27a, 27a A gap is provided between the outer ring 16d and the trunnion 7d so that the outer ring 16d can swing and displace. The width of the concave groove 28b is slightly larger than the outer diameter of the tip of each anchor pin 27a, 27a.
Since the configuration and operation of other parts are the same as those of the first example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

[実施の形態の第4例]
図13〜14は、請求項1〜2、6に対応する、本発明の実施の形態の第4例を示している。本例の場合には、外輪16eの外側面に設けた凹溝28c、28cのうち、この外輪16eの幅方向に関して外側の部分を、この外輪16eの幅方向外方に向かう程、これら各凹溝28c、28cの幅寸法が大きくなるテーパ形状としている。この為、前述した実施の形態の第1例に於いて、保持孔29(図4参照)を形成する方向が円筒状凸面22の中心軸の直角方向に対し僅かに傾き(加工精度による僅かな誤差が発生し)、アンカピン27がこの中心軸の直角方向に対し僅かに傾いたり、前述した実施の形態の第2例に示した凸部30、30(図5〜8参照)を形成する方向が、前記中心軸の直角方向に対し僅かに傾いても、この誤差を吸収する事ができる。
その他の部分の構成及び作用は、前述した実施の形態の第1例及び実施の形態の第2例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Fourth Example of Embodiment]
13 to 14 show a fourth example of an embodiment of the present invention corresponding to claims 1 to 2 and 6. In the case of this example, among the concave grooves 28c, 28c provided on the outer side surface of the outer ring 16e, the outer portions with respect to the width direction of the outer ring 16e are moved toward the outer side in the width direction of the outer ring 16e. The grooves 28c and 28c are tapered to increase the width dimension. For this reason, in the first example of the above-described embodiment, the direction in which the holding hole 29 (see FIG. 4) is formed is slightly inclined with respect to the direction perpendicular to the central axis of the cylindrical convex surface 22 (slightly depending on the processing accuracy). An error occurs), the anchor pin 27 is slightly inclined with respect to the direction perpendicular to the central axis, or the projections 30 and 30 (see FIGS. 5 to 8) shown in the second example of the embodiment are formed. However, even if it is slightly inclined with respect to the direction perpendicular to the central axis, this error can be absorbed.
Since the configuration and operation of the other parts are the same as those of the first example of the embodiment and the second example of the embodiment described above, illustration and description regarding the equivalent parts are omitted.

[実施の形態の第5例]
図15〜18は、請求項1〜4、7に対応する、本発明の実施の形態の第5例を示している。本例の場合には、トラニオン7bの支持梁部23aの幅方向両側面に開口する状態で形成された、保持孔29に内嵌固定されたアンカピン27bの両端部を、前記支持梁部23aの幅方向外方に向かう程断面積が小さくなるテーパ形状としている。この為、前記保持孔29を形成する方向が円筒状凸面22の中心軸の直角方向に対し僅かに傾き(加工精度による僅かな誤差が発生し)、前記アンカピン27bがこの中心軸の直角方向に対し僅かに傾いても、この誤差を吸収する事ができる。又、このアンカピン27bと凹溝28、28との係合部の係合強度を適正な大きさとして、前記支持梁部23aを中心とする外輪16bの揺動変位を円滑に行わせる事が可能となる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Fifth Example of Embodiment]
FIGS. 15-18 has shown the 5th example of embodiment of this invention corresponding to Claims 1-4, 7. FIG. In the case of this example, both end portions of the anchor pins 27b, which are formed in the state of opening on both side surfaces in the width direction of the support beam portion 23a of the trunnion 7b and are fitted and fixed in the holding holes 29, are connected to the support beam portion 23a. The taper shape is such that the cross-sectional area decreases toward the outside in the width direction. For this reason, the direction in which the holding hole 29 is formed is slightly inclined with respect to the direction perpendicular to the central axis of the cylindrical convex surface 22 (a slight error occurs due to machining accuracy), and the anchor pin 27b is in the direction perpendicular to the central axis. Even if it is slightly tilted, this error can be absorbed. Further, the engagement strength of the engagement portion between the anchor pin 27b and the concave grooves 28 and 28 can be set to an appropriate magnitude, and the swinging displacement of the outer ring 16b around the support beam portion 23a can be smoothly performed. It becomes.
Since the configuration and operation of other parts are the same as those of the first example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

[実施の形態の第6例]
図19〜20は、請求項1、8に対応する、本発明の実施の形態の第6例を示している。本例の場合には、外輪16cに設けた凹溝28aとトラニオン7cに設けた凸部30との間に、皿ばねの如く、ばね鋼等の弾性を有する材料製の弾性体33、33を設けている。この為、前記凸部30の形成する方向が、円筒状凸面22の中心軸に対する直角方向に対し僅かに傾いても(加工精度による僅かな誤差が発生しても)、この誤差を吸収する事ができる。又、前記凸部30と前記凹溝28aとの係合部の係合強度を適正な大きさとして、支持梁部23bを中心とする外輪16cの揺動変位に対する、前記凸部30と前記凹溝28aとの係合部の摺動抵抗を小さくでき、この揺動変位を円滑に行わせる事ができる。
その他の部分の構成及び作用は、前述した実施の形態の第2例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Sixth Example of Embodiment]
19 to 20 show a sixth example of an embodiment of the present invention corresponding to claims 1 and 8. In the case of this example, elastic bodies 33, 33 made of a material having elasticity such as spring steel, such as a disc spring, are provided between the concave groove 28a provided in the outer ring 16c and the convex portion 30 provided in the trunnion 7c. Provided. For this reason, even if the direction in which the convex portion 30 is formed is slightly inclined with respect to the direction perpendicular to the central axis of the cylindrical convex surface 22 (even if a slight error due to processing accuracy occurs), this error is absorbed. Can do. Further, with the engagement strength of the engagement portion between the convex portion 30 and the concave groove 28a being an appropriate magnitude, the convex portion 30 and the concave portion with respect to the rocking displacement of the outer ring 16c centering on the support beam portion 23b. The sliding resistance of the engaging portion with the groove 28a can be reduced, and this oscillating displacement can be performed smoothly.
Since the configuration and operation of the other parts are the same as in the second example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

[実施の形態の第7例]
図21〜22は、請求項1〜4に対応する、本発明の実施の形態の第7例を示している。本例の場合には、外輪16fに設けた凹溝28d、28dを、この外輪16fの外側面の外周縁に開口しない状態で設けている。この為、これら各凹溝28d、28dと、支持梁部23aに圧入固定したアンカピン27(図1〜4参照)とが係合した状態で、このアンカピン27が抜け落ちるのを確実に(締め代が不十分な場合でも)防止できる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Seventh example of embodiment]
21 to 22 show a seventh example of the embodiment of the invention corresponding to claims 1 to 4. In the case of this example, the concave grooves 28d and 28d provided in the outer ring 16f are provided so as not to open at the outer peripheral edge of the outer side surface of the outer ring 16f. For this reason, it is ensured that the anchor pins 27 come off in a state in which these concave grooves 28d and 28d are engaged with the anchor pins 27 (see FIGS. 1 to 4) that are press-fitted and fixed to the support beam portion 23a. Can prevent)
Since the configuration and operation of other parts are the same as those of the first example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

[実施の形態の第8例]
図23〜24は、請求項1、3に対応する、本発明の実施の形態の第8例を示している。本例の場合には、トラニオン7fの支持梁部23dの幅方向片側面にのみ開口した保持孔29bに、アンカピン27cを、先端部がこの支持梁部23dの幅方向片側面から突出した状態で、圧入固定している。外輪16gの外側面には、前記アンカピン27cの先端部と係合する位置に、凹溝28を設けている。
本例の場合、前記アンカピン27cとこの凹溝28との係合部を1箇所としている為、モーメント剛性の面からは不利になる代りに、前記保持孔29bを形成する方向が円筒状凸面22の中心軸の直角方向に対し僅かに傾く事で、加工精度による誤差を許容できる範囲を、前記実施の形態の第1例と比較して大きく(2倍とする事が)できる。又、前記支持梁部23dを中心とする外輪16gの揺動変位に対する、前記アンカピン27cと前記凹溝28との係合部に於ける摺動抵抗を前記実施の形態の第1例の場合よりも小さくでき、前記揺動変位を円滑に行わせる事ができる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Eighth Example of Embodiment]
23 to 24 show an eighth example of an embodiment of the present invention corresponding to claims 1 and 3. In the case of this example, the anchor pin 27c is inserted into the holding hole 29b opened only on one side surface in the width direction of the support beam portion 23d of the trunnion 7f, with the tip portion protruding from one side surface in the width direction of the support beam portion 23d. It is press-fitted and fixed. A concave groove 28 is provided on the outer surface of the outer ring 16g at a position where it engages with the tip of the anchor pin 27c.
In the case of this example, since there is one engaging portion between the anchor pin 27c and the concave groove 28, the direction in which the holding hole 29b is formed is cylindrically convex 22 instead of being disadvantageous from the viewpoint of moment rigidity. By slightly inclining with respect to the direction perpendicular to the central axis, the range in which an error due to machining accuracy can be tolerated can be increased (doubled) compared to the first example of the embodiment. Further, the sliding resistance at the engaging portion between the anchor pin 27c and the concave groove 28 with respect to the swinging displacement of the outer ring 16g around the support beam portion 23d is more than that in the first example of the embodiment. The swing displacement can be performed smoothly.
Since the configuration and operation of other parts are the same as those of the first example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

本発明は、トロイダル型無段変速機単独で実施できる他、特許文献5に記載されている様な、遊星歯車機構と組み合わせた無段変速装置として実施する事もできる。   The present invention can be implemented by a toroidal continuously variable transmission alone, or can be implemented as a continuously variable transmission in combination with a planetary gear mechanism as described in Patent Document 5.

1 入力回転軸
2 入力ディスク
3 出力筒
4 出力歯車
5 出力ディスク
6、6a パワーローラ
7、7a〜7f トラニオン
8、8a、8b 傾転軸
9 支持梁部
10 支持板
11、11a ラジアルニードル軸受
12、12a 支持軸
13、13a スラスト玉軸受
14 スラストニードル軸受
15 内輪軌道
16、16a〜16g 外輪
17 外輪軌道
18 玉
19 駆動軸
20 押圧装置
21 アクチュエータ
22 円筒状凸面
23、23a〜23d 支持梁部
24 凹部
25 ラジアルニードル軸受
26 段差面
27、27a〜27c アンカピン
28、28a〜28d 凹溝
29、29a、29b 保持孔
30 凸部
31 鍔部
32 段差部
33 弾性体
DESCRIPTION OF SYMBOLS 1 Input rotating shaft 2 Input disk 3 Output cylinder 4 Output gear 5 Output disk 6, 6a Power roller 7, 7a-7f Trunnion 8, 8a, 8b Tilt shaft 9 Support beam part 10 Support plate 11, 11a Radial needle bearing 12, 12a Support shaft 13, 13a Thrust ball bearing 14 Thrust needle bearing 15 Inner ring raceway 16, 16a-16g Outer ring 17 Outer ring raceway 18 Ball 19 Drive shaft 20 Press device 21 Actuator 22 Cylindrical convex surface 23, 23a-23d Support beam portion 24 Recess 25 Radial needle bearing 26 Step surface 27, 27a-27c Anchor pin 28, 28a-28d Recessed groove 29, 29a, 29b Holding hole 30 Convex part 31 Gutter part 32 Step part 33 Elastic body

Claims (8)

少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受とを備え、
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を可能に支持されたものであり、
前記各トラニオンは、それぞれの両端部に互いに同心に設けられた1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、前記両傾転軸の中心軸と平行でこれら両傾転軸の中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部とを備えたもので、軸方向に関して前記各ディスクの軸方向側面同士の間位置の周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心とする揺動変位を自在に設けられており、
前記各パワーローラは、前記各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させており、
前記各スラスト転がり軸受は、前記各トラニオンの支持梁部と前記各パワーローラの外側面との間に設けられたもので、これら各支持梁部側に設けられた外輪と、これら各外輪の内側面に設けられた外輪軌道と前記各パワーローラの外側面に設けられた内輪軌道との間に転動自在に、それぞれ複数個ずつ設けられた転動体とを備えたものであり、
前記各スラスト転がり軸受の外輪は、これら各外輪の外側面に設けられた凹部と前記各支持梁部の円筒状凸面とを係合させる事により、これら各トラニオンに対し、前記各ディスクの軸方向に関する揺動変位を可能に支持されているトロイダル型無段変速機に於いて、
前記各支持梁部の幅方向中央位置から外れた1箇所乃至複数箇所に、これら各支持梁部の外周面から突出した状態で設けられた凸部と、前記各外輪の外側面に設けられた凹溝とを備え、これら凸部と凹溝との係合部で、前記各ディスクの回転に伴って前記各パワーローラに加わるトルクを支承可能とし、この係合部に、前記各円筒状凸面の中心軸周りの回転方向に関して、前記各外輪の前記各トラニオンに対する揺動変位を可能とする隙間を設けている事を特徴とするトロイダル型無段変速機。
Comprising at least one pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, and the same number of thrust rolling bearings;
Each of these disks is supported to be capable of relative rotation concentrically with each other in a state in which each side surface in the axial direction is a toroidal curved surface having an arc cross section.
Each trunnion exists between a pair of tilting shafts provided concentrically with each other at both ends, and between the two tilting shafts, and at least the inner side surface in the radial direction of each of the disks, A support beam portion having a cylindrical convex surface, having a central axis that is parallel to the central axis of both tilting axes and that is present outside the central axes of these two tilting axes with respect to the radial direction of each disk. Oscillating displacement about the tilting shaft that is twisted with respect to the central axis of each disk is freely provided at a plurality of locations in the circumferential direction between the axial side surfaces of each disk with respect to the axial direction. And
Each of the power rollers is rotatably supported on the inner side surface of each trunnion via a thrust rolling bearing, and each circumferential surface having a spherical convex surface is brought into contact with one axial side surface of each disk. And
Each thrust rolling bearing is provided between the support beam portion of each trunnion and the outer surface of each power roller, and an outer ring provided on each support beam portion side, and an inner ring of each outer ring. A plurality of rolling elements are provided between the outer ring raceway provided on the side surface and the inner ring raceway provided on the outer side surface of each of the power rollers, respectively.
The outer ring of each of the thrust rolling bearings is engaged with the concave portion provided on the outer surface of each of the outer rings and the cylindrical convex surface of each of the support beam portions, so that the axial direction of each of the discs with respect to each of these trunnions. In a toroidal type continuously variable transmission that is supported so as to be capable of rocking displacement,
Protrusions provided in a state of projecting from the outer peripheral surface of each of the support beam portions, and provided on the outer surface of each of the outer rings, at one or a plurality of locations deviating from the center position in the width direction of each of the support beam portions. A concave groove, and an engaging portion between the convex portion and the concave groove can support a torque applied to each power roller as each disk rotates, and each cylindrical convex surface is supported on the engaging portion. A toroidal continuously variable transmission, characterized in that a clearance is provided to allow the outer ring to swing and displace relative to each trunnion with respect to the rotational direction around the central axis of the outer ring.
前記凸部が、前記各支持梁部の幅方向2箇所位置で、これら各支持梁部の円筒状凸面の中心軸の軸方向に関する位置が互いに一致する部分に形成されている、請求項1に記載のトロイダル型無段変速機。   The convex portion is formed at two positions in the width direction of each of the support beam portions at positions where the positions of the cylindrical convex surfaces of the support beam portions in the axial direction coincide with each other. The toroidal type continuously variable transmission described. 前記凸部が、前記各支持梁部の一部に形成された断面円形の保持孔に、端部を前記各支持梁部の外周面から突出させた状態で圧入固定されたアンカピンである、請求項1〜2のうちの何れか1項に記載のトロイダル型無段変速機。   The convex portion is an anchor pin that is press-fitted and fixed in a state in which an end portion protrudes from an outer peripheral surface of each support beam portion into a holding hole having a circular cross section formed in a part of each support beam portion. Item 3. The toroidal continuously variable transmission according to any one of Items 1 and 2. 前記保持孔が、前記各支持梁部の幅方向両側面に開口した貫通孔であり、前記凸部が、この貫通孔に軸方向両端部を突出する状態で圧入固定されているアンカピンである、請求項2を引用した請求項3に記載のトロイダル型無段変速機。   The holding hole is a through hole opened on both side surfaces in the width direction of the support beam portions, and the convex portion is an anchor pin that is press-fitted and fixed in a state in which both end portions in the axial direction protrude into the through hole. A toroidal-type continuously variable transmission according to claim 3 quoting claim 2. 前記各支持梁部の円筒状凸面の幅方向2箇所位置で、これら各円筒状凸面の中心軸に軸方向に関する位置が互いに一致する部分に形成された保持孔を設けており、それぞれの保持孔にアンカピンが、それぞれの端部が前記各円筒状凸面から突出する状態で圧入固定されており、これら各アンカピンと、前記凹溝の内面との間に、前記隙間を設けている、請求項2を引用した請求項3に記載のトロイダル型無段変速機。   At the two positions in the width direction of the cylindrical convex surface of each of the support beam portions, holding holes formed in portions where the positions in the axial direction coincide with each other at the central axis of each cylindrical convex surface are provided. The anchor pins are press-fitted and fixed with their respective end portions protruding from the respective cylindrical convex surfaces, and the gap is provided between each of the anchor pins and the inner surface of the concave groove. The toroidal-type continuously variable transmission according to claim 3, wherein 前記凹溝のうちの少なくとも前記各外輪の幅方向端部を、これら各外輪の幅方向外方に向かう程、この凹溝の幅寸法が大きくなるテーパ形状とした、請求項1〜5のうちの何れか1項に記載のトロイダル型無段変速機。   Among the concave grooves, at least the end portions in the width direction of the outer rings are tapered so that the width dimension of the concave grooves increases toward the outer side in the width direction of the outer rings. The toroidal-type continuously variable transmission of any one of these. 前記凸部の端部を、前記各支持梁部の幅方向端部に向かう程断面積が小さくなるテーパ形状とした、請求項1〜6のうちの何れか1項に記載のトロイダル型無段変速機。   The toroidal-type stepless device according to any one of claims 1 to 6, wherein an end portion of the convex portion has a tapered shape in which a cross-sectional area decreases toward the end portion in the width direction of each support beam portion. transmission. 前記凸部と前記凹溝との間に弾性体を設けている、請求項1〜7のうちの何れか1項に記載のトロイダル型無段変速機。   The toroidal continuously variable transmission according to any one of claims 1 to 7, wherein an elastic body is provided between the convex portion and the concave groove.
JP2011161832A 2011-07-25 2011-07-25 Toroidal continuously variable transmission Expired - Fee Related JP5803378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161832A JP5803378B2 (en) 2011-07-25 2011-07-25 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161832A JP5803378B2 (en) 2011-07-25 2011-07-25 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2013024368A true JP2013024368A (en) 2013-02-04
JP5803378B2 JP5803378B2 (en) 2015-11-04

Family

ID=47782956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161832A Expired - Fee Related JP5803378B2 (en) 2011-07-25 2011-07-25 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5803378B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025821A (en) * 2006-06-02 2008-02-07 Nsk Ltd Toroidal continuously variable transmission
US20110130244A1 (en) * 2009-11-25 2011-06-02 Nsk Ltd. Toroidal continuously variable transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025821A (en) * 2006-06-02 2008-02-07 Nsk Ltd Toroidal continuously variable transmission
US20110130244A1 (en) * 2009-11-25 2011-06-02 Nsk Ltd. Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JP5803378B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP4905012B2 (en) Toroidal continuously variable transmission
WO2012105663A1 (en) Toroidal continuously variable transmission
JP5990921B2 (en) Toroidal continuously variable transmission
JP5007600B2 (en) Toroidal continuously variable transmission
JP5803378B2 (en) Toroidal continuously variable transmission
WO2013115396A1 (en) Toroidal-type continuously variable transmission
JP5742297B2 (en) Toroidal continuously variable transmission
JP5673205B2 (en) Toroidal continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP5939015B2 (en) Toroidal continuously variable transmission
JP4543422B2 (en) Toroidal continuously variable transmission
JP5895463B2 (en) Toroidal continuously variable transmission
JP5834525B2 (en) Toroidal continuously variable transmission
JP5953961B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP5862335B2 (en) Toroidal continuously variable transmission
JP4706920B2 (en) Toroidal continuously variable transmission
JP5830999B2 (en) Toroidal continuously variable transmission
JP6508380B2 (en) Power roller unit for toroidal type continuously variable transmission
JP4415709B2 (en) Toroidal continuously variable transmission
JP6311451B2 (en) Power roller unit for toroidal type continuously variable transmission
JP5696586B2 (en) Toroidal continuously variable transmission
JP2006308037A (en) Toroidal continuously variable transmission
JP2013044412A (en) Toroidal continuously variable transmission
JP4815785B2 (en) Toroidal continuously variable transmission
JP4702602B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees