[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013097028A - Electromagnetic drive device - Google Patents

Electromagnetic drive device Download PDF

Info

Publication number
JP2013097028A
JP2013097028A JP2011236974A JP2011236974A JP2013097028A JP 2013097028 A JP2013097028 A JP 2013097028A JP 2011236974 A JP2011236974 A JP 2011236974A JP 2011236974 A JP2011236974 A JP 2011236974A JP 2013097028 A JP2013097028 A JP 2013097028A
Authority
JP
Japan
Prior art keywords
axis
driving
drive
magnet
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011236974A
Other languages
Japanese (ja)
Inventor
Kokichi Terajima
厚吉 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINHONGZHOU PRECISION Tech CO Ltd
Micro Win Tech Inc
Largan Precision Co Ltd
Original Assignee
XINHONGZHOU PRECISION Tech CO Ltd
Micro Win Tech Inc
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINHONGZHOU PRECISION Tech CO Ltd, Micro Win Tech Inc, Largan Precision Co Ltd filed Critical XINHONGZHOU PRECISION Tech CO Ltd
Priority to JP2011236974A priority Critical patent/JP2013097028A/en
Publication of JP2013097028A publication Critical patent/JP2013097028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic drive device able to move a movable member in the axial direction of the movable member in a simple configuration and able to rotate and move the movable member around an axis perpendicular to the axis direction.SOLUTION: The electromagnetic drive device has electromagnetic drive means comprising: an even number of driving coils 141 to 144 wound around an axis perpendicular to a Z axis and arranged at even angle intervals around the Z axis; and driving magnets 151U to 154U (or 151D to 154D) arranged such that the respective magnetic faces are located opposite a side 14u (or a side 14d) extending in the direction in which the driving coils 141 to 144 are orthogonal to the Z axis and each pair of adjacent driving magnets are different from each other in polarity. Using the electromagnetic drive means, a lens holder 12, which is the movable member, is moved in the Z axis or rotated around the axis perpendicular to the Z axis with respect to a case, which is a fixed member.

Description

本発明は、例えば、撮影用光学機器などに用いられる手振れ抑制装置や手振れ抑制機能付レンズ駆動装置に適用可能な電磁駆動装置に関するものである。   The present invention relates to an electromagnetic drive device that can be applied to, for example, a camera shake suppression device or a lens drive device with a camera shake suppression function used in optical equipment for photographing.

近年、携帯電話等に搭載されるカメラはイメージセンサーの画素数が増大されて撮影画像の高品質化が進んでいる。これに伴って、搭載されるレンズ系についても、従来の固定焦点のレンズ駆動装置から可動焦点のレンズ駆動装置へと移行しつつある。これは、固定焦点のレンズ駆動装置では、焦点ボケが生じて、高画素数イメージセンサーの分解能に対応することができないためである。
可動焦点のレンズ駆動装置におけるレンズ系の駆動方式としては、図14に示すような、ボイスコイルモータ型のレンズ駆動装置が多く用いられている(例えば、特許文献1参照)。
レンズ駆動装置50は、ケース51に、レンズホルダー52の軸線に対して放射方向に着磁された円筒状の磁石から成る駆動用磁石53を配置するとともに、レンズ54の光軸周りに巻き回された駆動用コイル55をレンズホルダー52に装着し、駆動用コイル55に通電することで、同図の矢印で示す駆動用コイル55に被写体方向へ向けたローレンツ力を発生させ、レンズホルダー52を前後の板バネ56A,56Bの復元力と釣り合った位置に移動させることにより、レンズ54を所定の位置に移動させる。なお、図14において、符号57は、駆動用磁石53の発生する磁界を駆動用コイル55に導くために設けられた断面がU字状の磁気ヨークである。
In recent years, a camera mounted on a mobile phone or the like has increased in the number of pixels of an image sensor, and the quality of captured images has been improved. Along with this, the lens system to be mounted is also shifting from the conventional fixed focus lens driving device to the movable focus lens driving device. This is because a fixed-focus lens driving device is out of focus and cannot cope with the resolution of a high pixel count image sensor.
As a lens system driving method in a movable focus lens driving device, a voice coil motor type lens driving device as shown in FIG. 14 is often used (see, for example, Patent Document 1).
The lens driving device 50 includes a driving magnet 53 made of a cylindrical magnet that is magnetized in a radial direction with respect to the axis of the lens holder 52 in a case 51, and is wound around the optical axis of the lens 54. By attaching the driving coil 55 to the lens holder 52 and energizing the driving coil 55, a Lorentz force directed toward the subject is generated in the driving coil 55 indicated by an arrow in FIG. The lens 54 is moved to a predetermined position by moving it to a position balanced with the restoring force of the leaf springs 56A and 56B. In FIG. 14, reference numeral 57 denotes a magnetic yoke having a U-shaped cross section provided to guide the magnetic field generated by the driving magnet 53 to the driving coil 55.

特開2004−280031号公報JP 2004-280031 A

しかしながら、従来のレンズ駆動装置50では、可動部材であるレンズホルダー52をレンズ54の光軸方向に移動させることはできるものの、レンズ光軸と直交する軸周りに回転移動させる必要がある場合には、別途、可動部材であるレンズホルダー52を固定部材であるケース51に対して揺動させる機構を付加する必要があった。   However, in the conventional lens driving device 50, the lens holder 52, which is a movable member, can be moved in the optical axis direction of the lens 54, but it is necessary to rotate the lens holder 52 around an axis perpendicular to the lens optical axis. Separately, it is necessary to add a mechanism for swinging the lens holder 52, which is a movable member, with respect to the case 51, which is a fixed member.

本発明は、従来の問題点に鑑みてなされたもので、簡単な構成で可動部材を当該可動部材の軸線方向に移動させることができるとともに、可動部材を当該可動部材の軸線方向に垂直な軸周りに回転移動させることのできる電磁駆動装置を提供することを目的とする。   The present invention has been made in view of the conventional problems. The movable member can be moved in the axial direction of the movable member with a simple configuration, and the movable member has an axis perpendicular to the axial direction of the movable member. An object of the present invention is to provide an electromagnetic driving device capable of rotating around.

本願の請求項1に記載の発明は、固定部材と、柱状もしくは筒状の可動部材と、前記可動部材を前記固定部材に揺動可能に懸架する懸架手段と、前記可動部材を前記固定部材に対して揺動させる電磁駆動手段とを備えた電磁駆動装置であって、前記可動部材の軸線方向をZ軸方向としたときに、前記電磁駆動手段が、Z軸方向に直交する磁極面を有しZ軸周りに均等な角度で配置される偶数個の駆動用磁石と、前記駆動用磁石に空隙を隔てて対向して配置される駆動用コイルとを備え、前記駆動用磁石のうちの互いに隣接する駆動用磁石の極性が互いに異なっており、前記駆動用コイルと前記駆動用磁石のいずれか一方が前記可動部材に装着され、他方が前記固定部材に装着され、前記駆動用コイルの、Z軸及び前記駆動用磁石の磁極面に垂直な方向に延長する辺の通電方向が当該辺に対応する駆動用磁石の極性に応じて異なっていることを特徴とする。
このような構成を採ることにより、可動部材をZ軸に平行な方向に駆動したり、Z軸に垂直な軸周りに回転駆動することができるので、例えば、構造が簡単な手振れ抑制機能付レンズ駆動装置を得ることができる。また、本発明による電磁駆動装置では、駆動用磁石が駆動用コイルのZ軸と直交する方向に延長する辺に空隙を隔てて向き合うように配置されるので、駆動用コイルに有効に磁界を印加できる。したがって、駆動効率の高い電磁駆動装置を得ることができる。また、本発明の電磁駆動装置は、手振れ抑制装置としてのみ用いることも可能である。
請求項2に記載の発明は、請求項1に記載の電磁駆動装置であって、前記駆動用コイルが、Z軸に垂直な軸周りに巻き回されるZ軸及び前記駆動用磁石の磁極面に垂直な方向に延長する辺を有する偶数個のコイルから成ることを特徴とする。
このように、駆動用コイルをZ軸に垂直な軸周りに巻き回される複数のコイルから構成すれば、駆動用コイルのZ軸と直交する方向に延長する辺と駆動用磁石とを容易に向き合うようにできるので、駆動用コイルを有効に駆動するための磁界を確実に印加できる。
また、請求項3に記載の発明は、請求項1に記載の電磁駆動装置であって、前記駆動用コイルが、Z軸周りに巻き回される少なくとも1対のコイル対を備え、前記コイル対を構成する2つのコイルのZ軸方向の位置が当該コイル対に対向する駆動用磁石の極性に応じて入れ替わることを特徴とする。
駆動用コイルをこのような1対のコイル対から構成することにより、少ないコイル数で駆動用コイルに向き合うZ軸と直交する方向に延長する辺を構築できるので、駆動効率を向上させることができる。
The invention according to claim 1 of the present application includes a fixed member, a columnar or cylindrical movable member, suspension means for swingably suspending the movable member on the fixed member, and the movable member on the fixed member. An electromagnetic drive device that swings relative to the Z-axis direction when the axial direction of the movable member is the Z-axis direction. And an even number of drive magnets arranged at equal angles around the Z-axis, and a drive coil arranged to face the drive magnet with a gap, and each of the drive magnets. Adjacent drive magnets have different polarities, and either one of the drive coil or the drive magnet is attached to the movable member, the other is attached to the fixed member, and Z of the drive coil The shaft and the magnetic pole surface of the drive magnet Energizing direction of the sides extending such a direction, characterized in that differently depending on the polarity of the drive magnet corresponding to the sides.
By adopting such a configuration, the movable member can be driven in a direction parallel to the Z axis, or can be driven to rotate around an axis perpendicular to the Z axis. A drive device can be obtained. Further, in the electromagnetic drive device according to the present invention, the drive magnet is disposed so as to face the side extending in the direction orthogonal to the Z axis of the drive coil with a gap therebetween, so that a magnetic field is effectively applied to the drive coil. it can. Therefore, an electromagnetic drive device with high drive efficiency can be obtained. Moreover, the electromagnetic drive device of the present invention can also be used only as a camera shake suppression device.
The invention according to claim 2 is the electromagnetic drive device according to claim 1, wherein the drive coil is wound around an axis perpendicular to the Z axis and the magnetic pole surface of the drive magnet. It consists of an even number of coils having sides extending in a direction perpendicular to.
Thus, if the drive coil is composed of a plurality of coils wound around an axis perpendicular to the Z axis, the side extending in the direction perpendicular to the Z axis of the drive coil and the drive magnet can be easily formed. Since they can face each other, a magnetic field for effectively driving the drive coil can be applied reliably.
The invention according to claim 3 is the electromagnetic drive device according to claim 1, wherein the drive coil includes at least one coil pair wound around the Z axis, and the coil pair The positions in the Z-axis direction of the two coils constituting the are switched according to the polarity of the driving magnet facing the coil pair.
By constructing the driving coil from such a pair of coils, a side extending in the direction perpendicular to the Z-axis facing the driving coil can be constructed with a small number of coils, so that driving efficiency can be improved. .

請求項4に記載の発明は、請求項1〜請求項3のいずれかに記載の電磁駆動装置であって、前記各コイルのZ軸と直交する方向に延長する辺であって、前記駆動用磁石が向き合っている辺とは異なる辺と向き合うように配置された第2の磁石を更に備え、前記第2の磁石の前記異なる辺に対向する面である磁極面の極性が前記駆動用磁石の極性と異なっていることを特徴とする。
これにより、駆動用コイルの各コイルのZ軸方向前方に位置する辺とZ軸方向後方に位置する辺の両方に駆動力(ローレンツ力)を発生させることができるので、駆動効率が一層向上する。
請求項5に記載の発明は、請求項1〜請求項4のいずれかに記載の電磁駆動装置であって、前記各コイルをそれぞれ独立に通電制御する電流制御手段を備えたことを特徴とする。
このように、駆動用コイルの各コイルをそれぞれ独立に通電制御すれば、可動部材をZ軸に垂直な軸周りに効率よく回転駆動することができる。
請求項6に記載の発明は、請求項1〜請求項5のいずれかに記載の電磁駆動装置であって、前記駆動用磁石、もしくは、前記駆動用磁石と前記第2の磁石の前記駆動用コイル前記駆動用磁石、もしくは、前記駆動用磁石と前記第2の磁石の前記駆動用コイルに対向する面とは反対側の面側に磁気ヨークが配設されていることを特徴とする。
これにより、駆動用コイルに印加される磁束の法線方向密度を増加させることができるので、可動部材を効率よく駆動することができる。
Invention of Claim 4 is an electromagnetic drive device in any one of Claims 1-3, Comprising: It is a side extended in the direction orthogonal to the Z-axis of each said coil, Comprising: A second magnet disposed so as to face a side different from the side facing the magnet, and a polarity of a magnetic pole surface, which is a surface facing the different side of the second magnet, of the driving magnet; It is different from polarity.
As a result, it is possible to generate a driving force (Lorentz force) on both the side located in front of the Z-axis direction and the side located in the rear in the Z-axis direction of each coil of the driving coil, so that the driving efficiency is further improved. .
A fifth aspect of the present invention is the electromagnetic drive device according to any one of the first to fourth aspects, further comprising current control means for controlling energization of each of the coils independently. .
In this way, if each coil of the drive coil is energized and controlled independently, the movable member can be efficiently rotated around an axis perpendicular to the Z axis.
The invention according to claim 6 is the electromagnetic drive device according to any one of claims 1 to 5, wherein the drive magnet or the drive magnet and the second magnet are used for the drive. A magnetic yoke is disposed on the surface of the coil opposite to the surface facing the drive coil of the drive magnet or the drive magnet and the second magnet.
Thereby, since the normal direction density of the magnetic flux applied to the drive coil can be increased, the movable member can be driven efficiently.

なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。   The summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本発明の実施の形態に係る手振れ抑制機能付きレンズ駆動装置の構成を示す縦断面図及び平面図である。It is the longitudinal cross-sectional view and top view which show the structure of the lens drive device with a camera-shake suppression function which concerns on embodiment of this invention. 手振れ抑制機能付きレンズ駆動装置の分解斜視図である。It is a disassembled perspective view of the lens drive device with a camera shake suppression function. 手振れ抑制機能付きレンズ駆動装置の要部斜視図である。It is a principal part perspective view of the lens drive device with a camera shake suppression function. 駆動用磁石の作る磁界の一例を示す図である(直方体磁石)。It is a figure which shows an example of the magnetic field which a drive magnet produces (rectangular magnet). 駆動用コイルの位置と駆動用コイルに作用する磁束の法線方向密度との関係を示す図である(直方体磁石)。It is a figure which shows the relationship between the position of a drive coil, and the normal direction density of the magnetic flux which acts on a drive coil (rectangular magnet). 前側駆動用磁石のみを有する手振れ抑制機能付きレンズ駆動装置の構成を示す斜視図である。It is a perspective view which shows the structure of the lens drive device with a camera-shake suppression function which has only a front side drive magnet. 本発明による手振れ抑制装置の構成を示す図である。It is a figure which shows the structure of the camera-shake suppression apparatus by this invention. 三角柱状磁石から成る駆動用磁石を用いた手振れ抑制機能付きレンズ駆動装置の構成を示す図である。It is a figure which shows the structure of the lens drive device with a camera-shake suppression function using the drive magnet which consists of a triangular prism shaped magnet. 駆動用磁石の作る磁界の一例を示す図である(三角柱磁石)。It is a figure which shows an example of the magnetic field which a drive magnet produces (triangular prism magnet). 駆動用コイルの位置と駆動用コイルに作用する磁束の法線方向密度との関係を示す図である(三角柱磁石)。It is a figure which shows the relationship between the position of a drive coil, and the normal direction density of the magnetic flux which acts on a drive coil (triangular prism magnet). 本発明による手振れ抑制機能付きレンズ駆動装置の駆動部の他の構成を示す斜視図である。It is a perspective view which shows the other structure of the drive part of the lens drive device with a camera-shake suppression function by this invention. 本発明による手振れ抑制機能付きレンズ駆動装置の駆動用コイルの他の構成を示す図である。It is a figure which shows the other structure of the drive coil of the lens drive device with a camera-shake suppression function by this invention. 本発明による手振れ抑制機能付きレンズ駆動装置の駆動用コイルの他の構成を示す図である。It is a figure which shows the other structure of the drive coil of the lens drive device with a camera-shake suppression function by this invention. 従来のレンズ駆動装置の構成を示す斜視図である。It is a perspective view which shows the structure of the conventional lens drive device.

以下、実施の形態を通じて本発明を詳説するが、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また、実施の形態の中で説明される特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described in detail through embodiments, but the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included. It is not necessarily essential for the solution of the invention.

図1〜図3は、本発明の実施の形態を示す図で、図1(a),(b)はそれぞれ電磁駆動装置としての手振れ抑制機能付レンズ駆動装置10の構成を示す縦断面図と平面図、図2は分解斜視図、図3は要部斜視図である。
手振れ抑制機能付レンズ駆動装置10は、固定部材としてのケース11と、可動部材としてのレンズホルダー12と、レンズホルダー12をケース11に揺動可能に懸架する懸架手段としての前側及び後側バネ部材13A,13Bと、レンズホルダー12の外周側に装着された4個の駆動用コイル141〜144と、それぞれの磁極面が前記各駆動用コイル141〜144のZ軸と直交する方向に延長する前側及び後側の辺14u,14dにそれぞれ向き合うように前記各駆動用コイル141〜144と空隙を隔てて配置される駆動用磁石としての前側駆動用磁石151U〜154U及び第2の磁石としての後側駆動用磁石151D〜154Dと、前側及び後側駆動用磁石151U〜154U,151D〜154Dの駆動用コイル141〜144とは反対側に設けられた磁気ヨーク16と、電流制御手段17とを備える。
前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dは、磁気ヨーク16を介して、ケース11の内周側に取付けられる。
FIGS. 1 to 3 are diagrams showing an embodiment of the present invention. FIGS. 1A and 1B are a longitudinal sectional view showing a configuration of a lens driving device 10 with a camera shake suppression function as an electromagnetic driving device, respectively. FIG. 2 is an exploded perspective view, and FIG. 3 is a perspective view of a main part.
The lens driving device 10 with a camera shake suppressing function includes a case 11 as a fixed member, a lens holder 12 as a movable member, and front and rear spring members as suspension means for swinging the lens holder 12 to the case 11 so as to be swingable. 13A, 13B, four driving coils 141 to 144 mounted on the outer peripheral side of the lens holder 12, and a front side in which each magnetic pole surface extends in a direction perpendicular to the Z axis of each of the driving coils 141 to 144 In addition, the front drive magnets 151U to 154U as drive magnets and the rear side as second magnets are arranged to be spaced from the drive coils 141 to 144 so as to face the rear sides 14u and 14d, respectively. Driving magnets 151D to 154D and front and rear driving magnets 151U to 154U, 151D to 154D driving coils 141 to 1 4 to comprise a magnetic yoke 16 provided on the opposite side, a current control unit 17.
The front drive magnets 151 </ b> U to 154 </ b> U and the rear drive magnets 151 </ b> D to 154 </ b> D are attached to the inner peripheral side of the case 11 via the magnetic yoke 16.

レンズホルダー12は、内側に対物レンズや接眼レンズの組み合わせから成るレンズ18を保持する平面視正方形の筒状の部材で、以下、図1(a)の矢印で示す、レンズホルダー12の軸線方向をZ軸、Z軸に直交する2方向をそれぞれX軸及びY軸とする。
また、レンズホルダー12にレンズ18を搭載したときの被写体方向をZ軸前方とする。本例では、レンズホルダー12を、互いに対向する2つの側面121,122がX軸に垂直になるように配置した。すなわち、レンズホルダー12は、X軸前方に位置する側面121と、X軸後方に位置する側面122と、Y軸前方に位置する側面123と、Y軸後方に位置する側面124とを備える。
The lens holder 12 is a cylindrical member having a square shape in plan view that holds a lens 18 formed of a combination of an objective lens and an eyepiece lens on the inner side. Hereinafter, the axial direction of the lens holder 12 indicated by an arrow in FIG. Two directions orthogonal to the Z axis and the Z axis are defined as an X axis and a Y axis, respectively.
Further, the subject direction when the lens 18 is mounted on the lens holder 12 is assumed to be the front of the Z axis. In this example, the lens holder 12 is arranged so that the two side surfaces 121 and 122 facing each other are perpendicular to the X axis. That is, the lens holder 12 includes a side surface 121 positioned in front of the X axis, a side surface 122 positioned in the rear of the X axis, a side surface 123 positioned in front of the Y axis, and a side surface 124 positioned in the rear of the Y axis.

ケース11は、上ケース11Aと下ケース11Bとを備える。
上ケース11Aは、Z軸前方に開口部を有しZ軸後方が開放されている四角筒状の部材で、下ケース11Bは、中心に開口部11hが形成された正方形板状の台座11aと、この台座11aの4隅にZ軸前方に突出するように設けられた支持柱11bと、開口部11hの外縁部からZ軸前方に突出してレンズホルダー12の後端に当接する係止部11cと、後側バネ部材13Bの外枠13aの外縁部の位置を規制する規制部11dとを備える。下ケース11Bは上ケース11AのZ軸後方に配置される。下ケース11Bの4本の支持柱11bの開口部11h側には、それぞれ、磁気ヨーク16を取付けるための取付用段差部11kが形成されている。
The case 11 includes an upper case 11A and a lower case 11B.
The upper case 11A is a square cylindrical member having an opening in the front of the Z-axis and the rear of the Z-axis being open, and the lower case 11B has a square plate-like base 11a having an opening 11h formed in the center. A support column 11b provided at the four corners of the pedestal 11a so as to protrude forward in the Z-axis, and a locking portion 11c that protrudes forward from the outer edge of the opening 11h in the Z-axis and contacts the rear end of the lens holder 12. And a restricting portion 11d for restricting the position of the outer edge portion of the outer frame 13a of the rear spring member 13B. The lower case 11B is disposed behind the upper case 11A in the Z axis. On the opening 11h side of the four support pillars 11b of the lower case 11B, mounting step portions 11k for mounting the magnetic yoke 16 are formed.

前側及び後側バネ部材13A,13Bは、図2に示すように、それぞれ、矩形板状の外枠13a及び内枠13bと、外枠13aと内枠13bとを連結する4本の直線状の腕部13cと、各腕部13cの両端部において、腕部13cと外枠13a、もしくは、腕部13cと内枠13bとを連結する連結片13dとを備える。なお、後側バネ部材13Bの外枠13aは、下ケース11Bに設けられた支持柱11bを避けて取付けるため、外周の4隅に切欠き部13kが設けられている。
前側バネ部材13Aの外枠13aは上ケース11AのZ軸後方の外縁部に固定され、内枠13bはレンズホルダー12のZ軸前方の外縁部に固定される。
一方、後側バネ部材13Bの外枠13aは下ケース11Bの台座11aの開口部11hと支持柱11bと規制部11dとの間に固定され、内枠13bはレンズホルダー12のZ軸後方の外縁部に固定される。
4本の腕部13cがレンズホルダー12をケース11にZ軸方向に可動自在に懸架支持するバネとして機能する。
本例では、下ケース11Bにレンズホルダー12の後端に当接する係止部11cを設けて前側及び後側バネ部材13A,13Bのそれぞれにオフセットを加えることで、レンズホルダー12を常にZ軸後方に付勢するようにしている。
As shown in FIG. 2, the front and rear spring members 13A and 13B are each formed of four linear plates that connect a rectangular plate-like outer frame 13a and inner frame 13b, and the outer frame 13a and the inner frame 13b. The arm part 13c and the connection piece 13d which connects the arm part 13c and the outer frame 13a or the arm part 13c and the inner frame 13b are provided at both ends of each arm part 13c. The outer frame 13a of the rear spring member 13B is provided with cutout portions 13k at the four corners of the outer periphery in order to avoid the support pillar 11b provided on the lower case 11B.
The outer frame 13a of the front spring member 13A is fixed to the outer edge portion of the upper case 11A at the rear of the Z axis, and the inner frame 13b is fixed to the outer edge portion of the lens holder 12 at the front of the Z axis.
On the other hand, the outer frame 13a of the rear spring member 13B is fixed between the opening 11h of the pedestal 11a of the lower case 11B, the support pillar 11b, and the restricting portion 11d, and the inner frame 13b is the outer edge of the lens holder 12 at the rear of the Z axis. Fixed to the part.
The four arm portions 13c function as springs that suspend and support the lens holder 12 movably in the Z-axis direction on the case 11.
In this example, the lower case 11B is provided with a locking portion 11c that comes into contact with the rear end of the lens holder 12, and an offset is applied to each of the front and rear spring members 13A and 13B, so that the lens holder 12 is always rearward on the Z axis. I am trying to be energized.

駆動用コイル141〜144は、被覆導線をX軸周りまたはY軸周りに巻き回して形成される。詳細には、駆動用コイル141〜144は、Z軸と直交する方向に延長しZ軸方向前方に位置する前側の辺14uと、辺14uに平行な方向に延長しZ軸方向後方に位置する後側の辺14dと、Z軸と平行な方向に延長する右側及び左側の辺14r,14lとを備え、それぞれ、レンズホルダー12の側面121〜124に配置される。すなわち、駆動用コイル141〜144は、それぞれZ軸に垂直な軸周りに巻き回され、レンズホルダー12の側面121〜124に、当該レンズホルダー12の中心軸であるZ軸を中心として等間隔(90°間隔)で配置される。   The driving coils 141 to 144 are formed by winding a coated conductor around the X axis or the Y axis. Specifically, the drive coils 141 to 144 extend in a direction orthogonal to the Z axis and are located in front of the Z axis in the front side 14u, and extend in a direction parallel to the side 14u and are positioned rearward in the Z axis direction. A rear side 14d and right and left sides 14r and 14l extending in a direction parallel to the Z-axis are provided, which are arranged on side surfaces 121 to 124 of the lens holder 12, respectively. That is, the driving coils 141 to 144 are wound around an axis perpendicular to the Z axis, respectively, and are equidistantly arranged on the side surfaces 121 to 124 of the lens holder 12 around the Z axis that is the central axis of the lens holder 12 ( 90 ° intervals).

前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dは、それぞれレンズホルダー12側の面15aが磁極面である直方体状の永久磁石で、ケース11の内周面のZ軸前方に前側駆動用磁石151U〜154Uが、Z軸後方に後側駆動用磁石151D〜154Dが、それぞれ、磁気ヨーク16を介して配置される。
前側駆動用磁石151U〜154Uの磁極面は、それぞれ駆動用コイル141〜144の前側の辺14uに空隙を隔てて対向するように配置され、後側駆動用磁石151D〜154Dの磁極面は、それぞれ駆動用コイル141〜144の後側の辺14dに空隙を隔てて対向するように配置される。すなわち、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dは、それぞれ、駆動用コイル141〜144と同様に、レンズホルダー12の中心軸を中心としてZ軸を中心として等間隔(90°間隔)で配置される。
本例では、Z軸周り、及び、Z軸方向に互いに隣接する駆動用磁石の極性を互いに異なる極性になるよう前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dを配置している。
具体的には、前側駆動用磁石151Uの駆動用コイル141側の極性をN極とすると、前側駆動用磁石152Uの駆動用コイル142側の極性はN極で、前側駆動用磁石153Uの駆動用コイル143側の極性と前側駆動用磁石154Uの駆動用コイル144側の極性とがS極となるように前側駆動用磁石151U〜154Uを配置する。一方、後側駆動用磁石151D〜154Dは、後側駆動用磁石151Dの駆動用コイル141側の極性と後側駆動用磁石152Dの駆動用コイル142側の極性がS極で、後側駆動用磁石153Dの駆動用コイル143側の極性と後側駆動用磁石154Dの駆動用コイル144側の極性とがN極となるように配置する。
The front drive magnets 151U to 154U and the rear drive magnets 151D to 154D are rectangular parallelepiped permanent magnets whose surface 15a on the lens holder 12 side is a magnetic pole surface, respectively. Driving magnets 151U to 154U are arranged behind the Z axis, and rear driving magnets 151D to 154D are arranged via the magnetic yoke 16, respectively.
The magnetic pole surfaces of the front driving magnets 151U to 154U are arranged so as to face the front side 14u of the driving coils 141 to 144 with a gap therebetween, and the magnetic pole surfaces of the rear driving magnets 151D to 154D are respectively The drive coils 141 to 144 are arranged so as to face the rear side 14d with a gap therebetween. That is, the front drive magnets 151U to 154U and the rear drive magnets 151D to 154D are equally spaced about the center axis of the lens holder 12 and about the Z axis (90, similarly to the drive coils 141 to 144D, respectively. Are arranged at intervals of °.
In this example, the front drive magnets 151U to 154U and the rear drive magnets 151D to 154D are arranged so that the drive magnets adjacent to each other in the Z axis direction and in the Z axis direction have different polarities. .
Specifically, if the polarity of the front drive magnet 151U on the drive coil 141 side is N pole, the polarity of the front drive magnet 152U on the drive coil 142 side is N pole and the front drive magnet 153U is used for driving. The front drive magnets 151U to 154U are arranged so that the polarity on the coil 143 side and the polarity on the drive coil 144 side of the front drive magnet 154U are S poles. On the other hand, the rear drive magnets 151D to 154D have a polarity on the drive coil 141 side of the rear drive magnet 151D and a polarity on the drive coil 142 side of the rear drive magnet 152D, and are for rear drive. The magnet 153D is arranged so that the polarity on the drive coil 143 side and the polarity on the drive coil 144 side of the rear drive magnet 154D are N poles.

磁気ヨーク16は軟磁性体から成る四角筒状の部材で、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dの駆動用コイル141〜144とは反対側の面に当接するように配置される。
電流制御手段17は、それぞれ、駆動用コイル141〜144に電気的に接続されて、各駆動用コイル141〜144に通電する電流値の大きさを独立に制御する。
The magnetic yoke 16 is a rectangular cylindrical member made of a soft magnetic material, and is in contact with the surface of the front drive magnets 151U to 154U and the rear drive magnets 151D to 154D opposite to the drive coils 141 to 144. Be placed.
The current control means 17 is electrically connected to the drive coils 141 to 144, respectively, and independently controls the magnitude of the current value supplied to each of the drive coils 141 to 144.

次に、駆動用コイル141〜144に印加される磁界について説明する。
図4(a),(b)は、XY平面内に幅a=5mm、長さb=0.5mm、厚さ1mmの4個の直方体状の永久磁石14a〜14dを正方形状に配置したときの永久磁石14a〜14dの作る磁界の一例を示す図で、対向する永久磁石14a,14c及び永久磁石14b,14d間の距離はともに7mmである。
(a)図は永久磁石14a〜14dの極性が全て永久磁石14a〜14dの作る正方形の内側を向くように配置した例、(b)図は本例の手振れ抑制機能付レンズ駆動装置10と同様に、永久磁石14a〜14dを、Z軸周りに隣接する永久磁石の極性が互いに異なる極性になるように配置した例である。
(a)図及び(b)図の一点鎖線で示す正方形ABCDは、永久磁石14a〜14dの内周側の辺に平行な4つの直線で囲まれた正方形の内側(例えば、0.2mm内側)であって、駆動用コイル141〜144が配設される位置を含む正方形である。この正方形ABCDの辺AB上の磁界を比較すると、(a)図では、辺ABに叉交する磁束密度が低いだけでなく、辺ABに直交する磁界成分が小さいのに対し、(b)図では、辺ABに叉交する磁束密度が高く、かつ、磁力線がほぼ辺ABに直交していることが分かる。辺BC,辺CD,辺DAについても同様である。
Next, the magnetic field applied to the driving coils 141 to 144 will be described.
FIGS. 4A and 4B show a case where four rectangular parallelepiped permanent magnets 14a to 14d having a width a = 5 mm, a length b = 0.5 mm, and a thickness 1 mm are arranged in a square shape in the XY plane. FIG. 6 is a diagram showing an example of a magnetic field created by permanent magnets 14a to 14d, and the distance between opposing permanent magnets 14a and 14c and permanent magnets 14b and 14d is 7 mm.
(A) The figure is an example in which the polarities of the permanent magnets 14a to 14d are all arranged so as to face the inner side of the square formed by the permanent magnets 14a to 14d. In addition, the permanent magnets 14a to 14d are arranged such that the polarities of the permanent magnets adjacent to each other around the Z axis are different from each other.
The square ABCD indicated by the alternate long and short dash line in FIGS. (A) and (b) is the inner side of the square surrounded by four straight lines parallel to the inner peripheral side of the permanent magnets 14a to 14d (for example, 0.2 mm inside). And it is a square containing the position in which the drive coils 141-144 are arrange | positioned. Comparing the magnetic field on the side AB of the square ABCD, in FIG. 5A, not only the magnetic flux density crossing the side AB is low, but also the magnetic field component orthogonal to the side AB is small, whereas FIG. Then, it can be seen that the magnetic flux density intersecting with the side AB is high and the lines of magnetic force are almost perpendicular to the side AB. The same applies to the side BC, the side CD, and the side DA.

図5は、正方形ABCDの辺AB及び辺BCに叉交する磁界の大きさを示す図で、横軸は折れ線ABC上の位置[mm]、縦軸は磁束の法線方向密度[T]である。同図の実線が隣接する永久磁石の極性が互いに異なる極性になるように永久磁石14a〜14dを配置したときの磁束の法線方向密度で、破線が永久磁石14a〜14dの極性が全て内側を向くように配置したときの磁束の法線方向密度である。なお、折れ線CDA上における磁界の方向と大きさは折れ線ABC上における磁界の方向と大きさと同じであるので、折れ線CDA上の位置[mm]と磁束の法線方向密度[T]との関係は、図5と同じである。
図4(a),(b)及び図5から明らかなように、永久磁石14a〜14dの極性が全て内側を向くように配置した場合には、磁束の法線方向密度の磁束密度そのものが低いだけでなく、磁束流が反転する領域(反転磁界領域)が広いことが分かる。反転磁界領域が広いと、駆動用コイル141〜144に有効に磁界を印加できない。これに対して、隣接する永久磁石の極性が互いに異なる極性である場合には、磁束の法線方向密度の磁束密度も高く、かつ、反転磁界領域が狭い。
したがって、本例の手振れ抑制機能付レンズ駆動装置10のように、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dを、隣接する永久磁石の極性が互いに異なる極性になるように配置すれば、駆動用コイル141〜144の前側の辺14uと後側の辺14dとに、当該辺14u,14dの延長方向とZ軸とに直交する方向の磁界を有効に印加することができることが確認された。
FIG. 5 is a diagram showing the magnitude of the magnetic field crossing the sides AB and BC of the square ABCD, where the horizontal axis is the position [mm] on the broken line ABC, and the vertical axis is the normal direction density [T] of the magnetic flux. is there. The solid line in the figure shows the density in the normal direction of the magnetic flux when the permanent magnets 14a to 14d are arranged so that the polarities of the adjacent permanent magnets are different from each other, and the broken lines indicate that the polarities of the permanent magnets 14a to 14d are all inside. It is a normal direction density of magnetic flux when arranged so as to face. Since the direction and magnitude of the magnetic field on the polygonal line CDA are the same as the direction and magnitude of the magnetic field on the polygonal line ABC, the relationship between the position [mm] on the polygonal line CDA and the normal direction density [T] of the magnetic flux is This is the same as FIG.
As is clear from FIGS. 4A, 4B, and 5, when the permanent magnets 14a to 14d are arranged so that all the polarities face inward, the magnetic flux density of the normal density of the magnetic flux itself is low. In addition, it can be seen that the region where the magnetic flux flow is reversed (reversal magnetic field region) is wide. When the reversal magnetic field region is wide, a magnetic field cannot be effectively applied to the driving coils 141 to 144. On the other hand, when the polarities of adjacent permanent magnets are different from each other, the magnetic flux density in the normal direction density of the magnetic flux is high and the switching field region is narrow.
Therefore, like the lens driving device 10 with the hand movement suppressing function of this example, the front driving magnets 151U to 154U and the rear driving magnets 151D to 154D are arranged so that the polarities of the adjacent permanent magnets are different from each other. Then, a magnetic field in a direction orthogonal to the extending direction of the sides 14u and 14d and the Z-axis can be effectively applied to the front side 14u and the rear side 14d of the driving coils 141 to 144. confirmed.

次に、手振れ抑制機能付レンズ駆動装置10の動作について説明する。
まず、レンズホルダー12を被写体方向(Z軸方向)に移動させる、いわゆる自動焦点駆動する場合について、図3を参照して説明する。
具体的には、電流制御手段17により、レンズホルダー12の側面121に装着された駆動用コイル141に同図の矢印に示すようなX軸方向反時計回りの電流Iを流すと、駆動用コイル141の前側の辺14uには前側駆動用磁石151Uからの−X軸方向の磁界が作用しているので、前側の辺14uには同図の上向きの矢印で示す+Z方向を向いたローレンツ力Fが発生する。後側の辺14dに流れる電流の方向は前側の辺14uとは逆方向(−Y軸方向)で、かつ、後側の辺14dには後側駆動用磁石151Dからの+X軸方向の磁界が作用しているので、後側の辺14dにも+Z方向を向いたローレンツ力Fが発生する。左右の辺14r,14lに作用する磁界は電流の向きに直交する成分が殆どほとんどないのでローレンツ力は発生しない。
したがって、駆動用コイル141にX軸方向反時計回りの電流Iを流すと、駆動用コイル141には当該駆動用コイル141を+Z方向に移動させようとする力が作用する。
また、側面121とは反対側の側面122に装着された駆動用コイル142に駆動用コイル141とは逆方向の電流(X軸方向時計回りの電流)Iを流すと、図示しない駆動用コイル142の前側の辺14uには前側駆動用磁石152Uからの+X軸方向の磁界が作用し、後側の辺14dには後側駆動用磁石152Dからの−X軸方向の磁界が作用しているので、前側の辺14uと後側の辺14dとにはそれぞれ+Z方向を向いたローレンツ力Fが発生する。なお、駆動用コイル141の場合と同様に、左右の辺14r,14lにはローレンツ力は発生しない。
したがって、電流制御手段17により、駆動用コイル141にX軸方向反時計回りの電流Iを流すとともに、駆動用コイル142に駆動用コイル141に流す電流と同じ大きさの電流IをX軸方向時計回りに流すようにすれば、レンズホルダー12を+Z側に移動させることができる。レンズホルダー12は、前記ローレンツ力とバネ部材13A,13Bの復元力とが釣り合った位置まで移動する。
レンズホルダー12を−Z側に移動させようとする場合には、駆動用コイル141にX軸方向時計回りの電流Iを流し、駆動用コイル142にX軸方向反時計回りの電流Iを流せばよい。なお、この場合も、駆動用コイル141に流す電流の大きさと駆動用コイル142に流す電流の大きさとを同じにすることはいうまでもない。
Next, the operation of the lens driving device with a camera shake suppression function 10 will be described.
First, a case of so-called autofocus driving in which the lens holder 12 is moved in the subject direction (Z-axis direction) will be described with reference to FIG.
Specifically, when the current control means 17 causes a current I counterclockwise in the X-axis direction as shown by an arrow in the drawing to flow through the driving coil 141 mounted on the side surface 121 of the lens holder 12, the driving coil Since a magnetic field in the −X-axis direction from the front drive magnet 151U is acting on the front side 14u of 141, the Lorentz force F directed in the + Z direction indicated by the upward arrow in FIG. Occurs. The direction of the current flowing through the rear side 14d is the direction opposite to the front side 14u (the −Y axis direction), and the magnetic field in the + X axis direction from the rear drive magnet 151D is applied to the rear side 14d. As a result, the Lorentz force F directed in the + Z direction is also generated on the rear side 14d. Since the magnetic field acting on the left and right sides 14r and 14l has almost no component orthogonal to the direction of current, no Lorentz force is generated.
Therefore, when a current I counterclockwise in the X-axis direction is supplied to the driving coil 141, a force for moving the driving coil 141 in the + Z direction acts on the driving coil 141.
Further, when a current (in the clockwise direction of the X axis) I in the direction opposite to that of the driving coil 141 is passed through the driving coil 142 mounted on the side surface 122 opposite to the side surface 121, the driving coil 142 (not shown) is illustrated. A magnetic field in the + X-axis direction from the front drive magnet 152U acts on the front side 14u of the front side, and a magnetic field in the −X-axis direction from the rear drive magnet 152D acts on the rear side 14d. A Lorentz force F directed in the + Z direction is generated on each of the front side 14u and the rear side 14d. As in the case of the drive coil 141, no Lorentz force is generated on the left and right sides 14r, 14l.
Therefore, the current control means 17 causes the driving coil 141 to pass a current I counterclockwise in the X-axis direction, and causes the driving coil 142 to apply a current I having the same magnitude as the current flowing to the driving coil 141 to the X-axis direction clock. If it is made to flow around, the lens holder 12 can be moved to the + Z side. The lens holder 12 moves to a position where the Lorentz force and the restoring force of the spring members 13A and 13B are balanced.
In order to move the lens holder 12 to the −Z side, if a current I that is clockwise in the X-axis direction is supplied to the driving coil 141 and a current I that is counterclockwise in the X-axis direction is supplied to the driving coil 142. Good. In this case as well, it goes without saying that the magnitude of the current flowing through the driving coil 141 and the magnitude of the current flowing through the driving coil 142 are the same.

同様に、レンズホルダー12の側面123に装着された図示しない駆動用コイル143にY軸方向時計回りの電流Iを流すと、駆動用コイル143の前側の辺14uと後側の辺14dとにはそれぞれ+Z方向を向いたローレンツ力Fが発生し、側面123とは反対側の側面124に装着された駆動用コイル144に駆動用コイル143とは逆方向の電流(Y軸方向反時計回りの電流)Iを流すと、駆動用コイル144の前側の辺14uと後側の辺14dとにはそれぞれ+Z方向を向いたローレンツ力Fが発生する。
したがって、電流制御手段17により、駆動用コイル143にY軸方向時計回りの電流Iを流すとともに、駆動用コイル144にY軸方向反時計回りの電流Iを流すようにすれば、レンズホルダー12を+Z側に移動させることができる。なお、レンズホルダー12は、ローレンツ力とバネ部材13A,13Bの復元力とが釣り合った位置まで移動する。
レンズホルダー12を−Z側に移動させようとする場合には、駆動用コイル143にY軸方向反時計回りの電流Iを流し、駆動用コイル144にY軸方向時計回りの電流Iを流すようにすればよい。
したがって、全ての駆動用コイル141〜144のそれぞれに前述した方向でかつ大きさの等しい電流を流せば、レンズホルダー12をZ軸方向に移動させることができる。
Similarly, when a clockwise current I in the Y-axis direction is passed through a driving coil 143 (not shown) mounted on the side surface 123 of the lens holder 12, a front side 14u and a rear side 14d of the driving coil 143 are connected to each other. A Lorentz force F directed in the + Z direction is generated, and the drive coil 144 mounted on the side surface 124 opposite to the side surface 123 has a current in the direction opposite to that of the drive coil 143 (current in the Y-axis direction counterclockwise). ) When I is applied, Lorentz force F directed in the + Z direction is generated on the front side 14u and the rear side 14d of the driving coil 144, respectively.
Accordingly, if the current control means 17 causes the current I to flow in the Y-axis direction clockwise through the driving coil 143 and the current I in the Y-axis direction counterclockwise to flow through the driving coil 144, the lens holder 12 can be removed. It can be moved to the + Z side. The lens holder 12 moves to a position where the Lorentz force and the restoring force of the spring members 13A and 13B are balanced.
When trying to move the lens holder 12 to the −Z side, a current I counterclockwise in the Y-axis direction is supplied to the driving coil 143 and a current I clockwise in the Y-axis direction is supplied to the driving coil 144. You can do it.
Therefore, the lens holder 12 can be moved in the Z-axis direction by supplying the currents having the same magnitude and direction to each of the driving coils 141 to 144.

次に、手振れを抑制する場合について説明する。
まず、レンズ18に手振れが生じたか否かを、例えば、レンズホルダー12に装着された図示しない角速度センサーにて検出する。手振れが生じている場合には、角速度センサーで検出した手振れの大きさと方向とを電流制御手段17に送る。電流制御手段17では、検出された手振れの大きさと方向に応じて、駆動用コイル141〜144に通電する電流量と通電方向とを制御して、レンズホルダー12を揺動させて前記手振れを抑制する。
例えば、レンズ18を保持するレンズホルダー12をY軸周りに右回転させるような手振れが生じた場合には、駆動用コイル141にX軸方向反時計回りの電流I1を流し駆動用コイル142にX軸方向時計回りの電流I2を流すとともに、前記電流I1の大きさを前記電流I2の大きさよりもより大きくすればよい(|I1|>|I2|)。
駆動用コイル141〜144に流す電流の方向と駆動用コイル141〜144に作用するローレンツ力との関係は、前述した自動焦点駆動の場合と同じなので、駆動用コイル141に作用する+Z方向のローレンツ力F1の方が、駆動用コイル142に作用する+Z方向のローレンツ力F2よりも大きい。これにより、レンズホルダー12を+Z側に移動させつつY軸周りに左回転させることができるので、レンズホルダー12をY軸周りに右回転させるような手振れを抑制することができる。
レンズホルダー12を−Z側に移動させつつY軸周りに左回転させるには、駆動用コイル141にX軸方向時計回りの電流I’1を流し、駆動用コイル142に大きさが前記電流I’1の大きさよりもより大きなX軸方向反時計回りの電流I’2を流せばよい。
なお、レンズホルダー12を、Z軸方向に移動させつつY軸周りに左回転させるような手振れが生じた場合には、駆動用コイル141,142に流す電流I1及び電流I2の大きさを逆にすることで、レンズホルダー12をY軸周りに右回転させるようにすればよい。
また、レンズホルダー12をZ軸方向に移動させずにY軸周りに左回転させるには、駆動用コイル141と駆動用コイル142とにX軸方向反時計回りの電流を流し、Y軸周りに右回転させるには、駆動用コイル141と駆動用コイル142とにX軸方向時計回りの電流を流せばよい。
Next, the case where camera shake is suppressed will be described.
First, whether or not camera shake has occurred in the lens 18 is detected by, for example, an angular velocity sensor (not shown) attached to the lens holder 12. When camera shake has occurred, the magnitude and direction of camera shake detected by the angular velocity sensor are sent to the current control means 17. The current control means 17 controls the amount and direction of current supplied to the drive coils 141 to 144 according to the detected magnitude and direction of the camera shake, and swings the lens holder 12 to suppress the camera shake. To do.
For example, when a camera shake that causes the lens holder 12 that holds the lens 18 to rotate clockwise about the Y-axis occurs, a current I 1 that is counterclockwise in the X-axis direction is supplied to the drive coil 141 and the drive coil 142 is supplied. A current I 2 clockwise in the X-axis direction is allowed to flow, and the magnitude of the current I 1 may be made larger than the magnitude of the current I 2 (| I 1 |> | I 2 |).
Since the relationship between the direction of the current flowing through the driving coils 141 to 144 and the Lorentz force acting on the driving coils 141 to 144 is the same as in the above-described autofocus driving, the Lorentz in the + Z direction acting on the driving coil 141. The force F 1 is larger than the + Z direction Lorentz force F 2 acting on the drive coil 142. As a result, the lens holder 12 can be rotated to the left around the Y axis while being moved to the + Z side, so that camera shake that causes the lens holder 12 to rotate to the right around the Y axis can be suppressed.
In order to rotate the lens holder 12 to the -Z side and rotate counterclockwise around the Y axis, a current I ′ 1 clockwise in the X-axis direction is passed through the drive coil 141, and the magnitude of the current I is increased in the drive coil 142. It suffices to pass a current I ′ 2 that is counterclockwise in the X-axis direction and is larger than the magnitude of “ 1” .
In addition, when a camera shake that causes the lens holder 12 to rotate leftward around the Y axis while moving in the Z axis direction, the magnitudes of the currents I 1 and I 2 that flow through the driving coils 141 and 142 are set. By reversing, the lens holder 12 may be rotated to the right around the Y axis.
In addition, in order to rotate the lens holder 12 counterclockwise around the Y axis without moving in the Z axis direction, a current counterclockwise in the X axis direction is passed through the driving coil 141 and the driving coil 142 to move around the Y axis. In order to rotate clockwise, a current clockwise in the X-axis direction is passed through the drive coil 141 and the drive coil 142.

また、レンズホルダー12をX軸周りに右回転させるような手振れが生じた場合には、駆動用コイル143にY軸方向時計回りの電流I3を流し駆動用コイル144にY軸方向反時計回りの電流I4を流すとともに、前記電流I3の大きさを前記電流I4の大きさよりもより小さくすればよい(|I3|<|I4|)。これにより、レンズホルダー12を+Z側に移動しつつX軸周りに左回転させることができるので、レンズホルダー12をX軸周りに右回転させるような手振れを抑制することができる。
また、レンズホルダー12を−Z側に移動させつつX軸周りに左回転させるには、駆動用コイル143にY軸方向反時計回りの電流I’3を流し、駆動用コイル144に大きさが前記電流I’3の大きさよりもより小さなY軸方向時計回りの電流I’4を流せばよい。
なお、レンズホルダー12を、Z軸方向に移動させつつX軸周りに左回転させるような手振れが生じた場合には、駆動用コイル143,144に流す電流I3及び電流I4の大きさを逆にすればよい。
また、レンズホルダー12をZ軸方向に移動させずにX軸周りに左回転させるには、駆動用コイル143と駆動用コイル144とにY軸方向反時計回りの電流を流し、X軸周りに右回転させるには、駆動用コイル143と駆動用コイル144とにY軸方向時計回りの電流を流せばよい。
また、前記X軸周りの回転とY軸周りの回転とを合成すれば、レンズホルダー12を、Z軸方向に駆動しつつ、もしくは、Z軸方向に移動させずにZ軸と垂直な任意の軸周りに回転させることができるので、レンズ18に生じたZ軸と垂直な任意の軸周りの手振れを抑制することができる。
Further, when a camera shake that causes the lens holder 12 to rotate clockwise around the X axis occurs, a current I 3 that is clockwise in the Y-axis direction is passed through the drive coil 143 and the Y-axis direction is counterclockwise through the drive coil 144. Current I 4 and the magnitude of the current I 3 may be made smaller than the magnitude of the current I 4 (| I 3 | <| I 4 |). As a result, the lens holder 12 can be rotated counterclockwise around the X axis while moving to the + Z side, so that camera shake that causes the lens holder 12 to rotate clockwise around the X axis can be suppressed.
In addition, in order to rotate the lens holder 12 counterclockwise around the X axis while moving to the −Z side, a current I ′ 3 counterclockwise in the Y-axis direction is supplied to the driving coil 143, and the driving coil 144 has a magnitude. A current I ′ 4 clockwise in the Y-axis direction that is smaller than the magnitude of the current I ′ 3 may be supplied.
In addition, when a camera shake that causes the lens holder 12 to rotate leftward around the X axis while moving in the Z-axis direction, the magnitudes of the currents I 3 and I 4 that flow through the driving coils 143 and 144 are set. Just reverse.
In addition, in order to rotate the lens holder 12 counterclockwise around the X axis without moving in the Z axis direction, a current counterclockwise in the Y axis direction is passed through the driving coil 143 and the driving coil 144 to rotate around the X axis. In order to rotate clockwise, a current clockwise in the Y-axis direction is passed through the driving coil 143 and the driving coil 144.
Further, if the rotation around the X axis and the rotation around the Y axis are combined, the lens holder 12 is driven in the Z axis direction or is not moved in the Z axis direction, but is arbitrary to the Z axis. Since it can be rotated around the axis, camera shake around an arbitrary axis perpendicular to the Z axis generated in the lens 18 can be suppressed.

なお、前記実施の形態では、Z軸方向前方とZ軸方向後方とにそれぞれ前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dを配置したが、図6に示すように、前側駆動用磁石151U〜154Uのみを配置するか、もしくは、後側駆動用磁石151D〜154Dのみを配置してもよい。この場合、前記実施の形態に比較して駆動力は小さくなるが、部品点数を少なくできるという利点がある。
なお、前側駆動用磁石151U〜154Uのみを配置する場合には、前側駆動用磁石151U〜154Uのそれぞれを駆動用コイル141〜144の前側の辺14uに対向させるように配置し、後側駆動用磁石151D〜154Dのみを配置する場合には、後側駆動用磁石151D〜154Dのそれぞれを駆動用コイル141〜144の後側の辺14dに対向させるように配置することが肝要で、前側駆動用磁石151U〜154Uもしくは前側駆動用磁石151U〜154Uを、辺14uと辺14dの中間に配置した場合には、辺14uや辺14dに印加される駆動用コイル141〜144の面に垂直な磁界成分が大幅に低下するので、本実施の形態のように、レンズホルダー12を移動もしくは回転させることは困難である。
In the above-described embodiment, the front drive magnets 151U to 154U and the rear drive magnets 151D to 154D are arranged on the front side in the Z axis direction and the rear side in the Z axis direction, respectively. However, as shown in FIG. Only the use magnets 151U to 154U may be arranged, or only the rear drive magnets 151D to 154D may be arranged. In this case, the driving force is smaller than in the above embodiment, but there is an advantage that the number of parts can be reduced.
When only the front drive magnets 151U to 154U are disposed, the front drive magnets 151U to 154U are disposed so as to face the front side 14u of the drive coils 141 to 144, respectively, for rear drive. When only the magnets 151D to 154D are arranged, it is important to arrange the rear driving magnets 151D to 154D so as to face the rear sides 14d of the driving coils 141 to 144, respectively. When the magnets 151U to 154U or the front drive magnets 151U to 154U are arranged between the side 14u and the side 14d, the magnetic field component perpendicular to the surfaces of the driving coils 141 to 144 applied to the side 14u and the side 14d Therefore, it is difficult to move or rotate the lens holder 12 as in the present embodiment.

また、前記例では、電磁駆動装置を手振れ抑制機能付レンズ駆動装置10としたが、図7(a),(b)に示すように、可動体であるレンズホルダー12を回転機能を有しないレンズ駆動装置20に置き換えるとともに、固定部材としてのケース11をレンズ駆動装置を保持する固定体31に置き換えれば、レンズ駆動装置20の手振れを抑制する手振れ抑制装置40を構成することができる。
すなわち、レンズ駆動装置20を固定体31に前側及び後側バネ部材13A,13Bにより揺動自在に懸架するとともに、レンズ駆動装置20の外周側に駆動用コイル141〜144を装着し、固定体31の内周側に、それぞれの磁極面が前記各駆動用コイル141〜144のZ軸と直交する方向に延長する前側及び後側の辺14u,14dにそれぞれ向き合うように前記各駆動用コイル141〜144と空隙を隔てて前側駆動用磁石151U〜154Uと後側駆動用磁石151D〜154Dとを配置すればよい。なお、この場合には、前側及び後側バネ部材13A,13Bにはオフセットを付ける必要がないので、下ケース11Bの係止部11cを省略したものと同構成の下部固定体31Bを用いる。また、上部固定体31Aとしては前側バネ部材13Aの外枠13aを固定可能な筒状の部材を用いればよい。あるいは、上部固定体31Aを省略して下部固定体31Bの図示しない支持柱のZ軸前側の端部に取付けてもよい。
手振れを抑制する際には、例えば、レンズ駆動装置20に取付けられた図示しない角速度センサーで検出した手振れの大きさと方向とに応じて駆動用コイル141〜144に通電する電流量と通電方向とを制御して、レンズ駆動装置20をZ軸と垂直な任意の軸周りに検出された手振れとは逆方向に回転させるようにすればよい。
なお、手振れの抑制方法については、前述した手振れ抑制機能付レンズ駆動装置10における手振れ抑制の場合と同様であるので説明を省略する。
In the above example, the electromagnetic driving device is the lens driving device 10 with a camera shake suppression function. However, as shown in FIGS. 7A and 7B, the lens holder 12 which is a movable body is not a lens having a rotation function. If the case 11 as a fixing member is replaced with the fixed body 31 that holds the lens driving device, the camera shake suppressing device 40 that suppresses the camera shake of the lens driving device 20 can be configured.
That is, the lens driving device 20 is suspended swingably on the fixed body 31 by the front and rear spring members 13A and 13B, and the driving coils 141 to 144 are mounted on the outer peripheral side of the lens driving device 20, and the fixed body 31 is mounted. Each of the driving coils 141 to 141 has a magnetic pole face facing the front and rear sides 14 u and 14 d extending in a direction perpendicular to the Z axis of the driving coils 141 to 144. The front drive magnets 151U to 154U and the rear drive magnets 151D to 154D may be disposed with a gap from the 144. In this case, since there is no need to offset the front and rear spring members 13A and 13B, the lower fixed body 31B having the same configuration as that obtained by omitting the locking portion 11c of the lower case 11B is used. Further, as the upper fixed body 31A, a cylindrical member that can fix the outer frame 13a of the front spring member 13A may be used. Or you may abbreviate | omit upper fixing body 31A and attach to the edge part of the Z-axis front side of the support pillar which the lower fixing body 31B does not illustrate.
When suppressing camera shake, for example, the amount of current supplied to the drive coils 141 to 144 and the direction of application according to the magnitude and direction of camera shake detected by an angular velocity sensor (not shown) attached to the lens driving device 20 are determined. The lens driving device 20 may be controlled to rotate in the direction opposite to the camera shake detected around an arbitrary axis perpendicular to the Z axis.
The method for suppressing camera shake is the same as that in the case of the camera shake suppression in the lens driving device 10 with the camera shake suppression function described above, and a description thereof will be omitted.

また、前記例では、駆動用コイル141〜144を可動部材であるレンズホルダー12側に装着し、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dを固定部材であるケース11側に取付けたが、駆動用コイル141〜144をケース11側に装着し、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dをレンズホルダー12側に取付けても、同様の効果を得ることができる。
また、前記例では、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154DをZ軸の周りに4個配置したが、駆動用磁石の数はこれに限るものではなく、2個、6個、あるいは、8個など偶数個であればよい。但し、2個の場合には、自動焦点駆動については問題ないが、回転は1つの軸周りしかできないので、駆動用磁石の数としては4個以上の偶数個とすることが好ましい。また、駆動用磁石をZ軸方向の前方と後方とに配置する場合には、Z軸方向前方に配置する駆動用磁石の数とZ軸方向前後方に配置する駆動用磁石の数とを同じにすることが制御上好ましい。
In the above example, the drive coils 141 to 144 are mounted on the lens holder 12 side which is a movable member, and the front drive magnets 151U to 154U and the rear drive magnets 151D to 154D are placed on the case 11 side which is a fixed member. The same effect can be obtained by attaching the driving coils 141 to 144 to the case 11 side and attaching the front driving magnets 151U to 154U and the rear driving magnets 151D to 154D to the lens holder 12 side. Can do.
In the above example, four front drive magnets 151U to 154U and rear drive magnets 151D to 154D are arranged around the Z axis. However, the number of drive magnets is not limited to this, It may be an even number such as six or eight. However, in the case of two, there is no problem with auto-focus driving, but since rotation is possible only around one axis, the number of driving magnets is preferably an even number of four or more. Further, when the driving magnets are arranged in the front and rear in the Z-axis direction, the number of driving magnets arranged in the front in the Z-axis direction is the same as the number of driving magnets arranged in the front and rear in the Z-axis direction. It is preferable for control.

また、前記例では、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dの形状を直方体状としたが、図8に示すように、三角柱状にするとともに、レンズホルダー12の形状を八角柱状とすれば、手振れ抑制機能付レンズ駆動装置10を小型化することができる。なお、駆動用コイル141〜144の前側の辺14uの大部分と後側の辺14dの大部分とは、八角柱状のレンズホルダー12の側面のうち、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dに対向する側面に配置する必要があることはいうまでもない。   In the above example, the front drive magnets 151U to 154U and the rear drive magnets 151D to 154D have a rectangular parallelepiped shape. However, as shown in FIG. 8, the shape of the lens holder 12 is changed to a triangular prism shape. If the shape is an octagonal prism, the lens driving device 10 with a camera shake suppression function can be reduced in size. It should be noted that most of the front side 14u and most of the rear side 14d of the drive coils 141 to 144 are the front drive magnets 151U to 154U and the rear drive among the side surfaces of the octagonal columnar lens holder 12. Needless to say, the magnets 151D to 154D need to be disposed on the side surface facing the magnets 151D to 154D.

図9(a),(b)は、XY平面の8mm×8mmの枠内に、縦2.5mm、横2.5mm、厚さ1mmの4個の三角柱状の永久磁石14p〜14sを配置したときの永久磁石14p〜14sの作る磁界の一例を示す図である。
(a)図は永久磁石14p〜14sの極性が全て枠の内側を向くように配置した例、(b)図は永久磁石14p〜14sを、Z軸周りに隣接する永久磁石の極性が互いに異なる極性になるように配置した例である。
(a)図及び(b)図の一点鎖線で示す折れ線DEFGHIは、永久磁石14p〜14sの斜面の内側(例えば、0.2mm内側)の駆動用コイル141,143が配設される位置に位置する線分EF及び線分GHを含む折れ線で、始点Dは永久磁石14sと永久磁石14pの中点、終点Iは永久磁石14qと永久磁石14rの中点である。線分EF及び線分GH上の磁界を比較すると、(a)図では線分EF及び線分GHに直交する磁界成分が小さいのに対し、(b)図では磁力線がほぼ線分EF及び線分GHに直交していることが分かる。
9A and 9B, four triangular prism-shaped permanent magnets 14p to 14s having a length of 2.5 mm, a width of 2.5 mm, and a thickness of 1 mm are arranged in a frame of 8 mm × 8 mm on the XY plane. It is a figure which shows an example of the magnetic field which the permanent magnets 14p-14s make.
(A) The figure shows an example in which the polarities of the permanent magnets 14p to 14s are all oriented toward the inside of the frame. (B) The figure shows the permanent magnets 14p to 14s, and the polarities of the permanent magnets adjacent around the Z axis are different from each other. This is an example in which the polarities are arranged.
A polygonal line DEFGHI shown by a one-dot chain line in FIGS. 5A and 5B is located at a position where the drive coils 141 and 143 are disposed inside (for example, 0.2 mm inside) the inclined surfaces of the permanent magnets 14p to 14s. A broken line including the line segment EF and the line segment GH, the start point D is the midpoint of the permanent magnet 14s and the permanent magnet 14p, and the end point I is the midpoint of the permanent magnet 14q and the permanent magnet 14r. Comparing the magnetic field on the line segment EF and the line segment GH, the magnetic field component orthogonal to the line segment EF and the line segment GH is small in FIG. It can be seen that it is orthogonal to the minute GH.

図10は、折れ線DEFGHIに叉交する磁界の大きさを示す図で、横軸は折れ線DEFGHIの位置[mm]、縦軸は磁束の法線方向密度の磁束密度[T]である。同図の実線が隣接する永久磁石の極性が互いに異なる極性になるように永久磁石14p〜14sを配置したときの磁束密度で、破線が永久磁石14p〜14sの極性が全て内側を向くように配置したときの磁束密度である。
図9(a),(b)及び図10から明らかなように、永久磁石14p〜14sの極性が全て内側を向くように配置した場合には、磁束の法線方向密度の磁束密度そのものが低いだけでなく、磁束流が反転する領域(反転磁界領域)が広いが、隣接する永久磁石の極性が互いに異なる極性である場合には、磁束の法線方向密度の磁束密度が高く、かつ、反転磁界領域は狭いことが分かる。
したがって、三角柱状の永久磁石14p〜14sを用いた場合も、線分EF及び線分GHに駆動用コイル141,143を配置すれば、駆動用コイル141,143の前側の辺14uと後側の辺14dとに、当該辺14u,14dの延長方向とZ軸とに直交する磁界を有効に印加することができることが確認された。
また、三角柱状の永久磁石14p〜14sの作る磁界は図9(a),(b)の上半分と下半分とで同じなので、駆動用コイル142,144の前側の辺14uと後側の辺14dとにも、当該辺14u,14dの延長方向とZ軸とに直交する磁界を有効に印加することができることはいうまでもない。
FIG. 10 is a diagram showing the magnitude of the magnetic field crossing the polygonal line DEFGHI. The horizontal axis represents the position [mm] of the polygonal line DEFGHI, and the vertical axis represents the magnetic flux density [T] of the normal direction density of the magnetic flux. The solid line in the figure is the magnetic flux density when the permanent magnets 14p to 14s are arranged so that the adjacent permanent magnets have different polarities, and the broken lines are arranged so that the polarities of the permanent magnets 14p to 14s all face inward. Is the magnetic flux density.
As is clear from FIGS. 9A, 9B, and 10, when the permanent magnets 14p to 14s are arranged so that all the polarities face inward, the magnetic flux density of the normal density of the magnetic flux itself is low. In addition, the area where the magnetic flux flow is reversed (reversal magnetic field area) is wide, but when the adjacent permanent magnets have different polarities, the magnetic flux density in the normal direction of the magnetic flux is high and the magnetic flux is reversed. It can be seen that the magnetic field region is narrow.
Therefore, even when the triangular prism-shaped permanent magnets 14p to 14s are used, if the driving coils 141 and 143 are arranged on the line segment EF and the line segment GH, the front side 14u and the rear side of the driving coils 141 and 143 are arranged. It was confirmed that a magnetic field perpendicular to the extending direction of the sides 14u and 14d and the Z axis can be effectively applied to the side 14d.
Further, since the magnetic fields generated by the triangular prism-shaped permanent magnets 14p to 14s are the same in the upper half and the lower half of FIGS. 9A and 9B, the front side 14u and the rear side of the drive coils 142 and 144 are the same. Needless to say, a magnetic field perpendicular to the extending direction of the sides 14u and 14d and the Z-axis can be effectively applied to 14d.

また、前記例では、レンズホルダー12の形状を平面視正方形の筒状の部材としたが、これに限るものではなく、図11に示すように八角柱状としてもよい。この場合も、図8の場合と同様に、駆動用コイル141〜144の前側の辺14uの大部分と後側の辺14dの大部分とは、八角柱状のレンズホルダー12の側面のうち、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dに対向する側面に配置する。
あるいは、図12に示すように、レンズホルダー12の形状を円筒状にしてもよい。この場合には、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dをそれぞれ円弧柱状の永久磁石とすることが好ましい。
In the above example, the shape of the lens holder 12 is a cylindrical member having a square shape in plan view. However, the shape is not limited to this, and may be an octagonal prism shape as shown in FIG. Also in this case, as in the case of FIG. 8, most of the front side 14 u and most of the rear side 14 d of the driving coils 141 to 144 are the front side of the side surface of the octagonal columnar lens holder 12. The drive magnets 151U to 154U and the rear drive magnets 151D to 154D are disposed on the side surfaces facing each other.
Alternatively, as shown in FIG. 12, the shape of the lens holder 12 may be cylindrical. In this case, it is preferable that the front drive magnets 151U to 154U and the rear drive magnets 151D to 154D are arc columnar permanent magnets, respectively.

また、前記例では、前側及び後側のバネ部材13A,13Bを用いてレンズホルダー12をケース11に懸架支持したが、レンズホルダー12に、レンズホルダー12の軸方向に延長してレンズホルダー12を貫通するガイド孔を設けるとともに、ケース11の台座11aに前記ガイド孔を貫通するガイドピンを立設して、レンズホルダー12をガイドピンに沿ってZ軸方向に移動させるなど、他の支持手段を用いてレンズホルダー12をケース11に移動可能に支持してもよい。   In the above example, the lens holder 12 is suspended and supported by the case 11 using the front and rear spring members 13A and 13B. However, the lens holder 12 is extended to the lens holder 12 in the axial direction of the lens holder 12. Other support means such as providing a guide hole penetrating, standing a guide pin penetrating the guide hole in the base 11a of the case 11, and moving the lens holder 12 along the guide pin in the Z-axis direction, etc. The lens holder 12 may be supported by the case 11 so as to be movable.

また、前記例では、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dの駆動用コイル14とは反対側の面に磁気ヨーク16を設けたが、磁気ヨーク16を駆動用コイル141〜144の内周側に配置してもよい。あるいは、磁気ヨーク16を、前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dの駆動用コイル14とは反対側の面と駆動用コイル141〜144の内周側の両方に設けてもよい。なお、磁気ヨーク16は本発明の必須の要素ではないのでこれを省略してもよいが、磁気ヨーク16を設けることで、駆動用コイル141〜144に作用する前側駆動用磁石151U〜154U及び後側駆動用磁石151D〜154Dからの磁束の法線方向密度が増加するので、本例のように、磁気ヨーク16を設けることが好ましい。   In the above example, the magnetic yoke 16 is provided on the surface opposite to the driving coil 14 of the front driving magnets 151U to 154U and the rear driving magnets 151D to 154D, but the magnetic yoke 16 is used as the driving coil 141. ˜144 may be arranged on the inner peripheral side. Alternatively, the magnetic yoke 16 is provided on both the surface of the front drive magnets 151U to 154U and the rear drive magnets 151D to 154D opposite to the drive coil 14 and the inner peripheral side of the drive coils 141 to 144. Also good. The magnetic yoke 16 is not an essential element of the present invention and may be omitted. However, by providing the magnetic yoke 16, the front drive magnets 151U to 154U that act on the drive coils 141 to 144 and the rear are provided. Since the normal direction density of the magnetic flux from the side drive magnets 151D to 154D increases, it is preferable to provide the magnetic yoke 16 as in this example.

また、前記例では、被覆導線をX軸周りまたはY軸周りに巻き回して形成し駆動用コイル141〜144を用いたが、図13(a)に示すような、Z軸周りに巻き回した2本の駆動用コイル146,147を用いてもよい。この場合には、図13(b)の展開図に示すように、駆動用コイル146と駆動用コイル147とを、90°毎にZ軸方向の位置が前方側と後方側とが入れ替わるように巻き回すとともに、前側駆動用磁石151U〜154Uを駆動用コイル146,147の辺のうちのZ軸前方に位置する辺に対向するように配置し、後側駆動用磁石151D〜154Dを駆動用コイル146,147の辺のうちのZ軸後方に位置する辺に対向するように配置する。そして、駆動用コイル146,147の通電方向を逆にすれば、駆動用コイル146,147の各辺には全てZ軸前方に向いたローレンツ力、もしくは、全てZ軸後方に向いたローレンツ力が作用するので、レンズホルダー12をZ軸に沿って移動させることができる。   In the above example, the coated conductor is formed by winding around the X axis or the Y axis and using the driving coils 141 to 144. However, as shown in FIG. Two drive coils 146 and 147 may be used. In this case, as shown in the development view of FIG. 13B, the driving coil 146 and the driving coil 147 are switched so that the position in the Z-axis direction is switched between the front side and the rear side every 90 °. The front drive magnets 151U to 154U are arranged so as to face the side located in front of the Z axis among the sides of the drive coils 146 and 147, and the rear drive magnets 151D to 154D are arranged as drive coils. It arrange | positions so that the edge | side located behind Z-axis among the edges of 146,147 may be opposed. If the energizing directions of the drive coils 146 and 147 are reversed, the Lorentz force directed to the front of the Z axis or the Lorentz force directed to the rear of the Z axis is all applied to each side of the drive coils 146 and 147. As a result, the lens holder 12 can be moved along the Z-axis.

なお、前記実施の形態でも、駆動用コイル141の前側の辺14uは駆動用磁石151Uの磁極面であるN極に対向し、後側の辺14dは駆動用磁石151Dの磁極面であるS極に対向しているが、Z軸周りに隣接する駆動用コイル143の前側の辺14uは駆動用磁石153Uの磁極面であるS極に対向し、後側の辺14dは駆動用磁石153Dの磁極面であるN極に対向している。そして、図3に示すように、駆動用コイル141の前側の辺14uの通電方向がZ軸方向時計回りで後側の辺14dの通電方向がZ軸方向反時計回りであるに対し、駆動用コイル143の前側の辺14uの通電方向がZ軸方向反時計回りで後側の辺14dの通電方向がZ軸方向時計回りである。Z軸周りに隣接する駆動用コイル143と駆動用コイル142、駆動用コイル142と駆動用コイル144、及び、駆動用コイル144と駆動用コイル141についても同様である。
したがって、前記実施の形態においても、図13(a),(b)と同様に、駆動用コイルの辺のうち、Z軸及び駆動用磁石の磁極面に垂直な方向に延長する辺の通電方向が当該辺に対応する駆動用磁石の極性に応じて異なっており、同じ通電方向の辺がZ軸方向の位置が90°毎に前方側と後方側とで入れ替わっている。
In the above-described embodiment, the front side 14u of the driving coil 141 faces the N pole that is the magnetic pole surface of the driving magnet 151U, and the rear side 14d is the S pole that is the magnetic pole surface of the driving magnet 151D. Although the front side 14u of the driving coil 143 adjacent to the Z axis is opposed to the S pole which is the magnetic pole surface of the driving magnet 153U, the rear side 14d is the magnetic pole of the driving magnet 153D. It faces the N pole, which is the surface. As shown in FIG. 3, the energizing direction of the front side 14u of the driving coil 141 is clockwise in the Z-axis direction and the energizing direction of the rear side 14d is counterclockwise in the Z-axis direction. The energization direction of the front side 14u of the coil 143 is counterclockwise in the Z-axis direction, and the energization direction of the rear side 14d is clockwise in the Z-axis direction. The same applies to the driving coil 143 and the driving coil 142 adjacent to the Z axis, the driving coil 142 and the driving coil 144, and the driving coil 144 and the driving coil 141.
Therefore, also in the above-described embodiment, as in FIGS. 13A and 13B, the energization direction of the sides extending in the direction perpendicular to the Z axis and the magnetic pole surface of the driving magnet among the sides of the driving coil. However, the sides in the same energizing direction are switched between the front side and the rear side every 90 ° in the Z-axis direction.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the embodiment. It is apparent from the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

10 手振れ抑制機能付レンズ駆動装置、11 ケース、11A 上ケース、
11B 下ケース、12 レンズホルダー、121〜124 レンズホルダーの側面、
13A,13B バネ部材、141〜144 駆動用コイル、
151U〜154U 前側駆動用磁石、151D〜154D 後側駆動用磁石、
16 磁気ヨーク、17 電流制御手段、18 レンズ。
10 Lens drive device with camera shake suppression function, 11 case, 11A upper case,
11B Lower case, 12 Lens holder, 121-124 Side surface of lens holder,
13A, 13B Spring member, 141-144 Driving coil,
151U to 154U Front drive magnet, 151D to 154D Rear drive magnet,
16 Magnetic yoke, 17 Current control means, 18 Lens.

Claims (6)

固定部材と、柱状もしくは筒状の可動部材と、前記可動部材を前記固定部材に揺動可能に懸架する懸架手段と、前記可動部材を前記固定部材に対して揺動させる電磁駆動手段とを備えた電磁駆動装置であって、
前記可動部材の軸線方向をZ軸方向としたときに、
前記電磁駆動手段が、Z軸方向に直交する磁極面を有しZ軸周りに均等な角度で配置される偶数個の駆動用磁石と、前記駆動用磁石に空隙を隔てて対向して配置される駆動用コイルとを備え、
前記駆動用磁石のうちの互いに隣接する駆動用磁石の極性が互いに異なっており、
前記駆動用コイルと前記駆動用磁石のいずれか一方が前記可動部材に装着され、他方が前記固定部材に装着され、
前記駆動用コイルの、Z軸及び前記駆動用磁石の磁極面に垂直な方向に延長する辺の通電方向が当該辺に対応する駆動用磁石の極性に応じて異なっていることを特徴とする電磁駆動装置。
A fixed member; a columnar or cylindrical movable member; suspension means for suspending the movable member on the fixed member in a swingable manner; and electromagnetic drive means for swinging the movable member with respect to the fixed member. An electromagnetic drive device,
When the axial direction of the movable member is the Z-axis direction,
The electromagnetic driving means is arranged to have an even number of driving magnets having a magnetic pole surface perpendicular to the Z-axis direction and arranged at equal angles around the Z-axis, and to face the driving magnet with a gap. And a drive coil
The drive magnets adjacent to each other among the drive magnets have different polarities,
Either one of the driving coil and the driving magnet is attached to the movable member, and the other is attached to the fixed member,
The electromagnetic current characterized in that the energizing direction of the side extending in the direction perpendicular to the Z axis and the magnetic pole surface of the driving magnet of the driving coil differs depending on the polarity of the driving magnet corresponding to the side. Drive device.
前記駆動用コイルが、Z軸に垂直な軸周りに巻き回されるZ軸及び前記駆動用磁石の磁極面に垂直な方向に延長する辺を有する偶数個のコイルから成ることを特徴とする請求項1に記載の電磁駆動装置。   The drive coil comprises an even number of coils having a Z axis wound around an axis perpendicular to the Z axis and sides extending in a direction perpendicular to the magnetic pole surface of the drive magnet. Item 2. The electromagnetic drive device according to Item 1. 前記駆動用コイルが、Z軸周りに巻き回される少なくとも1対のコイル対を備え、前記コイル対を構成する2つのコイルのZ軸方向の位置が当該コイル対に対向する駆動用磁石の極性に応じて入れ替わることを特徴とする請求項1に記載の電磁駆動装置。   The driving coil includes at least one coil pair wound around the Z axis, and the positions of the two coils constituting the coil pair in the Z axis direction are opposite to the polarity of the driving magnet. The electromagnetic drive device according to claim 1, wherein the electromagnetic drive device is switched in accordance with. 前記各コイルのZ軸と直交する方向に延長する辺であって、前記駆動用磁石が向き合っている辺とは異なる辺と向き合うように配置された第2の磁石を更に備え、前記第2の磁石の前記異なる辺に対向する面である磁極面の極性が前記駆動用磁石の極性と異なっていることを特徴とする請求項1〜請求項3のいずれかに記載の電磁駆動装置。   A second magnet arranged to face a side that extends in a direction perpendicular to the Z-axis of each of the coils and is different from a side that faces the drive magnet; 4. The electromagnetic driving device according to claim 1, wherein a polarity of a magnetic pole surface that is a surface facing the different side of the magnet is different from a polarity of the driving magnet. 5. 前記各コイルをそれぞれ独立に通電制御する電流制御手段を備えたことを特徴とする請求項1〜請求項4のいずれかに記載の電磁駆動装置。   The electromagnetic drive device according to any one of claims 1 to 4, further comprising a current control unit that controls energization of each of the coils independently. 前記駆動用磁石、もしくは、前記駆動用磁石と前記第2の磁石の前記駆動用コイルに対向する面とは反対側の面側に磁気ヨークが配設されていることを特徴とする請求項1〜請求項5のいずれかに記載の電磁駆動装置。   2. The magnetic yoke is disposed on a surface of the driving magnet or on a surface opposite to the surface of the driving magnet and the second magnet facing the driving coil. The electromagnetic drive device according to claim 5.
JP2011236974A 2011-10-28 2011-10-28 Electromagnetic drive device Pending JP2013097028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236974A JP2013097028A (en) 2011-10-28 2011-10-28 Electromagnetic drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236974A JP2013097028A (en) 2011-10-28 2011-10-28 Electromagnetic drive device

Publications (1)

Publication Number Publication Date
JP2013097028A true JP2013097028A (en) 2013-05-20

Family

ID=48619060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236974A Pending JP2013097028A (en) 2011-10-28 2011-10-28 Electromagnetic drive device

Country Status (1)

Country Link
JP (1) JP2013097028A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698721A (en) * 2014-11-21 2015-06-10 瑞声声学科技(深圳)有限公司 Lens driving device
JP2015188142A (en) * 2014-03-26 2015-10-29 日本電産サンキョー株式会社 optical unit with shake correcting function
WO2018043132A1 (en) * 2016-09-02 2018-03-08 アルプス電気株式会社 Lens drive device
JP2018088816A (en) * 2013-11-29 2018-06-07 台湾東電化股▲ふん▼有限公司 Electromagnetic drive module
KR101914530B1 (en) 2016-08-25 2018-11-02 (주)파트론 Vibrator
CN109073854A (en) * 2016-03-07 2018-12-21 三美电机株式会社 Lens driver, camara module and camera carrying device
JP2020038294A (en) * 2018-09-04 2020-03-12 キヤノン株式会社 Lens apparatus and camera system having the same
CN112865470A (en) * 2020-12-30 2021-05-28 歌尔股份有限公司 Vibrator and electronic apparatus
CN113517800A (en) * 2021-08-16 2021-10-19 高瞻创新科技有限公司 Magnetite range structure and miniature anti-shake cloud platform suitable for voice coil motor
US20220254554A1 (en) * 2021-02-09 2022-08-11 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component Carrier With Cavity Accommodating at Least Part of Driven Body Being Magnetically Drivable to Move

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018088816A (en) * 2013-11-29 2018-06-07 台湾東電化股▲ふん▼有限公司 Electromagnetic drive module
JP2015188142A (en) * 2014-03-26 2015-10-29 日本電産サンキョー株式会社 optical unit with shake correcting function
CN104698721A (en) * 2014-11-21 2015-06-10 瑞声声学科技(深圳)有限公司 Lens driving device
JP2016099622A (en) * 2014-11-21 2016-05-30 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Lens drive unit
CN104698721B (en) * 2014-11-21 2018-04-10 瑞声声学科技(深圳)有限公司 Lens driving apparatus
EP3428705A4 (en) * 2016-03-07 2019-11-20 Mitsumi Electric Co., Ltd. Lens drive device, camera module, and camera mount device
CN109073854A (en) * 2016-03-07 2018-12-21 三美电机株式会社 Lens driver, camara module and camera carrying device
KR101914530B1 (en) 2016-08-25 2018-11-02 (주)파트론 Vibrator
JPWO2018043132A1 (en) * 2016-09-02 2019-06-24 アルプスアルパイン株式会社 Lens drive
WO2018043132A1 (en) * 2016-09-02 2018-03-08 アルプス電気株式会社 Lens drive device
JP2020038294A (en) * 2018-09-04 2020-03-12 キヤノン株式会社 Lens apparatus and camera system having the same
JP7321686B2 (en) 2018-09-04 2023-08-07 キヤノン株式会社 LENS DEVICE AND CAMERA SYSTEM INCLUDING THE SAME
CN112865470A (en) * 2020-12-30 2021-05-28 歌尔股份有限公司 Vibrator and electronic apparatus
CN112865470B (en) * 2020-12-30 2022-06-21 歌尔股份有限公司 Vibrator and electronic apparatus
US20220254554A1 (en) * 2021-02-09 2022-08-11 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component Carrier With Cavity Accommodating at Least Part of Driven Body Being Magnetically Drivable to Move
US12112888B2 (en) * 2021-02-09 2024-10-08 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with cavity accommodating at least part of driven body being magnetically drivable to move
CN113517800A (en) * 2021-08-16 2021-10-19 高瞻创新科技有限公司 Magnetite range structure and miniature anti-shake cloud platform suitable for voice coil motor
US20230048052A1 (en) * 2021-08-16 2023-02-16 Vista Innotech Limited Magnet arrangement structure suitable for voice coil motor and micro gimbal stabilizer

Similar Documents

Publication Publication Date Title
JP2013097028A (en) Electromagnetic drive device
US8648920B2 (en) Electromagnetically driven device with shake suppression
JP2013025035A (en) Lens drive device
US8730598B2 (en) Driving device for a lens assembly
JP5140572B2 (en) Optical unit with shake correction function
JP2015114391A (en) Electromagnetic driving device
JP6273491B2 (en) Lens driving device, camera device, and electronic device
JP2011085666A (en) Lens driving device
JP2012002973A (en) Camera shake suppression device
JP2018077390A (en) Optical module and optical unit
JP2011138027A (en) Lens drive device
US9703114B2 (en) Image stabilizer, lens barrel, image pickup apparatus, and optical apparatus
JP2015081992A (en) Lens drive unit, camera device, and electronic device
JP2019191350A (en) Optical unit with tremor correction function
JP2011118032A (en) Lens drive device
JP2013041026A (en) Camera shake suppression device
JP2016224184A (en) Lens drive device with hand tremor correction function
JP2015041066A (en) Support mechanism of movable body
JP2014178452A (en) Position detecting device
JP6173416B2 (en) Position detection device
JP2013025033A (en) Electromagnetic driving device
JP2006276565A (en) Lens driving apparatus
JP2021076789A (en) Lens driving device, camera device, and electronic apparatus
JP2015191123A (en) Image tremor correction device, lens barrel and optical device
JP6513928B2 (en) Position detection device