JP2013079342A - Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same - Google Patents
Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same Download PDFInfo
- Publication number
- JP2013079342A JP2013079342A JP2011220550A JP2011220550A JP2013079342A JP 2013079342 A JP2013079342 A JP 2013079342A JP 2011220550 A JP2011220550 A JP 2011220550A JP 2011220550 A JP2011220550 A JP 2011220550A JP 2013079342 A JP2013079342 A JP 2013079342A
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- phosphor
- plate
- cerium
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Luminescent Compositions (AREA)
- Paints Or Removers (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
本発明は、テルビウムまたはネオジムとセリウムとで共付活した高発光効率の板状蛍光体に関する。本発明の蛍光体は、紫外線照射により、緑色の可視光、または赤外線スコープによってのみ検出可能な赤外線を発光する。この蛍光体は板状の形態を有しており、適宜のビヒクルと配合したものが塗布性および隠蔽性にすぐれているので、有価証券や製品ラベルの印刷に用いる偽造防止印刷インキに使用する蛍光顔料として好適である。本発明はまた、この板状蛍光体を、板状の形態を有するゼオライトを母結晶として製造する方法にも関する。 The present invention relates to a plate-like phosphor with high luminous efficiency co-activated with terbium or neodymium and cerium. The phosphor of the present invention emits green visible light or infrared light that can be detected only by an infrared scope when irradiated with ultraviolet light. This phosphor has a plate-like form, and when blended with an appropriate vehicle, it has excellent coatability and concealment. Therefore, the phosphor used in anti-counterfeit printing inks used for printing securities and product labels Suitable as a pigment. The present invention also relates to a method for producing the plate-like phosphor using a zeolite having a plate-like form as a mother crystal.
有価証券や製品ラベルなどの偽造防止技術、いわゆる「セキュリティ技術」においては、蛍光体顔料を含有するインクを用いた印刷を行なうことや、紙そのものが発光する、蛍光体をすき込んだセキュリティペーパーを使用することが行なわれている。この目的に用いる蛍光体としては、紫外線励起可視光発光蛍光体や、紫外線励起赤外発光蛍光体が適当である。セキュリティ技術に用いる蛍光体は、紙をはじめとするシート状体の上に印刷するものであるから、塗布性と隠蔽性が高いことが要求され、板状の粒子であることが望ましい。ところが、この種の蛍光体を製造する方法として以前から知られている固相反応法、フラックス法などは、製品蛍光体の粒子形状の制御が不可能であり、好適な板状蛍光体を得ることができない。 In security technology, forgery prevention technology such as securities and product labels, so-called “security technology”, printing using ink containing phosphor pigments, and security paper with phosphor incorporated into the paper itself that emits light. It is being used. As the phosphor used for this purpose, an ultraviolet-excited visible light-emitting phosphor or an ultraviolet-excited infrared-emitting phosphor is suitable. Since the phosphor used in the security technique is printed on a sheet-like body such as paper, it is required that the coating property and the concealing property are high, and it is desirable to be a plate-like particle. However, the solid phase reaction method and the flux method, which have been known as methods for producing this type of phosphor, cannot control the particle shape of the product phosphor, and provide a suitable plate-like phosphor. I can't.
これまでに知られている蛍光体の製造技術を概観すれば、まずフラックス法によるホウ酸塩系板状蛍光体の製造方法がある(特許文献1)が、この製造方法によるときは、粒径の制御が困難である。蛍光体の原料としてゼオライトを使用することが、よく行なわれている。そのひとつの手段は、ゼオライトの細孔内に金属酸化物−希土類金属からなる蛍光体を均一に分散させたものである(特許文献2)。この技術は、ゼオライトそのものに蛍光特性を付与するものではなく、板状の蛍光体が得られるものでもない。そのほかに、ゼオライト由来のシリカとアルミナの非晶質マトリクス中に蛍光体であるセラミックス微粒子を分散させたものもある(特許文献3)が、これも、ゼオライト構造を保持した蛍光体ではなく、板状の蛍光体を提供するものでもない。本願の共同出願人の一人が提案した、ゼオライトから蛍光体を製造する技術(特許文献4)もあるが、やはり板状の蛍光体に関するものではない。 An overview of phosphor manufacturing techniques known so far includes a method for manufacturing a borate-based plate-like phosphor by a flux method (Patent Document 1). Is difficult to control. The use of zeolite as a raw material for phosphors is often performed. One means is to uniformly disperse a phosphor made of a metal oxide-rare earth metal in the pores of zeolite (Patent Document 2). This technique does not impart fluorescent properties to the zeolite itself, nor does it provide a plate-like phosphor. In addition, there is a ceramic fine particle dispersed as a phosphor in an amorphous matrix of silica and alumina derived from zeolite (Patent Document 3). This is not a phosphor having a zeolite structure, but a plate. It also does not provide a phosphor. There is also a technique (Patent Document 4) for producing a phosphor from zeolite proposed by one of the joint applicants of the present application, but it is not related to a plate-like phosphor.
板状の蛍光体を得るには、板状の結晶自形をもつゼオライトを母結晶として使用すればよいので、この考えにもとづく技術が多数提案されている。ただし、ゼオライト中に含まれる水が励起を妨げることから、その対策として、加熱によりゼオライト構造を非晶質にしたり、他のアルミノケイ酸塩構造の化合物に変換したり、希土類金属を有機配位子と錯体化したりする必要がある。 In order to obtain a plate-like phosphor, a zeolite having a plate-like crystal self-shape may be used as a mother crystal, and many techniques based on this idea have been proposed. However, since water contained in the zeolite hinders excitation, the countermeasure is to make the zeolite structure amorphous by heating, to convert it to other aluminosilicate structure compounds, or to convert rare earth metals to organic ligands. Need to be complexed with.
出願人らは、他の共同出願人とともに、板状の結晶自形をもつゼオライトとしてリンデQ型ゼオライトを選び、そのK+イオンを希土類金属の2価または3価のイオンと交換したのち、焼成することからなる蛍光体の製造技術を開示した(特許文献5)。発光のようすは希土類金属の種類によって異なり、紫外線で励起されたとき、ユーロピウム(Eu)を用いたものは赤色に、テルビウム(Tb)を用いたものは緑色に、ツリウム(Tm)を用いたものは青色に発色する。しかしいずれも、セキュリティ技術用の印刷インクに用いるには、発光強度が不足である。 The applicants, together with other co-applicants, selected Linde Q-type zeolite as the zeolite having a plate-like crystal self-form, exchanged the K + ions with rare earth metal divalent or trivalent ions, and then calcined. The manufacturing technology of the fluorescent substance which consists of doing was disclosed (patent document 5). Luminescence varies depending on the type of rare earth metal. When excited by ultraviolet light, europium (Eu) is used in red, terbium (Tb) is used in green, and thulium (Tm) is used. Develops blue. However, in any case, the light emission intensity is insufficient for use in printing ink for security technology.
さらに出願人らと他の共同出願人とは、リンデQ型ゼオライトに組み合せる希土類金属イオンとしてネオジム(Nd)を選び、紫外線励起により赤外線領域の蛍光を発する蛍光体を開発した(特許文献6)。続いて出願人らは、やはりリンデQ型ゼオライトにセリウム(Ce)を組み合わせた蛍光体が青色の蛍光を発することを見出し、これも開示した(特許文献7)。この場合、セリウム(III)の酸化を防ぐために、焼成に当っては非酸化性の雰囲気が必要である。 Further, the applicants and other joint applicants have selected neodymium (Nd) as the rare earth metal ion to be combined with Linde Q-type zeolite, and have developed a phosphor that emits fluorescence in the infrared region by ultraviolet excitation (Patent Document 6). . Subsequently, the applicants also found that a phosphor obtained by combining cerium (Ce) with Linde Q-type zeolite emits blue fluorescence, which was also disclosed (Patent Document 7). In this case, in order to prevent oxidation of cerium (III), a non-oxidizing atmosphere is required for firing.
一方、蛍光体の発光中心としてセリウムとテルビウムとを併用し、いわゆる「共付活」を行なうことが、上記の蛍光体の発明以前から試みられていた。まず、ランプ用の緑色に発色するリン酸塩蛍光体(特許文献8)や、ランタンマグネシウムアルミン酸塩蛍光体(特許文献9)が開示されたが、いずれも、蛍光体の形態や粒径の制御が可能な技術ではない。やはり緑色発色をするケイ酸塩蛍光体とそれを用いた発光装置(特許文献10)の提案や、ホウ酸塩蛍光体とそれを用いた白色LED(特許文献11)の開示も続いたが、これらの技術も、蛍光体の形態や粒径の制御はできない。セリウム−テルビウム共付活蛍光体は、その後、窒化物系のもので平均粒径が2μm以上20μm以下であるものが開発された(特許文献12)が、形態を制御することには及んでいない。 On the other hand, it has been attempted before the invention of the above-described phosphor to perform so-called “co-activation” by using cerium and terbium together as the emission center of the phosphor. First, a phosphor phosphor (Patent Document 8) and a lanthanum magnesium aluminate phosphor (Patent Document 9) that are colored green for a lamp have been disclosed. It is not a technology that can be controlled. Proposal of a silicate phosphor that produces green color and a light emitting device using the same (Patent Document 10) and a disclosure of a borate phosphor and a white LED (Patent Document 11) using the borate phosphor continued, These techniques also cannot control the form and particle size of the phosphor. Subsequently, a cerium-terbium co-activated phosphor having a nitride-based average particle diameter of 2 μm or more and 20 μm or less was developed (Patent Document 12), but it does not reach the form control. .
ネオジム−セリウム共付活蛍光体に関しては、赤外線発光特性をもつガラス材料が開発され(非特許文献1)、ネオジム単独の付活をしたガラスにくらべて、5倍の発光強度を示すことが報告された。
上述のように、板状の結晶自形をもつゼオライトを母結晶とし、イオン交換によってその細孔内に発光中心となる希土類金属イオンを均一に保持させた板状の蛍光体はいくつが知られているが、その発光強度は、セキュリティ技術に用いる印刷インクの顔料に対して要求される、印刷面において十分な発光強度を発揮するというレベルには到達していなかった。他方、共付活により蛍光体の発光強度を高めることが可能なことも知られているが、その具体化された技術は、板状の蛍光体を与えるものではないし、形態の制御ができるものでもない。 As described above, a number of plate-like phosphors are known in which a zeolite having a plate-like crystal self-form is used as a mother crystal and the rare earth metal ions that are the emission centers are uniformly held in the pores by ion exchange. However, the emission intensity has not yet reached the level required to exhibit sufficient emission intensity on the printed surface, which is required for printing ink pigments used in security technology. On the other hand, it is also known that the luminous intensity of the phosphor can be increased by co-activation, but the specific technology does not give a plate-like phosphor, and the form can be controlled. not.
このような状況のもとで、本発明の目的は、板状の蛍光体であって、セキュリティ技術用の印刷インクの顔料として使用するに足りる、従来品よりも高い発光強度を示すものと、その製造方法を提供することにある。この蛍光体は、印刷インクや塗料に使用するものであるから、ビヒクルおよび溶剤によく分散するように、疎水性であるという条件を満たすものでなければならない。 Under such circumstances, the object of the present invention is a plate-like phosphor, which is sufficient to be used as a pigment for printing ink for security technology, and exhibits a higher emission intensity than conventional products, It is in providing the manufacturing method. Since this phosphor is used in printing inks and paints, it must satisfy the condition of being hydrophobic so that it is well dispersed in the vehicle and solvent.
上記の目的を達成する本発明の蛍光体、すなわち形態が板状であって改善された発光強度を有する蛍光体の第一のものは、板状の結晶形態をもつゼオライトをテルビウムイオンおよびセリウムイオンでイオン交換して得たイオン交換体を焼成し、ゼオライト構造は失わせるが板状の結晶形態は維持させることによってなり、紫外線励起により緑色の蛍光を発する蛍光体である。
The phosphor of the present invention that achieves the above object, that is, the first of the phosphors having a plate-like shape and improved emission intensity is obtained by converting a zeolite having a plate-like crystal form into terbium ions and cerium ions. This is a phosphor that emits green fluorescence when excited by ultraviolet rays, by calcination of the ion exchanger obtained by ion exchange in
本発明の蛍光体の第二のものは、板状の結晶形態をもつゼオライトをネオジムイオンおよびセリウムイオンでイオン交換して得たイオン交換体を焼成し、ゼオライト構造は失わせるが板状の結晶形態は維持させることによってなり、紫外線励起により赤外線の蛍光を発する蛍光体である。 The second phosphor of the present invention is obtained by calcining an ion exchanger obtained by ion exchange of zeolite having a plate-like crystal form with neodymium ions and cerium ions, and the zeolite structure is lost, but the plate-like crystals The phosphor is a phosphor that emits infrared fluorescence when excited by ultraviolet light.
本発明の蛍光体を製造する方法は、第一のものを製造する場合は、テルビウムの可溶性塩とセリウムの可溶性塩の混合水溶液にゼオライトを浸漬し、100℃以下の温度でゼオライト中のK+またはNa+とTb3+およびCe3+との間のイオン交換を行なって、少なくともそれぞれ20%の交換率でTbイオンおよびCeイオンをゼオライト中に存在させたのち、非酸化性の雰囲気下に、850℃以上、好ましくは900℃以上の温度で焼成することにより、ゼオライト構造は失わせるが板状の結晶形態は維持させることからなる製造方法である。 In the method for producing the phosphor of the present invention, when producing the first one, the zeolite is immersed in a mixed aqueous solution of a soluble salt of terbium and a soluble salt of cerium, and K + in the zeolite at a temperature of 100 ° C. or lower. Alternatively, ion exchange between Na + and Tb 3+ and Ce 3+ is performed so that Tb ions and Ce ions are present in the zeolite at an exchange rate of at least 20%, respectively, and then in a non-oxidizing atmosphere, 850 By calcination at a temperature of at least 0 ° C, preferably at least 900 ° C, the zeolite structure is lost, but the plate-like crystal form is maintained.
第二のものを製造する場合は、上記の方法において、テルビウムの可溶性塩に代えてネオジムの可溶性塩を使用し、これとセリウムの可溶性塩の混合水溶液にゼオライトを浸漬し、100℃以下の温度でゼオライト中のK+またはNa+とNd3+およびCe3+との間のイオン交換を行なって、少なくともそれぞれ20%の交換率でNdイオンおよびCeイオンをゼオライト中に存在させたのち、非酸化性の雰囲気下に、850℃以上、好ましくは900℃以上の温度で焼成することにより、ゼオライト構造は失わせるが板状の結晶形態は維持させることからなる製造方法である。 In the case of producing the second one, in the above method, a neodymium soluble salt is used instead of the terbium soluble salt, the zeolite is immersed in a mixed aqueous solution of this and a cerium soluble salt, and the temperature is 100 ° C. or lower. After ion exchange between K + or Na + and Nd 3+ and Ce 3+ in the zeolite with Nd ions and Ce ions present in the zeolite at an exchange rate of at least 20%, respectively, non-oxidizing In this manufacturing method, by firing at a temperature of 850 ° C. or higher, preferably 900 ° C. or higher, the zeolite structure is lost but the plate-like crystal form is maintained.
本発明の蛍光体は、第一のものも第二のものも、セリウムイオンを利用した共付活により、テルビウムイオンまたはネオジムイオンの存在によりもたらされる蛍光の発光強度が5〜10倍に増大し、セキュリティ技術に使用する印刷インキや塗料の材料とする蛍光体に求められる発光強度を十分にみたすことができる。 In the phosphor of the present invention, in both the first and second phosphors, the fluorescence emission intensity caused by the presence of terbium ions or neodymium ions is increased 5 to 10 times by co-activation using cerium ions. The emission intensity required for the phosphor used as a material for printing inks and paints used in security technology can be fully satisfied.
母結晶として使用したゼオライトは、焼成により結晶構造が失われているから、使用中に復水して発光強度が低下するという心配はない一方で、当初の板状の結晶自形は維持しているから、塗布性や隠蔽性にすぐれており、印刷インキや塗料用の顔料として好適である。 Since the crystal structure of the zeolite used as the mother crystal has been lost due to calcination, there is no concern that the light emission intensity will be reduced by condensing during use, while maintaining the original plate-like crystal itself. Therefore, it is excellent in coating properties and hiding properties, and is suitable as a pigment for printing inks and paints.
本発明で使用するゼオライトとしては、リンデQゼオライトが好適である。板状結晶のゼオライトとしては、ほかにもクリノプチロライトなどがあるが、リンデQゼオライトは六角板状の結晶自形をもち、イオン交換容量が大きい点で最も有力な原料である。どれを用いるにしても、ゼオライトは、径0.5〜10μm、厚さ10〜200nm、アスペクト比5以上のものが好ましい。 The zeolite used in the present invention is preferably Linde Q zeolite. Other plate-like zeolites include clinoptilolite, but Linde Q zeolite has the hexagonal plate-like crystal shape and is the most promising raw material in terms of large ion exchange capacity. Whichever is used, the zeolite preferably has a diameter of 0.5 to 10 μm, a thickness of 10 to 200 nm, and an aspect ratio of 5 or more.
ゼオライト中にあらかじめ存在するカリウムイオンやナトリウムイオンを、発光中心となる3価のテルビウムイオンまたはネオジムイオン、および共付活イオンとなる3価のセリウム(III)イオンとイオン交換するために、テルビウムまたはネオジムの硝酸塩、塩化物などの可溶性塩と、セリウム(III)の硝酸塩、塩化物などの可溶性塩の混合水溶液中にゼオライトを分散させ、100℃以下の温度でイオン交換させる。 In order to ion-exchange potassium ions and sodium ions pre-existing in the zeolite with trivalent terbium ions or neodymium ions serving as emission centers and trivalent cerium (III) ions serving as co-active ions, terbium or Zeolite is dispersed in a mixed aqueous solution of a soluble salt such as neodymium nitrate or chloride and a soluble salt such as cerium (III) nitrate or chloride, and ion exchanged at a temperature of 100 ° C. or lower.
このイオン交換の程度は、いうまでもなくできるだけ高い方が、それに伴って発光効率が増大するので好ましいが、高い交換率において飽和する傾向があることは避けられない。交換すべき希土類金属イオンの濃度が高い混合水溶液を用いるとか、イオン交換を行なったものをいったん乾燥したのち、再度混合水溶液に浸漬するなどの手法により、合計量にして80%以上は容易に実現できる。しかし、90%を超える領域になると、交換率を増大させることは次第に困難になり、実用上は95%が限界であろう。 Needless to say, the degree of ion exchange is preferably as high as possible because the luminous efficiency increases accordingly, but it tends to saturate at a high exchange rate. Easily achieve a total amount of 80% or more by using a mixed aqueous solution with a high concentration of rare earth metal ions to be exchanged or by drying the ion-exchanged one and then dipping it again in the mixed aqueous solution. it can. However, in the region exceeding 90%, it becomes increasingly difficult to increase the exchange rate, and 95% would be the limit in practical use.
イオン交換に当っては、テルビウムイオンまたはネオジムイオンと、3価のセリウム(III)イオンとのバランスを適切に選択することが重要である。本発明の蛍光体にあっては、共付活というが、実際の発光はテルビウムまたはネオジムが担当し、セリウムの主たる任務は、それらに対して紫外光のエネルギーを伝達することにあると解される一方、たとえばテルビウム−セリウム共付活の場合、セリウムの交換量が増大するにつれてセリウムイオン自身がもたらす青色の発光が増大し、いわば発光の力が分散するという現象がみられる。好ましい交換量の概略を示せば、テルビウム−セリウム共付活の場合はテルビウム10〜80%+セリウム5〜50%であり、ネオジムム−セリウム共付活の場合も同様に、ネオジム10〜80%+セリウム5〜50%である。 In ion exchange, it is important to appropriately select a balance between terbium ions or neodymium ions and trivalent cerium (III) ions. In the phosphor of the present invention, although it is called co-activation, it is understood that terbium or neodymium is responsible for the actual light emission, and cerium's main mission is to transmit ultraviolet light energy to them. On the other hand, for example, in the case of terbium-cerium co-activation, there is a phenomenon in which the emission of blue light caused by cerium ions themselves increases as the exchange amount of cerium increases, so to speak, the light emission power is dispersed. If the outline of a preferable exchange amount is shown, in the case of terbium-cerium coactivation, it is 10-80% of terbium + 5-50% of cerium, and also in the case of neodymium-cerium coactivation, similarly, neodymium 10-80% + It is 5 to 50% of cerium.
イオン交換を行なったゼオライトは、水洗し、100℃以下の温度で乾燥した後、焼成する。焼成は、ゼオライトの種類によって多少の差はあるが、代表的なリンデQ型ゼオライトの場合、850℃以上、好ましくは900℃以上の温度が必要である。焼成に当たってはゼオライトの結晶構造を完全に破壊する必要があり、残っていると、明確な復水現象は起こらなくても、紫外線による励起が続いたときに発光量が減少することが経験されたからである。ただし、1000℃を超える温度になると、ゼオライト結晶どうしの焼結が始まり、板状の結晶自形を有するという利点が失われるので、過度の高温は避けなければならない。焼成の雰囲気は、前述のように、セリウムイオン(III)の酸化を避けるため、非酸化性としなければならない。5%水素−ヘリウム混合ガスによる還元性雰囲気、または窒素ガスによる不活性雰囲気などを採用する。焼成の時間は、30分間以上2時間以内が適当である。 The ion-exchanged zeolite is washed with water, dried at a temperature of 100 ° C. or lower, and then calcined. Calcination is somewhat different depending on the type of zeolite, but in the case of typical Linde Q-type zeolite, a temperature of 850 ° C. or higher, preferably 900 ° C. or higher is required. When firing, it is necessary to completely destroy the crystal structure of the zeolite, and if left, even if no clear condensate phenomenon occurs, it has been experienced that the amount of luminescence decreases when excitation by ultraviolet rays continues. It is. However, if the temperature exceeds 1000 ° C., sintering of the zeolite crystals begins and the advantage of having a plate-like crystal self-form is lost, so an excessively high temperature must be avoided. As described above, the firing atmosphere must be non-oxidizing in order to avoid oxidation of cerium ions (III). A reducing atmosphere using a 5% hydrogen-helium mixed gas or an inert atmosphere using nitrogen gas is employed. The firing time is suitably from 30 minutes to 2 hours.
以下の実施例において、試料のキャラクタリゼーションおよび性能の試験は、つぎのように行なった。
[イオン交換率の測定]
イオン交換試料(下記)を酸で分解し、誘導結合プラズマ発光分析装置(島津製作所製「ICPS−8000」)によりTb,Nd,CeおよびKを定量して、イオン交換率を求める。
[イオン交換試料および加熱試料の結晶相の同定]
粉末X線回折(XRD)(マック・サイエンスMXP3A、理学電機RINT−2550H)を使用。
[結晶形態の観察]
走査型電子顕微鏡(SEM)(日本電子JSM−6510LA)により観察。
[蛍光特性]
分光蛍光光度計(日立製作所F−2500,JOBINYVON SPEX Fluorolog-3)により、焼成試料の蛍光スペクトルを測定。
In the following examples, sample characterization and performance tests were performed as follows.
[Measurement of ion exchange rate]
An ion exchange sample (described below) is decomposed with an acid, and Tb, Nd, Ce, and K are quantified by an inductively coupled plasma emission spectrometer (“ICPS-8000” manufactured by Shimadzu Corporation) to obtain an ion exchange rate.
[Identification of crystalline phases of ion exchange and heated samples]
Using powder X-ray diffraction (XRD) (Mac Science MXP3A, Rigaku Denki RINT-2550H).
[Observation of crystal morphology]
Observed with a scanning electron microscope (SEM) (JEOL JSM-6510LA).
[Fluorescence properties]
Measure the fluorescence spectrum of the calcined sample with a spectrofluorometer (Hitachi F-2500, JOBINYVON SPEX Fluorolog-3).
テルビウム−セリウム共付活リンデQゼオライト(その1)
粒径約1μm、厚さ約100nmの六角板状結晶形態を有するK型リンデQゼオライト(K2O・Al2O3・2SiO2・xH2O 以下、「リンデQ」と略称する)を合成した。塩化テルビウム(0.1モル/L)の水溶液60mLおよび塩化テルビウム(0.125モル/L)と硝酸セリウム(0.125モル/L)の混合水溶液60mLに、このリンデQゼオライト8gずつを入れ、90℃で24時間、イオン交換を行なった。メンブレンフィルターで固液分離し、蒸留水で洗浄して50℃で十分に乾燥することにより、下記2種のイオン交換試料を得た。
Terbium-cerium co-activated Linde Q zeolite (Part 1)
Particle size of about 1 [mu] m, a thickness of about 100nm of the hexagonal K type Linde Q zeolite having a plate-
それらのイオン交換率を測定して、つぎの値を得た。
(イオン交換試料) (Tb交換率)(Ce交換率)
Tb交換リンデQ : 45.5% −
Tb−Ce共付活リンデQ: 45.5% 37.1%
Their ion exchange rates were measured and the following values were obtained.
(Ion exchange sample) (Tb exchange rate) (Ce exchange rate)
Tb exchange Linde Q: 45.5% −
Tb-Ce co-activated Linde Q: 45.5% 37.1%
これらのイオン交換試料を白金るつぼに入れ、還元雰囲気下に900℃に1時間焼成した。得られた焼成試料の結晶構造をX線回折により調べたところ、どちらも、リンデQゼオライトの構造が分解して非晶質になっていた。X線回折チャートを図1に示す。 These ion exchange samples were placed in a platinum crucible and calcined at 900 ° C. for 1 hour in a reducing atmosphere. When the crystal structure of the obtained calcined sample was examined by X-ray diffraction, the structure of Linde Q zeolite was decomposed and became amorphous. An X-ray diffraction chart is shown in FIG.
2種の焼成試料の蛍光特性を調べたところ、波長370nmの紫外線で励起したときに、544nm付近に発光ピークを有する緑色蛍光を検出した。蛍光スペクトルを図2に示す。図2にみるように、Tb−Ce共付活を行なった試料のピーク強度は、行なわなかったTb交換リンデQにくらべて、約6倍に達していた。 When the fluorescence characteristics of the two kinds of fired samples were examined, green fluorescence having an emission peak near 544 nm was detected when excited by ultraviolet light having a wavelength of 370 nm. The fluorescence spectrum is shown in FIG. As shown in FIG. 2, the peak intensity of the sample subjected to Tb—Ce coactivation was about 6 times that of the Tb exchanged Linde Q that was not performed.
テルビウム−セリウム共付活リンデQゼオライト(その2)
発光特性に対してセリウムイオン交換率の与える影響、およびテルビウムイオン交換率とセリウムイオン交換率とのバランスが与える影響をみるため、種々のイオン交換率のTb−Ce共付活リンデQゼオライトを製造した。実施例1と同様に、粒径約1μm、厚さ約100nmの六角板状結晶形態を有するリンデQゼオライトを用意し、その12gずつを、塩化テルビウム(0.1モル/L)および硝酸セリウム(0,0.01,0.025,0.05,0.075,0.1または0.125モル/L)の7種の混合水溶液各90mLに入れ、90℃で24時間イオン交換を行なった。以下は実施例1と同様に、メンブレンフィルターで固液分離し、蒸留水で洗浄して50℃で十分に乾燥することにより、下記7種の、さまざまなTb交換率およびCe交換率をもつイオン交換試料を得た。
Terbium-cerium co-activated Linde Q zeolite (Part 2)
Manufactured Tb-Ce co-activated Linde Q zeolite with various ion exchange rates in order to see the effect of cerium ion exchange rate on luminescence properties and the effect of balance between terbium ion exchange rate and cerium ion exchange rate did. In the same manner as in Example 1, Linde Q zeolite having a hexagonal plate-like crystal form with a particle size of about 1 μm and a thickness of about 100 nm was prepared, and 12 g of each was mixed with terbium chloride (0.1 mol / L) and cerium nitrate ( (0, 0.01, 0.025, 0.05, 0.075, 0.1, or 0.125 mol / L) was added to 90 mL of each of the seven mixed aqueous solutions, and ion exchange was performed at 90 ° C. for 24 hours. . In the same manner as in Example 1, the following seven kinds of ions having various Tb exchange rates and Ce exchange rates were obtained by solid-liquid separation with a membrane filter, washing with distilled water, and sufficiently drying at 50 ° C. An exchange sample was obtained.
それらのイオン交換率を測定して、つぎの値を得た。
(イオン交換試料) (Tb交換率)(Ce交換率)
Tb交換リンデQ : 43.8% −
Tb−Ce共付活リンデQ1: 43.4% 4.3%
2: 41.6% 10.1%
3: 41.1% 19.2%
4: 39.2% 26.4%
5: 38.5% 33.4%
6: 36.0% 38.2%
Their ion exchange rates were measured and the following values were obtained.
(Ion exchange sample) (Tb exchange rate) (Ce exchange rate)
Tb exchange Linde Q: 43.8% −
Tb-Ce co-activated Linde Q1: 43.4% 4.3%
2: 41.6% 10.1%
3: 41.1% 19.2%
4: 39.2% 26.4%
5: 38.5% 33.4%
6: 36.0% 38.2%
上記7種のイオン交換試料を白金るつぼに入れ、実施例1と同様に、還元雰囲気下に900℃に1時間焼成した。焼成試料のX線回折チャートを図3に示す。この場合も、リンデQゼオライトの構造が分解して非晶質になっていることが確認された。一方、焼成試料を走査型電子顕微鏡で観察した結果、当初の六角板状形態は、ゼオライト構造の分解にもかかわらず、維持されていることがわかった。図4に、Tb交換リンデQ、Tb−Ce共付活リンデQ4および同6の焼成試料の電子顕微鏡写真を示す。 The above seven types of ion exchange samples were placed in a platinum crucible and fired at 900 ° C. for 1 hour in a reducing atmosphere in the same manner as in Example 1. An X-ray diffraction chart of the fired sample is shown in FIG. Also in this case, it was confirmed that the structure of Linde Q zeolite was decomposed and became amorphous. On the other hand, as a result of observing the calcined sample with a scanning electron microscope, it was found that the original hexagonal plate shape was maintained despite the decomposition of the zeolite structure. FIG. 4 shows electron micrographs of Tb-exchanged Linde Q, Tb—Ce co-activated Linde Q4, and the fired samples of the same.
焼成試料の蛍光特性は、図5のスペクトルに見るとおりであって、波長310nmの紫外線励起により、544nm付近に発光ピークを有する緑色の発光が認められた。 The fluorescence characteristics of the fired sample are as shown in the spectrum of FIG. 5, and green light emission having a light emission peak in the vicinity of 544 nm was observed by ultraviolet excitation with a wavelength of 310 nm.
ネオジム−セリウム共付活リンデQゼオライト
実施例1と同様に、粒径約1μm、厚さ約100nmの六角板状結晶形態を有するリンデQゼオライトを用意した。塩化ネオジム(0.1モル/L)および硝酸セリウム(0,0.01,0.025,0.05,0.075または0.1モル/L)の6種の混合水溶液各60mLに、このリンデQゼオライトを8gずつ入れ、90℃で24時間イオン交換を行なった。実施例1および2と同様に、メンブレンフィルターで固液分離し、蒸留水で洗浄して50℃で十分に乾燥することにより、下記6種の、さまざまなNd交換率およびCe交換率をもつイオン交換試料を得た。
Neodymium-cerium co-activated Linde Q zeolite As in Example 1, Linde Q zeolite having a hexagonal plate-like crystal form with a particle size of about 1 μm and a thickness of about 100 nm was prepared. To each 60 mL of six mixed aqueous solutions of neodymium chloride (0.1 mol / L) and cerium nitrate (0, 0.01, 0.025, 0.05, 0.075 or 0.1 mol / L), 8 g of Linde Q zeolite was added and ion exchange was performed at 90 ° C. for 24 hours. In the same manner as in Examples 1 and 2, the following 6 types of ions having various Nd exchange rates and Ce exchange rates were obtained by solid-liquid separation with a membrane filter, washing with distilled water, and thoroughly drying at 50 ° C. An exchange sample was obtained.
それらのイオン交換率を測定して、つぎの値を得た。
(イオン交換試料) (Nd交換率)(Ce交換率)
Nd交換リンデQ : 42.9% −
Nd−Ce共付活リンデQ1: 45.0% 4.4%
2: 45.3% 11.6%
3: 40.2% 20.8%
4: 37.0% 28.8%
5: 34.9% 36.5%
Their ion exchange rates were measured and the following values were obtained.
(Ion exchange sample) (Nd exchange rate) (Ce exchange rate)
Nd exchange Linde Q: 42.9% −
Nd-Ce co-activated Linde Q1: 45.0% 4.4%
2: 45.3% 11.6%
3: 40.2% 20.8%
4: 37.0% 28.8%
5: 34.9% 36.5%
これら6種のイオン交換試料を白金るつぼに入れ、実施例1および2と同様に、還元雰囲気下に900℃に1時間焼成した。焼成試料のX線回折チャートを図6に示す。この場合も、リンデQゼオライトの構造が分解して非晶質になっていることが確認された。一方、焼成試料を走査型電子顕微鏡で観察した結果、この場合も、当初の六角板状形態は、ゼオライト構造の分解にもかかわらず維持されていることがわかった。図7に、Nd−Ce共付活リンデQ5およびNd交換リンデQの電子顕微鏡写真を示す。 These six types of ion exchange samples were placed in a platinum crucible and fired at 900 ° C. for 1 hour in a reducing atmosphere in the same manner as in Examples 1 and 2. An X-ray diffraction chart of the fired sample is shown in FIG. Also in this case, it was confirmed that the structure of Linde Q zeolite was decomposed and became amorphous. On the other hand, as a result of observing the calcined sample with a scanning electron microscope, it was found that the original hexagonal plate shape was maintained despite the decomposition of the zeolite structure. FIG. 7 shows electron micrographs of Nd-Ce co-activated Linde Q5 and Nd-exchange Linde Q.
焼成試料の蛍光特性は、図8のスペクトルに見るとおりであって、波長354nmの紫外線で励起したとき、1063nm付近に発光ピークを有する赤外線発光が認められた。図8によれば、セリウム共付活を行ない、そのセリウムイオン交換率が高いもの、つまりセリウムイオン含有率が高いものほど、ネオジムの交換率がむしろ低下しているにもかかわらず、発光強度が高いことがわかる。 The fluorescence characteristics of the fired sample are as shown in the spectrum of FIG. 8, and when excited with ultraviolet light having a wavelength of 354 nm, infrared emission having an emission peak near 1063 nm was observed. According to FIG. 8, cerium co-activation is performed, and the higher the cerium ion exchange rate, that is, the higher the cerium ion content, the lower the neodymium exchange rate, but the lower the emission intensity. I understand that it is expensive.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011220550A JP2013079342A (en) | 2011-10-04 | 2011-10-04 | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011220550A JP2013079342A (en) | 2011-10-04 | 2011-10-04 | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013079342A true JP2013079342A (en) | 2013-05-02 |
Family
ID=48525980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011220550A Pending JP2013079342A (en) | 2011-10-04 | 2011-10-04 | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013079342A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108956549A (en) * | 2018-04-18 | 2018-12-07 | 中国印钞造币总公司 | A kind of luminous Security element and its detection method and detection system |
JP2019099759A (en) * | 2017-12-07 | 2019-06-24 | 太平洋セメント株式会社 | Production method of fired fluorescent material |
CN110880273A (en) * | 2019-12-06 | 2020-03-13 | 北京金衡融创网络科技有限公司 | Colorless fluorescent anti-counterfeiting method and application thereof |
JP2022517910A (en) * | 2018-12-28 | 2022-03-11 | ガイ スティーブンス、ヘンリー | Paints and other substances containing taggants |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08506854A (en) * | 1993-12-17 | 1996-07-23 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Luminous screen |
WO1997029164A1 (en) * | 1996-02-08 | 1997-08-14 | Philips Electronics N.V. | Luminescent zeolite |
JP2004059767A (en) * | 2002-07-30 | 2004-02-26 | Nichia Chem Ind Ltd | Electron beam-excited display and red light-emitting phosphor used for the same |
JP2005048107A (en) * | 2003-07-30 | 2005-02-24 | Yoshizawa Lime Industry | Phosphor and method for producing the same |
JP2006291015A (en) * | 2005-04-08 | 2006-10-26 | Osaka Univ | Color luminescent nano-sized composite |
JP2007231245A (en) * | 2005-05-24 | 2007-09-13 | National Institute For Materials Science | Phosphor and utilization thereof |
JP2008069290A (en) * | 2006-09-14 | 2008-03-27 | Tochigi Prefecture | Plate-like phosphor and display using the same |
JP2011001409A (en) * | 2009-06-16 | 2011-01-06 | Tochigi Prefecture | Plate-like phosphor and application of the same |
JP2011190297A (en) * | 2010-03-11 | 2011-09-29 | Tochigi Prefecture | Phosphor emitting blue light, method for producing the same, and utilization of the same |
-
2011
- 2011-10-04 JP JP2011220550A patent/JP2013079342A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08506854A (en) * | 1993-12-17 | 1996-07-23 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Luminous screen |
WO1997029164A1 (en) * | 1996-02-08 | 1997-08-14 | Philips Electronics N.V. | Luminescent zeolite |
EP0820493A1 (en) * | 1996-02-08 | 1998-01-28 | Koninklijke Philips Electronics N.V. | Luminescent zeolite |
US5772917A (en) * | 1996-02-08 | 1998-06-30 | U.S. Philips Corporation | Luminescent zeolite |
JPH11503791A (en) * | 1996-02-08 | 1999-03-30 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Luminescent zeolite |
JP2004059767A (en) * | 2002-07-30 | 2004-02-26 | Nichia Chem Ind Ltd | Electron beam-excited display and red light-emitting phosphor used for the same |
JP2005048107A (en) * | 2003-07-30 | 2005-02-24 | Yoshizawa Lime Industry | Phosphor and method for producing the same |
JP2006291015A (en) * | 2005-04-08 | 2006-10-26 | Osaka Univ | Color luminescent nano-sized composite |
JP2007231245A (en) * | 2005-05-24 | 2007-09-13 | National Institute For Materials Science | Phosphor and utilization thereof |
JP2008069290A (en) * | 2006-09-14 | 2008-03-27 | Tochigi Prefecture | Plate-like phosphor and display using the same |
JP2011001409A (en) * | 2009-06-16 | 2011-01-06 | Tochigi Prefecture | Plate-like phosphor and application of the same |
JP2011190297A (en) * | 2010-03-11 | 2011-09-29 | Tochigi Prefecture | Phosphor emitting blue light, method for producing the same, and utilization of the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019099759A (en) * | 2017-12-07 | 2019-06-24 | 太平洋セメント株式会社 | Production method of fired fluorescent material |
CN108956549A (en) * | 2018-04-18 | 2018-12-07 | 中国印钞造币总公司 | A kind of luminous Security element and its detection method and detection system |
CN108956549B (en) * | 2018-04-18 | 2021-06-01 | 中国印钞造币总公司 | Luminous anti-counterfeiting element and detection method and detection system thereof |
JP2022517910A (en) * | 2018-12-28 | 2022-03-11 | ガイ スティーブンス、ヘンリー | Paints and other substances containing taggants |
CN110880273A (en) * | 2019-12-06 | 2020-03-13 | 北京金衡融创网络科技有限公司 | Colorless fluorescent anti-counterfeiting method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Darshan et al. | Effective fingerprint recognition technique using doped yttrium aluminate nano phosphor material | |
Verma et al. | Structural characterization and effects of Dy concentration on luminescent properties of BaMgSiO4 phosphors | |
JP5415608B2 (en) | Core / shell lanthanum cerium terbium phosphate, phosphor containing said phosphate and preparation method | |
JP6038648B2 (en) | Nuclear / shell composition of europium oxide and yttrium oxide or gadolinium oxide, phosphor containing the composition, and method of preparation thereof | |
JP5034033B2 (en) | Plate-like phosphor and display using it | |
JP2013079342A (en) | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same | |
Lee et al. | Synthesis and luminescence properties of Eu3+ doped BaGd2Ti4O13 phosphors | |
Hirano et al. | Hydrothermal formation and characteristics of rare-earth niobate phosphors and solid solutions between YNbO4 and TbNbO4 | |
TW201443201A (en) | Oxynitride phosphor powder and method for producing same | |
US6419852B1 (en) | Use as phosphor dot in a plasma or x-ray system of a lanthanum phosphate comprising thulium | |
JP5525031B2 (en) | Composition containing core / shell cerium and / or terbium phosphate, phosphor from said composition, and method of preparation thereof | |
JP2010520334A (en) | Method for producing red luminescent borate phosphor | |
Wang et al. | Structure and functional properties of oxides in the BaO–Al2O3 system: Phosphors, pigments and catalysts | |
An et al. | Structure and luminescence properties of a novel broadband green-emitting oxyapatite-type phosphor | |
JP5700326B2 (en) | Fluorescent substance emitting blue light, its production method and use | |
CN102899038A (en) | Nitride red fluorescent powder and preparation method thereof | |
Yuan et al. | Emission-tunable silver clusters constrained within EMT zeolite | |
KR101419858B1 (en) | Phosphor, and preparing method of the same | |
Deshmukh et al. | Optical properties of MAl12O19: Eu (M= Ca, Ba, Sr) nanophosphors | |
JP5279134B2 (en) | Plate-like phosphors and their use | |
CN109233826B (en) | Europium ion activated titanium aluminate fluorescent powder and preparation method and application thereof | |
CN105733585A (en) | DS-LEuTbH complex, nanosheet colloidal suspension liquid prepared from same and preparation method | |
Xia et al. | Enhanced photoluminescence of the Ca0. 8Zn0. 2TiO3: 0.05% Pr3+ phosphor by optimized hydrothermal conditions | |
Wu et al. | Luminescence of divalent europium activated spinels synthesized by combustion and the enhanced afterglow by dysprosium incorporation | |
CN105199722B (en) | A kind of LED aluminosilicate blue fluorescent powder and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150811 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160209 |