JP2011190297A - Phosphor emitting blue light, method for producing the same, and utilization of the same - Google Patents
Phosphor emitting blue light, method for producing the same, and utilization of the same Download PDFInfo
- Publication number
- JP2011190297A JP2011190297A JP2010055172A JP2010055172A JP2011190297A JP 2011190297 A JP2011190297 A JP 2011190297A JP 2010055172 A JP2010055172 A JP 2010055172A JP 2010055172 A JP2010055172 A JP 2010055172A JP 2011190297 A JP2011190297 A JP 2011190297A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- plate
- zeolite
- ion exchange
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 75
- 238000005342 ion exchange Methods 0.000 claims abstract description 67
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 55
- 239000010457 zeolite Substances 0.000 claims abstract description 55
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 239000011248 coating agent Substances 0.000 claims abstract description 18
- 238000000576 coating method Methods 0.000 claims abstract description 18
- 238000010304 firing Methods 0.000 claims abstract description 16
- 238000007639 printing Methods 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 150000002500 ions Chemical class 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 16
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000002105 nanoparticle Substances 0.000 claims description 8
- 239000003973 paint Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 claims 1
- 230000008025 crystallization Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 8
- 238000001035 drying Methods 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract description 2
- 238000005406 washing Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 15
- 229910052761 rare earth metal Inorganic materials 0.000 description 13
- 238000002189 fluorescence spectrum Methods 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 8
- 229910052684 Cerium Inorganic materials 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000000976 ink Substances 0.000 description 7
- 238000001354 calcination Methods 0.000 description 6
- -1 rare earth metal ions Chemical class 0.000 description 6
- 229910052693 Europium Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 150000002910 rare earth metals Chemical class 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 4
- XQTIWNLDFPPCIU-UHFFFAOYSA-N cerium(3+) Chemical compound [Ce+3] XQTIWNLDFPPCIU-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- TVGGZXXPVMJCCL-UHFFFAOYSA-N [Si].[La] Chemical compound [Si].[La] TVGGZXXPVMJCCL-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 150000001553 barium compounds Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- CZMAIROVPAYCMU-UHFFFAOYSA-N lanthanum(3+) Chemical compound [La+3] CZMAIROVPAYCMU-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Luminescent Compositions (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
本発明は、紫外光による励起を受けて青色に発光する蛍光体に関する。この蛍光物質は、六角板状の形状を有する非晶質体である。本発明はまた、この蛍光体を、ゼオライトのイオン交換および焼成により製造する方法にも関する。本発明はさらに、この蛍光体が板状であるという特徴を利用した、すぐれた塗布性と隠蔽性を有する蛍光インキ、ならびに、この蛍光体を使用したフラットディスプレイ、有価証券および各種製品ラベルの偽造防止技術にも関する。 The present invention relates to a phosphor that emits blue light upon being excited by ultraviolet light. This fluorescent material is an amorphous body having a hexagonal plate shape. The present invention also relates to a method for producing the phosphor by ion exchange and calcination of zeolite. The present invention further provides a fluorescent ink having excellent coating properties and concealing properties utilizing the feature that the phosphor is plate-like, and forgery of flat displays, securities and various product labels using the phosphor. It also relates to prevention technology.
ゼオライトは、そのキャビティ(細孔)内に発光中心となる希土類元素をイオン交換により均一に分散させることが容易であることから、ゼオライトを母結晶ないし原料に用いた蛍光体が、多数知られている。ゼオライトを使用した蛍光体の技術を概観すれば、つぎのとおりである。 Since zeolite is easy to uniformly disperse rare earth elements that become luminescent centers in its cavities (pores) by ion exchange, many phosphors using zeolite as a mother crystal or raw material are known. Yes. An overview of the technology of phosphors using zeolite is as follows.
まず、希土類金属のイオンを、ゼオライトキャビティに混入した配位子と錯体を形成させ、この配位子を希土類金属の発光輻射線より低い波長範囲において励起電磁線を吸収できるように、電子構造に関して希土類金属を選定し、かつ、配位子のトリプレットレベルを希土類金属の放射レベルより上にするという原理が開示された(特許文献1)。希土類元素としてはさまざまなものが使用可能であるが、とくにユーロピウムEuが有用であることが知られている。Euや、Tbのイオンを含むゼオライトに、酸化モリブデン、酸化タングステン、酸化ニオブ、酸化タンタルなどの遷移金属酸化物を加えたものも提案された(特許文献2)。 First, the rare earth metal ions are complexed with the ligand mixed in the zeolite cavity, and this ligand can absorb excitation electromagnetic radiation in a wavelength range lower than the emission radiation of the rare earth metal. The principle of selecting a rare earth metal and making the triplet level of the ligand above the radiation level of the rare earth metal has been disclosed (Patent Document 1). Various rare earth elements can be used, and europium Eu is known to be particularly useful. A proposal has also been made in which transition metal oxides such as molybdenum oxide, tungsten oxide, niobium oxide, and tantalum oxide are added to zeolite containing Eu and Tb ions (Patent Document 2).
ゼオライト中の水分の存在は励起を妨げるので、ゼオライトのイオン交換をしたのち焼成して、ゼオライト構造を非晶質化するか、または他のアルミノケイ酸塩構造の化合物に変換するか、希土類金属を有機配位子と錯体化するかのいずれかを行なう必要があり、この処理を経て、蛍光体として機能するようになる。蛍光体の製造時に水分を除去しても、使用中に水分を環境から再度取り込んでしまえば、蛍光体は、蛍光を発する機能を失う。これを防止して、蛍光を発する機能を維持するため、ゼオライトに水分が再吸着しないような手段が考えられている。たとえば、ビピリジンのような有機化合物を用いてEuと錯体を形成させて、Y型ゼオライトの内部に位置させるということが試みられた(非特許文献1)。 Since the presence of moisture in the zeolite prevents excitation, the zeolite is exchanged and calcined to amorphize the zeolite structure or convert it to other aluminosilicate compounds, Either it needs to be complexed with an organic ligand, and after this treatment, it functions as a phosphor. Even if moisture is removed during the production of the phosphor, if the moisture is taken in again from the environment during use, the phosphor loses the function of emitting fluorescence. In order to prevent this and maintain the function of emitting fluorescence, means for preventing moisture from re-adsorbing on zeolite has been considered. For example, an attempt has been made to form a complex with Eu using an organic compound such as bipyridine and position it inside the Y-type zeolite (Non-patent Document 1).
一方、ゼオライト細孔内に金属酸化物−希土類金属からなる蛍光体を均一に分散させた蛍光体材料も提案された(特許文献3)。ただしこれは、ゼオライトそのものに蛍光特性を付与するものではない。 On the other hand, a phosphor material in which a phosphor composed of a metal oxide-rare earth metal is uniformly dispersed in a zeolite pore has also been proposed (Patent Document 3). However, this does not impart fluorescent properties to the zeolite itself.
前記した蛍光性能の維持という目的を達する技術としては、ゼオライト単結晶に発光マトリックス用金属酸化物、具体的にはスズ、亜鉛またはインジウムの酸化物に、発光中心用希土類金属との複合体を担持させたものもある(特許文献3)。発明者らの一部は、フォージャサイト型ゼオライトをEu3+でイオン交換したのち、焼成してなる蛍光体を開示した(特許文献4)。 As a technique for achieving the above-mentioned objective of maintaining the fluorescence performance, a zeolite single crystal carries a metal oxide for a luminescent matrix, specifically, a complex of a rare earth metal for a luminescent center on an oxide of tin, zinc or indium. Some have been made (Patent Document 3). A part of the inventors disclosed a phosphor obtained by ion-exchanging faujasite-type zeolite with Eu 3+ and then firing (Patent Document 4).
この蛍光体を、粒子形状が均一であって粒径の制御が容易であり、粒径が小さくても強い発光が得られるものとして得るため、アルミノシリケート系非晶質マトリックス中に、セラミックスの結晶微粒子を分散させた複合体とする提案もある(特許文献5)。ただしこれは、ゼオライト由来のシリカとアルミナの非晶質マトリックス中に、蛍光体であるセラミックス微粒子を分散させる方法であり、ゼオライト構造を保持した蛍光体を与えるものではない。 In order to obtain this phosphor with uniform particle shape, easy control of the particle size, and strong light emission even when the particle size is small, a ceramic crystal is incorporated in an aluminosilicate amorphous matrix. There is also a proposal for a composite in which fine particles are dispersed (Patent Document 5). However, this is a method in which ceramic fine particles as a phosphor are dispersed in an amorphous matrix of silica and alumina derived from zeolite, and does not give a phosphor having a zeolite structure.
フィールドエミッションディスプレイ用の蛍光体に代表される、いわゆる次世代蛍光材料には、高発光効率に加えて、低速電子線のようなエネルギーの低い電磁波で励起できるという特性が要求される。この目的には、ナノサイズの蛍光体が適当であるが、従来の蛍光体を単にナノサイズ化すると、表面積の増大に伴う発光強度の減少が避けられない。この問題を解決する途は、蛍光体を厚さ方向にだけナノサイズであって、面方向には大きな板状体にすることである。 A so-called next-generation fluorescent material represented by a phosphor for a field emission display is required to have a characteristic that it can be excited by an electromagnetic wave having a low energy such as a low-speed electron beam in addition to a high luminous efficiency. For this purpose, a nano-sized phosphor is suitable. However, if the conventional phosphor is simply nano-sized, a decrease in emission intensity accompanying an increase in surface area is inevitable. The way to solve this problem is to make the phosphor nano-sized only in the thickness direction and large in the plane direction.
また、有価証券や製品ラベル等には、偽造防止技術(セキュリティ技術)として、蛍光体を使用した印刷や、紙そのものが発光するセキュリティペーパーを用いることが行なわれている。この目的に適した蛍光体としては、紫外線励起可視光発光蛍光体が好適であるとして使用されている。セキュリティ技術に利用する蛍光体は、紙をはじめとする媒体の上に印刷ないし塗布して使用することから、塗布性、遮蔽性が高い板状の粒子であることが好ましい。 For securities and product labels, printing using phosphors and security paper that emits light from the paper itself are used as anti-counterfeiting technology (security technology). As a phosphor suitable for this purpose, an ultraviolet-excited visible light-emitting phosphor is used as being suitable. The phosphor used in the security technology is preferably printed or coated on a medium such as paper, so that it is preferably plate-like particles having high coating properties and shielding properties.
このように、さまざまな分野において、板状の蛍光体が求められている。しかし、従来の酸化物系または硫化物系の蛍光体を製造する方法は、固相反応法やフラックス法であって、これらの方法で、結晶形態や粒径を制御することは困難である。 Thus, a plate-like phosphor is required in various fields. However, conventional methods for producing oxide-based or sulfide-based phosphors are a solid-phase reaction method and a flux method, and it is difficult to control the crystal form and particle size by these methods.
これまで板状の蛍光体として知られているのは、ホウ酸塩系のa(M1 1−xM2 x)2O3・B2O3(M1はY,LaまたはGd、M2はEu,TbまたはCe、0.005≦x≦0.2、0.5≦a≦2)の組成式により表される化合物であるが(特許文献6)。得られる蛍光体粒子は、最大径1〜5μm、厚さ0.05〜0.5μmとのことであるが、形態や粒径の制御は容易でない。 The plate-like phosphors known so far are borate-based a (M 1 1-x M 2 x ) 2 O 3 .B 2 O 3 (M 1 is Y, La or Gd, M 2 is a compound represented by a composition formula of Eu, Tb or Ce, 0.005 ≦ x ≦ 0.2, 0.5 ≦ a ≦ 2) (Patent Document 6). The obtained phosphor particles have a maximum diameter of 1 to 5 μm and a thickness of 0.05 to 0.5 μm, but it is not easy to control the form and particle size.
発明者らは、厚さ方向にはナノサイズであるが、面方向には十分な広がりをもつ板状体の結晶であって、比較的弱い励起電磁波によっても高い輝度の発光をするものを開発し、すでに提案した(特許文献7)。この蛍光体は、「リンデQ」型ゼオライトを基質とし、そのK+と希土類金属イオンとをイオン交換したのち、焼成してなるものであって、その蛍光スペクトルのピークは、希土類金属としてユーロピウムEuを使用したものは610nm(赤色)、テルビウムTbを使用したものは540nm(緑色)、ツリウムTmを使用したものは453nm(青色)である。しかしながら、Tmを使用した青色板状蛍光体は発光効率が低く、RGBの三原色をバランスよく揃えるには至らなかった。 The inventors have developed a plate-like crystal that is nano-sized in the thickness direction but sufficiently spread in the plane direction, and emits light with high luminance even with relatively weak excitation electromagnetic waves. And it has already been proposed (Patent Document 7). This phosphor is obtained by using “Linde Q” -type zeolite as a substrate, ion-exchanging K + and rare earth metal ions, and calcining. The peak of the fluorescence spectrum is europium Eu as the rare earth metal. Is 610 nm (red), terbium Tb is 540 nm (green), and thulium Tm is 453 nm (blue). However, the blue plate-like phosphor using Tm has low luminous efficiency, and the three primary colors of RGB have not been well balanced.
青色に発光する蛍光体としては、セリウムCe(III)イオンを発光中心とした材料が多数提案されている。その種の青色発光蛍光体のひとつは、ランタンイオンサイトに固溶置換によりセリウムイオンを付活した、ランタン窒化ケイ素蛍光体に関するもの(特許文献8)である。いまひとつは、酸素、カルシウム、マグネシウムまたはアルミニウム、およびケイ素またはイットリウムからなる酸化物にセリウムを固溶した、セリウム含有酸化物に関するもの(特許文献9)である。さらに、バリウム化合物、ケイ素化合物およびセリウム化合物の混合物を、硫化水素または二硫化炭素の雰囲気中で焼成して得た青色発光蛍光体も提案された(特許文献10)。これらの技術は、いずれも、蛍光体の粒径や形態を制御することを含んでいないし、板状形態を有するものは、まだ実現していなかった。 As phosphors emitting blue light, many materials having a luminescence center of cerium Ce (III) ions have been proposed. One of such blue light-emitting phosphors relates to a lanthanum silicon nitride phosphor in which cerium ions are activated by solid solution substitution at a lanthanum ion site (Patent Document 8). The other is related to a cerium-containing oxide in which cerium is dissolved in an oxide composed of oxygen, calcium, magnesium or aluminum, and silicon or yttrium (Patent Document 9). Furthermore, a blue light-emitting phosphor obtained by firing a mixture of a barium compound, a silicon compound and a cerium compound in an atmosphere of hydrogen sulfide or carbon disulfide has also been proposed (Patent Document 10). None of these techniques includes controlling the particle size and form of the phosphor, and those having a plate-like form have not yet been realized.
別に、シリケート系複酸化物と付活剤とからなる青色発光蛍光体に関し、その粒径を1μm以下に制御する技術がある(特許文献11)。しかしこれも、板状蛍光体を提供する技術ではない。
このように、板状の蛍光体であって、強い青色の発光を示すものは、これまで得られていなかった。そこで発明者らは、板状の形状を有するゼオライトを母結晶として利用し、これに青色の発光をするセリウム(III) をイオン交換により保持させたものに立ち戻り、この蛍光体が、大気中の水分の再吸着や酸素によるCeイオンの酸化によって発光強度が減少することを防止する手段を求めて研究を続けた。その結果、板状形態のゼオライトの構造中に発光中心となるCeイオンを均一に分散させ、つづく焼成時にCeイオンが酸化されることを防ぎつつ母結晶の粒径および形態を保って焼成を行ない、ゼオライト構造を分解して非晶質化し細孔をつぶすことによって、使用中のCeイオンが酸化されることも防止でき、蛍光体が耐久性を獲得することを見出した。 Thus, a plate-like phosphor that exhibits strong blue light emission has not been obtained so far. Therefore, the inventors went back to using a zeolite having a plate-like shape as a mother crystal and holding cerium (III) emitting blue light by ion exchange. The research was continued in search of means for preventing the emission intensity from decreasing due to re-adsorption of moisture and oxidation of Ce ions by oxygen. As a result, Ce ions serving as emission centers are uniformly dispersed in the structure of the plate-shaped zeolite, and the firing is performed while maintaining the grain size and form of the mother crystal while preventing the Ce ions from being oxidized during firing. It has been found that by decomposing the zeolite structure to make it amorphous and crushing the pores, it is possible to prevent the Ce ions being used from being oxidized, and the phosphor gains durability.
本発明の基本的な目的は、上記した発明者らが得た新たな知見を活用し、さきに提案した板状蛍光体、すなわち厚さ方向にはナノサイズであるが、面方向には十分な広がりをもった板状の蛍光体に関する技術を発展させ、紫外光の照射によって青色光を蛍光として発し、その発光強度が実用上十分に高く、かつ耐久性に富んだ板状蛍光体と、その製造方法を提供することにある。 The basic object of the present invention is to make use of the new knowledge obtained by the above-described inventors and to propose the plate-like phosphor previously proposed, that is, nano-sized in the thickness direction but sufficient in the plane direction. Developed a technology for plate-like phosphors with a wide spread, emits blue light as fluorescence when irradiated with ultraviolet light, and its emission intensity is sufficiently high for practical use, and has a high durability, It is in providing the manufacturing method.
本発明の応用面での目的は、この板状蛍光体を使用した塗膜の形成に適した印刷インクを提供することであり、さらに、そのインクで形成した塗膜の形成により偽造防止処理を施した書類を提供するとともに、この処理を施した書類について、その偽造を検知する方法を提供することにある。 An object in the application aspect of the present invention is to provide a printing ink suitable for the formation of a coating film using the plate-like phosphor, and further, forgery prevention treatment is performed by forming a coating film formed of the ink. An object of the present invention is to provide a method for detecting a forgery of a document subjected to this processing.
本発明の青色の蛍光を発する板状蛍光体は、K2O・Al2O3・2SiO2・xH2Oの組成を有し、六角板状の結晶形態をもつ「リンデQ」型ゼオライトにイオン交換を行なってCe3+イオンを分散させ、かつ、ゼオライト結晶のミクロ構造は破壊して非晶質としてなり、紫外線で励起されて青色の蛍光を発する板状蛍光体である。 Blue fluorescing plate phosphor of the present invention, K 2 O · Al 2 O 3 · 2SiO 2 · xH has a composition of 2 O, in "Linde Q" type zeolite having a hexagonal plate-like crystal morphology It is a plate-like phosphor that performs ion exchange to disperse Ce 3+ ions, destroys the microstructure of the zeolite crystal to become amorphous, and is excited by ultraviolet rays to emit blue fluorescence.
この板状蛍光体を製造する本発明の方法は、K2O・Al2O3・2SiO2・xH2Oの組成を有し、六角板状の結晶形態をもつ「リンデQ」型ゼオライトを、Ceの可溶性塩の水溶液に浸漬し、温度100℃以下でゼオライト中のK+とCe3+イオンとのイオン交換を行なって、少なくとも20%の交換率でCeイオンを存在させたのち、非酸化性の雰囲気下で、850℃以上1000℃未満、好ましくは900℃近辺の温度で焼成することにより、ゼオライトの結晶構造を破壊して非晶質とするが、板状の外形を維持した蛍光体を得ることからなる。 The method of the present invention for producing the plate-like phosphor, K 2 O · Al 2 O 3 · 2SiO 2 · xH has a composition of 2 O, the "Linde Q" type zeolite having a hexagonal plate-like crystal morphology After immersing in an aqueous solution of a soluble salt of Ce and performing ion exchange between K + and Ce 3+ ions in the zeolite at a temperature of 100 ° C. or less, Ce ions are present at an exchange rate of at least 20%, and then non-oxidized In an amorphous atmosphere by firing at a temperature of 850 ° C. or higher and lower than 1000 ° C., preferably near 900 ° C., thereby destroying the crystal structure of the zeolite to make it amorphous, but maintaining a plate-like outer shape Consisting of.
本発明の蛍光体を特徴づけるものは、セリウム(III) のリンデQ型ゼオライトを基質として選択し、その中のK+とCe3+イオンとをイオン交換したのち、Ce3+イオンのCe4+イオンへの酸化を防ぐために非酸化性すなわち不活性または還元性の雰囲気下で焼成し、ゼオライトの結晶構造は破壊するが板状の外形は維持することにある。リンデQ型ゼオライトは、六角板状の結晶形態を有し、厚さ10〜200nm、径0.5〜10μm、アスペクト比5以上のものが容易に合成できる。リンデQ型という、高度に扁平で、厚さ方向にナノサイズである結晶形態のゼオライトを使用することにより、比較的低速な電磁波により励起することができるだけでなく、微細化にともなう発光性能の低下を回避することができる。 What characterizes the phosphor of the present invention is that a cerium (III) Linde Q-type zeolite is selected as a substrate, K + and Ce 3+ ions therein are ion-exchanged, and then Ce 3+ ions are converted to Ce 4+ ions. In order to prevent the oxidation of the steel, it is fired in a non-oxidizing, that is, inert or reducing atmosphere, and the crystal structure of the zeolite is destroyed, but the plate-like outer shape is maintained. Linde Q-type zeolite has a hexagonal plate-like crystal form, and can be easily synthesized with a thickness of 10 to 200 nm, a diameter of 0.5 to 10 μm, and an aspect ratio of 5 or more. By using Linde Q-type zeolite that is highly flat and nano-sized in the thickness direction, it can be excited by relatively low-speed electromagnetic waves, and the light emission performance decreases with miniaturization. Can be avoided.
本発明の効果は、Ce3+イオン交換を行なったゼオライトを、850℃以上1000℃未満、代表的には900℃近辺の温度で、非酸化性雰囲気下に焼成することにより、非晶質化が起こるにもかかわらず、六角板状という結晶の外形が保存されることにある。非晶質化によって焼成後の復水、すなわち水分の再吸着が阻止されるので、使用中の発光強度の減少という問題から開放され、長期にわたって安定した発光を期待することができる。従来の技術、たとえば前記した、発明者らによる特許文献7の技術によって、発光中心となる希土類元素をセリウム(III)イオンとして青色板状蛍光体を製造すると、セリウム(III)が酸化されてセリウム(IV)となり、青色発光しないが、焼成を非酸化性雰囲気で行ない、セリウム(III)イオンの酸化を防ぐことで、高効率な発光特性が実現する。 The effect of the present invention is that the zeolite that has undergone Ce 3+ ion exchange is calcined in a non-oxidizing atmosphere at a temperature of 850 ° C. or higher and lower than 1000 ° C., typically around 900 ° C. Despite what happens, the hexagonal crystal shape is preserved. Since the condensate after firing, that is, the re-adsorption of moisture, is prevented by the amorphization, it is freed from the problem of a decrease in light emission intensity during use, and stable light emission can be expected over a long period of time. When a blue plate-like phosphor is manufactured by using a conventional technique, for example, the technique of Patent Document 7 by the inventors as described above, using a rare earth element serving as a light emission center as a cerium (III) ion, cerium (III) is oxidized to cerium. It becomes (IV) and does not emit blue light, but high-efficiency emission characteristics are realized by firing in a non-oxidizing atmosphere and preventing oxidation of cerium (III) ions.
リンデQ型ゼオライトはまた、イオン交換容量が大きく、発光中心となるCe3+イオンを大量に含むことができるから、高い輝度の蛍光体を得ることが容易である。従来の固相反応で製造した蛍光体は、焼成後に粉砕する必要があったが、本発明の蛍光体は前記のように焼成状態で粉末であるから、粉砕する必要がなく、粉砕にともなう問題が生じない。 Linde Q-type zeolite also has a large ion exchange capacity and can contain a large amount of Ce 3+ ions serving as a luminescent center, so that it is easy to obtain a phosphor with high brightness. The phosphor produced by the conventional solid phase reaction had to be pulverized after firing. However, since the phosphor of the present invention is a powder in the fired state as described above, there is no need to pulverize, and there is a problem with pulverization. Does not occur.
既存の技術による、Ce(III)イオンを発光中心とした青色発光蛍光体は、板状形態ではない。本発明は、六角板状ゼオライトの結晶の外形を維持したまま蛍光特性を付与するものであり、新しい蛍光体である。板状であることにより、その特性を生かして、前記の蛍光塗料ないし印刷インクは、きわめて薄くても明瞭に発光する塗膜を形成することができるから、偽造防止技術にとって有用である。 The blue light-emitting phosphor that uses Ce (III) ions as the emission center according to the existing technology is not in the form of a plate. The present invention provides a fluorescent property while maintaining the outer shape of the hexagonal plate-like zeolite crystal, and is a new phosphor. Because of its plate shape, the fluorescent paint or printing ink can be used for anti-counterfeiting technology because it can form a coating film that emits light clearly even if it is very thin.
板状結晶のゼオライトとしては、リンデQのほかにもクリノプチロライトなどがあり、これらも板状蛍光体の原料となり得るが、リンデQ型ゼオライトは、六角板状の結晶自形を持つだけでなく、イオン交換容量が大きく発光中心となる希土類金属イオンを大量に含有できるという有利さもあって、とくに好適である。リンデQ型ゼオライトは、径0.5〜10μm、厚さ10〜200nm、アスペクト比5以上のものが好ましい。 In addition to Linde Q, there are clinoptilolite, etc., which can be used as raw materials for plate-like phosphors, but Linde Q-type zeolite has only a hexagonal plate-like crystal itself. In addition, there is an advantage that a large amount of rare earth metal ions having a large ion exchange capacity and serving as a luminescent center can be contained, which is particularly preferable. The Linde Q-type zeolite preferably has a diameter of 0.5 to 10 μm, a thickness of 10 to 200 nm, and an aspect ratio of 5 or more.
本発明の製造方法の第一の工程は、ゼオライト中にあらかじめ存在するKイオンを青色発光の発光中心となるCe(III)イオンとイオン交換するために、Ce(III)の可溶性塩の水溶液中にゼオライトを分散させてイオン交換させることである。 In the first step of the production method of the present invention, an aqueous solution of a soluble salt of Ce (III) is used to exchange K ions pre-existing in the zeolite with Ce (III) ions that are the emission center of blue light emission. The zeolite is dispersed in and ion exchanged.
Ceの可溶性塩としては、硝酸塩、塩化物、酢酸塩、硫酸塩などを挙げることができ、入手の容易なものを選んで使用すればよい。ゼオライト中のK+とCe3+イオンとのイオン交換は、適宜の濃度をもつ可溶性塩の水溶液にゼオライトを浸漬し、100℃未満の温度に数〜数十時間保持することにより、容易に行なえる。イオン交換率は、蛍光体に実用的な輝度の発光を起こさせるためには、上記のように少なくとも20%が必要であり、90%程度の高い交換率も実現可能である。すなわち、より高い発光強度を追求する場合は70〜90%の高いイオン交換率を、経済性を重視する場合は、所望の発光強度が得られる限度で、40〜70%という低めの値を選択する。到達するイオン交換率は、使用した可溶性塩の濃度にほぼ比例するから、所望のイオン交換率に対して適切な濃度の水溶液を使用すべきである。 Examples of the soluble salt of Ce include nitrates, chlorides, acetates, sulfates, etc., and those that are readily available may be selected and used. Ion exchange between K + and Ce 3+ ions in zeolite can be easily performed by immersing the zeolite in an aqueous solution of a soluble salt having an appropriate concentration and holding it at a temperature of less than 100 ° C. for several to several tens of hours. . The ion exchange rate needs to be at least 20% as described above in order to cause the phosphor to emit light having a practical luminance, and a high exchange rate of about 90% can be realized. That is, a high ion exchange rate of 70 to 90% is selected when pursuing higher emission intensity, and a lower value of 40 to 70% is selected as far as the desired emission intensity is obtained when importance is attached to economy. To do. Since the ion exchange rate reached is approximately proportional to the concentration of soluble salt used, an aqueous solution with an appropriate concentration for the desired ion exchange rate should be used.
Ce(III)イオンは、酸化されてより安定なCe(IV)イオンへ変化するため、焼成は非酸化性の、すなわち不活性、好ましくは還元性の雰囲気で行なう。還元性雰囲気は、たとえばヘリウムガス中に5容積%程度のH2ガスを混合したガスを流通させるなどの手段により、容易に実現する。焼成温度は、六角板状形態を保ちつつ、ゼオライト構造を分解して非晶質とする850℃以上1000℃未満、好ましくは900℃近辺とする。このような処理によって得た青色発光板状蛍光体は非晶質であり、ゼオライト細孔がつぶれた緻密な構造であることから、大気中の酸素によるCe(III)イオンの酸化が防止され、発光特性が長期にわたって維持できる。 Since Ce (III) ions are oxidized to change to more stable Ce (IV) ions, the calcination is performed in a non-oxidizing, ie inert, preferably reducing atmosphere. The reducing atmosphere is easily realized by means such as circulating a gas obtained by mixing about 5% by volume of H 2 gas in helium gas. The calcination temperature is 850 ° C. or higher and lower than 1000 ° C., preferably around 900 ° C., while maintaining the hexagonal plate shape to decompose the zeolite structure to be amorphous. The blue light-emitting plate-like phosphor obtained by such treatment is amorphous and has a dense structure in which the zeolite pores are crushed, so that oxidation of Ce (III) ions by atmospheric oxygen is prevented, Luminescent characteristics can be maintained over a long period of time.
イオン交換後、水洗、100℃以下で乾燥された試料は紫外線発光が認められるが、青色発光はしない。これは、Ce(III)イオンに配位している水の影響と考えられる。そのためCe(III)イオン交換ゼオライトを焼成し脱水する必要がある。しかしながら、Ce(III)イオンは大気中で焼成すると酸化され、より安定なCe(IV)イオンとなりやすく、そうなると発光特性を示さない。本発明においては、上記した5%H2−He還元性ガスまたはN2ガスなどの不活性雰囲気下で焼成することによって、Ce(III)イオンを維持することができる。 After ion exchange, the sample washed with water and dried at 100 ° C. or lower shows ultraviolet light emission but does not emit blue light. This is considered to be due to the influence of water coordinated with Ce (III) ions. Therefore, it is necessary to calcine and dehydrate Ce (III) ion-exchanged zeolite. However, Ce (III) ions are oxidized when baked in the atmosphere, and are more likely to become more stable Ce (IV) ions. In the present invention, Ce (III) ions can be maintained by firing in an inert atmosphere such as the above-described 5% H 2 -He reducing gas or N 2 gas.
従来技術においては、イオン交換後、ゼオライト構造が破壊しない800℃以下で焼成することにより、希土類金属イオンの配位水のみを脱離させた。一般に、ゼオライト構造が保持されていると、脱水状態では発光するが、使用中に復水して、発光しなくなるか、少なくとも発光強度が著しく減衰する。しかし、リンデQ型ゼオライトから出発すれば、脱水状態で発光することはもちろんのこと、復水後も脱水状態と同程度の発光強度を示す。一方、Ce(III)イオン交換ゼオライトでは、ゼオライト構造が保持されていると、Ce(III)イオンは大気により酸化されCe(IV)イオン(おそらくは酸化物CeO2となる)となり、発光特性を維持できない。本発明においては、Ce(III)イオン交換ゼオライトを850℃以上、好ましくは900℃近辺で焼成することにより、ゼオライト構造が破壊され、非晶質化するものの、リンデQ型ゼオライトの結晶の外形が維持され、良好な発光特性を有する蛍光体が板状の形態をもって製造できる。 In the prior art, after the ion exchange, only the coordinated water of the rare earth metal ions was desorbed by firing at 800 ° C. or lower where the zeolite structure was not destroyed. In general, if the zeolite structure is maintained, light is emitted in a dehydrated state, but condensates during use, and light is no longer emitted, or at least the light emission intensity is significantly attenuated. However, starting from Linde Q-type zeolite, it emits light in a dehydrated state, and also exhibits a luminous intensity comparable to that in the dehydrated state even after condensate. On the other hand, in Ce (III) ion-exchanged zeolite, if the zeolite structure is maintained, Ce (III) ions are oxidized by the atmosphere to become Ce (IV) ions (probably oxides CeO 2 ), maintaining the light emission characteristics. Can not. In the present invention, Ce (III) ion-exchanged zeolite is calcined at 850 ° C. or more, preferably around 900 ° C., thereby destroying the zeolite structure and making it amorphous. A phosphor that is maintained and has good emission characteristics can be produced in a plate-like form.
本発明の蛍光塗料ないし印刷インクは、この青色発光する板状蛍光体を適宜のビヒクルに分散させたものである。ビヒクルの選択や、分散濃度の決定は、塗料ないし印刷インクの分野において既知の技術に従って行なうことができる。 The fluorescent paint or printing ink of the present invention is obtained by dispersing the blue phosphor-like plate-like phosphor in an appropriate vehicle. The selection of the vehicle and the determination of the dispersion concentration can be carried out according to techniques known in the field of paints or printing inks.
本発明の蛍光を発する塗膜を形成する方法は、上記の蛍光塗料ないし印刷インクを、板状体が基材の面に沿って配向される塗布手段を用いて基材に塗布し、厚さ方向にナノサイズの板状蛍光体が存在する塗膜を得ることからなる。板状の結晶を基材の面に沿って配向させる手段としては、刷毛塗りやドクターブレードを用いた塗布がある。本発明の蛍光体は板状であるため、それをビヒクルに分散させて得た塗料は、紙などに対する塗布性が高く、高度化が求められているセキュリティ印刷に好適である。 The method of forming a fluorescent coating film according to the present invention comprises applying the fluorescent paint or printing ink to a substrate using a coating means in which a plate-like body is oriented along the surface of the substrate. It consists in obtaining a coating film in which a nano-sized plate-like phosphor is present in the direction. Means for orienting the plate-like crystals along the surface of the substrate includes brush coating and coating using a doctor blade. Since the phosphor of the present invention is plate-like, a paint obtained by dispersing it in a vehicle has high applicability to paper and the like, and is suitable for security printing that is required to be advanced.
本発明の板状蛍光体を添加したコーティング材を紙に塗布すれば、紙そのものが紫外線の励起を受けたときに青色発光をするものとなるから、その紙を使用して書類をつくったり、物品を包装したりすれば、書類や物品の真偽の判別に有用である。このような青色発光をする紙もまた、本発明に含まれる。 If the coating material to which the plate-like phosphor of the present invention is added is applied to paper, the paper itself emits blue light when it is excited by ultraviolet rays. If an article is packaged, it is useful for authenticating documents and articles. Such paper that emits blue light is also included in the present invention.
本発明の偽造防止処理を施した書類は、偽造を防止すべき書類を基材とし、その表面に上述した塗膜形成を行なうことによって得られる。偽造を防止すべき書類は、有価証券、製品ラベルそのほか操業日誌のように記録の改ざんを防止すべきものなど、多岐にわたる。形成した塗膜はきわめて薄いから、その存在自体が視認できず、偽造防止処理を施した書類であることからして、気づかれにくい。 The document subjected to the anti-counterfeiting treatment of the present invention is obtained by using the document to be prevented from forgery as a base material and forming the above-described coating film on the surface thereof. There are a wide variety of documents that should be prevented from forgery, such as securities, product labels, and other documents that should prevent falsification of records, such as operation diaries. Since the formed coating film is extremely thin, its presence itself cannot be visually recognized, and it is difficult to notice because it is a document that has been subjected to anti-counterfeiting treatment.
本発明の書類の偽造を検知する方法は、上述のようにして偽造防止処理を施した書類に対して紫外線を照射し、励起された発光体から生じる青色光を検出することからなる。真正な書類であれば、青色光を発することによりそれが確認できる。発光効率が高いから、蛍光の発光は容易に認識できる。励起光と発光光との間で波長領域が異なるため、両者を遮断するための対策をとる必要がない。 The method for detecting forgery of a document according to the present invention comprises irradiating a document subjected to anti-counterfeiting treatment as described above with ultraviolet rays and detecting blue light generated from an excited light emitter. If it is a genuine document, it can be confirmed by emitting blue light. Since the luminous efficiency is high, fluorescence emission can be easily recognized. Since the wavelength region is different between the excitation light and the emitted light, it is not necessary to take measures to block them.
平均粒径1.17μm、厚さ約100nmの六角板状結晶形態を有するK型リンデQゼオライト(以下、「リンデQ」と略称する)を合成した。硝酸セリウムCe(NO3)3の濃度を0.025,0.05,0.1,0.15,0.2および0.25mol/Lに選んだ水溶液各60mLに、上記のリンデQを8gずつ投入し、90℃に24時間保持して、イオン交換処理を行なった。メンブランフィルターにより濾過し、蒸留水で洗浄後、50℃で乾燥して、セリウム交換リンデQを得た。(以下、「イオン交換試料」という。) K-type Linde Q zeolite (hereinafter abbreviated as “Linde Q”) having an average particle size of 1.17 μm and a hexagonal plate-like crystal form with a thickness of about 100 nm was synthesized. In each 60 mL of an aqueous solution in which the concentration of cerium nitrate Ce (NO 3 ) 3 was selected to be 0.025, 0.05, 0.1, 0.15, 0.2 and 0.25 mol / L, 8 g of the above Linde Q was added. Each was charged and kept at 90 ° C. for 24 hours for ion exchange treatment. Filtration through a membrane filter, washing with distilled water, and drying at 50 ° C. gave cerium-exchanged Linde Q. (Hereinafter referred to as “ion exchange sample”)
上記のイオン交換試料を酸で分解し、誘導結合プラズマ発光分析装置(島津製作所製「ICPS−8000」)によりCeおよびKを定量して、イオン交換率を求めた。その結果は、つぎの表1に示すとおりであって、No.4すなわちCe水溶液濃度が0.15mol/L付近までは、水溶液の濃度に比例したイオン交換率が得られた。 The ion exchange sample was decomposed with an acid, and Ce and K were quantified with an inductively coupled plasma emission spectrometer (“ICPS-8000” manufactured by Shimadzu Corporation) to obtain an ion exchange rate. The results are as shown in Table 1 below. 4. That is, an ion exchange rate proportional to the concentration of the aqueous solution was obtained until the concentration of the Ce aqueous solution was close to 0.15 mol / L.
表1
Table 1
No.3のイオン交換試料を白金ルツボに入れ、大気雰囲気中(すなわち酸化性雰囲気中)または5%H2−Heガスの還元性雰囲気中、温度900℃において1時間焼成した(「加熱試料」と呼ぶ)。未焼成のイオン交換試料、大気雰囲気加熱試料および還元性雰囲気加熱試料のX線回折測定(マック・サイエンス製「MXP3A」を使用)を行なって、XRDパターンを得た。その結果を図1に示す。 No. 3 was placed in a platinum crucible and baked for 1 hour at 900 ° C. in an air atmosphere (that is, in an oxidizing atmosphere) or in a reducing atmosphere of 5% H 2 -He gas (referred to as “heated sample”). ). An XRD pattern was obtained by performing X-ray diffraction measurement (using “MXP3A” manufactured by Mac Science) of the unfired ion exchange sample, the air atmosphere heating sample, and the reducing atmosphere heating sample. The result is shown in FIG.
図1のXRDパターンによれば、イオン交換試料はゼオライト構造を維持しており、900℃に加熱した試料においては、ゼオライト構造がこわれ始めていることが窺われるが、なおかなり維持されているようである。イオン交換を行なってないK型リンデQゼオライトは、加熱すると400℃で構造が破壊されることが知られているが、EuやTbでイオン交換したゼオライトは熱安定性が増すことが知られており、Ce交換ゼオライトも同様であることが判明した。加熱雰囲気が結晶性の変化に与える影響は、あまり大きくないようである。 According to the XRD pattern in FIG. 1, the ion exchange sample maintains the zeolite structure, and in the sample heated to 900 ° C., it can be seen that the zeolite structure has begun to break, but it still seems to be maintained fairly. is there. It is known that the structure of K-type Linde Q zeolite that has not been ion-exchanged is destroyed at 400 ° C when heated, but zeolite that has been ion-exchanged with Eu or Tb is known to have increased thermal stability. It was also found that Ce-exchanged zeolite was the same. The effect of the heating atmosphere on the change in crystallinity does not appear to be very large.
上記3種の試料について、分光蛍光光度計(日立製作所製「F−2500」)を使用して、波長295nmの紫外光で励起したときの蛍光スペクトルを測定した。その結果を、図2に示す。還元性雰囲気での加熱試料からは、410nm付近に幅広い波長域にわたって発光ピークが見られた。これに対して酸化性雰囲気での加熱試料は、まったく発光がみられない。これは、イオン交換したCe3+が酸化された(おそらくCeO2に)ものと考えられる。還元性雰囲気下の加熱試料にブラックライト(λ=365nm)を照射すると、青色の発光が認められた。 Using the spectrofluorometer ("F-2500" manufactured by Hitachi, Ltd.), fluorescence spectra were measured for the above three types of samples when excited with ultraviolet light having a wavelength of 295 nm. The result is shown in FIG. From the heated sample in a reducing atmosphere, an emission peak was observed over a wide wavelength range near 410 nm. In contrast, the heated sample in the oxidizing atmosphere does not emit light at all. This is probably because the ion exchanged Ce 3+ was oxidized (probably to CeO 2 ). When a heated sample in a reducing atmosphere was irradiated with black light (λ = 365 nm), blue light emission was observed.
前記した種々のイオン交換率のイオン交換試料を、いずれも900℃の還元性雰囲気で焼成した加熱試料を用意し、XRDパターンを調べた。その結果を図3に示す。イオン交換率11.3〜80.5%の全体にわたり、ゼオライト構造がほとんど分解して非晶質となっていることがわかった。ただしその中で、イオン交換率47.6%のもの(No.3)は、わずかに回折ピークを示していた。このことから、加熱試料の結晶性はイオン交換率によって異なり、リンデQゼオライトの熱安定性はCe存在量に依存するということができる。 A heated sample obtained by firing the ion exchange samples having various ion exchange rates described above in a reducing atmosphere at 900 ° C. was prepared, and an XRD pattern was examined. The result is shown in FIG. It was found that the zeolite structure was almost decomposed and became amorphous throughout the ion exchange rate of 11.3 to 80.5%. However, among them, the one with an ion exchange rate of 47.6% (No. 3) showed a slight diffraction peak. From this, it can be said that the crystallinity of the heated sample varies depending on the ion exchange rate, and the thermal stability of Linde Q zeolite depends on the amount of Ce present.
上記の、還元性雰囲気において900℃に加熱した、種々のイオン交換率の試料について、励起波長295nmにおける蛍光スペクトルを測定して、図4に示す結果を得た。すべての加熱試料から、410nm付近に発光ピークを有する青色発光が見られた。その発光強度は、イオン交換率が高いほど、すなわちCeの存在量が大きいほど、高くなることがわかった。 With respect to the samples having various ion exchange rates heated to 900 ° C. in a reducing atmosphere, fluorescence spectra at an excitation wavelength of 295 nm were measured, and the results shown in FIG. 4 were obtained. From all the heated samples, blue light emission having an emission peak around 410 nm was observed. It has been found that the emission intensity increases as the ion exchange rate increases, that is, as the abundance of Ce increases.
イオン交換試料の中でイオン交換率が最大の80.5%のものを、種々の温度の還元性雰囲気で焼成した加熱試料について、X線回折測定を行なった。各加熱試料のXRDパターンを、図5に示す。図5のパターンから、80.5%Ce交換リンデQは、800℃の加熱でゼオライト構造を維持しているが、回折ピークが低くなっていることから、結晶構造がこわれ始めていることが推測される。さらに高温の900℃の加熱では、構造が非晶質となることがわかった。 X-ray diffraction measurement was performed on a heated sample obtained by calcining an ion exchange sample having a maximum ion exchange rate of 80.5% in a reducing atmosphere at various temperatures. The XRD pattern of each heated sample is shown in FIG. From the pattern of FIG. 5, 80.5% Ce-exchanged Linde Q maintains the zeolite structure by heating at 800 ° C., but since the diffraction peak is low, it is presumed that the crystal structure has begun to break. The Further, it was found that the structure becomes amorphous when heated at a high temperature of 900 ° C.
上記した還元性雰囲気で焼成した加熱試料のうち、800℃、900℃または1000℃で焼成したものを、走査型電子顕微鏡(日本電子製「JSM−6100」)で観察した。図6に、試料のSEM画像を示す。図6のSEM画像から、900℃までの加熱においては、結晶構造が維持されるか壊れるかにかかわらず、六角板状の形態が保たれることが確認された。1000℃の加熱では、不定形の焼結体となった。 Among the heated samples fired in the reducing atmosphere described above, those fired at 800 ° C., 900 ° C. or 1000 ° C. were observed with a scanning electron microscope (“JSM-6100” manufactured by JEOL). FIG. 6 shows an SEM image of the sample. From the SEM image in FIG. 6, it was confirmed that the hexagonal plate shape was maintained in the heating up to 900 ° C. regardless of whether the crystal structure was maintained or broken. Heating at 1000 ° C. resulted in an amorphous sintered body.
イオン交換率が80.5%のイオン交換試料を種々の温度の還元性雰囲気で焼成した加熱試料に対し、波長295nmの紫外光を照射して励起して、分光蛍光光度計(日立製作所製「F−2500」)により蛍光スペクトルを調べた。その結果を、図7に示す。図7にみるとおり、加熱温度200℃までは紫外線発光は微弱であり、これはゼオライト構造中に残っている水分が原因であると考えられる。加熱温度600℃においては、発光が増大して十分な脱水が行なわれたと解される。ところが、加熱温度800℃になると、紫外線発光が急激に減少している。非晶質になった900℃加熱の試料からは、青色発光のピークが現れて来る。この青色発光の強度は、1000℃加熱の試料において、わずかながら増大している。 A heated sample obtained by firing an ion exchange sample having an ion exchange rate of 80.5% in a reducing atmosphere at various temperatures is excited by irradiation with ultraviolet light having a wavelength of 295 nm. F-2500 ") and the fluorescence spectrum was examined. The result is shown in FIG. As seen in FIG. 7, the ultraviolet light emission is weak up to a heating temperature of 200 ° C., which is considered to be caused by moisture remaining in the zeolite structure. It is understood that at the heating temperature of 600 ° C., light emission increased and sufficient dehydration was performed. However, when the heating temperature reaches 800 ° C., the ultraviolet light emission decreases rapidly. A blue light emission peak appears from the sample heated to 900 ° C. which became amorphous. The intensity of the blue light emission is slightly increased in the sample heated at 1000 ° C.
イオン交換率80.5%のイオン交換試料を800℃以上の還元性雰囲気で焼成した加熱試料は、ゼオライト構造を維持していることから、大気中の水分を再吸着して、発光強度が低下する懸念がある。そこで、試料に復水処理を施して、発光特性がどのように変化するかを調べた。復水処理をした600℃加熱試料および900℃加熱試料の、励起波長295nmにおける蛍光スペクトルを、図8に示す。600℃加熱試料は、復水しても、発光特性が維持されることが確認できた。これは、イオン交換をEu3+またはTb3+で行なった場合と同様な結果である。900℃加熱試料は発光特性に変化がなかった。非晶質になっていて、復水することがないためと考えられる。 A heated sample obtained by calcining an ion exchange sample with an ion exchange rate of 80.5% in a reducing atmosphere at 800 ° C. or higher maintains the zeolite structure. There are concerns. Therefore, the sample was subjected to condensate treatment to examine how the light emission characteristics change. FIG. 8 shows the fluorescence spectra at an excitation wavelength of 295 nm of the 600 ° C. heated sample and the 900 ° C. heated sample subjected to the condensate treatment. It was confirmed that the luminescent characteristics were maintained even when the 600 ° C. heated sample was condensed. This is the same result as when ion exchange is performed with Eu 3+ or Tb 3+ . The sample heated at 900 ° C. did not change the light emission characteristics. This is probably because it is amorphous and does not condense.
ゼオライトのイオン交換により与えられたCe3+が酸化されてCe4+となり、発光強度が低下することが予想されたので、試料を大気中で200℃に加熱する酸化促進試験を行なって、促進処理後の発光特性を調査した。酸化促進処理した600℃加熱試料および900℃加熱試料の、励起波長295nmにおける蛍光スペクトルを、図9に示す。図9にみるとおり、900℃加熱試料は、酸化促進処理の後も、発光特性を維持していた。この試料は非晶質になっているため、Ce3+が酸化されなかったものと解される。これに対し、600℃加熱試料は発光が全く失われた。この理由は、試料がゼオライト構造であるため、Ce3+がCe4+に酸化されたことにあると思われる。 Ce 3+ given by ion exchange of zeolite was oxidized to Ce 4+ , and the emission intensity was expected to decrease. Therefore, an oxidation promotion test was performed in which the sample was heated to 200 ° C. in the atmosphere. The luminescence characteristics of were investigated. FIG. 9 shows fluorescence spectra at an excitation wavelength of 295 nm of the 600 ° C. heated sample and 900 ° C. heated sample subjected to oxidation promotion treatment. As seen in FIG. 9, the 900 ° C. heated sample maintained the light emission characteristics even after the oxidation promotion treatment. Since this sample is amorphous, it is understood that Ce 3+ was not oxidized. In contrast, the 600 ° C. heated sample lost all luminescence. The reason seems to be that Ce 3+ was oxidized to Ce 4+ because the sample had a zeolite structure.
以上の実験結果から、つぎのことが結論された。
1)リンデQゼオライトのイオン交換によって、リンデQの構造内に青色発光の中心となるCe3+を均一に分散させることができる。Ceイオンの交換率は、イオン交換に用いたCe塩溶液の濃度に比例する。
2)Ceイオンで交換したリンデQ(イオン交換率47.6%)を還元性雰囲気で900℃に加熱することによって、波長295nmの紫外光で励起したとき410nm付近にピークを有する青色に発光する蛍光体が得られる。加熱を大気中で行なった試料は発光せず、これはCe3+が酸化されCe4+になったためと思われる。
3)Ceイオン交換リンデQの青色発光ピークは、イオン交換率の増加にともない強くなる。
4)Ceイオン交換により、リンデQの熱安定性が向上する。熱安定性の向上の程度は、Ceイオン交換率に依存する。
5)イオン交換率が80.5%のCe交換リンデQは、加熱温度が800℃までは、ゼオライト構造を維持する。900℃以上に加熱すると、非晶質となる。
6)イオン交換率80.5%のCe交換リンデQは、加熱温度が900℃に至るまでは、ゼオライト構造が維持されるかこわれるかにかかわらず、六角板状の形態を維持する。
7)Ce交換リンデQは、加熱温度により、発光のピーク波長が異なる。加熱温度が高くなるにつれてピーク波長は長波長側にシフトし、900℃の加熱試料からは、励起波長295nmにおいて410nm付近にピークを有する青色の発光がみられる。
8)ゼオライト構造を維持する加熱試料は、水分を吸着して復水するが、復水後も発光特性を維持する。しかしながら、Ce3+の酸化により、発光特性を喪失する。これに対して非晶質の加熱試料は復水することがなく、かつ、酸化による発光強度の減少もない。
From the above experimental results, the following was concluded.
1) Ce 3+ that becomes the center of blue light emission can be uniformly dispersed in the structure of Linde Q by ion exchange of Linde Q zeolite. The exchange rate of Ce ions is proportional to the concentration of the Ce salt solution used for ion exchange.
2) When Linde Q (ion exchange rate 47.6%) exchanged with Ce ions is heated to 900 ° C. in a reducing atmosphere, it emits blue light having a peak near 410 nm when excited with ultraviolet light having a wavelength of 295 nm. A phosphor is obtained. The sample heated in the atmosphere did not emit light, which is probably because Ce 3+ was oxidized to Ce 4+ .
3) The blue emission peak of Ce ion exchange Linde Q becomes stronger as the ion exchange rate increases.
4) The Ce ion exchange improves the thermal stability of Linde Q. The degree of improvement in thermal stability depends on the Ce ion exchange rate.
5) Ce-exchanged Linde Q having an ion exchange rate of 80.5% maintains the zeolite structure up to a heating temperature of 800 ° C. When heated to 900 ° C. or higher, it becomes amorphous.
6) Ce-exchanged Linde Q having an ion exchange rate of 80.5% maintains a hexagonal plate-like form until the heating temperature reaches 900 ° C., regardless of whether the zeolite structure is maintained.
7) Ce-exchanged Linde Q has different emission peak wavelengths depending on the heating temperature. As the heating temperature increases, the peak wavelength shifts to the longer wavelength side, and blue light having a peak near 410 nm at an excitation wavelength of 295 nm is observed from a heated sample at 900 ° C.
8) The heated sample that maintains the zeolite structure adsorbs moisture and condenses, but maintains luminescent properties even after condensing. However, due to the oxidation of Ce 3+ , the luminescent properties are lost. On the other hand, the amorphous heated sample does not condense, and the emission intensity is not reduced by oxidation.
図は、いずれも本発明の実施例のデータであって、それぞれ下記の内容である。
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010055172A JP5700326B2 (en) | 2010-03-11 | 2010-03-11 | Fluorescent substance emitting blue light, its production method and use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010055172A JP5700326B2 (en) | 2010-03-11 | 2010-03-11 | Fluorescent substance emitting blue light, its production method and use |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011190297A true JP2011190297A (en) | 2011-09-29 |
JP5700326B2 JP5700326B2 (en) | 2015-04-15 |
Family
ID=44795557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010055172A Active JP5700326B2 (en) | 2010-03-11 | 2010-03-11 | Fluorescent substance emitting blue light, its production method and use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5700326B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013079342A (en) * | 2011-10-04 | 2013-05-02 | Tochigi Prefecture | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0797567A (en) * | 1992-12-31 | 1995-04-11 | Osram Sylvania Inc | Phosphorescent substance and its preparation |
JPH08506854A (en) * | 1993-12-17 | 1996-07-23 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Luminous screen |
JP2002212552A (en) * | 2001-01-22 | 2002-07-31 | Hitachi Maxell Ltd | Infrared light emitting fluorophor and printed matter |
JP2005048107A (en) * | 2003-07-30 | 2005-02-24 | Yoshizawa Lime Industry | Phosphor and method for producing the same |
JP2008069290A (en) * | 2006-09-14 | 2008-03-27 | Tochigi Prefecture | Plate-like phosphor and display using the same |
-
2010
- 2010-03-11 JP JP2010055172A patent/JP5700326B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0797567A (en) * | 1992-12-31 | 1995-04-11 | Osram Sylvania Inc | Phosphorescent substance and its preparation |
JPH08506854A (en) * | 1993-12-17 | 1996-07-23 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Luminous screen |
JP2002212552A (en) * | 2001-01-22 | 2002-07-31 | Hitachi Maxell Ltd | Infrared light emitting fluorophor and printed matter |
JP2005048107A (en) * | 2003-07-30 | 2005-02-24 | Yoshizawa Lime Industry | Phosphor and method for producing the same |
JP2008069290A (en) * | 2006-09-14 | 2008-03-27 | Tochigi Prefecture | Plate-like phosphor and display using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013079342A (en) * | 2011-10-04 | 2013-05-02 | Tochigi Prefecture | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP5700326B2 (en) | 2015-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Darshan et al. | Effective fingerprint recognition technique using doped yttrium aluminate nano phosphor material | |
Naik et al. | Effect of Li+ codoping on structural and luminescent properties of Mg2SiO4: RE3+ (RE= Eu, Tb) nanophosphors for displays and eccrine latent fingerprint detection | |
Du et al. | Optimization and complexing agent-assisted synthesis of green SrAl2O4: Eu2+, Dy3+ phosphors through sol–gel process | |
KR101854114B1 (en) | Metal fluoride-based red phosphors and light emitting device containing the same | |
WO2010029654A1 (en) | Green phosphor | |
JP5034033B2 (en) | Plate-like phosphor and display using it | |
Singh et al. | Green emission from Tb3+-doped CaLaAl3O7 phosphor–A photoluminescence study | |
Singh et al. | Synthesis and optical investigations of Eu3+ activated MYAlO4 (M= Ca and Sr) as promising display nanomaterials | |
Wang et al. | Effects of heat-treatment on photoluminescence properties of MgAl2O4: Eu3+ red phosphors synthesized by a solution combustion method | |
Khattab et al. | Preparation of strontium aluminate: Eu2+ and Dy3+ persistent luminescent materials based on recycling alum sludge | |
Kumar et al. | Perspective on europium activated fine-grained metal molybdate phosphors for solid state illumination | |
Ashwini et al. | Bi 2 O 3: Dy 3+ nanophosphors: its white light emission and photocatalytic activity | |
Singh et al. | Green emitting Tb doped LiBaB9O15 phosphors | |
Jung et al. | Preparation of CaMgSi2O6: Eu blue phosphor particles by spray pyrolysis and its VUV characteristics | |
Hirano et al. | Hydrothermal formation and characteristics of rare-earth niobate phosphors and solid solutions between YNbO4 and TbNbO4 | |
JP2012531488A (en) | Luminescent material with Eu2 + -doped silicate phosphor | |
JP2010520334A (en) | Method for producing red luminescent borate phosphor | |
JP2013079342A (en) | Plate-like fluorescent substance having high luminous efficiency and coactivated with terbium or neodymium and cerium, and method for producing the same | |
Steblevskaya et al. | Luminophores and protective coatings based on oxides and oxysulfides of rare-earth elements prepared by extraction pyrolysis | |
JP5700326B2 (en) | Fluorescent substance emitting blue light, its production method and use | |
JP2014506266A (en) | Composition comprising core-shell aluminate, phosphor obtained from this composition, and method of production | |
Singh et al. | Pb2+ doped diopside CaMgSi2O6: New UV luminescent phosphor | |
CN110964523B (en) | Cr (chromium)3+Ion-activated near-infrared fluorescent powder and preparation method and application thereof | |
KR101778563B1 (en) | Lutetium aluminum garnet phosphor powder and preparing method of the same | |
Wang et al. | Structure and functional properties of oxides in the BaO–Al2O3 system: Phosphors, pigments and catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5700326 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |