[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013051763A - Permanent magnet type rotating electrical machine - Google Patents

Permanent magnet type rotating electrical machine Download PDF

Info

Publication number
JP2013051763A
JP2013051763A JP2011187072A JP2011187072A JP2013051763A JP 2013051763 A JP2013051763 A JP 2013051763A JP 2011187072 A JP2011187072 A JP 2011187072A JP 2011187072 A JP2011187072 A JP 2011187072A JP 2013051763 A JP2013051763 A JP 2013051763A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
variable
permanent
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011187072A
Other languages
Japanese (ja)
Other versions
JP5787673B2 (en
Inventor
Yutaka Hashiba
豊 橋場
Norio Takahashi
則雄 高橋
Makoto Matsushita
真琴 松下
Daisuke Misu
大輔 三須
Kazuaki Yuki
和明 結城
Masanori Shin
政憲 新
Sukeyasu Mochizuki
資康 望月
Kuniyuki Araki
邦行 荒木
Tadashi Tokumasu
正 徳増
Kazuto Sakai
和人 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011187072A priority Critical patent/JP5787673B2/en
Publication of JP2013051763A publication Critical patent/JP2013051763A/en
Application granted granted Critical
Publication of JP5787673B2 publication Critical patent/JP5787673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement increased torque in a low speed rotation range and increased output and improved efficiency in a middle/high speed rotation range.SOLUTION: The permanent magnet type rotating electrical machine includes: a stator 12 having a stator core 16 and armature windings 18; and a rotor 14 having a rotor core 24 rotatable relative to the stator, and a plurality of permanent magnets 3, 4a, 4b embedded to form a plurality of magnetic poles 7, and during operation, magnetizes at least one of the permanent magnets constituting the magnetic pole of the rotor via a magnetic field generated by a current flowing through the armature windings to thereby irreversibly change a flux content of the permanent magnet. The plurality of permanent magnets forming the magnetic pole include a variable intensity magnet 3 having an irreversibly variable flux content, and a fixed intensity magnet 4a arranged in series with the variable intensity magnet in terms of a magnetic circuit for forming the magnetic pole and having a fixed flux content, and the fixed intensity magnet 4a has a larger product of a coercive force and a magnetization direction thickness than that of the variable intensity magnet 3 fully within a maximum use temperature range.

Description

この発明の実施形態は、回転子に界磁用の永久磁石が埋め込まれた永久磁石型回転電機に関する。   Embodiments described herein relate generally to a permanent magnet type rotating electrical machine in which a permanent magnet for a field is embedded in a rotor.

一般に、永久磁石型回転電機は大きく分けて2種類のタイプがある。回転子鉄心の外周に永久磁石を貼り付けた表面磁石型永久磁石型型回転電機と、永久磁石を回転子鉄心の中に埋め込んだ埋め込み永久磁石型回転電機である。可変速駆動用モータとしては、埋め込み型永久磁石型回転電機が適している。   In general, there are two types of permanent magnet type rotating electrical machines. They are a surface magnet type permanent magnet type rotating electrical machine in which a permanent magnet is attached to the outer periphery of a rotor core, and an embedded permanent magnet type rotating electrical machine in which a permanent magnet is embedded in a rotor core. An embedded permanent magnet type rotating electrical machine is suitable as the variable speed drive motor.

永久磁石型回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているため、永久磁石による誘導電圧(逆起電圧)は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧が極めて高くなる。永久磁石による誘導電圧がインバータ等の電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石型回転電機の低速域での出力及び効率が低下する。   In the permanent magnet type rotating electrical machine, the interlinkage magnetic flux of the permanent magnet is always generated with a constant strength, so that the induced voltage (back electromotive voltage) by the permanent magnet increases in proportion to the rotational speed. Therefore, when the variable speed operation is performed from low speed to high speed, the induced voltage by the permanent magnet becomes extremely high at high speed rotation. When an induced voltage by a permanent magnet is applied to an electronic component such as an inverter and exceeds its withstand voltage, the electronic component breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage, but in that case, the output and efficiency in the low speed region of the permanent magnet type rotating electrical machine are reduced.

低速から高速まで定出力に近い可変速運転を行う場合、永久磁右の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転まで広範囲に可変速運転することができなくなる。   When performing variable speed operation close to constant output from low speed to high speed, the interlinkage magnetic flux on the right of the permanent magnet is constant, so the rotating electrical machine voltage reaches the upper limit of the power supply voltage in the high-speed rotation range, and the current required for output flows. Disappear. As a result, the output is greatly reduced in the high-speed rotation region, and further, variable speed operation cannot be performed over a wide range up to high-speed rotation.

最近では、可変速範囲を拡大する方法として、固定子巻線の電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石(以下、可変磁力磁石という)と、可変磁力磁石の2倍以上の保磁力を有する高保磁力の永久磁石(以下、固定磁力磁石という)を配置し、電源電圧の最大電圧以上となる高速回転域では可変磁力磁石と固定磁力磁石による全鎖交磁束が減じるように、電流による磁界で可変磁力磁石を磁化させて全鎖交磁束量を調整する技術が提案されている。   Recently, as a method for expanding the variable speed range, a low coercive force permanent magnet (hereinafter referred to as a variable magnetic force magnet) whose magnetic flux density is irreversibly changed by a magnetic field generated by a stator winding current, and a variable magnetic force. A high coercivity permanent magnet (hereinafter referred to as a fixed magnet), which has a coercivity more than twice that of the magnet, is arranged. A technique has been proposed in which a variable magnetic magnet is magnetized with a magnetic field generated by an electric current so as to reduce the magnetic flux, thereby adjusting the total amount of flux linkage.

この永久磁石型回転電機は、回転子のd軸電流により、可変磁力磁石の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆の両方向にできるという優れた特性を有する。その反面、可変磁力磁石を増磁させる場合に大きな磁化電流が必要となり、電動機を駆動するためのインバータを大型化する必要がある。   This permanent magnet type rotating electrical machine has an excellent characteristic that the amount of interlinkage magnetic flux of the variable magnetic force magnet can be greatly changed from the maximum to 0 by the d-axis current of the rotor, and the magnetization direction can be changed in both forward and reverse directions. On the other hand, when magnetizing the variable magnetic force magnet, a large magnetizing current is required, and the inverter for driving the electric motor needs to be enlarged.

特に、永久磁石の特性上、減磁の場合よりも増磁の場合に大きな磁化電流が要求されるが、上記永久磁石型回転電機は、2種類の磁石が磁気的に並列に配置された構成のため、固定磁力磁石4の鎖交磁束の影響で、可変磁力磁石3の増磁に大きな磁界が必要となる。   In particular, due to the characteristics of the permanent magnet, a large magnetizing current is required in the case of increasing the magnetism than in the case of demagnetization. However, the permanent magnet type rotating electrical machine has a configuration in which two types of magnets are magnetically arranged in parallel. For this reason, a large magnetic field is required for magnetizing the variable magnetic force magnet 3 due to the influence of the interlinkage magnetic flux of the fixed magnetic force magnet 4.

このような問題を解決する技術として、保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石を用いて回転子の磁極を形成し、前記2種類以上の永久磁石を磁気回路上で直列に配置し、この直列に配置された2種類以上の永久磁石に対して、前記2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が大の永久磁石を磁気回路上で並列に配置し、電機子巻線の電流が作る磁界により、前記直列に配置された2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が小の永久磁石を磁化させて、磁極を構成する永久磁石の磁束量を不可逆的に変化させる技術が提案されている。   As a technique for solving such a problem, a magnetic pole of a rotor is formed using two or more kinds of permanent magnets having a product of a coercive force and a magnetization direction thickness different from those of other permanent magnets. Arranged in series on the magnetic circuit, and with respect to the two or more types of permanent magnets arranged in series, among the two or more types of permanent magnets, magnetize a permanent magnet having a large product of coercive force and magnetization direction thickness. A permanent magnet with a small product of coercive force and magnetization direction thickness is magnetized among two or more types of permanent magnets arranged in series by a magnetic field that is arranged in parallel on the circuit and generated by the current of the armature winding. Thus, a technique for irreversibly changing the amount of magnetic flux of a permanent magnet constituting the magnetic pole has been proposed.

特開2006−280195号公報JP 2006-280195 A 特開2008−048514号公報JP 2008-048514 A 特開2010−124608号公報JP 2010-124608 A 特開2010−130859号公報JP 2010-130859 A 特開2009−072021号公報JP 2009-072021 A

上述した従来の永久磁石型回転電機において、前記2種類の永久磁石は磁気回路的に直列に配置されているため、磁化方向寸法を磁気回路的に並列配列された永久磁石よりも薄くなってしまう。また、通常保磁力と磁化方向厚さの積が大きな永久磁石にはNeFeB系の永久磁石が採用されているが、高温化ではその磁気特性が劣化することが知られているが、Dy元素を使用するなどして、回転電機の定格電流程度では不可逆減磁しないような設計がなされる。   In the above-described conventional permanent magnet type rotating electric machine, the two types of permanent magnets are arranged in series in terms of magnetic circuits, so that the magnetization direction dimension becomes thinner than the permanent magnets arranged in parallel in terms of magnetic circuits. . In addition, NeFeB permanent magnets are usually used for permanent magnets with a large product of coercive force and magnetization direction thickness, but it is known that their magnetic properties deteriorate at higher temperatures. For example, it is designed to prevent irreversible demagnetization at the rated current of the rotating electrical machine.

しかし、永久磁石の磁束量を不可逆的に変化させる可変磁力モータでは、通常の回転電機の定格電流以上の電流を流して磁化を行い、かつ、磁束量を不可逆的に変化させる磁石と磁気回路的に直列に配置された常不可逆的変化を起こさない永久磁石には、不可逆的に変化させる永久磁石同様大きな磁界が作用する。更に、磁化方向厚みが薄く設定されているため、高温状態で磁気特性が劣化するNdFeB系永久磁石では、高温状態での磁化時に不可逆減磁を起こし、回転子から発せられる総磁束量が減少し、結果的に回転電機の出力が低下してしまう。   However, in a variable magnetic motor that irreversibly changes the amount of magnetic flux of a permanent magnet, the magnet is magnetized by passing a current that exceeds the rated current of a normal rotating electrical machine, and the magnet and magnetic circuit change the amount of magnetic flux irreversibly. The permanent magnets that are arranged in series with each other and that do not cause an irreversible change are subjected to a large magnetic field as with the permanent magnets that change irreversibly. Furthermore, since the thickness in the magnetization direction is set to be thin, NdFeB permanent magnets whose magnetic properties deteriorate at high temperatures cause irreversible demagnetization during magnetization at high temperatures, reducing the total amount of magnetic flux generated from the rotor. As a result, the output of the rotating electrical machine is reduced.

この発明は以上の点に鑑みなされたもので、その課題は、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上を可能とした永久磁石型回転電機を提供することにある。   The present invention has been made in view of the above points, and its problem is that it enables variable speed operation in a wide range from low speed to high speed, and high torque in the low speed rotation range and high output in the middle / high speed rotation range, An object of the present invention is to provide a permanent magnet type rotating electrical machine capable of improving efficiency.

実施形態によれば、永久磁石型回転電機は、固定子鉄心およびこの固定子鉄心に取り付けられた電機子巻線を有する固定子と、前記固定子に対して回転自在に設けられた回転子鉄心、およびこの回転子鉄心に埋設され複数の磁極を形成する複数の永久磁石を有する回転子と、を備え、運転中に、前記電機子巻線を流れる電流が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させて、永久磁石の磁束量を不可逆的に変化させる永久磁石型回転電機であって、
前記磁極を形成する複数の永久磁石は、磁束量を不可逆的に変化可能な可変磁力磁石と、前記磁極を形成するための磁気回路に関して前記可変磁力磁石と直列に配置され、磁束量を固定とする固定磁力磁石と、を含み、前記固定磁力磁石は、最大使用温度範囲内の全範囲で、保磁力と磁化方向厚の積が、前記可変磁力磁石の保磁力と磁化方向厚の積よりも大きいことを特徴としている。
According to the embodiment, a permanent magnet type rotating electrical machine includes a stator core, a stator having an armature winding attached to the stator core, and a rotor core provided rotatably with respect to the stator. And a rotor having a plurality of permanent magnets embedded in the rotor core to form a plurality of magnetic poles, and during operation, the magnetic poles of the rotor are made by a magnetic field generated by a current flowing through the armature winding. A permanent magnet type rotating electrical machine that magnetizes at least one of the constituting permanent magnets and irreversibly changes the amount of magnetic flux of the permanent magnet,
The plurality of permanent magnets forming the magnetic pole are arranged in series with the variable magnetic force magnet that can irreversibly change the amount of magnetic flux and the magnetic circuit for forming the magnetic pole, and the amount of magnetic flux is fixed. The product of the coercive force and the magnetization direction thickness is greater than the product of the coercivity and the magnetization direction thickness of the variable magnetic magnet over the entire range within the maximum operating temperature range. It is characterized by being large.

図1は、第1の実施形態に係る永久磁石型回転電機を示す断面図。FIG. 1 is a cross-sectional view showing a permanent magnet type rotating electric machine according to a first embodiment. 図2は、前記永久磁石型回転電機の回転子および固定子の一部を拡大して示す断面図。FIG. 2 is an enlarged sectional view showing a part of a rotor and a stator of the permanent magnet type rotating electric machine. 図3は、前記回転電機における磁石磁化時の可変磁力磁石および固定磁力磁石4aの作用を示す図。FIG. 3 is a diagram showing the action of the variable magnetic magnet and the fixed magnetic magnet 4a during magnet magnetization in the rotating electrical machine. 図4は、永久磁石の減磁曲線の概念図。FIG. 4 is a conceptual diagram of a demagnetization curve of a permanent magnet. 図5は、低保磁力磁石の動作点変化と代表的磁石の磁気特性を示す図。FIG. 5 is a diagram showing a change in operating point of a low coercive force magnet and magnetic characteristics of a typical magnet. 図6は、短絡コイルの作用を示す回転電機の断面図。FIG. 6 is a cross-sectional view of the rotating electrical machine showing the operation of the short-circuit coil. 図7は、第2の実施形態に係る永久磁石型回転電機の回転子および固定子の一部を拡大して示す断面図。FIG. 7 is an enlarged cross-sectional view illustrating a part of a rotor and a stator of a permanent magnet type rotating electric machine according to a second embodiment. 図8は、第3の実施形態に係る永久磁石型回転電機の回転子および固定子の一部を拡大して示す断面図。FIG. 8 is an enlarged cross-sectional view showing a part of a rotor and a stator of a permanent magnet type rotating electric machine according to a third embodiment.

以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。   Various embodiments will be described below with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. In addition, each drawing is a schematic diagram for promoting the embodiment and its understanding, and its shape, dimensions, ratio, etc. are different from the actual device, but these are considered in consideration of the following description and known techniques. The design can be changed as appropriate.

(第1の実施形態)
図1は、第1の実施形態に係る埋め込み永久磁石型回転電機10を示し、図2は、磁極部分を拡大して示す断面図である。
図1および図2に示すように、回転電機10は、例えば、インナーロータ型の回転電機として構成され、図示しない固定枠に支持された環状の、ここでは、円筒形状の固定子12と、固定この内側に回転自在にかつ固定子と同軸的に支持された回転子14と、を備えている。
(First embodiment)
FIG. 1 shows an embedded permanent magnet type rotating electrical machine 10 according to the first embodiment, and FIG. 2 is an enlarged sectional view showing a magnetic pole portion.
As shown in FIGS. 1 and 2, the rotating electrical machine 10 is configured as an inner rotor type rotating electrical machine, for example, and has an annular, here cylindrical, stator 12 supported by a fixed frame (not shown) and a fixed A rotor 14 that is rotatably supported on the inner side and coaxially with the stator is provided.

固定子12は、円筒状の固定子鉄心16と固定子鉄心に埋め込まれた電機子巻線18とを備えている。固定子鉄心16は、磁性材、例えば、円環状の電磁鋼板を多数枚、同芯状に積層して構成されている。固定子鉄心16の内周部には、それぞれ軸方向に延びた複数のスロット20が形成され、これにより、固定子鉄心16の内周部は、回転子14に面する多数の固定子ティース21を構成している。そして、複数のスロット20に電機子巻線18が埋め込まれている。   The stator 12 includes a cylindrical stator core 16 and an armature winding 18 embedded in the stator core. The stator core 16 is configured by laminating a large number of magnetic materials, for example, annular electromagnetic steel plates, in a concentric shape. A plurality of slots 20 extending in the axial direction are formed in the inner peripheral portion of the stator core 16, whereby the inner peripheral portion of the stator core 16 has a large number of stator teeth 21 facing the rotor 14. Is configured. The armature windings 18 are embedded in the plurality of slots 20.

図1および図2に示すように、回転子14は、両端が図示しない軸受により回転自在に支持された回転軸22と、この回転軸の軸方向ほぼ中央部に固定された円筒形状の回転子鉄心24と、回転子鉄心内に埋め込まれた複数の永久磁石と、を有し、固定子12の内側に僅かな隙間を置いて同軸的に配置されている。   As shown in FIGS. 1 and 2, the rotor 14 includes a rotating shaft 22 that is rotatably supported at both ends by bearings (not shown), and a cylindrical rotor fixed to a substantially central portion in the axial direction of the rotating shaft. It has an iron core 24 and a plurality of permanent magnets embedded in the rotor iron core, and is arranged coaxially with a slight gap inside the stator 12.

回転子鉄心24は、磁性材、例えば、円環状の電磁鋼板を多数枚、同芯状に積層した積層体として構成されている。回転子鉄心24は、それぞれ回転子鉄心の半径方向あるいは放射方向に延びる磁化容易軸(磁束の通りやすい部分)d、および磁化困難軸(磁束が通り難い部分)qを有し、これらのd軸およびq軸は、回転子鉄心24の円周方向に交互に、かつ、所定の位相で形成されている。本実施の形態の回転電機10は、8極の場合で説明しており、8本のd軸を有しているが、他の極数でも同様に適用できる。   The rotor core 24 is configured as a laminated body in which a large number of magnetic materials, for example, annular magnetic steel sheets, are laminated concentrically. The rotor core 24 has an easy magnetization axis (portion where magnetic flux easily passes) d and a hard magnetization axis (portion where magnetic flux does not easily pass) q extending in the radial direction or radial direction of the rotor core, respectively. The q axis and the q axis are formed alternately in the circumferential direction of the rotor core 24 and at a predetermined phase. The rotary electric machine 10 of the present embodiment has been described in the case of eight poles and has eight d-axes, but can be similarly applied to other pole numbers.

回転子鉄心24において、各d軸の両側に2つの磁石埋め込み孔6aが形成され、更に、各d軸上に1つの磁石埋め込み孔6bが形成されている。各磁石埋め込み孔6a、6bは、回転子鉄心24を軸方向に貫通して延びている。各d軸の両側に形成された2つの磁石埋め込み孔6aは、回転子鉄心24の中心軸と直交する平面でみた場合、例えば、ほぼV字状に並んで配置されている。ここでは、磁石埋め込み孔6aの内周側の端がd軸を挟んで隣接対向し、外周側の端が回転子鉄心24の円周方向に沿って互いに離間して位置している。また、磁石埋め込み孔6bは、d軸と直交して延びているとともに、2つの磁石埋め込み孔6aの内周側端に隣接して設けられている。   In the rotor core 24, two magnet embedded holes 6a are formed on both sides of each d axis, and one magnet embedded hole 6b is formed on each d axis. Each magnet embedding hole 6a, 6b extends through the rotor core 24 in the axial direction. The two magnet embedding holes 6a formed on both sides of each d-axis are arranged in a substantially V shape, for example, when viewed in a plane orthogonal to the central axis of the rotor core 24. Here, the inner peripheral end of the magnet embedding hole 6 a is adjacently opposed across the d-axis, and the outer peripheral end is positioned away from each other along the circumferential direction of the rotor core 24. The magnet embedding hole 6b extends perpendicular to the d-axis and is provided adjacent to the inner peripheral side ends of the two magnet embedding holes 6a.

永久磁石は、保磁力と磁化方向厚みの積が小となる永久磁石3(以下、可変磁力磁石という)、保磁力と磁化方向厚の積が大となる永久磁石(以下、固定磁力磁石という)4a、4bから構成する。   The permanent magnet is a permanent magnet 3 (hereinafter referred to as a variable magnetic force magnet) having a small product of coercive force and magnetization direction thickness, and a permanent magnet (hereinafter referred to as a fixed magnetic magnet) having a large product of coercive force and magnetization direction thickness. 4a and 4b.

2つの固定磁力磁石4bは、各磁石埋め込み孔6aに挿入され、回転子鉄心24に埋め込まれている。もう1つの固定磁力磁石4aは、磁石埋め込み孔6aに挿入され、回転子鉄心24に埋め込まれている。可変磁力磁石3は、磁石埋め込み孔6aに挿入され、回転子鉄心24に埋め込まれている。可変磁力磁石3は、磁石埋め込み孔6aにおいて、固定磁力磁石4aと重ねて、かつ、密着して配置されている。   The two fixed magnetic magnets 4 b are inserted into the magnet embedding holes 6 a and embedded in the rotor core 24. The other fixed magnetic magnet 4 a is inserted into the magnet embedding hole 6 a and embedded in the rotor core 24. The variable magnetic force magnet 3 is inserted into the magnet embedding hole 6 a and embedded in the rotor core 24. The variable magnetic force magnet 3 is arranged in close contact with the fixed magnetic force magnet 4a in the magnet embedding hole 6a.

各永久磁石3、4a、4bは、例えば、断面が矩形状の細長い棒状に形成され、回転子鉄心24の軸方向長さとほぼ等しい長さを有している。そして、各永久磁石3、4a、4bは回転子鉄心24のほぼ全長に亘って埋め込まれている。   Each permanent magnet 3, 4 a, 4 b is, for example, formed in an elongated bar shape having a rectangular cross section, and has a length substantially equal to the axial length of the rotor core 24. Each permanent magnet 3, 4 a, 4 b is embedded over almost the entire length of the rotor core 24.

d軸の両側に位置する2つの固定磁力磁石4bは、ほぼV字状に並んで配置されている。2つの固定磁力磁石4bは、回転子鉄心24の円周方向において磁化方向が逆向きとなるように着磁されている。固定磁力磁石4aおよび可変磁力磁石3は、d軸と直交して配置されている。固定磁力磁石4aおよび可変磁力磁石3は、磁化方向が同一となるように着磁され、ここでは、d軸と平行な方向に磁化されている。   The two fixed magnetic magnets 4b located on both sides of the d-axis are arranged side by side in a substantially V shape. The two fixed magnetic magnets 4 b are magnetized so that the magnetization directions are opposite in the circumferential direction of the rotor core 24. The fixed magnetic magnet 4a and the variable magnetic magnet 3 are arranged orthogonal to the d axis. The fixed magnetic magnet 4a and the variable magnetic magnet 3 are magnetized so that the magnetization directions are the same, and are magnetized in a direction parallel to the d-axis here.

複数の永久磁石3、4a、4bを上記のように配置することにより、回転子鉄心24の外周部において各d軸上の領域は磁極7を形成し、各q軸上の領域は磁極間部11を形成している。   By arranging the plurality of permanent magnets 3, 4 a, 4 b as described above, the regions on each d-axis form the magnetic pole 7 in the outer peripheral portion of the rotor core 24, and the regions on each q-axis are the portions between the magnetic poles. 11 is formed.

回転子鉄心24内を通過する磁束が可変磁力磁石3及び固定磁力磁石4a、4bの部分をその厚さ方向に通過するように、可変磁力磁石3及び固定磁力磁石4a、4bの端部に空洞6を設ける。回転子鉄心24の磁極7は1個の可変磁力磁石3と3個の固定磁力磁石4a、4bで取り囲まれるようにして形成する。回転子鉄心24の磁極7の中心軸方向がd軸、磁極間の中心軸方向がq軸となる。   A cavity is formed at the ends of the variable magnetic magnet 3 and the fixed magnetic magnets 4a and 4b so that the magnetic flux passing through the rotor core 24 passes through the portions of the variable magnetic magnet 3 and the fixed magnetic magnets 4a and 4b in the thickness direction. 6 is provided. The magnetic pole 7 of the rotor core 24 is formed so as to be surrounded by one variable magnetic magnet 3 and three fixed magnetic magnets 4a and 4b. The central axis direction of the magnetic pole 7 of the rotor core 24 is the d axis, and the central axis direction between the magnetic poles is the q axis.

可変磁力磁石3は、フェライト磁石、アルニコ磁石または保磁力を小さく設定したSmCo系磁石を使用することができる。固定磁力磁石4aは保磁力の高いSmCo系磁石、固定磁力磁石4bはNdFeB磁石、または、固定磁力磁石4aと同じSmCo系磁石とする。本実施形態では、フェライト磁石の保磁力は300kA/mとし、保磁力の高いSmCo系永久磁石及びNdFeB磁石の保磁力は1500kA/mとする。   The variable magnetic force magnet 3 can be a ferrite magnet, an alnico magnet, or an SmCo-based magnet with a small coercive force. The fixed magnetic magnet 4a is a SmCo magnet having a high coercivity, and the fixed magnetic magnet 4b is an NdFeB magnet or the same SmCo magnet as the fixed magnetic magnet 4a. In the present embodiment, the coercivity of the ferrite magnet is 300 kA / m, and the coercivity of the SmCo permanent magnet and the NdFeB magnet having high coercivity is 1500 kA / m.

本実施形態において、可変磁力磁石3は、フェライト磁石を使用し、固定磁力磁石4aは、本回転電機の最大使用温度の全範囲内、例えば、0〜150℃で、常時、可変磁力磁石3よりも大きな保磁力を有する磁石、例えば、SmCo系磁石を用いる。ここでは、固定磁力磁石4aと可変磁力磁石3とは磁化方向厚さがほぼ等しいことから、固定磁力磁石4aは、最大使用温度範囲内の全範囲で、保磁力と磁化方向厚の積が、可変磁力磁石3の保磁力と磁化方向厚の積よりも大きい。SmCo系磁石は、SmCo(Fe・Cu・Zr)磁石で、例えば、鉄の配分量を増やし、Coの配分量を低減したSm鉄Co系磁石又は希土類・鉄・窒素系磁石又はSmFeN系磁石(サマリウム・鉄窒・素系磁石)等を含んでいる。   In this embodiment, the variable magnetic force magnet 3 uses a ferrite magnet, and the fixed magnetic force magnet 4a is always within the full range of the maximum operating temperature of the rotating electrical machine, for example, 0 to 150 ° C. Also, a magnet having a large coercive force, for example, an SmCo-based magnet is used. Here, since the magnetization direction thickness of the fixed magnetic force magnet 4a and the variable magnetic force magnet 3 are substantially equal, the fixed magnetic force magnet 4a has a product of the coercive force and the magnetization direction thickness over the entire range within the maximum operating temperature range. It is larger than the product of the coercive force and the magnetization direction thickness of the variable magnetic magnet 3. The SmCo magnet is an SmCo (Fe · Cu · Zr) magnet, for example, an Sm iron Co magnet, a rare earth / iron / nitrogen magnet, or an SmFeN magnet with increased iron distribution and reduced Co distribution ( Samarium, iron-nitrogen, elementary magnets, etc.).

可変磁力磁石3と固定磁力磁石4aを各磁石の磁化方向に重ね合わせて1つの磁石を構成する。すなわち、可変磁力磁石3と固定磁力磁石4aは、磁化方向を同じくして、磁極を形成するための磁気回路に対して磁気的に直列に配置する。この直列に重ねた磁石は、磁化方向がd軸方向(ここでは、ほぼ回転子の半径方向)となる位置で回転子鉄心24内に配置する。   The variable magnetic magnet 3 and the fixed magnetic magnet 4a are superposed in the magnetization direction of each magnet to constitute one magnet. That is, the variable magnetic force magnet 3 and the fixed magnetic force magnet 4a have the same magnetization direction and are magnetically arranged in series with respect to the magnetic circuit for forming the magnetic pole. The magnets stacked in series are arranged in the rotor core 24 at a position where the magnetization direction is the d-axis direction (here, approximately the radial direction of the rotor).

一方、可変磁力磁石3と固定磁力磁石4aを直列に重ねた磁石の両側に、固定磁力磁石4bを磁化方向がd軸方向となる位置で配置する。2つの固定磁力磁石4bは、直列に重ねた永久磁石3、4aに対して、磁気回路上で並列回路を構成する。すなわち、磁極を形成するための磁気回路上では、可変磁力磁石3に対して、直列に固定磁力磁石4aを配置し、並列に固定磁力磁石4bを配置している。   On the other hand, the fixed magnetic magnet 4b is disposed on both sides of the magnet in which the variable magnetic magnet 3 and the fixed magnetic magnet 4a are stacked in series at a position where the magnetization direction is the d-axis direction. The two fixed magnetic magnets 4b constitute a parallel circuit on the magnetic circuit with respect to the permanent magnets 3 and 4a stacked in series. That is, on the magnetic circuit for forming the magnetic poles, the fixed magnetic force magnet 4a is arranged in series with the variable magnetic force magnet 3, and the fixed magnetic force magnet 4b is arranged in parallel.

図2に示すように、回転子鉄心24の外周面側より見て、回転子鉄心24内に埋め込まれた、可変磁力磁石3の磁化方向と直角を成す面以外を流れる磁束の全部若しくは一部が貫通するように短絡コイル8が設けられている。この時、短絡コイル8がq軸方向の中心軸線と直角をなすように配置する。短絡コイル8は、リング状の導電性部材から構成し、回転子鉄心24内に設けた空洞6の縁の部分とq軸方向鉄心のほぼq軸線上の位置に設けた穴にはめ込むように装着する。なお、回転子鉄心24の穴に高温で溶けた導電性部材を流し込んで鋳造して製作することも可能である。この短絡コイル8は、可変磁力磁石3を除いた磁路部分に設ける。   As shown in FIG. 2, all or a part of the magnetic flux flowing outside the surface perpendicular to the magnetization direction of the variable magnetic force magnet 3 embedded in the rotor core 24 when viewed from the outer peripheral surface side of the rotor core 24. Is provided with a short-circuit coil 8. At this time, the short-circuit coil 8 is arranged so as to be perpendicular to the central axis in the q-axis direction. The short-circuit coil 8 is composed of a ring-shaped conductive member, and is mounted so as to be fitted into a hole provided at a position on the edge of the cavity 6 provided in the rotor core 24 and the q-axis direction iron core substantially on the q-axis line. To do. It is also possible to manufacture by casting a conductive member melted at a high temperature into the hole of the rotor core 24. The short-circuit coil 8 is provided in a magnetic path portion excluding the variable magnetic force magnet 3.

短絡コイル8は、固定子12の電機子巻線18にd軸電流を通電させた場合に発生する磁束により、短絡電流を発生するものである。短絡コイル8に流れる短絡電流は、不可逆変化させる可変磁力磁石3の磁化が変化する程度の強さで1秒以内に流れ、その後1秒以内に50%以上減衰するものであることが好ましい。また、短絡コイル8のインダクタンス値と抵抗値を、可変磁力磁石3の磁化が変化する程度の短絡電流が流れるような値とすると、効率が良い。   The short-circuit coil 8 generates a short-circuit current by a magnetic flux generated when a d-axis current is passed through the armature winding 18 of the stator 12. It is preferable that the short-circuit current flowing in the short-circuiting coil 8 flows within 1 second with such strength that the magnetization of the variable magnetic magnet 3 to be irreversibly changed, and then attenuates 50% or more within 1 second. Further, if the inductance value and the resistance value of the short-circuiting coil 8 are set to such values that a short-circuit current that changes the magnetization of the variable magnetic force magnet 3 flows, the efficiency is good.

固定子12の電機子巻線18に流れる磁化電流により、短絡コイル8には誘導電流が誘起され、その誘導電流によって短絡コイル8を貫通する磁束が形成される。また、この電機子巻線18に流れる磁化電流により、可変磁力磁石3の磁化方向が不可逆的に変化する。   An induced current is induced in the short-circuit coil 8 by the magnetizing current flowing in the armature winding 18 of the stator 12, and a magnetic flux penetrating the short-circuit coil 8 is formed by the induced current. In addition, the magnetization direction of the variable magnetic force magnet 3 is irreversibly changed by the magnetization current flowing through the armature winding 18.

すなわち、可変磁力磁石3及び固定磁力磁石4aに対しては、回転電機10の運転時において、d軸電流による磁界で可変磁力磁石3を磁化させて、その磁束量を不可逆的に変化させる。その場合、可変磁力磁石3を磁化するd軸電流を流すと同時にq軸電流により回転電機10のトルクを制御する。   That is, for the variable magnetic force magnet 3 and the fixed magnetic force magnet 4a, during operation of the rotating electrical machine 10, the variable magnetic force magnet 3 is magnetized by a magnetic field generated by the d-axis current, and the amount of magnetic flux is irreversibly changed. In that case, the torque of the rotating electrical machine 10 is controlled by the q-axis current while the d-axis current for magnetizing the variable magnetic force magnet 3 is supplied.

また、d軸電流で生じる磁束により、電流(q軸電流とd軸電流とを合成した全電流)と可変磁力磁石3及び固定磁力磁石4a、4bとで生じる電機子巻線18の鎖交磁束量、すなわち、回転電機の全電流によって電機子巻線18に生じる磁束と、回転子14側の2種類以上の永久磁石4a、4bによって生じる磁束とから構成される電機子巻線全体の鎖交磁束量をほぼ可逆的に変化させる。   Further, the magnetic flux generated by the d-axis current causes the interlinkage magnetic flux of the armature winding 18 generated by the current (the total current obtained by combining the q-axis current and the d-axis current) and the variable magnetic force magnet 3 and the fixed magnetic force magnets 4a and 4b. The interlinkage of the entire armature winding composed of the amount, that is, the magnetic flux generated in the armature winding 18 by the total current of the rotating electrical machine and the magnetic flux generated by the two or more kinds of permanent magnets 4a, 4b on the rotor 14 side. The amount of magnetic flux is changed almost reversibly.

本実施形態では、瞬時の大きなd軸電流による磁界で可変磁力磁石3を不可逆変化させる。この状態で不可逆減磁がほとんど生じないか、僅かの不可逆減磁が生じる範囲のd軸電流を連続的に流して運転する。この際、d軸電流は電流位相を進めて端子電圧を調整するように作用する。   In the present embodiment, the variable magnetic force magnet 3 is irreversibly changed by a magnetic field generated by an instantaneous large d-axis current. In this state, operation is carried out by continuously supplying a d-axis current in a range where little or no irreversible demagnetization occurs. At this time, the d-axis current acts to adjust the terminal voltage by advancing the current phase.

また、大きなd軸電流で可変磁力磁石3の極性を反転させ、電流位相を進める運転制御方法を行う。このようにd軸電流で可変磁力磁石3の極性を反転させているため、端子電圧を低下させるような負のd軸電流を流しても、可変磁力磁石3にとっては減磁界ではなく増磁界となる。すなわち、負のd軸電流で可変磁力磁石3は減磁することなく、端子電圧の大きさを調整することができる。   Further, an operation control method is performed in which the polarity of the variable magnetic force magnet 3 is reversed with a large d-axis current to advance the current phase. Thus, since the polarity of the variable magnetic force magnet 3 is reversed by the d-axis current, even if a negative d-axis current that reduces the terminal voltage is passed, the variable magnetic force magnet 3 is not demagnetized but increased. Become. That is, the magnitude of the terminal voltage can be adjusted without demagnetizing the variable magnetic force magnet 3 with a negative d-axis current.

一般の磁石モータでは、磁石の極性は反転していないため、電流位相を進めることによりd軸電流が増加すると、磁石が不可逆減磁する問題があるが、本実施形態においては、可変磁力磁石3の極性を反転させて位相を進めることが可能である。   In a general magnet motor, since the polarity of the magnet is not reversed, there is a problem that the magnet is irreversibly demagnetized when the d-axis current is increased by advancing the current phase. However, in this embodiment, the variable magnetic force magnet 3 It is possible to advance the phase by reversing the polarity of.

(基本的な作用)
次に、第1の実施形態に係る回転電機の作用を説明する。
本実施形態では、固定子12の電機子巻線18に通電時間が極短時間(0.1ms〜100ms程度)となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界を作用させる。可変磁力磁石3を磁化するための磁界を形成するパルス電流は固定子12の電機子巻線18のd軸電流成分とする。
(Basic action)
Next, the operation of the rotating electrical machine according to the first embodiment will be described.
In the present embodiment, a magnetic field is formed by passing a pulsed current having an energization time of an extremely short time (about 0.1 ms to 100 ms) through the armature winding 18 of the stator 12, and a magnetic field is applied to the variable magnetic force magnet 3. Make it work. A pulse current that forms a magnetic field for magnetizing the variable magnetic force magnet 3 is a d-axis current component of the armature winding 18 of the stator 12.

2種類の可変磁力磁石3、固定磁力磁石4aの厚さがほぼ同等とすると、d軸電流による作用磁界による永久磁石の磁化状態変化は保磁力の大きさにより変わる。すなわち、作用磁界による永久磁石の磁化状態変化は、保磁力の大きさと永久磁石の厚みの積で概算することができる。本実施形態では、可変磁力磁石(フェライト磁石)3の保磁力は300kA/mとし、固定磁力磁石(SmCo磁石)4aの保磁力は1500kA/mとする。また、永久磁石3、4aの磁化方向の磁石厚みは同一で5mmとする。磁化に要する起磁力は磁化に要する磁界と永久磁石の厚みの積で概算するが、フェライト磁石の90%の着磁磁界は約600kA/mとすると、磁化に要する起磁力は600kA/m×5×0.001=3000Aとなる。一方、SmCo磁石の90%の着磁磁界は約3000kA/mとすると、磁化に要する起磁力は3000kA/m×5×0.001=15000Aとなる。   If the thicknesses of the two types of variable magnetic magnet 3 and fixed magnetic magnet 4a are substantially equal, the change in the magnetization state of the permanent magnet due to the applied magnetic field due to the d-axis current varies depending on the magnitude of the coercive force. That is, the change in the magnetization state of the permanent magnet due to the working magnetic field can be estimated by the product of the coercive force and the thickness of the permanent magnet. In the present embodiment, the coercive force of the variable magnetic magnet (ferrite magnet) 3 is 300 kA / m, and the coercive force of the fixed magnetic magnet (SmCo magnet) 4a is 1500 kA / m. The permanent magnets 3 and 4a have the same magnet thickness in the magnetization direction of 5 mm. The magnetomotive force required for magnetization is estimated by the product of the magnetic field required for magnetization and the thickness of the permanent magnet. If the 90% magnetization magnetic field of the ferrite magnet is about 600 kA / m, the magnetomotive force required for magnetization is 600 kA / m × 5. X0.001 = 3000A. On the other hand, if the 90% magnetization magnetic field of the SmCo magnet is about 3000 kA / m, the magnetomotive force required for magnetization is 3000 kA / m × 5 × 0.001 = 15000 A.

可変磁力磁石3であるフェライト磁石の磁力可変に必要な起磁力は、固定磁力磁石4aであるSmCo磁石の約20%となる。従って、フェライト磁石の磁力を可変できる電流では、SmCo磁石の磁力は変わらずに維持できる。これより、これらの磁石を直列に組み合わせて磁石を構成すると、SmCo磁石の磁力をベース分として維持して、フェライト磁石の磁力を変化させることにより、永久磁石の全鎖交磁束量を調整できる。   The magnetomotive force required to change the magnetic force of the ferrite magnet that is the variable magnetic magnet 3 is about 20% of that of the SmCo magnet that is the fixed magnetic magnet 4a. Therefore, the magnetic force of the SmCo magnet can be maintained unchanged with a current that can change the magnetic force of the ferrite magnet. Thus, when these magnets are combined in series to form a magnet, the total flux linkage of the permanent magnet can be adjusted by maintaining the magnetic force of the SmCo magnet as a base and changing the magnetic force of the ferrite magnet.

初めに磁石の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線18にパルス的に通電させる。負のd軸電流によって変化した磁石内の磁界が300kA/m以上になったとすると、フェライト磁石の保磁力が300kA/mなのでフェライト磁石の磁力は不可逆的に大幅に低下する。一方、SmCo磁石の保磁力が1500kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になるとフェライト磁石のみが減磁した状態となり、磁極全体の磁石による鎖交磁束量を減少させることができる。   First, a negative d-axis current that generates a magnetic field in a direction opposite to the magnetization direction of the magnet is applied to the armature winding 18 in a pulsed manner. If the magnetic field in the magnet changed by the negative d-axis current becomes 300 kA / m or more, the coercive force of the ferrite magnet is 300 kA / m, so that the magnetic force of the ferrite magnet is irreversibly greatly reduced. On the other hand, since the coercive force of the SmCo magnet is 1500 kA / m, the magnetic force does not decrease irreversibly. As a result, when the pulsed d-axis current becomes zero, only the ferrite magnet is demagnetized, and the amount of interlinkage magnetic flux by the magnet of the entire magnetic pole can be reduced.

次に、永久磁石3、4aの磁化方向と同方向の磁界を発生する正のd軸電流を電機子巻線18に通電する。可変磁力磁石(フェライト磁石)3が着磁するために必要な磁界を発生させる。正のd軸電流によって変化した可変磁力磁石3内の磁界が600kA/mとすると、減磁していた可変磁力磁石3は着磁されて最大に磁力を発生する。一方、固定磁力磁石(SmCo磁石)4a、4bの保磁力は1500kA/mなので磁力は不可逆的に変化しない。その結果、パルス的な正のd軸電流が0になると可変磁力磁石3のみが増磁した状態となり、磁極全体の磁石による鎖交磁束量を増加することができる。これにより元の最大の鎖交磁束量に戻すことが可能となる。   Next, a positive d-axis current that generates a magnetic field in the same direction as the magnetization direction of the permanent magnets 3, 4 a is passed through the armature winding 18. A magnetic field necessary for magnetizing the variable magnetic magnet (ferrite magnet) 3 is generated. If the magnetic field in the variable magnetic force magnet 3 changed by the positive d-axis current is 600 kA / m, the demagnetized variable magnetic force magnet 3 is magnetized to generate a maximum magnetic force. On the other hand, since the coercive force of the fixed magnetic magnets (SmCo magnets) 4a and 4b is 1500 kA / m, the magnetic force does not change irreversibly. As a result, when the pulsed positive d-axis current becomes zero, only the variable magnetic force magnet 3 is magnetized, and the amount of flux linkage by the magnets of the entire magnetic pole can be increased. This makes it possible to return to the original maximum flux linkage.

以上のようにd軸電流による瞬時的な磁界を可変磁力磁石(フェライト磁石)3と固定磁力磁石(SmCo磁石)4a、4bに作用させることにより、可変磁力磁石3の磁力を不可逆的に変化させて、磁極全体の永久磁石の全鎖交磁束量を任意に変化させることが可能となる。   As described above, an instantaneous magnetic field caused by the d-axis current is applied to the variable magnetic magnet (ferrite magnet) 3 and the fixed magnetic magnets (SmCo magnets) 4a and 4b, thereby irreversibly changing the magnetic force of the variable magnetic magnet 3. Thus, it is possible to arbitrarily change the total flux linkage of the permanent magnets of the entire magnetic pole.

この場合、永久磁石式回転電機の最大トルク時には磁極の永久磁石の磁束が加え合わせになるように可変磁力磁石3を磁化させ、トルクの小さな軽負荷時や、中速回転域と高速回転域では、可変磁力磁石3は、電流による磁界で磁化させて磁束を減少させる。また、磁極の永久磁石を不可逆変化させて鎖交磁束量を最小にした状態で回転子14が最高回転速度になったときに、永久磁石による誘導起電圧が、回転電機10の電源であるインバータ電子部品の耐電圧以下としている。   In this case, the variable magnetic force magnet 3 is magnetized so that the magnetic flux of the permanent magnet of the magnetic pole is added at the time of the maximum torque of the permanent magnet type rotating electric machine, and at a light load with a small torque or in the middle speed rotation range and the high speed rotation range. The variable magnetic force magnet 3 is magnetized by a magnetic field generated by an electric current to reduce the magnetic flux. Further, when the rotor 14 reaches the maximum rotation speed in a state where the amount of interlinkage magnetic flux is minimized by irreversibly changing the permanent magnet of the magnetic pole, an induced electromotive force generated by the permanent magnet is an inverter that is a power source of the rotating electrical machine 10. It is below the withstand voltage of electronic components.

(直列配置の作用)
磁気的に直列に配置された2種類の可変磁力磁石3、固定磁力磁石4aの作用について詳細に説明する。
図3(a)は、減磁前の最大の鎖交磁束量を得ている場合の図である。この場合、2種類の可変磁力磁石3、固定磁力磁石4aの磁化方向は同一であるため、両方の永久磁石3、4aの磁束が加え合わせになって、最大の磁束量が得られる。
(Operation of series arrangement)
The operation of the two types of variable magnetic magnets 3 and fixed magnetic magnets 4a magnetically arranged in series will be described in detail.
Fig.3 (a) is a figure in the case of obtaining the maximum amount of flux linkage before demagnetization. In this case, since the magnetization directions of the two types of variable magnetic magnet 3 and fixed magnetic magnet 4a are the same, the magnetic fluxes of both permanent magnets 3 and 4a are added together to obtain the maximum amount of magnetic flux.

図3(b)は、減磁時の状態を示すもので、電機子巻線18によりd軸方向から両方の可変磁力磁石3、固定磁力磁石4aの磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線にパルス的に通電させる。負のd軸電流によって変化した磁石内の磁界が175kA/mになったとすると、可変磁力磁石3(フェライト磁石)の保磁力が300kA/mであるため、可変磁力磁石3の磁力は不可逆的に大幅に低下する。この場合、可変磁力磁石3には、それに積層した固定磁力磁石4aからの磁界が加わっており、これが減磁のためのd軸方向から加わる磁界と打ち消し合うことになる。そのため、その分大きな磁化電流が必要となるが、減磁のための磁化電流は増磁時に比較して少なくて済むため、磁化電流の増加は少ない。   FIG. 3B shows a state at the time of demagnetization, and the armature winding 18 generates a magnetic field in a direction opposite to the magnetization direction of both the variable magnetic magnet 3 and the fixed magnetic magnet 4a from the d-axis direction. A negative d-axis current is applied to the armature winding in a pulse manner. If the magnetic field in the magnet changed by the negative d-axis current becomes 175 kA / m, the coercive force of the variable magnetic magnet 3 (ferrite magnet) is 300 kA / m, so the magnetic force of the variable magnetic magnet 3 is irreversibly. Decrease significantly. In this case, the magnetic field from the fixed magnetic field magnet 4a laminated on the variable magnetic field magnet 3 is applied to the variable magnetic field magnet 3, which cancels out the magnetic field applied from the d-axis direction for demagnetization. For this reason, a larger magnetizing current is required, but the magnetizing current for demagnetization is smaller than that at the time of magnetizing, so the increase in magnetizing current is small.

図3(c)は、負のd軸電流により逆磁界での可変磁力磁石3の磁力が減少した状態を示すものである。可変磁力磁石3の磁力は不可逆的に大幅に低下するが、固定磁力磁石4a(SmCo磁石)の保磁力が1500kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になると可変磁力磁石3のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。   FIG. 3C shows a state in which the magnetic force of the variable magnetic force magnet 3 in a reverse magnetic field is reduced by a negative d-axis current. Although the magnetic force of the variable magnetic force magnet 3 is irreversibly significantly reduced, the magnetic force is not irreversibly lowered because the coercive force of the fixed magnetic force magnet 4a (SmCo magnet) is 1500 kA / m. As a result, when the pulsed d-axis current becomes zero, only the variable magnetic force magnet 3 is demagnetized, and the amount of interlinkage magnetic flux by the entire magnet can be reduced.

図3(d)は、負のd軸電流により逆磁界での可変磁力磁石3の磁力が逆方向に磁化し、全体の磁石による鎖交磁束が最小になった状態を示すものである。負のd軸電流の大きさが可変磁力磁石3が着磁するために必要な600kA/mの磁界を発生しているならば、減磁していた可変磁力磁石3は着磁されて磁力を発生する。この場合、2種類の可変磁力磁石3、固定磁力磁石4aの磁化方向が逆であるため、両方の永久磁石の磁束が減算され、磁束が最小となる。   FIG. 3D shows a state in which the magnetic force of the variable magnetic force magnet 3 in the reverse magnetic field is magnetized in the reverse direction by the negative d-axis current, and the interlinkage magnetic flux by the entire magnet is minimized. If the magnitude of the negative d-axis current generates a magnetic field of 600 kA / m necessary for magnetizing the variable magnetic force magnet 3, the demagnetized variable magnetic force magnet 3 is magnetized to generate a magnetic force. Occur. In this case, since the magnetization directions of the two types of variable magnetic magnet 3 and fixed magnetic magnet 4a are opposite, the magnetic fluxes of both permanent magnets are subtracted, and the magnetic flux is minimized.

図3(e)は、負のd軸電流で極性が反転した可変磁力磁石3の磁力を減少させるために磁界を発生させた状態を示すものである。固定磁力磁石4aの磁化方向の磁界を発生する正のd軸電流を電機子巻線18にパルス的に通電させる。正のd軸電流によって変化した磁石内の磁界の極性が反転した可変磁力磁石3の磁力を不可逆的に大幅に低下する。この場合、可変磁力磁石3に積層されている固定磁力磁石4aからの磁界が磁化電流による磁界と加え合わせになる(固定磁力磁石4aからバイアス的な磁界が可変磁力磁石3に作用する)ため、可変磁力磁石3の減磁が容易に行われる。   FIG. 3E shows a state in which a magnetic field is generated in order to reduce the magnetic force of the variable magnetic magnet 3 whose polarity is reversed by a negative d-axis current. A positive d-axis current that generates a magnetic field in the magnetization direction of the fixed magnetic force magnet 4 a is applied to the armature winding 18 in a pulsed manner. The magnetic force of the variable magnetic magnet 3 in which the polarity of the magnetic field in the magnet changed by the positive d-axis current is reversed is irreversibly greatly reduced. In this case, the magnetic field from the fixed magnetic magnet 4a stacked on the variable magnetic magnet 3 is added to the magnetic field generated by the magnetizing current (a biased magnetic field acts on the variable magnetic magnet 3 from the fixed magnetic magnet 4a). Demagnetization of the variable magnetic force magnet 3 is easily performed.

図3(f)は、正のd軸電流による磁界で極性反転した可変磁力磁石3の磁力が減少した状態を示すものである。可変磁力磁石3の磁力を不可逆的に低下させる正のd軸電流による磁界には、固定磁力磁石4aによる磁界も加わっている。そのため、通常は大きな磁化電流を必要とする時においても、固定磁力磁石4aの作用により、磁化電流の増大を抑止できる。   FIG. 3F shows a state in which the magnetic force of the variable magnetic magnet 3 whose polarity is reversed by a magnetic field due to a positive d-axis current is reduced. The magnetic field generated by the fixed magnetic force magnet 4a is also added to the magnetic field generated by the positive d-axis current that irreversibly decreases the magnetic force of the variable magnetic force magnet 3. Therefore, even when a large magnetizing current is usually required, an increase in the magnetizing current can be suppressed by the action of the fixed magnetic magnet 4a.

図3(g)は、正のd軸電流により可変磁力磁石3が逆方向に磁化(極性が再度反転)し、全体の磁石による鎖交磁束が最大になった状態を示すものである。可変磁力磁石3、固定磁力磁石4aの磁化方向は同一であるため、両方の永久磁石の磁束が加え合わせになって、最大の磁束量が得られる。   FIG. 3G shows a state in which the variable magnetic force magnet 3 is magnetized in the reverse direction (polarity is reversed again) by the positive d-axis current, and the linkage flux of the entire magnet is maximized. Since the magnetization directions of the variable magnetic magnet 3 and the fixed magnetic magnet 4a are the same, the magnetic fluxes of both permanent magnets are added together to obtain the maximum amount of magnetic flux.

図4は、永久磁石に共通な減磁曲線の概念図であり、永久磁石はその温度によって保磁力が変化し、温度が高いほど保磁力が小さくなる傾向を持っている。磁束密度の高い希土類系の永久磁石ではNdFeB磁石がDy元素を使用して保磁力の低下を抑制しているものの、当該永久磁石の温度上昇による保磁力の低減率はSmCo系磁石の1.5倍程度にもなる。また、Dy元素は、レアアースの中でもその原産国が限られ非常に貴重な材料であり、Dy元素の使用量を削減すれば、その差は2倍以上にもなる。例えば、代表的なNdFeB磁石は、20℃での保磁力が1500ka/mなのに対し、150℃では保磁力が500kA/mに低下する。これに対して、代表的なSmCo系磁石では、同じく20℃の保磁力が1500kA/mなのに対し、150℃では、保磁力が1150kA/mまでしか低下しない。   FIG. 4 is a conceptual diagram of a demagnetization curve common to permanent magnets. The coercive force of a permanent magnet changes depending on its temperature, and the coercive force tends to decrease as the temperature increases. In rare earth permanent magnets with high magnetic flux density, NdFeB magnets use Dy elements to suppress the decrease in coercive force, but the coercivity reduction rate due to the temperature rise of the permanent magnet is 1.5% of that of SmCo magnets. It will be about double. Dy element is a very valuable material with limited country of origin among rare earths. If the amount of Dy element used is reduced, the difference becomes more than twice. For example, a typical NdFeB magnet has a coercive force at 20 ° C. of 1500 ka / m, whereas at 150 ° C., the coercive force decreases to 500 kA / m. On the other hand, in a typical SmCo magnet, the coercive force at 20 ° C. is 1500 kA / m, whereas at 150 ° C., the coercive force decreases only to 1150 kA / m.

従って、固定磁力磁石4aに保磁力低下の大きいNdFeB磁石を用いた場合、回転子鉄心24あるいは固定磁力磁石4aが高温状態で可変磁力磁石3の磁化を行うと、可変磁力磁石の保磁力300kA/mに対し、高温状態での固定磁力磁石4aの保磁力が500kA/mと同等レベルになる。可変磁石の増減磁には保持力の2倍程度の磁界が必要な為、そのため、可変磁石の増減磁によって本来不可逆減磁してはならない固定磁力磁石4aが不可逆減磁し、全磁石の発生磁束量が減少し回転電機の性能が低下する。   Therefore, when an NdFeB magnet having a large coercive force drop is used as the fixed magnetic force magnet 4a, if the rotor core 24 or the fixed magnetic force magnet 4a magnetizes the variable magnetic force magnet 3 in a high temperature state, the coercive force of the variable magnetic force magnet is 300 kA / With respect to m, the coercive force of the fixed magnetic magnet 4a in a high temperature state is at a level equivalent to 500 kA / m. Since the magnetic field of about twice the holding force is required to increase / decrease the variable magnet, the fixed magnet 4a, which should not be irreversibly demagnetized by the increase / decrease of the variable magnet, is irreversibly demagnetized and all magnets are generated. The amount of magnetic flux decreases and the performance of the rotating electrical machine decreases.

本実施形態によれば、固定磁力磁石4aの磁石として、回転電機10の最高使用温度、例えば、150℃の範囲内で、常時、可変磁力磁石3の保磁力よりも大きな保磁力を維持する永久磁石を用いている。例えば、固定磁力磁石4aとして、温度による保磁力低下の影響の少ないSmCo系永久磁石を用いている。これにより、回転子鉄心24あるいは固定磁力磁石4aが高温の状態で磁化を行った場合でも、可変磁力磁石3と固定磁力磁石4aでは、磁化方向厚さの寸法が同じでも保磁力が大きく異なるので、固定磁力磁石4aが不可逆的に減磁することはない。従って、高温状態での磁化を容易に行うことが可能となる。   According to this embodiment, as the magnet of the fixed magnetic force magnet 4a, a permanent coercive force that always maintains a coercive force larger than the coercive force of the variable magnetic force magnet 3 within the maximum operating temperature of the rotating electrical machine 10, for example, in the range of 150 ° C. A magnet is used. For example, as the fixed magnetic magnet 4a, an SmCo permanent magnet that is less affected by a decrease in coercive force due to temperature is used. As a result, even when the rotor core 24 or the fixed magnetic magnet 4a is magnetized in a high temperature state, the variable magnetic magnet 3 and the fixed magnetic magnet 4a have a large difference in coercive force even if the magnetization direction thickness is the same. The fixed magnetic magnet 4a is not irreversibly demagnetized. Therefore, it is possible to easily perform magnetization in a high temperature state.

(可変磁力磁石の作用)
次に、可変磁力磁石3の作用について述べる。図5は、代表的な磁石であるNdFeB磁石、フェライト磁石、アルニコ磁石、サマコバ(SmCo)磁石、低保磁力サマコバ磁石の磁気特性(保磁力と磁束密度との関係)をそれぞれ示したグラフである。この中で、本実施形態では、固定磁力磁石4bとしてNdFeB磁石を、固定磁力磁石4aとしてSmCo磁石を、可変磁力磁石3としてフェライト磁石、アルニコ磁石、保磁力を弱く設定したSmCo磁石(サマリウムコバルト磁石)を使用することができる。なお、他の実施形態では、可変磁力磁石3としてフェライト磁石3を、固定磁力磁石4aとしてSmCo磁石、固定磁力磁石4bにNdFeB磁石を使用してもよい。
(Operation of variable magnetic magnet)
Next, the operation of the variable magnetic force magnet 3 will be described. FIG. 5 is a graph showing magnetic characteristics (relationship between coercive force and magnetic flux density) of typical magnets such as an NdFeB magnet, a ferrite magnet, an alnico magnet, a Samacoba (SmCo) magnet, and a low coercivity Samacoba magnet. . Among these, in this embodiment, the NdFeB magnet is used as the fixed magnetic magnet 4b, the SmCo magnet is used as the fixed magnetic magnet 4a, the ferrite magnet, the alnico magnet is used as the variable magnetic magnet 3, and the SmCo magnet (samarium cobalt magnet is set with a weak coercive force). ) Can be used. In another embodiment, the ferrite magnet 3 may be used as the variable magnetic magnet 3, the SmCo magnet may be used as the fixed magnetic magnet 4a, and the NdFeB magnet may be used as the fixed magnetic magnet 4b.

可変磁力磁石3は、低保磁力であっても、可変磁力磁石3のみの状態のときは高磁束密度であるが、固定磁力磁石4bを磁気的に並列に配置した状態では、その作用で可変磁力磁石3の動作点が低下し、その磁束密度が低下する。これに対して、可変磁力磁石3と固定磁力磁石4aを直列に積層配置した状態では、固定磁力磁石4aの作用で、可変磁力磁石3の磁石の動作点は上昇し、磁束密度が上昇する。   Even if the variable magnetic force magnet 3 has a low coercive force, the variable magnetic force magnet 3 has a high magnetic flux density when only the variable magnetic force magnet 3 is in a state. However, when the fixed magnetic force magnet 4b is magnetically arranged in parallel, the variable magnetic force magnet 3 is variable by its action. The operating point of the magnetic magnet 3 is lowered, and the magnetic flux density is lowered. On the other hand, in the state in which the variable magnetic magnet 3 and the fixed magnetic magnet 4a are stacked in series, the operating point of the magnet of the variable magnetic magnet 3 is increased by the action of the fixed magnetic magnet 4a, and the magnetic flux density is increased.

すなわち、低保磁力で高磁束密度の磁石であるアルニコ磁石またはSmCo系磁石の動作点は、可変磁力磁石3のみの状態では高磁束密度側(図5のA、B)にあるが、固定磁力磁石4bを並列に配置した状態では低磁束密度側(図5のA’、B’)に低下する。しかし、本実施形態のように、可変磁力磁石3と固定磁力磁石4aを直列に積層した状態では、並列に配置された固定磁力磁石4bと、直列に配置された固定磁力磁石4aの磁界の向きが逆方向であるため、両者の磁界は相殺され、可変磁力磁石3の動作点は高磁束密度側(図5のA”、B”)に移動する。   That is, the operating point of the Alnico magnet or SmCo magnet, which is a magnet having a low coercive force and a high magnetic flux density, is on the high magnetic flux density side (A and B in FIG. 5) when only the variable magnetic force magnet 3 is used. In a state where the magnets 4b are arranged in parallel, the magnetic flux decreases to the low magnetic flux density side (A ′, B ′ in FIG. 5). However, in the state where the variable magnetic force magnet 3 and the fixed magnetic force magnet 4a are stacked in series as in the present embodiment, the direction of the magnetic field of the fixed magnetic force magnet 4b arranged in parallel and the fixed magnetic force magnet 4a arranged in series. Are opposite directions, the two magnetic fields cancel each other, and the operating point of the variable magnetic force magnet 3 moves to the high magnetic flux density side (A ″, B ″ in FIG. 5).

このグラフから分かるように、可変磁力磁石3として、アルニコ磁石やSmCo系磁石を単独で使用した場合には、動作点A、B点から磁束密度を下げるためには、その保磁力に打ち勝つだけの磁力を電機子巻線18のd軸電流による磁界を発生させる必要があり、大きなd軸電流が必要となる。   As can be seen from this graph, when an Alnico magnet or SmCo magnet is used alone as the variable magnetic force magnet 3, in order to lower the magnetic flux density from the operating points A and B, the coercive force can only be overcome. It is necessary to generate a magnetic field by the d-axis current of the armature winding 18 as a magnetic force, and a large d-axis current is required.

しかし、本実施形態のように、可変磁路磁石3に対して、磁気的に並列に配置された固定磁力磁石4b、4bと、直列に配置された固定磁力磁石4aによって、可変磁力磁石3の動作点は図中A”に移動することになるので、磁界の強さをわずかに変化するだけでその磁束密度が急激に低下することになる。これにより、電機子巻線のd軸電流により逆磁界で可変磁力磁石3の磁力が減少した場合に、その磁束密度の変化を大きくすることができるので、少ないd軸電流によって、磁極内に配置された永久磁石全体による鎖交磁束量を大きく変化させることができる。   However, as in the present embodiment, the fixed magnetic magnets 4b and 4b magnetically arranged in parallel with the variable magnetic path magnet 3 and the fixed magnetic magnets 4a arranged in series are used for the variable magnetic magnet 3. Since the operating point moves to A ″ in the figure, the magnetic flux density decreases abruptly by only slightly changing the strength of the magnetic field. Due to this, the d-axis current of the armature winding When the magnetic force of the variable magnetic force magnet 3 decreases due to the reverse magnetic field, the change in the magnetic flux density can be increased. Therefore, the amount of flux linkage by the entire permanent magnet arranged in the magnetic pole is increased by a small d-axis current. Can be changed.

フェライト磁石は、アルニコ磁石と比較して保磁力が大きいため、永久磁石の鎖交磁束を増加させる方向に極性を反転させた場合に要する磁化電流が大きくなる。しかし、本実施形態では、直列に配置した固定磁力磁石4aの作用により少ない磁化電流で磁力を反転できる。   Since the ferrite magnet has a larger coercive force than the alnico magnet, the magnetizing current required when the polarity is reversed in the direction of increasing the flux linkage of the permanent magnet is increased. However, in this embodiment, the magnetic force can be reversed with a small magnetization current by the action of the fixed magnetic magnets 4a arranged in series.

この点は、図5に示すフェライト磁石を可変磁力磁石3として使用した場合も同様であり、アルニコ磁石やSmCo磁石のような急激な変化は無いものの、フェライト磁石単独で使用した場合に比較すると、その動作点C”が低下するので、少ないd軸電流で磁束密度を低下させることができる。   This point is the same when the ferrite magnet shown in FIG. 5 is used as the variable magnetic force magnet 3, and there is no abrupt change like the alnico magnet or the SmCo magnet, but compared with the case where the ferrite magnet is used alone, Since the operating point C ″ is lowered, the magnetic flux density can be lowered with a small d-axis current.

(短絡コイルの作用)
図6を参照して、短絡コイル8の作用について述べる。
可変磁力磁石3と固定磁力磁石4a、4bは、回転子鉄心24内に埋め込まれて磁気回路を構成している。そのため、前述したd軸電流による発生磁界は、可変磁力磁石3のみでなく、回転子鉄心24のq軸の鉄心部分にも作用する。本来、d軸電流による発生磁界は可変磁力磁石3の磁化を変化させるために行う。
(Action of short circuit coil)
The operation of the short-circuit coil 8 will be described with reference to FIG.
The variable magnetic magnet 3 and the fixed magnetic magnets 4a and 4b are embedded in the rotor core 24 to constitute a magnetic circuit. Therefore, the magnetic field generated by the d-axis current described above acts not only on the variable magnetic force magnet 3 but also on the q-axis core portion of the rotor core 24. Originally, the magnetic field generated by the d-axis current is performed in order to change the magnetization of the variable magnetic force magnet 3.

そこで、d軸電流による発生磁界が可変磁力磁石3の両側の回転子鉄心24のq軸に相当する鉄心部分に作用しないようにし、可変磁力磁石3に集中するようにすればよい。本実施形態では、回転子鉄心24のq軸部分に短絡コイル8を配置している。短絡コイル8は、可変磁力磁石3以外の箇所を囲むように配置する。d軸電流による発生磁界が回転子鉄心24のq軸相当部分に作用すると、前記磁界を打ち消すような誘導電流が短絡コイル8に流れる。従って、回転子鉄心24のq軸相当部分にはd軸電流による磁界と短絡電流による磁界とが作用し、磁界の増減はほとんど生じない。更に、短絡電流による磁界は可変磁力磁石3にも作用し、d軸電流による磁界と同方向になる。   Therefore, the magnetic field generated by the d-axis current may be prevented from acting on the iron core portions corresponding to the q-axis of the rotor core 24 on both sides of the variable magnetic force magnet 3 and concentrated on the variable magnetic force magnet 3. In the present embodiment, the short-circuit coil 8 is disposed on the q-axis portion of the rotor core 24. The short-circuit coil 8 is disposed so as to surround a portion other than the variable magnetic force magnet 3. When the magnetic field generated by the d-axis current acts on the q-axis equivalent portion of the rotor core 24, an induced current that cancels the magnetic field flows through the short-circuit coil 8. Therefore, the magnetic field caused by the d-axis current and the magnetic field caused by the short-circuit current act on the q-axis equivalent portion of the rotor core 24, and the magnetic field hardly increases or decreases. Furthermore, the magnetic field due to the short-circuit current also acts on the variable magnetic force magnet 3 and is in the same direction as the magnetic field due to the d-axis current.

従って、可変磁力磁石3を磁化させる磁界が強まり、少ないd軸電流で可変磁力磁石3を磁化できることになる。また、短絡コイルにより回転子鉄心24のq軸相当部分は前記d 軸電流の影響を受けず、磁束の増加はほとんど生じないので、前記d 軸電流による電機子鉄心の磁気飽和も緩和できる。 Therefore, the magnetic field that magnetizes the variable magnetic force magnet 3 is strengthened, and the variable magnetic force magnet 3 can be magnetized with a small d-axis current. Further, the portion corresponding to the q-axis of the rotor core 24 is not affected by the d-axis current due to the short-circuit coil, and the magnetic flux hardly increases, so that the magnetic saturation of the armature core due to the d-axis current can be reduced.

以上のように構成された永久磁石型回転電機10によれば、以下の効果を得ることができる。
(1)回転子の磁極を構成するための磁気回路に関して可変磁力磁石と直列に配列した固定磁力磁石の保磁力が極めて高いため、回転子または永久磁石が高温の状態で磁化を行っても、固定磁力磁石が不可逆的減磁することがなくなり、高温時の磁化による出力低下を防止できる。
According to the permanent magnet type rotating electrical machine 10 configured as described above, the following effects can be obtained.
(1) Since the coercive force of the fixed magnetic magnet arranged in series with the variable magnetic force magnet with respect to the magnetic circuit for constituting the magnetic pole of the rotor is extremely high, even if the rotor or permanent magnet is magnetized in a high temperature state, The fixed magnet can be prevented from being irreversibly demagnetized, and a decrease in output due to magnetization at a high temperature can be prevented.

(2)増磁時の磁化電流の増加を抑止できるため、永久磁石式回転電機を駆動するためのインバータを大型化する必要がなく、現状のインバータをそのまま使用して、運転の効率化が可能となる。 (2) Since the increase in magnetizing current at the time of magnetizing can be suppressed, there is no need to increase the size of the inverter for driving the permanent magnet type rotating electrical machine, and the current inverter can be used as it is to improve the operation efficiency. It becomes.

(3)d軸電流で可変磁力磁石3を不可逆的に変化させることにより、磁気回路的に直列に配置された可変磁力磁石3と固定磁力磁石4を合わせた複合磁石から発せられる全鎖交磁束量を広範囲に調整することができる。 (3) Total interlinkage magnetic flux generated from a composite magnet including the variable magnetic magnet 3 and the fixed magnetic magnet 4 arranged in series in a magnetic circuit by irreversibly changing the variable magnetic magnet 3 with the d-axis current. The amount can be adjusted over a wide range.

(4)永久磁石の全鎖交磁束量の調整は回転電機の電圧を広範囲に調整することを可能とし、また、着磁は極短時間のパルス的な電流で行うことにより、常時弱め磁束電流を流し続ける必要もないので損失を大幅に低減できる。また、従来のように弱め磁束制御を行う必要がないので高調波磁束による高調波鉄損も発生しない。以上により、本実施の形態の回転電機は、高出力で低速から高速までの広範囲の可変速運転を可能とし、広い運転範囲において高効率も可能となる。 (4) The adjustment of the total interlinkage magnetic flux of the permanent magnet makes it possible to adjust the voltage of the rotating electrical machine over a wide range, and the magnetization is always weakened by performing a pulse-like current in an extremely short time. Since it is not necessary to continue the flow, the loss can be greatly reduced. Further, since it is not necessary to perform the flux-weakening control as in the prior art, harmonic iron loss due to the harmonic magnetic flux does not occur. As described above, the rotating electrical machine according to the present embodiment enables high-output, wide-range variable speed operation from low speed to high speed, and high efficiency in a wide operation range.

(5)永久磁石による誘導電圧に関しては、可変磁力磁石3を負のd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできるため、永久磁石の誘導電圧によるインバータ電子部品の破損がなくなり、信頼性が向上する。 (5) Regarding the induced voltage due to the permanent magnet, the variable magnetic force magnet 3 can be magnetized with a negative d-axis current to reduce the total interlinkage magnetic flux of the permanent magnet. And the reliability is improved.

(6)回転電機が無負荷で連れ回される状態では、可変磁力磁石3を負のd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできる。これより、誘導電圧は著しく低くなり、誘導電圧を下げるための弱め磁束電流を常時通電する必要がほとんどなくなり、総合効率が向上する。特に惰行運転時間が長くなる通勤電車に本実施の形態の回転電機を搭載して駆動すると、総合運転効率は大幅に向上する。 (6) In a state where the rotating electrical machine is rotated with no load, the total magnetic flux linkage of the permanent magnet can be reduced by magnetizing the variable magnetic force magnet 3 with a negative d-axis current. As a result, the induced voltage is remarkably lowered, and there is almost no need to constantly apply a weak magnetic flux current for lowering the induced voltage, thereby improving the overall efficiency. In particular, when the rotating electric machine of the present embodiment is mounted on a commuter train that has a long coasting operation time, the overall driving efficiency is greatly improved.

次に、他の実施形態に係る永久磁石型回転電機について説明する。
以下に述べる実施形態において、前述した第1の実施形態と同一の部分には、同一の参照符号を付して、その詳細な説明を省略する。
Next, a permanent magnet type rotating electrical machine according to another embodiment will be described.
In the embodiments described below, the same parts as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

(第2の実施形態)
図7は、第2の実施形態に係る永久磁石型回転電機における回転子および固定子の一部を示す断面図である。第2の実施形態によれば、図7に示すように、回転子鉄心24において、d軸の両側にほぼV字状に並んで2つの磁石埋め込み孔6aが形成されている。各磁石埋め込み孔6aの外周側部分に、固定磁力磁石4bが埋め込まれ、内周側部分に、可変磁力磁石3および固定磁力磁石4aが磁気回路的に直列に重ねて埋め込まれている。これら可変磁力磁石3および固定磁力磁石4aと、固定磁力磁石4bとの間に、絶縁板5が埋め込まれている。
(Second Embodiment)
FIG. 7 is a cross-sectional view showing a part of the rotor and the stator in the permanent magnet type rotating electric machine according to the second embodiment. According to the second embodiment, as shown in FIG. 7, in the rotor core 24, two magnet embedded holes 6a are formed on both sides of the d-axis so as to be substantially V-shaped. A fixed magnetic force magnet 4b is embedded in the outer peripheral portion of each magnet embedded hole 6a, and a variable magnetic force magnet 3 and a fixed magnetic force magnet 4a are embedded in series in a magnetic circuit manner in the inner peripheral portion. An insulating plate 5 is embedded between the variable magnetic magnet 3, the fixed magnetic magnet 4a, and the fixed magnetic magnet 4b.

絶縁板5は、可変磁力磁石3および固定磁力磁石4aの磁化方向と平行な面に配置され、可変磁力磁石3および固定磁力磁石4aと、固定磁力磁石4bとを磁気的に絶縁している。固定磁力磁石4bは、磁極7を構成するための磁気回路上において、可変磁力磁石3と並列に配置されている。そして、これら可変磁力磁石3、固定磁力磁石4a、絶縁板5、および固定磁力磁石4bにより、複合磁石9を構成している。2つの複合磁石9は、磁極7のほぼ中心軸となるd軸に対して、固定磁力磁石4bを外径側とするV字状に配置され、回転子14の磁極7を構成している。可変磁力磁石3に直列に配置された固定磁力磁石4aは、回転電機の最高使用温度範囲内において、常時、可変磁力磁石の保磁力よりも高い保磁力を有する磁石、例えば、SmCo系磁石を用いている。   The insulating plate 5 is disposed on a plane parallel to the magnetization directions of the variable magnetic magnet 3 and the fixed magnetic magnet 4a, and magnetically insulates the variable magnetic magnet 3 and the fixed magnetic magnet 4a from the fixed magnetic magnet 4b. The fixed magnetic magnet 4 b is arranged in parallel with the variable magnetic magnet 3 on the magnetic circuit for constituting the magnetic pole 7. The variable magnet 3, the fixed magnet 4 a, the insulating plate 5, and the fixed magnet 4 b constitute a composite magnet 9. The two composite magnets 9 are arranged in a V shape with the fixed magnetic force magnet 4 b as the outer diameter side with respect to the d-axis, which is substantially the central axis of the magnetic pole 7, and constitute the magnetic pole 7 of the rotor 14. The fixed magnetic magnet 4a arranged in series with the variable magnetic magnet 3 uses a magnet having a coercivity higher than that of the variable magnetic magnet, for example, an SmCo-based magnet, at all times within the maximum operating temperature range of the rotating electrical machine. ing.

このように構成した第2の実施形態では、磁極7内に可変磁力磁石3が配置されていること、可変磁力磁石3と磁気回路的に直列に固定磁力磁石4aが配置され、それら磁石と磁気回路的に並列に固定磁力磁石4bが配置されていることから、基本的な構成は前述した第1の実施形態と同一である。このため、磁化により永久磁石の磁束量が不可逆的に可変でき高効率運転が可能である他、固定磁力磁石4aをSmCo系希土類磁石にすることにより、高温運転状態でも磁化を行うことができる。また、高温状態での磁化による、固定磁力磁石4aの不可逆減磁などの不具合を発生することもない。更に、複数の磁石を一体の複合磁石9とすることにより、回転電機の組立が容易となり、また、回転子鉄心24の磁石埋め込み孔6aの加工数が少なくて済むなどの効果がある。   In the second embodiment configured as described above, the variable magnetic force magnet 3 is disposed in the magnetic pole 7, and the fixed magnetic force magnet 4a is disposed in series with the variable magnetic force magnet 3 in a magnetic circuit manner. Since the fixed magnetic magnets 4b are arranged in parallel in a circuit, the basic configuration is the same as that of the first embodiment described above. For this reason, the amount of magnetic flux of the permanent magnet can be irreversibly changed by magnetization, and high-efficiency operation is possible. In addition, by using the SmCo rare earth magnet as the fixed magnetic force magnet 4a, magnetization can be performed even in a high-temperature operation state. Further, problems such as irreversible demagnetization of the fixed magnetic force magnet 4a due to magnetization in a high temperature state do not occur. Furthermore, by using a plurality of magnets as an integrated composite magnet 9, the assembly of the rotating electrical machine is facilitated, and the number of processing of the magnet embedding holes 6a of the rotor core 24 can be reduced.

(第3の実施形態)
図8は、第2の実施形態に係る永久磁石型回転電機における回転子および固定子の一部を示す断面図である。第2の実施形態によれば、図8に示すように、回転子鉄心24において、d軸の両側にほぼV字状に並んで2つの磁石埋め込み孔6aが形成されている。各磁石埋め込み孔6aの内周側部分に、固定磁力磁石4bが埋め込まれ、外周側部分に、可変磁力磁石3および固定磁力磁石4aが磁気回路的に直列に重ねて埋め込まれている。これら可変磁力磁石3および固定磁力磁石4aと、固定磁力磁石4bとの間に、絶縁板5が埋め込まれている。
(Third embodiment)
FIG. 8 is a cross-sectional view showing a part of the rotor and the stator in the permanent magnet type rotating electric machine according to the second embodiment. According to the second embodiment, as shown in FIG. 8, in the rotor core 24, two magnet embedded holes 6a are formed on both sides of the d-axis so as to be substantially V-shaped. The fixed magnetic magnet 4b is embedded in the inner peripheral side portion of each magnet embedding hole 6a, and the variable magnetic magnet 3 and the fixed magnetic magnet 4a are embedded in series in a magnetic circuit manner in the outer peripheral portion. An insulating plate 5 is embedded between the variable magnetic magnet 3, the fixed magnetic magnet 4a, and the fixed magnetic magnet 4b.

絶縁板5は、可変磁力磁石3および固定磁力磁石4aの磁化方向と平行な面に配置され、可変磁力磁石3および固定磁力磁石4aと、固定磁力磁石4bとを磁気的に絶縁している。固定磁力磁石4bは、磁極7を構成するための磁気回路上において、可変磁力磁石3と並列に配置されている。そして、これら可変磁力磁石3、固定磁力磁石4a、絶縁板5、および固定磁力磁石4bにより、複合磁石9を構成している。2つの複合磁石9は、磁極7のほぼ中央d軸に対して、固定磁力磁石4bを内径側とするV字状に配置され、回転子14の磁極7を構成している。可変磁力磁石3に直列に配置された固定磁力磁石4aは、回転電機の最高使用温度範囲内において、常時、可変磁力磁石の保磁力よりも高い保磁力を有する磁石、例えば、SmCo系磁石を用いている。   The insulating plate 5 is disposed on a plane parallel to the magnetization directions of the variable magnetic magnet 3 and the fixed magnetic magnet 4a, and magnetically insulates the variable magnetic magnet 3 and the fixed magnetic magnet 4a from the fixed magnetic magnet 4b. The fixed magnetic magnet 4 b is arranged in parallel with the variable magnetic magnet 3 on the magnetic circuit for constituting the magnetic pole 7. The variable magnet 3, the fixed magnet 4 a, the insulating plate 5, and the fixed magnet 4 b constitute a composite magnet 9. The two composite magnets 9 are arranged in a V shape with the fixed magnetic force magnet 4 b as the inner diameter side with respect to the substantially central d-axis of the magnetic pole 7, and constitute the magnetic pole 7 of the rotor 14. The fixed magnetic magnet 4a arranged in series with the variable magnetic magnet 3 uses a magnet having a coercivity higher than that of the variable magnetic magnet, for example, an SmCo-based magnet, at all times within the maximum operating temperature range of the rotating electrical machine. ing.

このように構成した第3の実施形態においても、前述した第2の実施形態と同様の作用効果を得ることができる。更に、複合磁石9の内、比較的弱い磁石を外形側つまり磁極7の中心に対して、両端の位置に配置することにより、回転子14と固定子12との間のエアギャップ部において、周方向磁束密度分布が、磁極中央部が凸のより正弦波に近い分布となり、高調波鉄損を減少させることが可能となる。   Also in the third embodiment configured as described above, the same effects as those of the second embodiment described above can be obtained. Furthermore, by arranging relatively weak magnets of the composite magnet 9 at positions on both sides with respect to the outer shape side, that is, the center of the magnetic pole 7, in the air gap portion between the rotor 14 and the stator 12, The directional magnetic flux density distribution becomes a distribution closer to a sine wave than the convex magnetic pole central portion, and the harmonic iron loss can be reduced.

なお、この発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
例えば、永久磁石型回転電機は、インナーロータ型に限らず、アウターロータ型としてもよい。回転子の磁極数、寸法、形状等は、前述した実施形態に限定されることなく、設計に応じて種々変更可能である。また、回転子鉄心内における永久磁石の配置は、V字形状に限らず、例えば、回転子鉄心の回転中心と同芯円の接線方向に並ぶように配置してもよい。
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
For example, the permanent magnet type rotating electrical machine is not limited to the inner rotor type, and may be an outer rotor type. The number of magnetic poles, the size, the shape, and the like of the rotor are not limited to the above-described embodiments, and can be variously changed according to the design. Further, the arrangement of the permanent magnets in the rotor core is not limited to the V shape, and for example, the permanent magnets may be arranged in a tangential direction of the concentric circle with the rotation center of the rotor core.

磁極を形成する永久磁石において、保磁力と磁化方向の厚みの積をもって永久磁石を区別する定義をしている。従って、磁極は同じ種類の永久磁石で形成し、磁化方向厚みを異なるように形成しても同様な作用と効果が得られる。   In the permanent magnet that forms the magnetic pole, the permanent magnet is defined by the product of the coercive force and the thickness in the magnetization direction. Therefore, even if the magnetic poles are formed of the same type of permanent magnet and are formed so as to have different magnetization direction thicknesses, the same operation and effect can be obtained.

回転電機の運転時に極短時間のパルス的なd軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、かつ、全磁石の誘起電圧に対して位相を進めた電流を連続的に通電させて、電流と永久磁石で生じる電機子巻線の鎖交磁束量を変化させる構成としてもよい。すなわち、パルス電流で永久磁石の磁束量を減少させ、さらに電流位相を進めると、磁石磁束に対して逆方向の電流で生じる磁束が発生するので、これを相殺して、全鎖交磁束を減少でき、端子電圧を低下させることができる。なお、電流位相を進めることは負のd軸電流成分を流していることと等価である。   During operation of the rotating electrical machine, the permanent magnet was magnetized by a magnetic field generated by a pulsed d-axis current for a very short time to irreversibly change the amount of magnetic flux of the permanent magnet, and the phase was advanced with respect to the induced voltage of all the magnets. It is good also as a structure which energizes current continuously and changes the amount of flux linkage of the armature winding which arises with an electric current and a permanent magnet. That is, if the amount of magnetic flux of the permanent magnet is reduced by the pulse current and the current phase is further advanced, magnetic flux generated by the current in the opposite direction to the magnetic flux is generated. Terminal voltage can be reduced. Note that advancing the current phase is equivalent to flowing a negative d-axis current component.

このような電流位相進み制御においては、電流位相を進めるとd軸電流が流れて磁石は減磁して幾分磁束量は減る。しかし、パルス電流で大きく減磁させているので、磁束量の低下は比率的には小さい利点がある。   In such current phase advance control, when the current phase is advanced, a d-axis current flows, the magnet is demagnetized, and the amount of magnetic flux is somewhat reduced. However, since the magnetic field is greatly demagnetized by the pulse current, there is an advantage that the reduction of the magnetic flux amount is small in proportion.

3…可変磁力磁石、4a、4b…固定磁力磁石、6a…磁石埋め込み孔、
8…短絡コイル、10…回転電機、12…固定子、14…回転子、16…固定子鉄心、
18…電機子巻線、20…スロット、22…回転軸、24…回転子鉄心
3 ... variable magnetic magnet, 4a, 4b ... fixed magnetic magnet, 6a ... magnet embedding hole,
8 ... Short-circuit coil, 10 ... Rotating electric machine, 12 ... Stator, 14 ... Rotor, 16 ... Stator iron core,
18 ... armature winding, 20 ... slot, 22 ... rotating shaft, 24 ... rotor core

Claims (6)

固定子鉄心およびこの固定子鉄心に取り付けられた電機子巻線を有する固定子と、
前記固定子に対して回転自在に設けられた回転子鉄心、およびこの回転子鉄心に埋設され複数の磁極を形成する複数の永久磁石を有する回転子と、を備え、
運転中に、前記電機子巻線を流れる電流が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させて、永久磁石の磁束量を不可逆的に変化させる永久磁石型回転電機であって、
前記磁極を形成する複数の永久磁石は、磁束量を不可逆的に変化可能な可変磁力磁石と、前記磁極を形成するための磁気回路に関して前記可変磁力磁石と直列に配置され、磁束量を固定とする固定磁力磁石と、を含み、前記固定磁力磁石は、最大使用温度範囲内の全範囲で、保磁力と磁化方向厚の積が、前記可変磁力磁石の保磁力と磁化方向厚の積よりも大きいことを特徴とする永久磁石型回転電機。
A stator having a stator core and an armature winding attached to the stator core;
A rotor core provided rotatably with respect to the stator, and a rotor having a plurality of permanent magnets embedded in the rotor core to form a plurality of magnetic poles,
During operation, a permanent magnet type rotation that irreversibly changes the amount of magnetic flux of the permanent magnet by magnetizing at least one of the permanent magnets constituting the magnetic pole of the rotor by a magnetic field generated by the current flowing through the armature winding An electric machine,
The plurality of permanent magnets forming the magnetic pole are arranged in series with the variable magnetic force magnet that can irreversibly change the amount of magnetic flux and the magnetic circuit for forming the magnetic pole, and the amount of magnetic flux is fixed. The product of the coercive force and the magnetization direction thickness is greater than the product of the coercivity and the magnetization direction thickness of the variable magnetic magnet over the entire range within the maximum operating temperature range. A permanent magnet type rotating electrical machine characterized by being large.
固定子鉄心およびこの固定子鉄心に取り付けられた電機子巻線を有する固定子と、
前記固定子に対して回転自在に設けられた回転子鉄心、およびこの回転子鉄心に埋設され複数の磁極を形成する複数の永久磁石を有する回転子と、を備え、
運転中に、前記電機子巻線を流れる電流が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させて、永久磁石の磁束量を不可逆的に変化させる永久磁石型回転電機であって、
前記磁極を形成する複数の永久磁石は、磁束量を不可逆的に変化可能な可変磁力磁石と、前記磁極を形成するための磁気回路に関して前記可変磁力磁石と直列に配置され、磁束量を固定とする固定磁力磁石と、を含み、前記固定磁力磁石は、最大使用温度範囲内の全範囲で、保磁力が前記可変磁力磁石の保磁力よりも大きいSmCo系磁石又は希土類・鉄・窒素系磁石又はSmFeN系磁石(サマリウム・鉄窒・素系磁石)であることを特徴とする永久磁石型回転電機。
A stator having a stator core and an armature winding attached to the stator core;
A rotor core provided rotatably with respect to the stator, and a rotor having a plurality of permanent magnets embedded in the rotor core to form a plurality of magnetic poles,
During operation, a permanent magnet type rotation that irreversibly changes the amount of magnetic flux of the permanent magnet by magnetizing at least one of the permanent magnets constituting the magnetic pole of the rotor by a magnetic field generated by the current flowing through the armature winding An electric machine,
The plurality of permanent magnets forming the magnetic pole are arranged in series with the variable magnetic force magnet that can irreversibly change the amount of magnetic flux and the magnetic circuit for forming the magnetic pole, and the amount of magnetic flux is fixed. The fixed magnetic magnet includes a SmCo-based magnet or a rare earth / iron / nitrogen-based magnet whose coercive force is larger than the coercive force of the variable magnetic magnet in the entire range within the maximum operating temperature range. A permanent magnet type rotating electrical machine characterized by being an SmFeN-based magnet (samarium / iron-nitrogen / elemental magnet).
前記磁極を形成する可変磁力磁石および固定磁力磁石は、磁化方向に重ね合わせて配置されている請求項1又は2に記載の永久磁石型回転電機。   The permanent magnet type rotating electric machine according to claim 1 or 2, wherein the variable magnetic magnet and the fixed magnetic magnet that form the magnetic pole are arranged so as to overlap each other in the magnetization direction. 前記磁極を形成する複数の永久磁石は、前記磁極を形成するための磁気回路に関して前記可変磁力磁石と並列に配置され磁束量を固定とする他の固定磁力磁石を含んでいる請求項1ないし3のいずれか1項に記載の永久磁石型回転電機。   The plurality of permanent magnets forming the magnetic pole include other fixed magnetic magnets that are arranged in parallel with the variable magnetic magnet with respect to the magnetic circuit for forming the magnetic pole and fix the amount of magnetic flux. The permanent magnet type rotating electrical machine according to any one of the above. 前記可変磁力磁石および固定磁力磁石は、前記磁極の中心軸上に配置され、前記磁化方向が前記中心軸方向に沿っている請求項3又は4に記載の永久磁石型回転電機。   The permanent magnet type rotating electrical machine according to claim 3 or 4, wherein the variable magnetic magnet and the fixed magnetic magnet are arranged on a central axis of the magnetic pole, and the magnetization direction is along the central axis direction. 前記磁極を形成する複数の永久磁石は、前記磁極を形成するための磁気回路に関して前記可変磁力磁石と並列に配置され磁束量を固定とする他の固定磁力磁石を含み、前記可変磁力磁石、固定磁力磁石と前記他の固定磁力磁石とは絶縁体を挟んで並んで設けられて複合磁石を構成し、この複合磁石が前記磁極の中心軸の両側にそれぞれ配置されている請求項3又は4に記載の永久磁石型回転電機。   The plurality of permanent magnets forming the magnetic pole include another fixed magnetic magnet that is arranged in parallel with the variable magnetic magnet with respect to the magnetic circuit for forming the magnetic pole and fixes the amount of magnetic flux. The magnetic magnet and the other fixed magnetic magnet are arranged side by side with an insulator to form a composite magnet, and the composite magnet is disposed on both sides of the central axis of the magnetic pole, respectively. The permanent magnet type rotating electric machine described.
JP2011187072A 2011-08-30 2011-08-30 Permanent magnet type rotating electric machine Active JP5787673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011187072A JP5787673B2 (en) 2011-08-30 2011-08-30 Permanent magnet type rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011187072A JP5787673B2 (en) 2011-08-30 2011-08-30 Permanent magnet type rotating electric machine

Publications (2)

Publication Number Publication Date
JP2013051763A true JP2013051763A (en) 2013-03-14
JP5787673B2 JP5787673B2 (en) 2015-09-30

Family

ID=48013392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187072A Active JP5787673B2 (en) 2011-08-30 2011-08-30 Permanent magnet type rotating electric machine

Country Status (1)

Country Link
JP (1) JP5787673B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159691A (en) * 2014-02-25 2015-09-03 学校法人 東洋大学 Permanent magnet rotary electric machine and control apparatus of the same
JP2015186415A (en) * 2014-03-26 2015-10-22 学校法人 東洋大学 Permanent magnet type rotary electric machine
KR20170116733A (en) * 2016-04-12 2017-10-20 삼성전자주식회사 Interior permanent magnet motor
CN108777522A (en) * 2018-08-09 2018-11-09 珠海格力节能环保制冷技术研究中心有限公司 Motor rotor and permanent magnet motor
WO2019058699A1 (en) * 2017-09-25 2019-03-28 日本電産株式会社 Rotor and motor
CN109995198A (en) * 2019-04-23 2019-07-09 山东理工大学 Single biradial is spaced apart magnetic pole type driving motor method for production of rotor
CN110034623A (en) * 2019-05-20 2019-07-19 珠海格力节能环保制冷技术研究中心有限公司 Rotor, motor and mechanical structure
CN110739821A (en) * 2019-11-06 2020-01-31 天津工业大学 Method for designing robustness of low-iron-loss variable-flux permanent magnet memory motor for electric automobile
JP2021027700A (en) * 2019-08-05 2021-02-22 国立大学法人北海道大学 Variable magnetic force motor
CN113098159A (en) * 2021-04-01 2021-07-09 西北工业大学 Hybrid permanent magnet memory starting/power generator and operation method thereof
WO2022065109A1 (en) * 2020-09-25 2022-03-31 ダイキン工業株式会社 Rotating machine
WO2022114176A1 (en) * 2020-11-30 2022-06-02 三菱重工サーマルシステムズ株式会社 Electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281958A (en) * 1985-10-02 1987-04-15 Hitachi Ltd Permanent magnet type dc rotary electric machine
JPH114555A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Permanent magnet rotating machine
JP2010124608A (en) * 2008-11-19 2010-06-03 Toshiba Corp Permanent magnet rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281958A (en) * 1985-10-02 1987-04-15 Hitachi Ltd Permanent magnet type dc rotary electric machine
JPH114555A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Permanent magnet rotating machine
JP2010124608A (en) * 2008-11-19 2010-06-03 Toshiba Corp Permanent magnet rotary electric machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159691A (en) * 2014-02-25 2015-09-03 学校法人 東洋大学 Permanent magnet rotary electric machine and control apparatus of the same
JP2015186415A (en) * 2014-03-26 2015-10-22 学校法人 東洋大学 Permanent magnet type rotary electric machine
US10505413B2 (en) 2016-04-12 2019-12-10 Samsung Electronics Co., Ltd. Interior permanent magnet motor including magnets arranged to be partitioned from barriers
KR20170116733A (en) * 2016-04-12 2017-10-20 삼성전자주식회사 Interior permanent magnet motor
EP3242377A1 (en) * 2016-04-12 2017-11-08 Samsung Electronics Co., Ltd Interior permanent magnet motor
KR102629775B1 (en) 2016-04-12 2024-01-26 삼성전자주식회사 Interior permanent magnet motor
WO2019058699A1 (en) * 2017-09-25 2019-03-28 日本電産株式会社 Rotor and motor
CN108777522A (en) * 2018-08-09 2018-11-09 珠海格力节能环保制冷技术研究中心有限公司 Motor rotor and permanent magnet motor
CN109995198A (en) * 2019-04-23 2019-07-09 山东理工大学 Single biradial is spaced apart magnetic pole type driving motor method for production of rotor
CN110034623A (en) * 2019-05-20 2019-07-19 珠海格力节能环保制冷技术研究中心有限公司 Rotor, motor and mechanical structure
JP2021027700A (en) * 2019-08-05 2021-02-22 国立大学法人北海道大学 Variable magnetic force motor
JP7284503B2 (en) 2019-08-05 2023-05-31 国立大学法人 岡山大学 Variable magnetic force motor
CN110739821A (en) * 2019-11-06 2020-01-31 天津工业大学 Method for designing robustness of low-iron-loss variable-flux permanent magnet memory motor for electric automobile
CN110739821B (en) * 2019-11-06 2024-04-30 天津工业大学 Method for designing robustness of low-iron-loss variable-flux permanent magnet memory motor for electric automobile
WO2022065109A1 (en) * 2020-09-25 2022-03-31 ダイキン工業株式会社 Rotating machine
JP2022053898A (en) * 2020-09-25 2022-04-06 ダイキン工業株式会社 Rotary machine
WO2022114176A1 (en) * 2020-11-30 2022-06-02 三菱重工サーマルシステムズ株式会社 Electric motor
EP4246774A4 (en) * 2020-11-30 2024-04-24 Mitsubishi Heavy Industries Thermal Systems, Ltd. Electric motor
CN113098159A (en) * 2021-04-01 2021-07-09 西北工业大学 Hybrid permanent magnet memory starting/power generator and operation method thereof

Also Published As

Publication number Publication date
JP5787673B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5787673B2 (en) Permanent magnet type rotating electric machine
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5361260B2 (en) Permanent magnet rotary electric machine
JP5398103B2 (en) Permanent magnet rotating electric machine
JP5355055B2 (en) Permanent magnet rotating electric machine
JP6139007B2 (en) Rotating electrical machine
JP2010148235A (en) Permanent magnet type rotary electric machine
JP7076188B2 (en) Variable magnetic force motor
JP2012175738A (en) Permanent magnet type rotary electric machine
JP5178488B2 (en) Permanent magnet rotating electric machine
JPWO2019050050A1 (en) Rotor and rotating electric machine
JP2012029563A (en) Permanent magnet type rotary electric machine
JP5802487B2 (en) Permanent magnet rotating electric machine
JP2019092313A (en) Permanent magnet type rotary electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine
JP5178487B2 (en) Permanent magnet rotating electric machine
JP5390314B2 (en) Permanent magnet rotating electric machine
JP2013051761A (en) Permanent magnet type rotating electrical machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R151 Written notification of patent or utility model registration

Ref document number: 5787673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151