JP2012221668A - Layered electrode film - Google Patents
Layered electrode film Download PDFInfo
- Publication number
- JP2012221668A JP2012221668A JP2011084957A JP2011084957A JP2012221668A JP 2012221668 A JP2012221668 A JP 2012221668A JP 2011084957 A JP2011084957 A JP 2011084957A JP 2011084957 A JP2011084957 A JP 2011084957A JP 2012221668 A JP2012221668 A JP 2012221668A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thin film
- alloy thin
- oxide
- film layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 claims abstract description 65
- 229910001316 Ag alloy Inorganic materials 0.000 claims abstract description 63
- 239000010408 film Substances 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 10
- 229910003437 indium oxide Inorganic materials 0.000 claims description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 239000011787 zinc oxide Substances 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910001195 gallium oxide Inorganic materials 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims 1
- 229910001887 tin oxide Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 120
- 238000004544 sputter deposition Methods 0.000 description 20
- 239000000758 substrate Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- JYMITAMFTJDTAE-UHFFFAOYSA-N aluminum zinc oxygen(2-) Chemical compound [O-2].[Al+3].[Zn+2] JYMITAMFTJDTAE-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
本発明は、表示用デバイスに用いられる積層電極膜であって、透明酸化物層とAg合金薄膜層とが積層される積層電極膜に関する。 The present invention relates to a laminated electrode film used in a display device, and relates to a laminated electrode film in which a transparent oxide layer and an Ag alloy thin film layer are laminated.
表示用デバイス、特に液晶ディスプレイ(LCD)、発光ダイオード(LED)及び有機ELディスプレイなどに用いられる透過型電極層又は反射型電極層では、透明酸化物層と金属薄膜層とが積層された積層電極膜が用いられている。 In a transmissive electrode layer or a reflective electrode layer used for a display device, particularly a liquid crystal display (LCD), a light emitting diode (LED), and an organic EL display, a laminated electrode in which a transparent oxide layer and a metal thin film layer are laminated. A membrane is used.
例えば、特許文献1には、有機EL素子において、発光源である有機活性層の下部に形成され、銀などの光反射性を有する導電材料を用いて形成された反射層と該反射層の上にITOなどの光透過性を有する導電材料を用いて形成された透過層とを積層した第1電極と、有機活性層の上部に形成され、銀とマグネシウムとの混合物からなる半透過層とITOなどの光透過性を有する導電材料を用いて形成された透過層とを積層した第2電極とが開示されている。 For example, in Patent Document 1, in an organic EL element, a reflective layer formed using a light-reflective conductive material such as silver, which is formed below an organic active layer that is a light emitting source, and an upper surface of the reflective layer. A first electrode in which a transparent layer made of a light-transmitting conductive material such as ITO is laminated, a semi-transparent layer made of a mixture of silver and magnesium, formed on the organic active layer, and ITO A second electrode in which a transmissive layer formed using a light-transmitting conductive material is laminated is disclosed.
また、最近では、表示用デバイスとして、タッチパネルに注目が集まっている。例えば、抵抗膜式タッチパネルでは、PETフィルムに積層された上部透明電極とガラス基板に積層された下部透明電極とがスペーサを介して貼り合せられた構造を有しており、指又はペンなどの押圧力が加わると上部透明電極と下部透明電極とが接触し通電する構造を有している。このタッチパネルでは、画面の外枠で上部及び下部の透明電極とAg合金薄膜層とが積層された構造を有することになる。 Recently, attention has been focused on touch panels as display devices. For example, a resistance film type touch panel has a structure in which an upper transparent electrode laminated on a PET film and a lower transparent electrode laminated on a glass substrate are bonded via a spacer, and a finger or a pen is pressed. When pressure is applied, the upper transparent electrode and the lower transparent electrode come into contact with each other to conduct electricity. This touch panel has a structure in which upper and lower transparent electrodes and an Ag alloy thin film layer are laminated on the outer frame of the screen.
ここで、Ag合金としては、特許文献2に銀を主成分として、チタン、ジルコニウム、ハウニウム、バナジウム、ニオブ、タンタル、クロム、モリデブン、タングステン、鉄、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、金、亜鉛、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウム、及びスズなどを添加した合金が提案されている。 Here, as an Ag alloy, Patent Document 2 has silver as a main component, titanium, zirconium, haunium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, An alloy to which platinum, copper, gold, zinc, aluminum, gallium, indium, silicon, germanium, tin, or the like is added has been proposed.
また、特許文献3には、銀を主成分として、アルミニウム、インジウム、錫、ビスマス、ガリウム、亜鉛、ストロンチウム、カルシウム、ゲルマニウム、マグネシウム、アンチモン、リチウム、リンなどを添加した合金が提案されている。 Patent Document 3 proposes an alloy containing silver as a main component and added with aluminum, indium, tin, bismuth, gallium, zinc, strontium, calcium, germanium, magnesium, antimony, lithium, phosphorus, and the like.
しかしながら、上記従来の技術においても、以下の課題が残されている。
すなわち、液晶ディスプレイ、発光ダイオード、有機ELディスプレイ、タッチパネルなどの表示デバイスでは歩留りの向上及び長寿命化のため、透明酸化物層とAg合金薄膜層との密着性においてさらに高い信頼性が要求されている。
However, the following problems remain in the above-described conventional technology.
That is, in display devices such as liquid crystal displays, light emitting diodes, organic EL displays, touch panels, etc., higher reliability is required in the adhesion between the transparent oxide layer and the Ag alloy thin film layer in order to improve the yield and extend the life. Yes.
本発明は、前述の課題に鑑みてなされたもので、液晶ディスプレイ、発光ダイオード、有機ELディスプレイ、タッチパネルなどの表示デバイスに用いられる透明酸化物層とAg合金薄膜層との密着性を向上させた積層電極膜およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and has improved adhesion between a transparent oxide layer and an Ag alloy thin film layer used in display devices such as liquid crystal displays, light emitting diodes, organic EL displays, and touch panels. It aims at providing a laminated electrode film and its manufacturing method.
本発明者らは、透明酸化物層とAg合金薄膜層との接合界面に特定の酸化物を形成させることによって、透明酸化物層とAg合金薄膜層との密着性が向上することを見出した。
したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
The present inventors have found that adhesion between the transparent oxide layer and the Ag alloy thin film layer is improved by forming a specific oxide at the bonding interface between the transparent oxide layer and the Ag alloy thin film layer. .
Therefore, the present invention has been obtained from the above findings, and the following configuration has been adopted in order to solve the above problems.
第1の発明に係る積層電極膜は、透明酸化物層とAg合金薄膜層とが積層された積層電極膜であって、前記Ag合金薄膜層は、In:0.1〜1.5質量%を含み、残部がAgおよび不可避不純物からなる成分組成を有し、前記透明酸化物層と前記Ag合金薄膜層との接合界面に、In酸化物が形成されていることを特徴とする。 The laminated electrode film according to the first invention is a laminated electrode film in which a transparent oxide layer and an Ag alloy thin film layer are laminated, and the Ag alloy thin film layer is In: 0.1 to 1.5 mass%. And the balance is composed of Ag and inevitable impurities, and an In oxide is formed at the bonding interface between the transparent oxide layer and the Ag alloy thin film layer.
この積層電極膜では、透明酸化物層とAg合金薄膜層との接合界面にIn酸化物が形成されているので、Ag合金薄膜層の一成分であるInを含有すると共に透明酸化物層と同様に酸化物であるIn酸化物が上記接合界面に介在することで、透明酸化物層とAg合金薄膜層との密着性を向上させることができる。 In this laminated electrode film, since In oxide is formed at the bonding interface between the transparent oxide layer and the Ag alloy thin film layer, it contains In which is one component of the Ag alloy thin film layer and is the same as the transparent oxide layer. Indium oxide, which is an oxide, intervenes in the bonding interface, so that the adhesion between the transparent oxide layer and the Ag alloy thin film layer can be improved.
第2の発明に係る積層電極膜は、第1の発明の積層電極膜において、前記透明酸化物層が、インジウム・スズ酸化物(ITO),亜鉛・アルミニウム酸化物(AZO),ガリウム・亜鉛酸化物(GZO)、インジウム・亜鉛酸化物(IZO)からなる群から選ばれた少なくとも一つの酸化物からなることを特徴とする。 A laminated electrode film according to a second invention is the laminated electrode film according to the first invention, wherein the transparent oxide layer is made of indium tin oxide (ITO), zinc aluminum oxide (AZO), gallium zinc oxide. It is characterized by comprising at least one oxide selected from the group consisting of a material (GZO) and indium / zinc oxide (IZO).
第1及び第2の発明に係る積層電極膜は、前記透明酸化物層と前記Ag合金薄膜層とを積層する工程と、積層された前記透明酸化物層と前記Ag合金薄膜層とに熱処理を施して前記透明酸化物層と前記Ag合金薄膜層との接合界面に、In酸化物を形成する工程によって、製造することができる。
すなわち、この積層電極膜の製造方法では、積層された透明酸化物層とAg合金薄膜層とに熱処理を施して透明酸化物層とAg合金薄膜層との接合界面にIn酸化物を形成する工程を有しているので、良好な導電性を維持しつつ積層状態のままでIn酸化物を接合界面に形成することができる。
The laminated electrode film according to the first and second inventions includes a step of laminating the transparent oxide layer and the Ag alloy thin film layer, and heat treating the laminated transparent oxide layer and the Ag alloy thin film layer. It can manufacture by the process of giving and forming In oxide in the joining interface of the said transparent oxide layer and the said Ag alloy thin film layer.
That is, in this method for producing a laminated electrode film, a process of forming an In oxide at the bonding interface between the transparent oxide layer and the Ag alloy thin film layer by subjecting the laminated transparent oxide layer and the Ag alloy thin film layer to a heat treatment Therefore, it is possible to form In oxide at the bonding interface while maintaining good conductivity and in a laminated state.
本発明によれば、以下の効果を奏する。
本発明の積層電極膜によれば、透明酸化物層とAg合金薄膜層との接合界面にIn酸化物が形成されるので、透明酸化物層とAg合金薄膜層との密着性が向上し、表示デバイスの歩留り及び長寿命化を実現することができる。
The present invention has the following effects.
According to the laminated electrode film of the present invention, since the In oxide is formed at the bonding interface between the transparent oxide layer and the Ag alloy thin film layer, the adhesion between the transparent oxide layer and the Ag alloy thin film layer is improved, It is possible to realize a yield and a long life of the display device.
以下、本発明に係る積層電極膜およびその製造方法の一実施形態を、図1を参照しながら説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。 Hereinafter, an embodiment of a laminated electrode film and a manufacturing method thereof according to the present invention will be described with reference to FIG. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.
本実施形態の積層電極膜は、図1に示すように、例えばガラス基板等の基板上に形成され、透明酸化物層1とAg合金薄膜層2とが積層された積層電極膜であって、Ag合金薄膜層2は、In:0.1〜1.5質量%を含み、残部がAgおよび不可避不純物からなる成分組成を有し、透明酸化物層1とAg合金薄膜層2との接合界面に、In酸化物3が形成されている。 As shown in FIG. 1, the laminated electrode film of the present embodiment is a laminated electrode film formed on a substrate such as a glass substrate and laminated with a transparent oxide layer 1 and an Ag alloy thin film layer 2. The Ag alloy thin film layer 2 contains In: 0.1 to 1.5% by mass, and the balance is composed of Ag and inevitable impurities, and the bonding interface between the transparent oxide layer 1 and the Ag alloy thin film layer 2 In addition, an In oxide 3 is formed.
上記透明酸化物層1としては、インジウム・スズ酸化物(ITO),亜鉛・アルミニウム酸化物(AZO),ガリウム・亜鉛酸化物(GZO)、インジウム・亜鉛酸化物(IZO)を用いることができる。特に、Ag合金薄膜層2との密着性の観点からは、Inを含有するITOが最も望ましい。なお、透明酸化物層1の厚みは、0.5〜300nmが好ましい。また、透明酸化物層1は、本実施形態では一層の構造としているが、多層化しても構わない。 As the transparent oxide layer 1, indium tin oxide (ITO), zinc aluminum oxide (AZO), gallium zinc oxide (GZO), indium zinc oxide (IZO) can be used. In particular, from the viewpoint of adhesion with the Ag alloy thin film layer 2, ITO containing In is most desirable. In addition, as for the thickness of the transparent oxide layer 1, 0.5-300 nm is preferable. In addition, the transparent oxide layer 1 has a single-layer structure in this embodiment, but may be multi-layered.
この透明酸化物層1は、スパッタによって形成することができる。なお、他の製法として、ゾルゲル法、CVD法によっても形成することができるが、膜の均一性の観点からスパッタ法による成膜が好ましい。このスパッタリングは、DCマグネトロンスパッタ装置を用い、例えば到達真空度5.0×10−5Pa、スパッタ圧力0.5Pa、酸素分圧0.01Paで行うことができる。
この透明酸化物層1の比抵抗は、5×10−3Ω・cm以下が望ましく、波長550nmでの透過率が90%以上有することが望ましい。
This transparent oxide layer 1 can be formed by sputtering. As another manufacturing method, it can be formed by a sol-gel method or a CVD method, but from the viewpoint of film uniformity, film formation by a sputtering method is preferable. This sputtering can be performed using a DC magnetron sputtering apparatus, for example, at an ultimate vacuum of 5.0 × 10 −5 Pa, a sputtering pressure of 0.5 Pa, and an oxygen partial pressure of 0.01 Pa.
The specific resistance of the transparent oxide layer 1 is desirably 5 × 10 −3 Ω · cm or less and desirably has a transmittance of 90% or more at a wavelength of 550 nm.
上記Ag合金薄膜層2に含有されるInは、透明酸化物層1とAg合金薄膜層2との接合界面においてIn酸化物3を形成させるために必要となるが、Inの含有量が0.1質量%未満であると、上記接合界面に十分なIn酸化物3を形成することができなくなる。一方、Inの含有量が1.5質量%を超えると、Ag合金薄膜層2の比抵抗が上昇してしまう。これらの理由から、Inの含有量範囲は、0.1〜1.5質量%に設定される。なお、比抵抗及び膜の密着性の観点から、0.2〜1.0質量%がより望ましい。 The In contained in the Ag alloy thin film layer 2 is necessary for forming the In oxide 3 at the bonding interface between the transparent oxide layer 1 and the Ag alloy thin film layer 2. If it is less than 1% by mass, sufficient In oxide 3 cannot be formed at the bonding interface. On the other hand, when the In content exceeds 1.5 mass%, the specific resistance of the Ag alloy thin film layer 2 increases. For these reasons, the In content range is set to 0.1 to 1.5 mass%. In addition, from a viewpoint of specific resistance and the adhesiveness of a film | membrane, 0.2-1.0 mass% is more desirable.
また、Ag合金薄膜層2に、さらにCa,Sn,Ga,Cu,Mg,Ce,Eu,の内の1種または2種以上を合計で1.5重量%以下含有させても構わない。これらの含有量を上記範囲に設定した理由は、1.5質量%を超えてこれらの元素を含有すると、膜の比抵抗が上昇するため好ましくないからである。 Further, the Ag alloy thin film layer 2 may further contain one or more of Ca, Sn, Ga, Cu, Mg, Ce, and Eu in a total amount of 1.5% by weight or less. The reason why these contents are set in the above range is that if these elements are contained exceeding 1.5% by mass, the specific resistance of the film increases, which is not preferable.
このAg合金薄膜層2は、スパッタ法により成膜することができる。スパッタ法では、AgIn合金スパッタリングターゲットを用いることができる。Ag合金薄膜層2の厚みは、用途によって相違するが、透過型積層電極膜に用いる場合には、0.5〜20nmが望ましく、反射型、タッチパネル用積層電極膜の場合には、50〜300nmが望ましい。 This Ag alloy thin film layer 2 can be formed by sputtering. In the sputtering method, an AgIn alloy sputtering target can be used. The thickness of the Ag alloy thin film layer 2 varies depending on the application, but when used for a transmissive laminated electrode film, 0.5 to 20 nm is desirable, and in the case of a reflective type laminated electrode film for a touch panel, 50 to 300 nm. Is desirable.
上記AgIn合金スパッタリングターゲット中のAgIn合金結晶粒の平均粒径は、150〜400μmが望ましい、好ましくは200〜350μmである。AgIn合金結晶粒の平均粒径が、150μmより小さいと、結晶粒径のばらつきが大きくなり、大電力のスパッタ中に、異常放電が発生しやすくなり、スプラッシュが発生するようになる。一方、AgIn合金結晶粒の平均粒径が400μmより大きくなると、ターゲットがスパッタにより消耗するのに伴い、各々の結晶粒の結晶方位の違いによるスパッタレートの差に起因して、スパッタ表面の凹凸が大きくなるため、大電力でのスパッタ中に、異常放電が発生し易くなり、スプラッシュが発生し易くなる。 The average particle diameter of the AgIn alloy crystal grains in the AgIn alloy sputtering target is desirably 150 to 400 μm, and preferably 200 to 350 μm. If the average grain size of the AgIn alloy crystal grains is smaller than 150 μm, the crystal grain size varies greatly, and abnormal discharge is likely to occur during high-power sputtering, and splash occurs. On the other hand, when the average grain size of AgIn alloy crystal grains is larger than 400 μm, as the target is consumed by sputtering, the unevenness of the sputtering surface is caused by the difference in the sputtering rate due to the difference in crystal orientation of each crystal grain. Therefore, abnormal discharge is likely to occur during sputtering with high power, and splash is likely to occur.
ここで、スパッタリングターゲットの平均粒径は、60mmの線分を、格子状に20mm間隔で縦横に合計4本引き、それぞれの直線で切断された結晶粒の数を数える。線分の端の結晶粒は、0.5個とカウントする。平均切片長さ:L(μm)を、L=60000/(M・N)(ここで、Mは実倍率、Nは切断された結晶粒数の平均値である)で求める。求めた平均切片長さ:L(μm)から、試料の平均粒径:d(μm)を、d=(3/2)・Lで算出する。 Here, the average particle diameter of the sputtering target is obtained by drawing a total of four 60 mm line segments vertically and horizontally at intervals of 20 mm in a lattice shape, and counting the number of crystal grains cut along each straight line. The number of crystal grains at the end of the line segment is counted as 0.5. Average section length: L (μm) is determined by L = 60000 / (M · N) (where M is an actual magnification and N is an average value of the number of crystal grains cut). From the determined average section length: L (μm), the average particle diameter of the sample: d (μm) is calculated by d = (3/2) · L.
透明酸化物層1とAg合金薄膜層2との接合界面に形成されるIn酸化物3としては、In2O3,In2O,InO、またはこれらが混合されたインジウムの酸化物である。
In酸化物3は、Ag合金中のInが酸化して形成される。このIn酸化物3によって、水分又は酸素が存在するような環境でも透明酸化物層1とAg合金薄膜層2との密着性を維持することができる。
The In oxide 3 formed at the bonding interface between the transparent oxide layer 1 and the Ag alloy thin film layer 2 is In 2 O 3 , In 2 O, InO, or an indium oxide in which these are mixed.
The In oxide 3 is formed by oxidizing In in the Ag alloy. With this In oxide 3, the adhesion between the transparent oxide layer 1 and the Ag alloy thin film layer 2 can be maintained even in an environment where moisture or oxygen is present.
本実施形態の積層電極膜を製造する方法は、透明酸化物層1とAg合金薄膜層2とを積層する工程と、積層された透明酸化物層1とAg合金薄膜層2とに熱処理を施して透明酸化物層1とAg合金薄膜層2との接合界面に、In酸化物3を形成する工程とを有している。すなわち、上述した方法で透明酸化物層1とAg合金薄膜層2とを成膜し積層した後、熱処理により、透明酸化物層1とAg合金薄膜層2との接合界面においてAg合金中のInが酸化してIn酸化物3が形成される。 In the method for producing the laminated electrode film of the present embodiment, the transparent oxide layer 1 and the Ag alloy thin film layer 2 are laminated, and the laminated transparent oxide layer 1 and the Ag alloy thin film layer 2 are subjected to heat treatment. And a step of forming In oxide 3 at the bonding interface between transparent oxide layer 1 and Ag alloy thin film layer 2. That is, after the transparent oxide layer 1 and the Ag alloy thin film layer 2 are formed and laminated by the above-described method, the In oxide in the Ag alloy is bonded to the transparent oxide layer 1 and the Ag alloy thin film layer 2 by heat treatment. Is oxidized to form In oxide 3.
例えば、In酸化物3は、透明酸化物層1とAg合金薄膜層2とを積層した後、窒素雰囲気中で250℃の熱処理を行うことによって形成することができる。また、この熱処理は、上記各層の積層後、直ちに行うこともできるが、表示デバイスの製造過程のいずれかにおいて実施することもできる。また、他の処理と併用して行うことも可能である。 For example, the In oxide 3 can be formed by laminating the transparent oxide layer 1 and the Ag alloy thin film layer 2 and then performing a heat treatment at 250 ° C. in a nitrogen atmosphere. In addition, this heat treatment can be performed immediately after the above-described layers are stacked, but can also be performed in any of the display device manufacturing processes. Moreover, it can also be performed in combination with other treatments.
このIn酸化物3は次に方法によって、存在を確認することができる。
エックス線光電子分光法(XPS)により、積層電極膜の表面から厚み方向に深さ方向分析を行い、AgIn合金層と透明酸化物層との界面付近において、InとOとの光電子の強度を他の元素の光電子強度と比較することにより、その領域がほぼInとOのみで構成されると判断されるとき、これをIn酸化物3であるとする。
The presence of this In oxide 3 can then be confirmed by a method.
By X-ray photoelectron spectroscopy (XPS), depth direction analysis is performed in the thickness direction from the surface of the laminated electrode film, and the photoelectron intensity of In and O is measured in the vicinity of the interface between the AgIn alloy layer and the transparent oxide layer. When it is determined by comparison with the photoelectron intensity of the element that the region is substantially composed only of In and O, this is assumed to be In oxide 3.
また、Ag合金薄膜層2の比抵抗は、次の方法によって測定する。
30mm角のガラス基板上にスパッタリングにより透明酸化物層1を100nm及びAg合金薄膜層2を100nm積層し、四探針法により、Ag合金薄膜層2表面に探針を接触させて、膜のシート抵抗を測定し、これに膜厚の値を掛けて算出した。
The specific resistance of the Ag alloy thin film layer 2 is measured by the following method.
A transparent oxide layer 1 and an Ag alloy thin film layer 2 are laminated to a thickness of 100 nm on a 30 mm square glass substrate by sputtering, and a probe is brought into contact with the surface of the Ag alloy thin film layer 2 by a four-probe method to form a film sheet The resistance was measured and calculated by multiplying this by the value of the film thickness.
このように本実施形態の積層電極膜では、透明酸化物層1とAg合金薄膜層2との接合界面にIn酸化物3が形成されているので、Ag合金薄膜層2の一成分であるInを含有すると共に透明酸化物層1と同様に酸化物であるIn酸化物3が上記接合界面に介在することで、透明酸化物層1とAg合金薄膜層2との密着性を向上させることができる。
また、この積層電極膜の製造方法では、積層された透明酸化物層1とAg合金薄膜層2とに熱処理を施して透明酸化物層1とAg合金薄膜層2との接合界面にIn酸化物3を形成する工程を有しているので、良好な導電性を維持しつつ積層状態のままでIn酸化物3を接合界面に形成することができる。
As described above, in the laminated electrode film of the present embodiment, since the In oxide 3 is formed at the bonding interface between the transparent oxide layer 1 and the Ag alloy thin film layer 2, In is a component of the Ag alloy thin film layer 2. As well as the transparent oxide layer 1, the In oxide 3, which is an oxide, is present at the bonding interface, thereby improving the adhesion between the transparent oxide layer 1 and the Ag alloy thin film layer 2. it can.
Further, in this method for producing a laminated electrode film, the laminated transparent oxide layer 1 and the Ag alloy thin film layer 2 are subjected to heat treatment, and an In oxide is formed at the bonding interface between the transparent oxide layer 1 and the Ag alloy thin film layer 2. 3 is formed, it is possible to form the In oxide 3 at the bonding interface while maintaining a good conductivity while maintaining the laminated state.
次に、本発明に係る積層電極膜の実施例を作製し、評価した結果を説明する。
まず、30mm角のガラス基板上に表1に記載の透明酸化物層をスパッタ法により、厚み100nm成膜した。この際のスパッタ条件は次のとおりである。
スパッタ装置:アルバック社製、SIH−450H
ターゲットサイズ:直径152.4mm×厚さ6mm
到達真空度:5×10−5Pa
ガス全圧(アルゴン+酸素):0.5Pa
酸素分圧:0.01Pa
スパッタ電力:直流100W
ターゲット−基板間距離:70mm
Next, the result of producing and evaluating an example of the laminated electrode film according to the present invention will be described.
First, a transparent oxide layer described in Table 1 was formed to a thickness of 100 nm on a 30 mm square glass substrate by sputtering. The sputtering conditions at this time are as follows.
Sputtering device: SIH-450H manufactured by ULVAC
Target size: Diameter 152.4mm x thickness 6mm
Ultimate vacuum: 5 × 10 −5 Pa
Total gas pressure (argon + oxygen): 0.5Pa
Oxygen partial pressure: 0.01 Pa
Sputtering power: DC 100W
Target-substrate distance: 70mm
次に、透明酸化物層上に、Ag合金薄膜層として表1に記載のAgIn薄膜をスパッタ法により、厚み100nm成膜した。この際のスパッタ条件は次のとおりである。
スパッタ装置:アルバック社製、SIH−450H
ターゲットサイズ:直径152.4mm×厚さ6mm
到達真空度:5×10−5Pa
ガス全圧(アルゴンのみ):0.5Pa
スパッタ電力:直流250W
ターゲット−基板間距離:70mm
Next, on the transparent oxide layer, an AgIn thin film described in Table 1 as an Ag alloy thin film layer was formed to a thickness of 100 nm by sputtering. The sputtering conditions at this time are as follows.
Sputtering device: SIH-450H manufactured by ULVAC
Target size: Diameter 152.4mm x thickness 6mm
Ultimate vacuum: 5 × 10 −5 Pa
Total gas pressure (Argon only): 0.5Pa
Sputtering power: DC 250W
Target-substrate distance: 70mm
この後、上記のように積層した膜を大気中で、温度250℃、10分、熱処理し、インジウム・スズ酸化物(透明酸化物層)とAgIn薄膜(Ag合金薄膜層)との接合界面にIn酸化物を形成させ、実施例1〜5を作製した。これら実施例1〜5におけるIn酸化物は、XPSによる深さ方向分析によって確認した。その結果および実施例1〜5の各層の組成を表1に示す。 Thereafter, the film laminated as described above is heat-treated in the atmosphere at a temperature of 250 ° C. for 10 minutes to form a bonding interface between the indium tin oxide (transparent oxide layer) and the AgIn thin film (Ag alloy thin film layer). In oxide was formed and Examples 1-5 were produced. The In oxides in Examples 1 to 5 were confirmed by depth direction analysis by XPS. The results and the composition of each layer in Examples 1 to 5 are shown in Table 1.
なお、比較のため、Inの含有量を本発明の範囲より少なくした比較例1および本発明の範囲より多くした比較例2を同様に作製した。また、上記熱処理を行っていないものを従来例として作製した。これら比較例および従来例についても、実施例と同様に評価し、各層の組成を表1に併せて示す。 For comparison, Comparative Example 1 in which the In content was less than the range of the present invention and Comparative Example 2 in which the In content was greater than the range of the present invention were similarly prepared. Moreover, what did not perform the said heat processing was produced as a prior art example. These comparative examples and conventional examples were also evaluated in the same manner as in the examples, and the composition of each layer is shown in Table 1.
これら実施例、比較例および従来例について、次の高温高湿条件で長時間保管し、その後、テープ剥がれ試験を行った。
[高温高湿条件]
温度85℃
湿度80%
時間100時間
These Examples, Comparative Examples, and Conventional Examples were stored for a long time under the following high temperature and high humidity conditions, and then a tape peeling test was performed.
[High temperature and high humidity conditions]
85 ℃
80% humidity
100 hours
[テープ剥がれ試験]
テープ剥がれ試験は、高温高湿試験後の積層電極膜上に格子状にカッタで切り目をつけ、1mm角のマス目を100マス描いた。その後、住友3M社製のテープ(375S)を一旦マス目に貼り付けてから、ゆっくりと引き剥がし、テープに粘着して剥がれず、基板側に残ったマス目を計数することによって行った。80マス〜100マスを◎(非常に良好)と評価し、50マス〜79マスを○(良好)と評価し、50マス未満を×(不良)と評価した。その結果を表1に示す。
[Tape peeling test]
In the tape peeling test, a grid was cut on the laminated electrode film after the high temperature and high humidity test with a cutter, and 100 squares of 1 mm square were drawn. Thereafter, a tape (375S) manufactured by Sumitomo 3M Co., Ltd. was once attached to the grid, and then slowly peeled off, and the squares remaining on the substrate side that did not peel off due to sticking to the tape were counted. 80 squares to 100 squares were evaluated as ◎ (very good), 50 squares to 79 squares were evaluated as ◯ (good), and less than 50 squares were evaluated as x (defective). The results are shown in Table 1.
これらの評価結果からわかるように、Inの含有量が本発明の範囲より少ない比較例1と熱処理を施していない従来例とは、In酸化物が上記接合界面に検出されず、密着性が不十分であるのに対し、本発明の実施例1〜5は、いずれもIn酸化物が上記接合界面から検出されたと共に良好な密着性を有し、AgIn薄膜(Ag合金薄膜層)の導電率も良好な結果が得られている。 As can be seen from these evaluation results, the In oxide is not detected at the above-mentioned bonding interface between Comparative Example 1 in which the In content is lower than the range of the present invention and the conventional example in which heat treatment is not performed, and adhesion is not good. On the other hand, in Examples 1 to 5 of the present invention, indium oxide was detected from the bonding interface and had good adhesion, and the conductivity of the AgIn thin film (Ag alloy thin film layer). Also good results have been obtained.
以上より、本発明の実施例1〜5の積層電極膜は、良好な密着性と導電性とを有しており、高い信頼性が得られることから、液晶ディスプレイ、発光ダイオード、有機ELディスプレイ、タッチパネルなどの表示デバイスに用いられる電極膜として好適であることがわかる。 From the above, the laminated electrode films of Examples 1 to 5 of the present invention have good adhesion and conductivity, and high reliability is obtained, so that a liquid crystal display, a light emitting diode, an organic EL display, It turns out that it is suitable as an electrode film used for display devices, such as a touch panel.
なお、本発明の技術範囲は上記実施形態及び上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、基板上に透明酸化物層、Ag合金薄膜層の順に積層しているが、逆にAg合金薄膜層、透明酸化物層の順に積層しても構わない。また、Ag合金薄膜層の上下に透明酸化物層を積層した三層構造としても構わない。さらに、基板上に積層電極膜を直接形成しているが、他の層などを介して積層しても構わない。
The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the transparent oxide layer and the Ag alloy thin film layer are stacked in this order on the substrate, but conversely, the Ag alloy thin film layer and the transparent oxide layer may be stacked in this order. Further, a three-layer structure in which transparent oxide layers are stacked on the upper and lower sides of the Ag alloy thin film layer may be used. Furthermore, although the laminated electrode film is formed directly on the substrate, the laminated electrode film may be laminated via other layers.
1…透明酸化物層、2…Ag合金薄膜層、3…In酸化物 DESCRIPTION OF SYMBOLS 1 ... Transparent oxide layer, 2 ... Ag alloy thin film layer, 3 ... In oxide
この後、上記のように積層した膜を窒素雰囲気中で、温度250℃、10分、熱処理し、インジウム・スズ酸化物(透明酸化物層)とAgIn薄膜(Ag合金薄膜層)との接合界面にIn酸化物を形成させ、実施例1〜5を作製した。これら実施例1〜5におけるIn酸化物は、XPSによる深さ方向分析によって確認した。その結果および実施例1〜5の各層の組成を表1に示す。 Thereafter, the film laminated as described above is heat-treated in a nitrogen atmosphere at a temperature of 250 ° C. for 10 minutes, and a bonding interface between the indium tin oxide (transparent oxide layer) and the AgIn thin film (Ag alloy thin film layer). Indium oxide was formed in Example 1, and Examples 1-5 were produced. The In oxides in Examples 1 to 5 were confirmed by depth direction analysis by XPS. The results and the composition of each layer in Examples 1 to 5 are shown in Table 1.
Claims (2)
前記Ag合金薄膜層は、In:0.1〜1.5質量%を含み、残部がAgおよび不可避不純物からなる成分組成を有し、
前記透明酸化物層と前記Ag合金薄膜層との接合界面に、In酸化物が形成されていることを特徴とする積層電極膜。 A laminated electrode film in which a transparent oxide layer and an Ag alloy thin film layer are laminated,
The Ag alloy thin film layer contains In: 0.1 to 1.5% by mass, and the remainder has a composition composed of Ag and inevitable impurities,
A laminated electrode film, wherein an In oxide is formed at a bonding interface between the transparent oxide layer and the Ag alloy thin film layer.
前記透明酸化物層が、インジウム・スズ酸化物,亜鉛・アルミニウム酸化物,ガリウム・亜鉛酸化物、インジウム・亜鉛酸化物からなる群から選ばれた少なくとも一つの酸化物からなることを特徴とする積層電極膜。 The laminated electrode film according to claim 1,
The transparent oxide layer is composed of at least one oxide selected from the group consisting of indium / tin oxide, zinc / aluminum oxide, gallium / zinc oxide, and indium / zinc oxide. Electrode film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011084957A JP2012221668A (en) | 2011-04-06 | 2011-04-06 | Layered electrode film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011084957A JP2012221668A (en) | 2011-04-06 | 2011-04-06 | Layered electrode film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012221668A true JP2012221668A (en) | 2012-11-12 |
Family
ID=47272979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011084957A Pending JP2012221668A (en) | 2011-04-06 | 2011-04-06 | Layered electrode film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012221668A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09123337A (en) * | 1995-03-22 | 1997-05-13 | Toppan Printing Co Ltd | Multilayer conductive film, transparent electrode plate and liquid crystal display device using the same |
JP2002313139A (en) * | 2001-04-12 | 2002-10-25 | Mitsui Chemicals Inc | Transparent conductive thin film laminated body |
JP2006164961A (en) * | 2004-11-09 | 2006-06-22 | Ulvac Seimaku Kk | Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method |
JP2007007982A (en) * | 2005-06-30 | 2007-01-18 | Ulvac Seimaku Kk | Ag or ag alloy reflector electrode film with incremental reflection film and its production method |
JP2007066354A (en) * | 2005-08-29 | 2007-03-15 | Ricoh Co Ltd | Optical recording medium and its manufacturing method |
JP2007242185A (en) * | 2006-03-10 | 2007-09-20 | Ricoh Co Ltd | Optical recording medium |
JP2008211230A (en) * | 2003-07-23 | 2008-09-11 | Sharp Corp | Silver alloy material, circuit board, electronic device, liquid crystal display device, and display device |
-
2011
- 2011-04-06 JP JP2011084957A patent/JP2012221668A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09123337A (en) * | 1995-03-22 | 1997-05-13 | Toppan Printing Co Ltd | Multilayer conductive film, transparent electrode plate and liquid crystal display device using the same |
JP2002313139A (en) * | 2001-04-12 | 2002-10-25 | Mitsui Chemicals Inc | Transparent conductive thin film laminated body |
JP2008211230A (en) * | 2003-07-23 | 2008-09-11 | Sharp Corp | Silver alloy material, circuit board, electronic device, liquid crystal display device, and display device |
JP2006164961A (en) * | 2004-11-09 | 2006-06-22 | Ulvac Seimaku Kk | Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method |
JP2007007982A (en) * | 2005-06-30 | 2007-01-18 | Ulvac Seimaku Kk | Ag or ag alloy reflector electrode film with incremental reflection film and its production method |
JP2007066354A (en) * | 2005-08-29 | 2007-03-15 | Ricoh Co Ltd | Optical recording medium and its manufacturing method |
JP2007242185A (en) * | 2006-03-10 | 2007-09-20 | Ricoh Co Ltd | Optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4961786B2 (en) | Transparent conductive film and transparent conductive film using the same | |
KR101511231B1 (en) | Transparent conductive film, manufacturing method thereof, and transparent conductive substrate, light emitting device | |
US20130181218A1 (en) | Wiring structure and display device | |
JP6016083B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
JP2012054006A (en) | Transparent conductive gas barrier film and method for producing the same | |
KR101764053B1 (en) | Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target | |
KR101700884B1 (en) | Maganese tin oxide Transparent Conducting Oxide and transparent conductive film using the same and method for fabricating transparent conductive film | |
CN111916252A (en) | Transparent conductive film with low sheet resistance | |
US20160224151A1 (en) | Electrode to be used in input device and method for producing same | |
JP6511876B2 (en) | Laminated transparent conductive film | |
JP2004277780A (en) | Laminated structure of silver-based alloy and electrode, wiring, reflective film and reflective electrode using the same | |
TWI498441B (en) | Laminated wiring film for electronic component and sputtering target material for forming coating layer | |
JP6037208B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
KR20150105798A (en) | Transparent electrode and manufacturing method thereof | |
JP6292466B2 (en) | Metal thin film and Mo alloy sputtering target material for metal thin film formation | |
JP5416470B2 (en) | Display device and Cu alloy film used therefor | |
JP2012221668A (en) | Layered electrode film | |
CN108766631A (en) | A kind of laminated film | |
JP2014120487A (en) | Electrode for use in display device or input device, and sputtering target for electrode formation | |
JP6375658B2 (en) | Laminated film | |
JPH11262968A (en) | Transparent conductive film | |
TW201526025A (en) | Composite conductive film | |
CN1971936A (en) | An organic light-emitting display device electrode substrate | |
CN208570135U (en) | a composite film | |
JP4999335B2 (en) | Metal film, liquid crystal display device, and metal film manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150728 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151119 |