[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006164961A - Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method - Google Patents

Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method Download PDF

Info

Publication number
JP2006164961A
JP2006164961A JP2005325281A JP2005325281A JP2006164961A JP 2006164961 A JP2006164961 A JP 2006164961A JP 2005325281 A JP2005325281 A JP 2005325281A JP 2005325281 A JP2005325281 A JP 2005325281A JP 2006164961 A JP2006164961 A JP 2006164961A
Authority
JP
Japan
Prior art keywords
transparent electrode
film
electrode film
silver oxide
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005325281A
Other languages
Japanese (ja)
Inventor
Fumihiko Yamada
文彦 山田
Toshiharu Ozaki
俊治 尾崎
Takeshi Hiramoto
豪 平元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Seimaku KK
Original Assignee
Ulvac Seimaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Seimaku KK filed Critical Ulvac Seimaku KK
Priority to JP2005325281A priority Critical patent/JP2006164961A/en
Publication of JP2006164961A publication Critical patent/JP2006164961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Liquid Crystal (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a laminated transparent electrode film excellent in etching workability without spoiling low resistance characteristics and transmissivity characteristics, and a laminate for forming the laminated transparent electrode. <P>SOLUTION: This forming method of the laminated transparent electrode film includes a step to form a first transparent electrode film on a substrate, a step to form a silver oxide-based thin film on the first transparent electrode film, a step to form a second transparent electrode film on the silver oxide-based thin film, a step to make the laminate of the first transparent electrode film, a silver oxide based thin film, and the second transparent electrode film have low resistance and transparency by heating them. At least either of the first transparent electrode film or the second transparent electrode film has a reducing action. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は液晶や有機EL等の表示素子や太陽電池の電極材料として用いられ得る積層型透明電極層の製造方法及びこの方法に使用する積層型透明電極形成用の積層体に関する。   The present invention relates to a method for producing a laminated transparent electrode layer that can be used as an electrode material for a display element such as a liquid crystal or an organic EL or a solar cell, and a laminate for forming a laminated transparent electrode used in this method.

従来、ITO膜やその他の透明電極膜と、ごく薄い(5〜20nm程度)Ag系金属薄膜とを積層させた積層型透明電極膜を製造する技術は数多く提案されている(特許文献1、特許文献2、特許文献3、特許文献4参照)。特許文献1、特許文献2、特許文献3には、ITO膜/Ag系膜/ITO膜構造が記載され、 特許文献1にはAZO膜/Ag系膜/AZO膜構造が記載され、また特許文献4にはIZO膜/Ag系膜/IZO膜構造が記載されている。この種の積層型透明電極膜はITO膜やその他の透明電極膜を単独で作製した膜よりも低抵抗かつ透明である。   Conventionally, many techniques for manufacturing a laminated transparent electrode film in which an ITO film or other transparent electrode film and an extremely thin (about 5 to 20 nm) Ag-based metal thin film are laminated have been proposed (Patent Document 1, Patent). (Refer to Literature 2, Patent Literature 3, and Patent Literature 4). Patent Document 1, Patent Document 2, and Patent Document 3 describe an ITO film / Ag-based film / ITO film structure, Patent Document 1 describes an AZO film / Ag-based film / AZO film structure, and Patent Document 4 describes an IZO film / Ag-based film / IZO film structure. This type of laminated transparent electrode film is lower in resistance and more transparent than a film made of an ITO film or other transparent electrode film alone.

しかし、積層型透明電極膜はその加工性に難がある。積層型透明電極膜の一般的な加工方法としては二つのエッチング液を用いたものが知られている(特許文献5参照)。積層型透明電極膜がアモルファスITO膜/Ag合金膜/アモルファスITO膜の三層である場合には、シュウ酸からなるエッチング液でアモルファスITO膜は加工でき、リン酸・硝酸・水(或いはリン酸・硝酸・酢酸)から成るエッチング液でAg系金属薄膜は加工できる。しかし、この方法でのエッチングの工程数は3回となり、エッチングの制御が難しく、良好なパターン形状を得ることは困難であり、また、生産性に乏しいという欠点がある。   However, the laminated transparent electrode film has difficulty in workability. As a general processing method for a laminated transparent electrode film, one using two etching solutions is known (see Patent Document 5). When the laminated transparent electrode film is an amorphous ITO film / Ag alloy film / amorphous ITO film, the amorphous ITO film can be processed with an etching solution made of oxalic acid, and phosphoric acid / nitric acid / water (or phosphoric acid). An Ag-based metal thin film can be processed with an etching solution comprising nitric acid / acetic acid However, the number of etching steps in this method is three, and it is difficult to control the etching, it is difficult to obtain a good pattern shape, and there is a disadvantage that productivity is poor.

これに対して、一種類のエッチング液を用いて、エッチング工程1回で、一括エッチングする方法も数多く提案されている(特許文献6、特許文献7、特許文献8、特許文献9参照)。特許文献6に記載の発明では、硝酸・シュウ酸・水から成るエッチング液が用いられ、特許文献7に記載の発明では、塩酸・硝酸・水、又は塩酸・硫酸・水から成るエッチング液が用いられ、 特許文献8に記載の発明では、硝酸・過マンガン酸カリウム、又は硫酸・過マンガン酸カリウム、又は硝酸・硝酸第二セリウムアンモニウム、又は硫酸・硝酸第二セリウムアンモニウムから成るエッチング液が用いられ、 特許文献9に記載の発明では、リン酸・硝酸・酢酸から成るエッチング液が用いられている。   On the other hand, many methods have been proposed in which a single etching solution is used to perform batch etching in one etching step (see Patent Document 6, Patent Document 7, Patent Document 8, and Patent Document 9). In the invention described in Patent Document 6, an etching solution composed of nitric acid, oxalic acid, and water is used. In the invention described in Patent Document 7, an etching solution composed of hydrochloric acid, nitric acid, water, or hydrochloric acid, sulfuric acid, and water is used. In the invention described in Patent Document 8, an etching solution made of nitric acid / potassium permanganate, sulfuric acid / potassium permanganate, nitric acid / cerium ammonium nitrate, or sulfuric acid / cerium ammonium nitrate is used. In the invention described in Patent Document 9, an etchant composed of phosphoric acid, nitric acid, and acetic acid is used.

しかし、アモルファスITO膜等の透明電極膜とAg系金属薄膜がそれぞれ単層の場合には、それぞれの膜が同じエッチング速度になるように上記エッチング液が調整できても、実際の積層膜では良好なパターン形状は得られていない。   However, when the transparent electrode film such as an amorphous ITO film and the Ag-based metal thin film are each a single layer, the above-mentioned etching solution can be adjusted so that each film has the same etching rate, but the actual laminated film is good. A simple pattern shape has not been obtained.

その理由は次のとおりである。例えば特許文献6及び特許文献7に記載の発明のように、アモルファスITO膜をエッチングするシュウ酸又は塩酸と、Ag系金属薄膜をエッチングする硝酸から成る混合溶液のエッチング液において、それぞれのエッチング液のエッチング速度を、一般的に使用されている濃度や調合比の条件で、比較するとAg系金属薄膜はアモルファスITO膜よりもエッチング速度は非常に大きい。硝酸から成るエッチング液を希釈し、Ag系金属薄膜のエッチング速度をアモルファスITO膜のエッチング速度に合わせ込めば理論的には可能なものの、硝酸のAg系金属薄膜に対するエッチング速度は、濃度勾配に比例せず、濃度が薄くなると極端にエッチング速度が低下するため、エッチング速度の制御は困難である。   The reason is as follows. For example, as in the inventions described in Patent Document 6 and Patent Document 7, in an etching solution of a mixed solution composed of oxalic acid or hydrochloric acid for etching an amorphous ITO film and nitric acid for etching an Ag-based metal thin film, When the etching rate is compared under the conditions of generally used concentration and blending ratio, the Ag-based metal thin film has a much higher etching rate than the amorphous ITO film. Although it is theoretically possible by diluting the etching solution consisting of nitric acid and matching the etching rate of the Ag-based metal thin film with the etching rate of the amorphous ITO film, the etching rate of nitric acid for the Ag-based metal thin film is proportional to the concentration gradient. However, since the etching rate extremely decreases as the concentration decreases, it is difficult to control the etching rate.

また、実際の積層膜のエッチングでは、エッチングが進行し薄くなったアモルファスITO膜層の一部分からエッチング液が浸食し始める等の理由で、一つ目のアモルファスITO膜層(三層目)のエッチングの終点を迎えることなく、Ag系金属薄膜層(二層目)のエッチングが開始してしまい、Ag系金層薄膜層のサイドエッチングは進んでしまう。さらにもう一つの層のアモルファスITO膜層(一層目)のエッチングが終点を迎える頃には、かなりの量のサイドエッチングがAg系金属薄膜層で進行してしまう。   Moreover, in the actual etching of the laminated film, the etching of the first amorphous ITO film layer (third layer) is performed because the etching solution starts to erode from a part of the thinned thin amorphous ITO film layer as the etching progresses. Etching of the Ag-based metal thin film layer (second layer) starts without reaching the end point of, and side etching of the Ag-based gold thin film layer proceeds. Further, when the etching of another layer of the amorphous ITO film layer (first layer) reaches the end point, a considerable amount of side etching proceeds in the Ag-based metal thin film layer.

また、積層膜をエッチングすると、Ag系金属薄膜とITO膜間で電食が発生し、Ag系金属薄膜単層の場合と比較して、さらにAg系金属薄膜のエッチング速度が増してしまいサイドエッチングは進んだり、加工するパターンの喰われやピンホールが発生してしまう。   In addition, when the laminated film is etched, electrolytic corrosion occurs between the Ag-based metal thin film and the ITO film, and the etching rate of the Ag-based metal thin film is further increased as compared with the case of the Ag-based metal thin film single layer. Will progress, or the pattern to be processed will be eaten and pinholes will occur.

このように、ITO膜をエッチングする溶液とAg系金属薄膜をエッチングする溶液を混合したエッチング液を用いた一括エッチングは困離と考えられる。   Thus, collective etching using an etching solution in which a solution for etching an ITO film and a solution for etching an Ag-based metal thin film are mixed is considered difficult.

さらに、特許文献7に記載の発明ではエッチング液に塩酸を用いているが、塩酸は、ITO膜等の透明電極膜のエッチング速度がシュウ酸よりも大きいため、Ag系金属薄膜とのエッチング速度を合わせ込む上では優れているが、塩酸中の塩素原子がAg系金属薄膜に対して腐食を起こすため、使用するのは好ましくない。   Furthermore, in the invention described in Patent Document 7, hydrochloric acid is used as an etching solution. Since hydrochloric acid has a higher etching rate for transparent electrode films such as ITO films than oxalic acid, the etching rate with Ag-based metal thin films is increased. Although it is excellent in combination, it is not preferable to use it because chlorine atoms in hydrochloric acid corrode Ag-based metal thin films.

さらに、特許文献9に記載の発明では、積層膜は、IZO膜/Ag系膜/IZO膜構造に対して、一括エッチングを行っているが、よりエッチング性が良く(可溶な薬品の種類が多い)、かつアモルファス性が強いためエッチング速度が大きいIZO膜では可能でも、エッチング速度がIZO膜よりも遅いITO膜を用いた積層膜では一括エッチングは困難と考えられる。また、Ag系金属薄膜とIZO膜間の電食も避けられないと考えられる。   Furthermore, in the invention described in Patent Document 9, the laminated film is subjected to batch etching with respect to the IZO film / Ag-based film / IZO film structure, but has better etching properties (the kind of soluble chemicals is different). Although it is possible to use an IZO film having a high etching rate because of its strong amorphous nature, batch etching is considered difficult with a laminated film using an ITO film whose etching rate is slower than that of the IZO film. In addition, it is considered that electrolytic corrosion between the Ag-based metal thin film and the IZO film is inevitable.

上記の問題により、実際の積層膜では、Ag系金属薄膜とITO膜等の透明電極膜のエッチング速度を揃えること、及び、良好なパターン形状を得ることは困難である。   Due to the above problems, it is difficult for the actual laminated film to have the same etching rate for the Ag-based metal thin film and the transparent electrode film such as the ITO film and to obtain a good pattern shape.

また、銀系膜の加工方法として、酸化銀と金属銀のエッチングの性質を利用した加工技術も従来提案されている(特許文献10参照)。さらにこの酸化銀の熱分解により金属銀と酸素が生成する性質を利用した技術も従来提案されている(特許文献11、特許文献12、特許文献13、特許文献14、特許文献15参照)。   Further, as a method for processing a silver-based film, a processing technique using the etching properties of silver oxide and metallic silver has been conventionally proposed (see Patent Document 10). Further, a technique using the property that metallic silver and oxygen are generated by thermal decomposition of silver oxide has been proposed (see Patent Document 11, Patent Document 12, Patent Document 13, Patent Document 14, and Patent Document 15).

また、さらにZnO系透明電極膜の形成方法として、反応ガスとしてHガス等の還元性ガスを添加し抵抗を制御する技術も従来提案されている(特許文献16)。
特開昭63−110507号公報 特許第2839829号公報 特開平9−171188号公報 特開2002−110365号公報 特開2003−73860号公報 特開平11−302876号公報 特開平7−114841号公報 特開平9−232278号公報 特開2004−156070号公報 特開平11−135507号公報 特許第3071243号 特許第3088168号 特許第3157019号 特許第3429406号 特開2004−58466号公報 特開平7−331413号公報
Further, as a method for forming a ZnO-based transparent electrode film, a technique for controlling resistance by adding a reducing gas such as H 2 gas as a reactive gas has been proposed (Patent Document 16).
JP 63-110507 A Japanese Patent No. 2839829 JP-A-9-171188 JP 2002-110365 A JP 2003-73860 A Japanese Patent Laid-Open No. 11-302876 Japanese Patent Application Laid-Open No. 7-114841 Japanese Patent Laid-Open No. 9-232278 JP 2004-156070 A JP-A-11-135507 Japanese Patent No. 3071243 Japanese Patent No. 3808168 Japanese Patent No. 3157019 Japanese Patent No. 3429406 JP 2004-58466 A JP-A-7-331413

本発明は、上記の従来技術を解決するために、抵抗特性及び透過率特性を損なうことなくエッチング加工性に優れた積層型透明電極膜の製造方法及び積層型透明電極形成用の積層体を提供することを目的としている。   In order to solve the above-described conventional techniques, the present invention provides a method for producing a laminated transparent electrode film excellent in etching processability without impairing resistance characteristics and transmittance characteristics, and a laminate for forming a laminated transparent electrode The purpose is to do.

上記の目的を達成するために、本発明の第1の発明による積層型透明電極膜の製造方法は、
基板上に第1透明電極膜を形成するステップと、
第1透明電極膜の上に酸化銀系薄膜を形成するステップと、
酸化銀系薄膜上に第2透明電極膜を形成するステップと、
第1透明電極膜、酸化銀系薄膜、第2透明電極膜の積層を加熱して低抵抗化及び透明化するステップと
を含むことを特徴としている。
In order to achieve the above object, a method for producing a laminated transparent electrode film according to the first invention of the present invention comprises:
Forming a first transparent electrode film on a substrate;
Forming a silver oxide-based thin film on the first transparent electrode film;
Forming a second transparent electrode film on the silver oxide thin film;
And heating the laminated layer of the first transparent electrode film, the silver oxide thin film, and the second transparent electrode film to reduce resistance and make it transparent.

積層型透明電極膜の製造方法においてはさらに、加熱ステップ前に前記積層を、一液のエッチング液でエッチングするステップを含み得る。このステップにより所望のパターン形成が行なわれ得る。   The method for producing a laminated transparent electrode film may further include a step of etching the laminate with a single etchant before the heating step. By this step, a desired pattern can be formed.

本発明の積層型透明電極膜の製造方法においては、シュウ酸、及び、シュウ酸に少量の硝酸を添加したもの、又はリン酸・硝酸・シュウ酸・水、又はリン酸・硝酸・シュウ酸・酢酸からなるエッチング液を用いて、或いはリン酸・硝酸・酢酸、又はリン酸・硝酸・水からなるエッチング液を用いて、第1、第2透明電極膜及び酸化銀系薄膜をエッチング工程一回でパターン形成するようにされ得る。   In the method for producing a laminated transparent electrode film of the present invention, oxalic acid and oxalic acid added with a small amount of nitric acid, or phosphoric acid / nitric acid / oxalic acid / water, or phosphoric acid / nitric acid / oxalic acid / Etching process of the first and second transparent electrode films and the silver oxide thin film once using an etching solution made of acetic acid, or an etching solution made of phosphoric acid / nitric acid / acetic acid or phosphoric acid / nitric acid / water Patterning.

また、本発明では、酸化銀が金属銀とは異なるエッチング液、例えば、シュウ酸等の弱酸、アンモニア水、各種アンモニウム塩の水溶液に可溶である性質を利用している。金属銀は硝酸には可溶であるが、シュウ酸、アンモニア水、各種アンモニウム塩の水溶液には不溶である。アモルファスITO膜やIZO膜はシュウ酸に可溶である。AZO膜は可溶な薬品の種類が多く、そもそも金属銀膜のエッチング液、例えば、リン酸・硝酸・酢酸、又はリン酸・硝酸・水、又は硝酸鉄水溶液からなるエッチング液に可溶であり、酸化銀膜はこれらのエッチング液にも可溶である。酸化銀膜は導電性がないため、積層膜中の酸化銀と透明電極との間に電食は起こらないため、サイドエッチングやパターンの喰われやピンホールの発生の問題は起こらない。   Further, the present invention utilizes the property that silver oxide is soluble in an etching solution different from metallic silver, for example, weak acids such as oxalic acid, aqueous ammonia, and aqueous solutions of various ammonium salts. Metallic silver is soluble in nitric acid, but insoluble in aqueous solutions of oxalic acid, aqueous ammonia, and various ammonium salts. Amorphous ITO films and IZO films are soluble in oxalic acid. AZO film has many kinds of soluble chemicals, and is originally soluble in metal silver film etchant such as phosphoric acid / nitric acid / acetic acid or phosphoric acid / nitric acid / water or iron nitrate aqueous solution. The silver oxide film is also soluble in these etching solutions. Since the silver oxide film is not conductive, no electrolytic corrosion occurs between the silver oxide in the laminated film and the transparent electrode, so that side etching, pattern erosion, and pinhole generation do not occur.

本発明の積層型透明電極膜の製造方法においては、積層を加熱する温度は160℃以上、好ましくは180℃〜400℃の範囲に設定され得る。   In the method for producing a laminated transparent electrode film of the present invention, the temperature for heating the laminate can be set to 160 ° C. or higher, preferably 180 ° C. to 400 ° C.

本発明の具体的な実施形態では、積層膜は、室温付近の温度で形成され、ウエットトエッチングにより、パターン形成後、180〜400℃の温度に加熱し、低抵抗化及び透明化させる。   In a specific embodiment of the present invention, the laminated film is formed at a temperature close to room temperature, and is heated to a temperature of 180 to 400 ° C. after pattern formation by wet etching to reduce resistance and make it transparent.

本発明の積層型透明電極膜の製造方法においては、第1透明電極膜と前記第2透明電極膜の少なくとも何れかは還元作用を有し得る。   In the method for producing a laminated transparent electrode film of the present invention, at least one of the first transparent electrode film and the second transparent electrode film may have a reducing action.

本発明の積層型透明電極膜の製造方法においては、第1透明電極膜と第2透明電極膜は、In−SnO(ITO)、In−SnO−ZnO(IZO)、Inのいずれか、或いはZnO−Al(AZO)、ZnO−Ga(GZO)、ZnOのいずれかから成り得る。 In the method for producing a laminated transparent electrode film of the present invention, the first transparent electrode film and the second transparent electrode film are In 2 O 3 —SnO 2 (ITO), In 2 O 3 —SnO 2 —ZnO (IZO). , In 2 O 3 , or any of ZnO—Al 2 O 3 (AZO), ZnO—Ga 2 O 3 (GZO), and ZnO.

第1透明電極膜と第2透明電極膜の少なくとも一方は、スパッタガスに還元性ガスを添加してスパッタリングにより形成され得る。また、還元ガスとして、H、CH、COのいずれかが用いられ得る。これらのガスはH>CH>COの順に還元性が強いといわれており、H、COガスよりも安全なCHガスを用いても、本発明の所期の目的は十分に達成され得る。 At least one of the first transparent electrode film and the second transparent electrode film can be formed by sputtering with a reducing gas added to the sputtering gas. In addition, any of H 2 , CH 4 , and CO can be used as the reducing gas. These gases are said to be highly reducible in the order of H 2 > CH 4 > CO, and even if CH 4 gas safer than H 2 and CO gas is used, the intended purpose of the present invention is sufficiently achieved. Can be done.

本発明の積層型透明電極膜の製造方法においては、酸化銀系薄膜は、酸化ガスを含む環境で反応性スパッタリングで銀又は銀合金をスパッタリングすることにより形成され得る。好ましくは、酸化銀系薄膜は、Agを主成分としこれに微量なAu、Cu、Pd、Nd、Bi、Sm、Ru、Sn、Zn、In、Al、Tiのいずれか一つ以上を添加した銀合金を用いて形成され得る。     In the method for producing a laminated transparent electrode film of the present invention, the silver oxide thin film can be formed by sputtering silver or a silver alloy by reactive sputtering in an environment containing an oxidizing gas. Preferably, the silver oxide thin film is mainly composed of Ag, and a trace amount of any one of Au, Cu, Pd, Nd, Bi, Sm, Ru, Sn, Zn, In, Al, and Ti is added thereto. It can be formed using a silver alloy.

本発明では、下記のような化学反応、すなわち酸化銀(一価のAgOと二価のAgOの二種類がある)が加熱により金属銀になる性質を利用している。一般的に、一価の酸化銀は160℃程度でAgとOに分解するといわれている。
2AgO → 4Ag + O
2AgO → 2Ag + O
In the present invention, the following chemical reaction is used, that is, the property that silver oxide (there are two types of monovalent Ag 2 O and divalent AgO) becomes metallic silver by heating. Generally, it is said that monovalent silver oxide decomposes into Ag and O 2 at about 160 ° C.
2Ag 2 O → 4Ag + O 2
2AgO → 2Ag + O 2

酸化銀は、熱に不安定であるので、熱酸化或いは自然酸化では生成しないが、プラズマ雰囲気下でOを作用させる反応性スパッタリング、或いは、UV照射下でOを作用させる(UV−O処理)と生成する。Ag膜又はAg合金膜をスパッタリングで成膜し、UV−O処理を用いて酸化銀系薄膜を作成し、これを利用しても良いが、この方法により得られた酸化銀膜は加熱しても、金属銀膜に戻りにくい性質がある。この場合の酸化銀は、二価の酸化銀(AgO)の組成であると推測される。またAgOを水等に溶解させたものを、ディップ法やスピンコート法により塗膜とし、それを乾燥して得られた酸化銀系薄膜を利用してもよい。 Since silver oxide is unstable to heat, it is not generated by thermal oxidation or natural oxidation, but reactive sputtering in which O 2 is allowed to act in a plasma atmosphere, or O 3 is allowed to act under UV irradiation (UV-O 3 processing). An Ag film or an Ag alloy film may be formed by sputtering, and a silver oxide-based thin film may be prepared by using UV-O 3 treatment, and this may be used, but the silver oxide film obtained by this method is heated. However, it is difficult to return to the metallic silver film. The silver oxide in this case is presumed to have a composition of divalent silver oxide (AgO). Alternatively, a silver oxide thin film obtained by dissolving Ag 2 O in water or the like to form a coating film by dipping or spin coating and drying it may be used.

酸化銀系薄膜は好ましくは、厚さ5〜20nmに形成され得る。5nmよりも薄いと、焼成後、所望の抵抗値が得られず、また20nmよりも厚いと、焼成後、積層膜が透明膜とはならない。また、透明電極膜の厚さは、目的に応じて適宜選択すればよい。       The silver oxide-based thin film can be preferably formed to a thickness of 5 to 20 nm. If it is thinner than 5 nm, a desired resistance value cannot be obtained after firing, and if it is thicker than 20 nm, the laminated film does not become a transparent film after firing. Further, the thickness of the transparent electrode film may be appropriately selected depending on the purpose.

また、パターン加工の際の100℃前後のプロセス温度(レジストのプリベークなど)に対して、酸化銀が金属銀になる化学反応は起こらないので、パターン加工が可能である。   In addition, a chemical reaction in which silver oxide becomes metallic silver does not occur with respect to a process temperature of about 100 ° C. during resist patterning (resist pre-baking or the like), so that pattern processing is possible.

高温で成膜したITO膜はシュウ酸に不溶であるため、透明電極膜は室温付近での温度で成膜されたアモルファス状態であることが望ましい。   Since the ITO film formed at high temperature is insoluble in oxalic acid, the transparent electrode film is preferably in an amorphous state formed at a temperature near room temperature.

しかし、酸化銀が加熱により金属銀になる化学反応で発生する余剰分のOは、透明電極膜部、或いは積層膜自体の高抵抗化の問題を引き超こすため、酸化膜である第1、第2透明電極膜を少量還元しておく必要がある。これにより、酸化銀膜より発生したOは還元されている第1、第2透明電極膜を必要分酸化することによって、抵抗に影響しない或いは影響の少ない状態になる。 However, the surplus O 2 generated by the chemical reaction in which silver oxide is converted to metallic silver by heating overcomes the problem of increasing the resistance of the transparent electrode film portion or the laminated film itself, and is therefore the first oxide film. It is necessary to reduce a small amount of the second transparent electrode film. As a result, O 2 generated from the silver oxide film oxidizes the first and second transparent electrode films that have been reduced by a necessary amount, so that the resistance is not affected or is less affected.

還元ガス添加量は、多すぎると積層膜の成膜中に酸化銀が還元してしまい、金属銀に戻ってしまうためエッチングできなくなり、一方少なすぎると効果は得られない。そのため還元ガス添加量は、酸化銀膜中の酸素量、すなわち、酸化銀膜の膜厚と酸素含有量に対して最適に選択されるべきである。   If the amount of the reducing gas added is too large, the silver oxide is reduced during the formation of the laminated film and returns to metallic silver, so that etching cannot be performed. Therefore, the amount of reducing gas added should be optimally selected with respect to the amount of oxygen in the silver oxide film, that is, the film thickness and oxygen content of the silver oxide film.

また、酸化物ターゲットを用いて標準よりも高い投入電力でスパッタリングすると、酸化物の分解が起こり、還元された低級酸化物を得ることもできる。これを利用しても良い。例えば、ITO膜において、標準の投入電力に対して1.5倍程度(ただし、投入電力をこれ以上に大きくすると焼結体であるITOターゲットが破損する恐れもある)でスパッタリングすると、InO低級酸化物が得られる。 Further, when sputtering is performed with an input power higher than the standard using an oxide target, the oxide is decomposed, and a reduced lower oxide can be obtained. This may be used. For example, when an ITO film is sputtered at about 1.5 times the standard input power (however, if the input power is increased more than this, the ITO target as a sintered body may be damaged), InO 3 lower An oxide is obtained.

添加反応性スパッタリングにおけるOガス添加量は、酸化銀生成に必要な量、余剰なOのない添加量であることが望ましい。また一価の酸化銀(Ag2O)であることが望ましく、最適なO添加量であることが望ましい。 The O 2 gas addition amount in the O 2 addition reactive sputtering is preferably an amount necessary for silver oxide production and an addition amount without excessive O 2 . Further, it is preferably a monovalent silver oxide (Ag2O), it is desirable that the optimum O 2 amount.

本発明の第2の発明による積層型透明電極形成用の積層体は、第1透明電極膜と、第1透明電極膜の上に形成される酸化銀系薄膜と、酸化銀系薄膜上に形成される第2透明電極膜とを有することを特徴としている。     A laminated body for forming a laminated transparent electrode according to a second invention of the present invention is formed on a first transparent electrode film, a silver oxide thin film formed on the first transparent electrode film, and a silver oxide thin film And a second transparent electrode film.

本発明の積層型透明電極形成用の積層体においては、第1透明電極膜と第2透明電極膜は、In−SnO(ITO)、In−SnO−ZnO(IZO)、Inのいずれかからなり、アモルファス状態であり得る。 In the laminated body for forming a laminated transparent electrode of the present invention, the first transparent electrode film and the second transparent electrode film are In 2 O 3 —SnO 2 (ITO), In 2 O 3 —SnO 2 —ZnO (IZO). ), In 2 O 3 , and may be in an amorphous state.

本発明の積層型透明電極形成用の積層体においては、第1透明電極膜と第2透明電極膜は、ZnO−Al(AZO)、ZnO−Ga(GZO)、ZnOのいずれかからなり得る。 In the multilayer transparent electrode forming laminate of the present invention, the first transparent electrode film and the second transparent electrode film are made of ZnO—Al 2 O 3 (AZO), ZnO—Ga 2 O 3 (GZO), ZnO. It can consist of either.

本発明の積層型透明電極形成用の積層体においては、第1透明電極膜と第2透明電極膜の少なくとも一方は還元作用を有し得る。   In the laminate for forming a laminated transparent electrode of the present invention, at least one of the first transparent electrode film and the second transparent electrode film may have a reducing action.

本発明の積層型透明電極形成用の積層体においては、前記第1透明電極膜と第2透明電極膜は還元されている。   In the laminated body for forming a laminated transparent electrode of the present invention, the first transparent electrode film and the second transparent electrode film are reduced.

本発明の積層型透明電極形成用の積層体においては、酸化銀系薄膜は、Agを主成分としてこれに微量なAu、Cu、Pd、Nd、Bi、Sm、Ru,Sn、In、Al、Tiのいずれか一つ以上を添加した銀合金を用いて形成され得る。   In the laminate for forming a laminated transparent electrode of the present invention, the silver oxide thin film is composed mainly of Ag, and a small amount of Au, Cu, Pd, Nd, Bi, Sm, Ru, Sn, In, Al, It can be formed using a silver alloy to which any one or more of Ti is added.

本発明の積層型透明電極形成用の積層体においては、酸化銀系薄膜は、厚さ5〜20nmに形成され得る。   In the laminated body for forming a laminated transparent electrode of the present invention, the silver oxide thin film can be formed to a thickness of 5 to 20 nm.

さらに、本発明は、例えば透明電極膜をITO膜等のIn系透明電極膜、AZO膜等のZnO系透明電極膜の代わりにSnO−Sb2O3(ATO)膜等のSnO系透明電極膜としてもよい。 Furthermore, the present invention is, for example, In 2 O 3 based transparent electrode film such as an ITO film transparent electrode film, SnO 2 -Sb2O3 (ATO) SnO 2 based transparent such film instead of the ZnO-based transparent electrode film such as AZO film It may be an electrode film.

また膜厚に関しても本発明においては、酸化銀系薄膜の厚さを、例えば100〜150nmの酸化銀系薄膜とし、これに第1、第2の透明電極膜、又は酸化銀系薄膜上の透明電極膜のみで構成された積層膜を加熱して得られる薄膜は反射膜あるいは反射電極膜としても有用であり、そのエッチング性は上述のものと同じ効果が得られることは容易に推測できる。   Further, regarding the film thickness, in the present invention, the thickness of the silver oxide thin film is, for example, a silver oxide thin film of 100 to 150 nm, and this is transparent on the first and second transparent electrode films or the silver oxide thin film. A thin film obtained by heating a laminated film composed only of an electrode film is also useful as a reflective film or a reflective electrode film, and it can be easily estimated that the same effects as those described above can be obtained.

本発明の第1の発明による積層型透明電極膜の製造方法によれば、酸化銀薄膜及び透明電極膜を積層し、ウエットエッチングによるパターン形成後、加熱処理をすることにより、抵抗特性、透過率特性を損なうことなくエッチング加工性に優れた積層型の透明電極膜を製造することができる。   According to the method for producing a laminated transparent electrode film of the first aspect of the present invention, a silver oxide thin film and a transparent electrode film are laminated, a pattern is formed by wet etching, and then heat treatment is performed, whereby resistance characteristics and transmittance are obtained. A laminated transparent electrode film excellent in etching processability can be produced without impairing characteristics.

また、Agを主成分とし、これに微量なAu,Cu,Pd,Nd,Bi,Sm,Ru,Sn,Zn,In,Al,Tiのいずれかを一つ以上添加した銀g合金を用いた場合には、耐熱性、耐食性、密着性等が優れ、積層膜の安定性に寄与でき、実用的である。   Further, a silver g alloy containing Ag as a main component and adding one or more of trace amounts of Au, Cu, Pd, Nd, Bi, Sm, Ru, Sn, Zn, In, Al, and Ti was used. In such a case, heat resistance, corrosion resistance, adhesion, etc. are excellent, which can contribute to the stability of the laminated film and is practical.

また、本発明の第2の発明による積層型透明電極形成用の積層体によれば、抵抗及び透過率など所望の特性をもつ積層型透明電極の製造に用いられる前駆体を提供することができる。   Moreover, according to the laminated body for forming a laminated transparent electrode according to the second invention of the present invention, a precursor used for producing a laminated transparent electrode having desired characteristics such as resistance and transmittance can be provided. .

以下実施例に基づき本発明を実施する形態について説明する。 Hereinafter, modes for carrying out the present invention will be described based on examples.

三層からなる積層型透明電極膜を作成する際の最適プロセス条件を決めるため単層膜を作成した。第1、第2透明電極膜の還元ガスの添加条件、及び酸化銀薄膜のOガス添加条件の最適値を検討した。 A single-layer film was prepared in order to determine the optimum process conditions for preparing a three-layer laminated transparent electrode film. The optimum values of the reducing gas addition conditions for the first and second transparent electrode films and the O 2 gas addition conditions for the silver oxide thin film were studied.

透明電極膜の作成には、In−SnO(ITO)、Al−ZnO(AZO)ターゲットを用いた。ITO膜の成膜はスパッタ室内にArガスを140〜150SCCM、及びAr+10%−CHガスを0〜10SCCMを、(ArガスとAr+10%−CHガスの総和量が150SCCMになるように混合比を調整して)導入した。DCパワー1.1〜1.2kW(パワー密度1.6〜1.8W/cm)を投入した。AZO膜の成膜はスパッタ室内にArガスを130〜150SCCM、及びAr+10%−CHガスを0〜20SCCMを、(ArガスとAr+10%−CHガスの総和量が150SCCMになるように混合比を調整して)導入した。DCパワー1.3〜1.4kW(パワー密度1.9〜2.0W/cm)を投入した。酸化銀系薄膜の作成には、Ag0.5Au0.5Sn(重量%)ターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM、及びOガスを0〜30SCCM導入し、DCパワー0.5〜0.6W(パワー密度0.7〜0.9W/)cm)を投入した。成膜温度は室温で行った。洗浄した基板(コーニング1737)上にITO膜、AZO膜、及び酸化銀系薄膜をそれぞれ形成した。膜厚はITO膜、AZO膜、酸化銀系薄膜いずれも1500Åであった。得られた単層膜を大気焼成炉で250〜300℃の温度で30分から1時間加熱処理を行った。 In 2 O 3 —SnO 2 (ITO) and Al 2 O 3 —ZnO (AZO) targets were used for the production of the transparent electrode film. The ITO film is formed in the sputtering chamber with 140 to 150 SCCM of Ar gas and 0 to 10 SCCM of Ar + 10% -CH 4 gas (mixing ratio so that the total amount of Ar gas and Ar + 10% -CH 4 gas is 150 SCCM). Was introduced). DC power of 1.1 to 1.2 kW (power density of 1.6 to 1.8 W / cm 2 ) was input. The AZO film is formed in the sputtering chamber with Ar gas of 130 to 150 SCCM and Ar + 10% -CH 4 gas of 0 to 20 SCCM (mixing ratio so that the total amount of Ar gas and Ar + 10% -CH 4 gas is 150 SCCM). Was introduced). DC power of 1.3 to 1.4 kW (power density of 1.9 to 2.0 W / cm 2 ) was input. An Ag0.5Au0.5Sn (% by weight) target was used for producing the silver oxide thin film. Argon gas 150 SCCM and O 2 gas 0-30 SCCM were introduced into the sputtering chamber, and DC power 0.5-0.6 W (power density 0.7-0.9 W /) cm 2 ) was introduced. The film formation temperature was room temperature. An ITO film, an AZO film, and a silver oxide thin film were formed on the cleaned substrate (Corning 1737). The film thickness was 1500 mm for all of the ITO film, the AZO film, and the silver oxide thin film. The obtained single layer film was heat-treated at a temperature of 250 to 300 ° C. for 30 minutes to 1 hour in an atmospheric baking furnace.

単層膜の焼成前後のシート抵抗値(Ω/□)、比抵抗(μΩcm)、透過率(%)を評価した。次に、単層膜の焼成前後のエッチング性を評価した。エッチングは市販の0.5mol/lシュウ酸水溶液、市販のリン酸・硝酸・酢酸からなる銀合金膜エッチング液(関東化学製 SEA−1)、リン酸・硝酸・シュウ酸・水からなるエッチング液(リン酸(重量%):硝酸(重量%):水(重量%)=38:5:57にシュウ酸を飽和するまで添加した溶液)を用い、室温(23℃)で行った。その結果を表1に示す。表1においてエッチング性の○は可溶、×は不溶、又は電食の発生を意味する。   The sheet resistance value (Ω / □), specific resistance (μΩcm), and transmittance (%) before and after firing the single layer film were evaluated. Next, the etching property before and after firing the single layer film was evaluated. Etching is a commercially available 0.5 mol / l oxalic acid aqueous solution, a commercially available silver alloy film etching solution composed of phosphoric acid, nitric acid, and acetic acid (SEA-1 manufactured by Kanto Chemical), and an etching solution composed of phosphoric acid, nitric acid, oxalic acid, and water. (Phosphoric acid (wt%): nitric acid (wt%): water (wt%) = 38: 5: 57 solution in which oxalic acid was added until saturation) was performed at room temperature (23 ° C.). The results are shown in Table 1. In Table 1, “◯” for etching property means soluble, “x” means insoluble or occurrence of electrolytic corrosion.

透明電極膜の作成には、In−SnO(ITO)ターゲットを用いた。スパッタ室内にArガスを150SCCM導入し、DCパワーO.5W(パワー密度0.7W/cm)を投入した。酸化銀系薄膜の作成には、Ag0.5Au0.5Sn(重量%)ターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM、及びOガスを30SCCM導入し、DCパワー0.5W(パワー密度0.7W/cm)(補正板用いて膜厚を調整)投入した。成膜温度は室温で行った。洗浄した基板(コーニング1737)上に第1のITO膜を形成し、続いて酸化銀系薄膜を形成し、続いて第2のITO膜を形成した。膜厚は第1、第2のITO膜は各400Å、酸化銀系薄膜は100Åであった。得られた積層膜を大気焼成炉で300℃の温度で30分加熱処理を行った。 In 2 O 3 —SnO 2 (ITO) target was used for the production of the transparent electrode film. Argon gas 150 SCCM was introduced into the sputtering chamber, and DC power O.D. 5 W (power density 0.7 W / cm 2 ) was charged. An Ag0.5Au0.5Sn (% by weight) target was used for producing the silver oxide thin film. Argon gas of 150 SCCM and O 2 gas of 30 SCCM were introduced into the sputtering chamber, and DC power of 0.5 W (power density of 0.7 W / cm 2 ) (the film thickness was adjusted using a correction plate) was charged. The film formation temperature was room temperature. A first ITO film was formed on the cleaned substrate (Corning 1737), then a silver oxide thin film was formed, and then a second ITO film was formed. The film thicknesses were 400 mm for the first and second ITO films, and 100 mm for the silver oxide thin film. The obtained laminated film was heat-treated at a temperature of 300 ° C. for 30 minutes in an atmospheric baking furnace.

積層膜の焼成前後のシート抵抗値(Ω/口)、比抵抗(μΩcm)、透過率(%)を実施例1と同様な方法及び条件で評価した。次に、積層膜の焼成前のエッチング性を実施例1と同様な方法及び条件で評価した。その結果を表1に示す。   The sheet resistance value (Ω / port), specific resistance (μΩcm), and transmittance (%) of the laminated film before and after firing were evaluated by the same method and conditions as in Example 1. Next, the etching property before firing of the laminated film was evaluated by the same method and conditions as in Example 1. The results are shown in Table 1.

透明電極膜の作成には、In−SnO(ITO)ターゲットを用いた。スパッタ室内にArガスを100〜150SCCM、及びAr+10%−CHガスを0〜50SCCMを、ArガスとAr+10%−CHガスの総和量が150SCCMになるように混合比を調整して導入した。DCパワー0.5W(パワー密度0.7W/cm)を投入した。 In 2 O 3 —SnO 2 (ITO) target was used for the production of the transparent electrode film. Ar gas was introduced into the sputtering chamber at 100 to 150 SCCM, Ar + 10% -CH 4 gas at 0 to 50 SCCM, and the mixing ratio was adjusted so that the total amount of Ar gas and Ar + 10% -CH 4 gas was 150 SCCM. DC power of 0.5 W (power density 0.7 W / cm 2 ) was input.

酸化銀系薄膜の作成には、Ag0.5Au0.5Sn(重量%)、及び、Ag0.6Cu(重量%)ターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM、及びOガスを30SCCM導入し、DCパワー0.5〜0.75W(パワー密度0.7〜1.1W/cm)(補正板用いて膜厚を調整)投入した。成膜温度は室温で行った。洗浄した基板(コーニング1737)上に第1のITO膜を形成し、続いて酸化銀系薄膜を形成し、続いて第2のITO膜を形成した。膜厚は第1、第2のITO膜は各40OÅ、酸化銀系薄膜は100〜150Åであった。得られた積層膜を大気焼成炉で100〜300℃の温度で30分加熱処理を行った。 Ag0.5Au0.5Sn (wt%) and Ag0.6Cu (wt%) targets were used for the production of the silver oxide thin film. Argon gas of 150 SCCM and O 2 gas of 30 SCCM were introduced into the sputtering chamber, DC power 0.5 to 0.75 W (power density 0.7 to 1.1 W / cm 2 ) (the film thickness was adjusted using a correction plate) I put it in. The film formation temperature was room temperature. A first ITO film was formed on the cleaned substrate (Corning 1737), then a silver oxide thin film was formed, and then a second ITO film was formed. The film thicknesses were 40O40 for the first and second ITO films, and 100 to 150〜 for the silver oxide thin film. The obtained laminated film was heat-treated at a temperature of 100 to 300 ° C. for 30 minutes in an atmospheric firing furnace.

積層膜の焼成前後のシート抵抗値(Ω/口)、比抵抗(μΩcm)、透過率(%)を実施例1と同様な方法及び条件で評価した。次に、積層膜の焼成前のエッチング性を実施例1と同様な方法及び条件で評価した。その結果を表1に示す。   The sheet resistance value (Ω / port), specific resistance (μΩcm), and transmittance (%) of the laminated film before and after firing were evaluated by the same method and conditions as in Example 1. Next, the etching property before firing of the laminated film was evaluated by the same method and conditions as in Example 1. The results are shown in Table 1.

透明電極膜の作成には、In−SnO(ITO)のターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM、及びHガスを1.5SCCM導入し、DCパワー0.5W(パワー密度(0.7W/cm)を投入した。 For the production of the transparent electrode film, a target of In 2 O 3 —SnO 2 (ITO) was used. Argon gas of 150 SCCM and H 2 gas of 1.5 SCCM were introduced into the sputtering chamber, and DC power of 0.5 W (power density (0.7 W / cm 2 )) was supplied.

酸化銀系薄膜の作成には、Ag0.5Au0.5Sn(重量%)ターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM、及びOガスを30SCCM導入し、DCパワー0.5W(パワー密度0.7W/cm)(補正板用いて膜厚を調整)投入した。成膜温度は室温で行った。洗浄した基板(コーニング1737)上に第1のITO膜を形成し、統いて酸化銀系薄膜を形成し、続いて第2のITO膜を形成した。膜厚は第1、第2のITO膜は各40OÅ、酸化銀系薄膜は100Åであった。得られた積層膜を大気焼成炉で300℃の温度で30分加熱処理を行った。 An Ag0.5Au0.5Sn (% by weight) target was used for producing the silver oxide thin film. Argon gas of 150 SCCM and O 2 gas of 30 SCCM were introduced into the sputtering chamber, and DC power of 0.5 W (power density of 0.7 W / cm 2 ) (the film thickness was adjusted using a correction plate) was charged. The film formation temperature was room temperature. A first ITO film was formed on the cleaned substrate (Corning 1737), a silver oxide-based thin film was formed in succession, and then a second ITO film was formed. The first and second ITO films were 40O 膜 each, and the silver oxide thin film was 100Å. The obtained laminated film was heat-treated at a temperature of 300 ° C. for 30 minutes in an atmospheric baking furnace.

積層膜の焼成前後のシート抵抗値(Ω/口)、比抵抗(μΩcm)、透過率(%)を実施例1と同様な方法及び条件で評価した。次に、積層膜の焼成前のエッチング性を実施例1と同様な方法及び条件で評価した。その結果を表1に示す。   The sheet resistance value (Ω / port), specific resistance (μΩcm), and transmittance (%) of the laminated film before and after firing were evaluated by the same method and conditions as in Example 1. Next, the etching property before firing of the laminated film was evaluated by the same method and conditions as in Example 1. The results are shown in Table 1.

透明透明電極膜の作成には、Al−ZnO(AZO)ターゲットを用いた。スパッタ室内にArガスを150SCCM、及びAr+10%−CHガスを10SCCMを導入した。DCパワー0.6kW(パワー密度0.8W/cm)を投入した。 An Al 2 O 3 —ZnO (AZO) target was used for the production of the transparent transparent electrode film. In the sputtering chamber, 150 SCCM of Ar gas and 10 SCCM of Ar + 10% -CH 4 gas were introduced. A DC power of 0.6 kW (power density 0.8 W / cm 2 ) was applied.

酸化銀系薄膜の作成には、Ag0.5Au0.5Sn(重量%)ターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM、及びOガスを30SCCM導入し、DCパワー0.6W(パワー密度0.8W/)cm)(補正板を用いて膜厚を調整)を投入した。成膜温度は室温で行った。洗浄した基板(コーニング1737)上に第1のAZO膜を形成し、続いて酸化銀系薄膜を形成し、続いて第2のAZO膜を形成した。膜厚は第1、第2のAZO膜は各450Å、酸化銀系薄膜は170Åであった。得られた積層膜を大気焼成炉で250℃の温度で1時間加熱処理を行った。 An Ag0.5Au0.5Sn (% by weight) target was used for producing the silver oxide thin film. Argon gas 150 SCCM and O 2 gas 30 SCCM were introduced into the sputtering chamber, and DC power 0.6 W (power density 0.8 W /) cm 2 ) (thickness was adjusted using a correction plate) was introduced. The film formation temperature was room temperature. A first AZO film was formed on the cleaned substrate (Corning 1737), then a silver oxide thin film was formed, and then a second AZO film was formed. The film thicknesses were 450 mm for the first and second AZO films and 170 mm for the silver oxide thin film. The obtained laminated film was heat-treated at a temperature of 250 ° C. for 1 hour in an atmospheric baking furnace.

積層膜の焼成前後のシート抵抗値(Ω/□)、比抵抗(μΩcm)、透過率(%)を実施例1と同様な方法・条件で評価した。次に、積層膜の焼成前後のエッチング性を実施例1と同様な方法・条件で評価した。その結果を表1に示す。   The sheet resistance value (Ω / □), specific resistance (μΩcm), and transmittance (%) of the laminated film before and after firing were evaluated by the same method and conditions as in Example 1. Next, the etching properties before and after firing the laminated film were evaluated by the same method and conditions as in Example 1. The results are shown in Table 1.

比較例として次の積層膜を作成した。   The following laminated film was prepared as a comparative example.

比較例1Comparative Example 1

透明電極膜の作成には、In−SnO(ITO)ターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM導入し、DCパワー0.5W(パワー密度0.7W/cm)を投入した。 In 2 O 3 —SnO 2 (ITO) target was used for the production of the transparent electrode film. Argon gas of 150 SCCM was introduced into the sputtering chamber, and DC power of 0.5 W (power density of 0.7 W / cm 2 ) was supplied.

金属銀系薄膜の作成には、Ag0.5Au0.5Sn(重量%)ターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM導入し、DCパワー0.4W(パワー密度0.6W/cm)(補正板を用いて膜厚を調整)を投入した。成膜温度は室温で行った。洗浄した基板(コーニング1737)上に第1のITO膜を形成し、続いて金属銀系薄膜を形成し、続いて第2のITO膜を形成した。膜厚は第1、第2のITO膜は各40OÅ、金属銀系薄膜は100Åであった。 An Ag0.5Au0.5Sn (wt%) target was used for the production of the metallic silver-based thin film. Argon gas of 150 SCCM was introduced into the sputtering chamber, and DC power of 0.4 W (power density of 0.6 W / cm 2 ) (the film thickness was adjusted using a correction plate) was introduced. The film formation temperature was room temperature. A first ITO film was formed on the cleaned substrate (Corning 1737), then a metallic silver thin film was formed, and then a second ITO film was formed. The first and second ITO films were 40O 膜 each, and the metal silver thin film was 100 系.

積層膜のシート抵抗値(Ω/口)、比抵抗(μΩcm)、透過率(%)を実施例1と同様な方法及び条件で評価した。次に、積層膜のエッチング性を実施例1と同様な方法及び条件で評価した。その結果を表1に示す。   The sheet resistance value (Ω / port), specific resistance (μΩcm), and transmittance (%) of the laminated film were evaluated by the same method and conditions as in Example 1. Next, the etching property of the laminated film was evaluated by the same method and conditions as in Example 1. The results are shown in Table 1.

比較例2Comparative Example 2

透明電極膜の作成には、Al−ZnO(AZO)ターゲットを用いた。スパッタ室内にArガスを150SCCM導入し、DCパワー0.6kW(パワー密度0.8W/cm)を投入した。 An Al 2 O 3 —ZnO (AZO) target was used for the production of the transparent electrode film. 150 SCCM of Ar gas was introduced into the sputtering chamber, and a DC power of 0.6 kW (power density of 0.8 W / cm 2 ) was added.

金属銀系薄膜の作成には、Ag0.5Au0.5Sn(重量%)ターゲットを用いた。スパッタ室内にアルゴンガスを150SCCM導入し、DCパワー0.5W(パワー密度0.7W/)cm)(補正板を用いて膜厚を調整)を投入した。成膜温度は室温で行った。洗浄した基板(コーニング1737)上に第1のITO膜を形成し、続いて金属銀系薄膜を形成し、続いて第2のITO膜を形成した。膜厚は第1、第2のAZO膜は各450Å、金属銀系薄膜は170Åであった。 An Ag0.5Au0.5Sn (wt%) target was used for the production of the metallic silver-based thin film. Argon gas of 150 SCCM was introduced into the sputtering chamber, and DC power of 0.5 W (power density of 0.7 W /) cm 2 ) (thickness adjustment using a correction plate) was introduced. The film formation temperature was room temperature. A first ITO film was formed on the cleaned substrate (Corning 1737), then a metallic silver thin film was formed, and then a second ITO film was formed. The film thicknesses were 450 mm for the first and second AZO films and 170 mm for the metallic silver-based thin film.

積層膜のシート抵抗値(Ω/□)、比抵抗(μΩcm)、透過率(%)を実施例1と同様な方法・条件で評価した。次に、積層膜のエッチング性を実施例1と同様な方法・条件で評価した。その結果を表1に示す。   The sheet resistance value (Ω / □), specific resistance (μΩcm), and transmittance (%) of the laminated film were evaluated by the same methods and conditions as in Example 1. Next, the etching property of the laminated film was evaluated by the same method and conditions as in Example 1. The results are shown in Table 1.

Figure 2006164961
Figure 2006164961

[実施例1で得られた単層膜の結果]
CHガスを添加してのITO膜の成膜では、サンプルNo.3及びNo.4において、CHの添加量5SCCM以上で焼成後の抵抗値が大きく上昇することから、ITO膜が還元されていることが分かった。CHガスを添加してのAZO膜の成膜では、サンプルNo.8及びNo.9において、CHの添加量10SCCM以上で焼成後の抵抗値が大きく上昇することから、AZO膜が還元されていることが分かった。酸化銀系薄膜の作成では、サンプルNo.14において、Oの添加量は30SCCMで、抵抗値が無限大に達し、かつ透明化(褐色)していることから、酸化銀系薄膜が生成していることが分かった。サンプルNo.14は焼成後、抵抗値が金属銀系薄膜に近い数値に戻り、かつ透明性がなくなり、鏡面化することから、酸化銀薄膜が金属銀薄膜に戻ることが確認された。シュウ酸溶液に対する溶解性はサンプルNo.10の金属膜にはないのに対して、サンプルNo.14の酸化銀は可溶であった。また(アモルファス)ITO膜はいずれの条件でもシュウ酸水溶液に可溶であった。AZO膜はシュウ酸水溶液に不溶であった(部分的には可溶であったが、Alの残査がシュウ酸水溶液に不溶であるため)。リン酸・硝酸・酢酸からなる銀合金膜エッチング液対する溶解性はサンプルNo.10の金属膜、及び、サンプルNo.14の酸化銀は可溶であった。また(アモルファス)ITO膜は銀合金膜エッチング液に不溶であった。AZO膜は銀合金膜エッチング液に可溶であった。リン酸・硝酸・シュウ酸・水からなるエッチング液には(アモルファス)ITO膜、AZO膜、金属銀系薄膜、酸化銀系薄膜いずれも可溶であった。
[Results of the monolayer film obtained in Example 1]
In the formation of the ITO film with the addition of CH 4 gas, sample No. 3 and no. In No. 4, since the resistance value after firing greatly increased when the amount of CH 4 added was 5 SCCM or more, it was found that the ITO film was reduced. In the formation of the AZO film with the addition of CH 4 gas, sample no. 8 and no. In No. 9, since the resistance value after firing greatly increased when the CH 4 addition amount was 10 SCCM or more, it was found that the AZO film was reduced. In the preparation of the silver oxide thin film, sample no. In No. 14, the amount of O 2 added was 30 SCCM, the resistance value reached infinity, and the film became transparent (brown), indicating that a silver oxide thin film was formed. Sample No. In No. 14, the resistance value returned to a value close to that of the metallic silver-based thin film after firing, and the transparency was lost and it became mirror-finished. Thus, it was confirmed that the silver oxide thin film returned to the metallic silver thin film. The solubility in the oxalic acid solution is as follows. Sample No. 10 is not present in the metal film 10. Fourteen silver oxides were soluble. The (amorphous) ITO film was soluble in the oxalic acid aqueous solution under any conditions. The AZO film was insoluble in the oxalic acid aqueous solution (partially soluble, but the Al 2 O 3 residue is insoluble in the oxalic acid aqueous solution). The solubility in the etching solution of silver alloy film composed of phosphoric acid, nitric acid, and acetic acid was determined as Sample No. No. 10 metal film and sample no. Fourteen silver oxides were soluble. The (amorphous) ITO film was insoluble in the silver alloy film etching solution. The AZO film was soluble in the silver alloy film etching solution. All of the (amorphous) ITO film, AZO film, metallic silver-based thin film, and silver oxide-based thin film were soluble in the etching solution composed of phosphoric acid, nitric acid, oxalic acid, and water.

AZO膜にCHガスを添加して還元した単層膜は、焼成後、ある添加量において添加・還元していないAZO膜よりも低抵抗を示した。 The single-layer film reduced by adding CH 4 gas to the AZO film showed lower resistance than the AZO film not added / reduced at a certain addition amount after firing.

[実施例2〜6、及び比較例1〜2で得られた積層膜の結果]
酸化銀層を持たないITO膜/金属銀系膜/ITO膜構造である、比較例1のサンプルNo.15が最もよい抵抗値を示すが、酸化銀層を持つ、本発明であるサンプルのうち、ITO層にAr+CHを5〜25SCCM添加した条件、又はHを1.5SCCM添加した条件で作成したサンプルNo.17、18、19、21、23、24、25は、焼成後、単層で作成し、焼成したITO膜であるサンプルNo.1よりも低抵抗(比抵抗において)であり、かつ比較例のサンプルNo.15に近い低抵抗を示した。
[Results of laminated films obtained in Examples 2 to 6 and Comparative Examples 1 and 2]
Sample No. of Comparative Example 1 having an ITO film / metal silver film / ITO film structure having no silver oxide layer. 15 shows the best resistance, but among the samples according to the present invention having a silver oxide layer, the sample was prepared under the condition that Ar + CH 4 was added to the ITO layer in an amount of 5 to 25 SCCM, or H 2 was added in the amount of 1.5 SCCM. Sample No. Nos. 17, 18, 19, 21, 23, 24, and 25 are sample Nos. 1 and 2, which are ITO films prepared and fired as a single layer after firing. No. 1 (in specific resistance), and the comparative sample No. A low resistance close to 15 was exhibited.

還元していないITO膜で積層したサンプルNo.16の抵抗は上記サンプルに比べて不十分であった。焼成で酸化銀より発生した酸素が低抵抗化を妨げていると考えられ、ITO膜を還元した方が好ましいと認められた。   Sample No. laminated with unreduced ITO film. The resistance of 16 was insufficient compared to the above sample. It was considered that oxygen generated from the silver oxide by baking was preventing the resistance reduction, and it was recognized that it was preferable to reduce the ITO film.

還元の大きい、或いはCHの余剰分が多いITO膜で積層したサンプルNo.22の抵抗は焼成前の状態である程度の低抵抗化が起こっており焼成しても低抵抗化しなかった。成膜中に酸化銀が還元され、金属銀に戻ってしまったと考えられる。 Sample No. 1 laminated with an ITO film having a large reduction or a large excess of CH 4 was obtained. The resistance of No. 22 was lowered to some extent in the state before firing, and it was not lowered even after firing. It is thought that silver oxide was reduced during film formation and returned to metallic silver.

焼成温度は、サンプルNo.20において、100℃では低抵抗化が起こらず、サンプルNo.18、19において、200℃,300℃焼成で低抵抗化が起こりほぼ同じ抵抗値を示した。このことは、文献値の酸化銀が160℃程度でAgとOに分解する知見と一致する。 The firing temperature was set to Sample No. 20, the resistance did not decrease at 100 ° C. 18 and 19, the resistance was lowered by firing at 200 ° C. and 300 ° C., and the resistance values were almost the same. This is consistent with the knowledge that the literature value silver oxide decomposes into Ag and O 2 at about 160 ° C.

銀合金の組成を変えたサンプルNo.25、及び還元ガスとしてCHガスの代わりにHガスを用いたサンプルNo.24も同様な結果となり、焼成後、低抵抗を示した。また、酸化銀層の膜厚を厚くしたサンプルNo.23も、焼成後、低抵抗を示し、かつ、透過率も良好であった。 Sample No. with different composition of silver alloy 25, and sample No. using H 2 gas instead of CH 4 gas as the reducing gas. 24 also had the same result, and showed low resistance after firing. Sample No. 1 with a thickened silver oxide layer was also used. No. 23 also showed low resistance after firing and good transmittance.

さらに酸化銀層を持たないAZO膜/金属銀系膜/AZO膜構造である、比較例2のサンプルNo.26も最もよい抵抗値を示すが、酸化銀層を持つ、本発明であるサンプルのうち、AZO層にAr+CHを10SCCM添加した条件で作成したサンプルNo.27は、焼成後、単層で作成し、焼成したAZO膜であるサンプルNo.5よりも低抵抗(比抵抗において)であり、かつ比較例のサンプルNo.26に近い低抵抗を示した。 Furthermore, Sample No. of Comparative Example 2 having an AZO film / metal silver film / AZO film structure having no silver oxide layer. No. 26 also shows the best resistance value. Among the samples according to the present invention having a silver oxide layer, sample No. 26 prepared under the condition that 10 SCCM of Ar + CH 4 was added to the AZO layer. Sample No. 27, which is an AZO film prepared and fired as a single layer after firing. 5 is lower in resistance (in specific resistance), and sample No. A low resistance close to 26 was exhibited.

ITO膜/酸化銀系/ITO膜構造においてシュウ酸に対するエッチング性は、酸化銀層を持たない比較例1のサンプルNo.15及びCHの添加量が多く酸化銀が金属銀に戻ってしまったサンプルNo.22は不溶であった。サンプルNo.16、17、18、19、20、21、23、24、25(ただしNo.18、19、20は焼成前であるので同じ膜)は可溶であり、パターニングを行った場合も、良好なパターン形状が得られた。 In the ITO film / silver oxide system / ITO film structure, the etching property against oxalic acid is the sample No. 1 of Comparative Example 1 having no silver oxide layer. Sample No. 15 in which the amount of addition of 15 and CH 4 was large and the silver oxide returned to metallic silver. 22 was insoluble. Sample No. 16, 17, 18, 19, 20, 21, 23, 24, 25 (however, No. 18, 19, and 20 are the same film since before firing) are soluble, and good even when patterning is performed. A pattern shape was obtained.

AZO膜/Ag系膜/AZO膜構造においてリン酸・硝酸・酢酸からなる銀合金膜エッチング液に対するエッチング性は、酸化銀層を持つサンプルNo.26も、酸化銀層を持たないサンプルNo.27もいずれもエッチング液には可溶であったが、サンプルNo.26はエッチング中、電食が発生し金属銀層が先に浸食され膜面の至る所にピンホールが発生した。   In the AZO film / Ag-based film / AZO film structure, the etching property with respect to the silver alloy film etching liquid composed of phosphoric acid, nitric acid, and acetic acid is the same as that of Sample No. having a silver oxide layer. No. 26 also has a sample No. having no silver oxide layer. Both samples 27 were soluble in the etching solution. In No. 26, electrolytic corrosion occurred during etching, and the metal silver layer was first eroded and pinholes were generated all over the film surface.

リン酸・硝酸・シュウ酸・水からなるエッチング液に対するエッチング性は、ITO膜/酸化銀/ITO膜構造、及びAZO膜/Ag系膜/AZO膜構造いずれのサンプルも可溶であったのに対して、ITO膜/金属銀系膜/ITO膜構造、及びAZO膜/金属銀系膜膜/AZO膜構造のサンプルNo.15、及び、26はいずれもエッチング液には可溶であったが、エッチング中、電食が発生し金属銀層が先に浸食され膜面の至る所にピンホールが発生した。   The etchability of the etching solution consisting of phosphoric acid, nitric acid, oxalic acid, and water was soluble in both the ITO film / silver oxide / ITO film structure and the AZO film / Ag-based film / AZO film structure samples. On the other hand, sample numbers of ITO film / metal silver film / ITO film structure and AZO film / metal silver film / AZO film structure are shown in FIG. Both 15 and 26 were soluble in the etching solution, but during the etching, electrolytic corrosion occurred, the metal silver layer was first eroded, and pinholes were generated throughout the film surface.

本発明の方法で製作された積層型透明電極膜の断面図。Sectional drawing of the laminated type transparent electrode film manufactured by the method of this invention.

Claims (22)

基板上に第1透明電極膜を形成するステップと、
前記第1透明電極膜の上に酸化銀系薄膜を形成するステップと、
前記酸化銀系薄膜上に第2透明電極膜を形成するステップと、
前記第1透明電極膜、前記酸化銀系薄膜、前記第2透明電極膜の積層を加熱して低抵抗化及び透明化するステップと
を含むことを特徴とする透明電極膜の製造方法。
Forming a first transparent electrode film on a substrate;
Forming a silver oxide thin film on the first transparent electrode film;
Forming a second transparent electrode film on the silver oxide thin film;
And heating the laminated layer of the first transparent electrode film, the silver oxide thin film, and the second transparent electrode film to reduce resistance and make it transparent.
さらに、加熱ステップ前に前記積層を、一液のエッチング液でエッチングするステップを含むことを特徴とする請求項1に記載の透明電極膜の製造方法。   Furthermore, the manufacturing method of the transparent electrode film of Claim 1 including the step which etches the said lamination | stacking with one etchant before a heating step. 前記第1透明電極膜と前記第2透明電極膜が、In−SnO(ITO)、In−SnO−ZnO(IZO)、Inいずれかからなり、アモルファス状態であることを特徴とする請求項1に記載の透明電極膜の製造方法。 The first transparent electrode film and the second transparent electrode film are made of any of In 2 O 3 —SnO 2 (ITO), In 2 O 3 —SnO 2 —ZnO (IZO), and In 2 O 3, and are in an amorphous state. The method for producing a transparent electrode film according to claim 1, wherein: シュウ酸、及び、シュウ酸に少量の硝酸を添加したもの、又はリン酸・硝酸・シュウ酸・水、又はリン酸・硝酸・シュウ酸・酢酸からなるエッチング液を用いて、第1、第2透明電極膜及び酸化銀系薄膜をエッチング工程一回でパターン形成することを特徴とする請求項1に記載の透明電極膜の製造方法。   Oxalic acid and oxalic acid with a small amount of nitric acid, or phosphoric acid, nitric acid, oxalic acid, water, or an etching solution composed of phosphoric acid, nitric acid, oxalic acid, acetic acid, 2. The method for producing a transparent electrode film according to claim 1, wherein the transparent electrode film and the silver oxide thin film are patterned in one etching step. 前記第1透明電極膜と前記第2透明電極膜が、ZnO−Al(AZO)、ZnO−Ga(GZO)、ZnOいずれかからなることを特徴とする請求項1に記載の透明電極膜の製造方法。 2. The first transparent electrode film and the second transparent electrode film are made of any one of ZnO—Al 2 O 3 (AZO), ZnO—Ga 2 O 3 (GZO), and ZnO. Manufacturing method of transparent electrode film. リン酸・硝酸・酢酸、又はリン酸・硝酸・水からなるエッチング液を用いて、第1、第2透明電極膜及び酸化銀系薄膜をエッチング工程一回でパターン形成することを特徴とする請求項1に記載の透明電極膜の製造方法。   The first and second transparent electrode films and the silver oxide-based thin film are patterned in one etching step using an etchant composed of phosphoric acid, nitric acid, acetic acid, or phosphoric acid, nitric acid, and water. Item 2. A method for producing a transparent electrode film according to Item 1. 前記積層を加熱する温度が160℃以上であることを特徴とする請求項1に記載の透明電極膜の製造方法。   The method for producing a transparent electrode film according to claim 1, wherein a temperature at which the lamination is heated is 160 ° C. or more. 前記積層を加熱する温度が180℃〜400℃の範囲であることを特徴とする請求項7に記載の透明電極膜の製造方法。   The method for producing a transparent electrode film according to claim 7, wherein a temperature for heating the laminated layer is in a range of 180 ° C. to 400 ° C. 前記第1透明電極膜と前記第2透明電極膜の少なくとも何れかが還元作用を有することを特徴とする請求項1に記載の透明電極膜の製造方法。   The method for producing a transparent electrode film according to claim 1, wherein at least one of the first transparent electrode film and the second transparent electrode film has a reducing action. 前記第1透明電極膜と前記第2透明電極膜の少なくとも一方が、スパッタガスに還元性ガスを添加してスパッタリングにより形成されることを特徴とする請求項1に記載の透明電極膜の製造方法。   2. The method for producing a transparent electrode film according to claim 1, wherein at least one of the first transparent electrode film and the second transparent electrode film is formed by sputtering with a reducing gas added to a sputtering gas. . 還元ガスとして、H、CH、COのいずれかが用いられることを特徴とする請求項10に記載の透明電極膜の製造方法。 The method for producing a transparent electrode film according to claim 10, wherein any one of H 2 , CH 4 , and CO is used as the reducing gas. 前記酸化銀系薄膜が、酸化ガスを含む環境で反応性スパッタリングで銀又は銀合金をスパッタリングすることにより形成されることを特徴とする請求項1に記載の透明電極膜の製造方法。   The method for producing a transparent electrode film according to claim 1, wherein the silver oxide thin film is formed by sputtering silver or a silver alloy by reactive sputtering in an environment containing an oxidizing gas. 前記酸化銀系薄膜が、Agを主成分としこれに微量なAu、Cu、Pd、Nd、Bi、Sm、Ru、Sn、Zn、In、Al、Tiのいずれか一つ以上を添加した銀合金を用いて形成されることを特徴とする請求項12に記載の透明電極膜の製造方法。     The silver oxide-based thin film is a silver alloy in which Ag is a main component and any one or more of Au, Cu, Pd, Nd, Bi, Sm, Ru, Sn, Zn, In, Al, and Ti are added thereto. The method for producing a transparent electrode film according to claim 12, wherein 前記酸化銀系薄膜が、厚さ5〜20nmに形成されることを特徴とする請求項1〜10のいずれか一項に記載の透明電極膜の製造方法。     The method for producing a transparent electrode film according to claim 1, wherein the silver oxide thin film is formed to have a thickness of 5 to 20 nm. ZnO−Al(AZO)、ZnO−Ga(GZO)、ZnOからなるZnO系透明電極単層膜をスパッタガスとして還元性ガスであるCHを添加してスパッタリングにより形成し、抵抗を制御することを特徴とする透明電極膜の製造方法。 A ZnO-based transparent electrode single layer film made of ZnO—Al 2 O 3 (AZO), ZnO—Ga 2 O 3 (GZO), ZnO is used as a sputtering gas, and a reducing gas CH 4 is added to form a sputtering gas. A method for producing a transparent electrode film, wherein the resistance is controlled. 第1透明電極膜と、前記第1透明電極膜の上に形成される酸化銀系薄膜と、前記酸化銀系薄膜上に形成される第2透明電極膜とを有することを特徴とする積層型透明電極形成用の積層体。     A laminated type comprising a first transparent electrode film, a silver oxide thin film formed on the first transparent electrode film, and a second transparent electrode film formed on the silver oxide thin film A laminate for forming a transparent electrode. 前記第1透明電極膜と前記第2透明電極膜が、In−SnO(ITO)、In−SnO−ZnO(IZO)、Inいずれかからなり、アモルファス状態であることを特徴とする請求項16に記載の積層型透明電極形成用の積層体。 The first transparent electrode film and the second transparent electrode film are made of any of In 2 O 3 —SnO 2 (ITO), In 2 O 3 —SnO 2 —ZnO (IZO), and In 2 O 3, and are in an amorphous state. The laminate for forming a laminated transparent electrode according to claim 16, wherein the laminate is a laminate. 前記第1透明電極膜と前記第2透明電極膜が、ZnO−Al(AZO)、ZnO−Ga(GZO)、ZnOいずれかからなることを特徴とする請求項16に記載の積層型透明電極形成用の積層体。 The first transparent electrode film and the second transparent electrode film are made of any one of ZnO—Al 2 O 3 (AZO), ZnO—Ga 2 O 3 (GZO), and ZnO. A laminate for forming a laminated transparent electrode. 前記第1透明電極膜と前記第2透明電極膜の少なくとも一方が還元作用を有することを特徴とする請求項16に記載の積層型透明電極形成用の積層体。   The laminate for forming a laminated transparent electrode according to claim 16, wherein at least one of the first transparent electrode film and the second transparent electrode film has a reducing action. 前記前記第1透明電極膜と前記第2透明電極膜が還元されていることを特徴とする請求項16に記載の積層型透明電極形成用の積層体。   The laminated body for forming a laminated transparent electrode according to claim 16, wherein the first transparent electrode film and the second transparent electrode film are reduced. 前記酸化銀系薄膜が、Agを主成分としてこれに微量なAu、Cu、Pd、Nd、Bi、Sm、Ru,Sn、In、Al、Tiのいずれか一つ以上を添加した銀合金を用いて形成されることを特徴とする請求項16に記載の積層型透明電極形成用の積層体。   The silver oxide thin film is made of a silver alloy containing Ag as a main component and added with any one or more of trace amounts of Au, Cu, Pd, Nd, Bi, Sm, Ru, Sn, In, Al, and Ti. The laminate for forming a laminated transparent electrode according to claim 16, wherein the laminate is formed. 前記酸化銀系薄膜が、厚さ5〜20nmに形成されることを特徴とする請求項16に記載の積層型透明電極形成用の積層体。   The laminate for forming a laminated transparent electrode according to claim 16, wherein the silver oxide thin film is formed to a thickness of 5 to 20 nm.
JP2005325281A 2004-11-09 2005-11-09 Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method Pending JP2006164961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325281A JP2006164961A (en) 2004-11-09 2005-11-09 Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004325304 2004-11-09
JP2005325281A JP2006164961A (en) 2004-11-09 2005-11-09 Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method

Publications (1)

Publication Number Publication Date
JP2006164961A true JP2006164961A (en) 2006-06-22

Family

ID=36666688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325281A Pending JP2006164961A (en) 2004-11-09 2005-11-09 Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method

Country Status (1)

Country Link
JP (1) JP2006164961A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272544A (en) * 2008-05-09 2009-11-19 Toyota Central R&D Labs Inc Etchant, and method of manufacturing semiconductor element
JP2010061951A (en) * 2008-09-03 2010-03-18 Casio Comput Co Ltd Electroluminescent panel and method of manufacturing the same
JP2011210700A (en) * 2010-03-29 2011-10-20 Samsung Mobile Display Co Ltd Organic light-emitting display device, and manufacturing method thereof
US8168544B2 (en) 2006-08-01 2012-05-01 Canon Kabushiki Kaisha Oxide etching method
WO2012132069A1 (en) * 2011-03-25 2012-10-04 Dowaエレクトロニクス株式会社 Cleaning agent for silver-containing compositions, method for removing silver-containing composition, and method for recovering silver
JP2012221668A (en) * 2011-04-06 2012-11-12 Mitsubishi Materials Corp Layered electrode film
WO2013073356A1 (en) 2011-11-17 2013-05-23 コニカミノルタ株式会社 Transparent electrode and electronic device
WO2013099867A1 (en) 2011-12-27 2013-07-04 コニカミノルタ株式会社 Transparent electrode, electronic device, organic electroluminescence element, and method for manufacturing organic electroluminescence elements
WO2013161602A1 (en) 2012-04-23 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescent element
WO2013161603A1 (en) 2012-04-24 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and transparent electrode manufacturing method
WO2013168516A1 (en) 2012-05-08 2013-11-14 コニカミノルタ株式会社 Transparent conductive film
JP2014029985A (en) * 2012-04-25 2014-02-13 Boeing Co Solar cells including low recombination electrical contacts and systems and methods of forming the same
WO2014030666A1 (en) 2012-08-24 2014-02-27 コニカミノルタ株式会社 Transparent electrode, electronic device, and method for manufacturing transparent electrode
WO2014067233A1 (en) * 2012-10-30 2014-05-08 中国科学院长春光学精密机械与物理研究所 Preparation method for high-conductivity organic transparent conductive film
US9299960B2 (en) 2012-04-27 2016-03-29 Konica Minolta, Inc. Electronic device manufacturing apparatus
JP2016207541A (en) * 2015-04-24 2016-12-08 株式会社カネカ Transparent conductive film and display device, and method for producing transparent conductive film and method for producing display device
US9608228B2 (en) 2012-12-18 2017-03-28 Konica Minolta, Inc. Organic light-emitting device with transparent electrode having both conductivity and optical transparency
WO2017170767A1 (en) * 2016-04-01 2017-10-05 日東電工株式会社 Liquid-crystal light-adjusting member, transparent conductive film, and liquid-crystal light-adjusting element
US9871220B2 (en) 2012-11-28 2018-01-16 Konica Minolta, Inc. Transparent electrode, and electronic device
US9871209B2 (en) 2012-11-28 2018-01-16 Konica Minolta, Inc. Transparent electrode, electronic device, and organic electroluminescent device
US9899624B2 (en) 2013-03-19 2018-02-20 Konica Minolta, Inc. Transparent conductor and electronic device
US9917263B2 (en) 2013-01-15 2018-03-13 Konica Minolta, Inc. Transparent electrode, electronic device, and organic electroluminescent element
JP2018041059A (en) * 2016-09-02 2018-03-15 日東電工株式会社 Liquid-crystal light-adjusting member, translucent conductive film, and liquid-crystal light-adjusting element
US9923166B2 (en) 2012-02-15 2018-03-20 Konica Minolta, Inc. Transparent electrode and electronic device
US10431702B2 (en) 2017-07-21 2019-10-01 Kabushiki Kaisha Toshiba Transparent electrode, manufacturing method thereof and electronic device employing the transparent electrode
CN110552006A (en) * 2018-05-30 2019-12-10 三星显示有限公司 Thin film etchant composition and method of forming metal pattern using the same
US10535834B2 (en) 2015-02-27 2020-01-14 Konica Minolta, Inc. Transparent electrode and electronic device

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168544B2 (en) 2006-08-01 2012-05-01 Canon Kabushiki Kaisha Oxide etching method
JP2009272544A (en) * 2008-05-09 2009-11-19 Toyota Central R&D Labs Inc Etchant, and method of manufacturing semiconductor element
JP2010061951A (en) * 2008-09-03 2010-03-18 Casio Comput Co Ltd Electroluminescent panel and method of manufacturing the same
JP2011210700A (en) * 2010-03-29 2011-10-20 Samsung Mobile Display Co Ltd Organic light-emitting display device, and manufacturing method thereof
WO2012132069A1 (en) * 2011-03-25 2012-10-04 Dowaエレクトロニクス株式会社 Cleaning agent for silver-containing compositions, method for removing silver-containing composition, and method for recovering silver
CN103339246A (en) * 2011-03-25 2013-10-02 同和电子科技有限公司 Cleaning agent for silver-containing compositions, method for removing silver-containing composition, and method for recovering silver
JP5758483B2 (en) * 2011-03-25 2015-08-05 Dowaエレクトロニクス株式会社 Cleaning agent for silver-containing composition, method for removing silver-containing composition, and method for recovering silver
CN103339246B (en) * 2011-03-25 2015-09-02 同和电子科技有限公司 The minimizing technology of silver composition clean-out system, silver composition and the recovery method of silver
JP2012221668A (en) * 2011-04-06 2012-11-12 Mitsubishi Materials Corp Layered electrode film
WO2013073356A1 (en) 2011-11-17 2013-05-23 コニカミノルタ株式会社 Transparent electrode and electronic device
US10355236B2 (en) 2011-11-17 2019-07-16 Konica Minolta, Inc. Transparent electrode and electronic device
WO2013099867A1 (en) 2011-12-27 2013-07-04 コニカミノルタ株式会社 Transparent electrode, electronic device, organic electroluminescence element, and method for manufacturing organic electroluminescence elements
US9923166B2 (en) 2012-02-15 2018-03-20 Konica Minolta, Inc. Transparent electrode and electronic device
WO2013161602A1 (en) 2012-04-23 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescent element
US9947889B2 (en) 2012-04-23 2018-04-17 Konica Minolta Inc. Transparent electrode, electronic device, and organic electroluminescent element
US9876189B2 (en) 2012-04-24 2018-01-23 Konica Minolta, Inc. Transparent electrode, electronic device, and transparent electrode manufacturing method
WO2013161603A1 (en) 2012-04-24 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and transparent electrode manufacturing method
JP2014029985A (en) * 2012-04-25 2014-02-13 Boeing Co Solar cells including low recombination electrical contacts and systems and methods of forming the same
US9299960B2 (en) 2012-04-27 2016-03-29 Konica Minolta, Inc. Electronic device manufacturing apparatus
WO2013168516A1 (en) 2012-05-08 2013-11-14 コニカミノルタ株式会社 Transparent conductive film
WO2014030666A1 (en) 2012-08-24 2014-02-27 コニカミノルタ株式会社 Transparent electrode, electronic device, and method for manufacturing transparent electrode
WO2014067233A1 (en) * 2012-10-30 2014-05-08 中国科学院长春光学精密机械与物理研究所 Preparation method for high-conductivity organic transparent conductive film
US9871209B2 (en) 2012-11-28 2018-01-16 Konica Minolta, Inc. Transparent electrode, electronic device, and organic electroluminescent device
US9871220B2 (en) 2012-11-28 2018-01-16 Konica Minolta, Inc. Transparent electrode, and electronic device
US9608228B2 (en) 2012-12-18 2017-03-28 Konica Minolta, Inc. Organic light-emitting device with transparent electrode having both conductivity and optical transparency
US9917263B2 (en) 2013-01-15 2018-03-13 Konica Minolta, Inc. Transparent electrode, electronic device, and organic electroluminescent element
US9899624B2 (en) 2013-03-19 2018-02-20 Konica Minolta, Inc. Transparent conductor and electronic device
US10535834B2 (en) 2015-02-27 2020-01-14 Konica Minolta, Inc. Transparent electrode and electronic device
JP2016207541A (en) * 2015-04-24 2016-12-08 株式会社カネカ Transparent conductive film and display device, and method for producing transparent conductive film and method for producing display device
WO2017170767A1 (en) * 2016-04-01 2017-10-05 日東電工株式会社 Liquid-crystal light-adjusting member, transparent conductive film, and liquid-crystal light-adjusting element
CN109073940A (en) * 2016-04-01 2018-12-21 日东电工株式会社 Liquid crystal light modulation component, light-permeable conductive film and liquid crystal light modulation element
CN109073940B (en) * 2016-04-01 2022-03-08 日东电工株式会社 Liquid crystal dimming member, light-transmitting conductive film, and liquid crystal dimming element
TWI755384B (en) * 2016-04-01 2022-02-21 日商日東電工股份有限公司 Liquid crystal light-adjusting member, light-transmitting conductive film, and liquid crystal light-adjusting element
JP2018041059A (en) * 2016-09-02 2018-03-15 日東電工株式会社 Liquid-crystal light-adjusting member, translucent conductive film, and liquid-crystal light-adjusting element
JP7046497B2 (en) 2016-09-02 2022-04-04 日東電工株式会社 Liquid crystal dimming member, light transmissive conductive film, and liquid crystal dimming element
US10644172B2 (en) 2017-07-21 2020-05-05 Kabushiki Kaisha Toshiba Transparent electrode, manufacturing method thereof and electronic device employing the transparent electrode
US10431702B2 (en) 2017-07-21 2019-10-01 Kabushiki Kaisha Toshiba Transparent electrode, manufacturing method thereof and electronic device employing the transparent electrode
CN110552006A (en) * 2018-05-30 2019-12-10 三星显示有限公司 Thin film etchant composition and method of forming metal pattern using the same

Similar Documents

Publication Publication Date Title
JP2006164961A (en) Forming method of laminated transparent electrode layer and laminate for forming laminated transparent electrode used in this method
TWI253475B (en) Metallic alloy material for electronic component, electronic component, electronic device, working method of the metallic alloy material, manufacturing method of electronic optical component
TWI378989B (en) Etchant for patterning composite layer and method of fabricating thin film transistor using the same
KR102546803B1 (en) Etching solution composition for silver-containing layer and an display substrate using the same
JP3806521B2 (en) Transparent conductive film, sputtering target, and substrate with transparent conductive film
JP2017031503A (en) Ag ALLOY FILM AND METHOD FOR PRODUCING SAME, Ag ALLOY SPUTTERING TARGET AND LAMINATED FILM
JP2016040411A (en) Laminate film, laminate wiring film, and manufacturing method of laminate wiring film
CN106796885B (en) The manufacture method of electrically conducting transparent distribution and electrically conducting transparent distribution
JP4671579B2 (en) Ag alloy reflective film and method for producing the same
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
TWI576443B (en) Copper alloy film, copper laminated film, wiring electrode, input device and touch panel sensor
WO2004070812A1 (en) Method for manufacturing semi-transparent semi-reflective electrode substrate, reflective element substrate, method for manufacturing same, etching composition used for the method for manufacturing the reflective electrode substrate
CN110295368B (en) Indium tin oxide/silver multi-layer film etching liquid composition containing no phosphate
JP4646395B2 (en) Metal material for glass melting treatment and method for producing the same
JP3956765B2 (en) Alloy fine powder, conductive paste using the same, and electroluminescence device
JP4918231B2 (en) Method for producing Ag alloy film
EP3051596B1 (en) Method for modifying cdte layer of cdte thin-layer solar cell
WO2016132847A1 (en) Cu ALLOY FILM AND Cu MULTILAYER FILM
JP2003249132A5 (en)
JP6149712B2 (en) Cu wiring protective film and Cu alloy sputtering target
JP4001823B2 (en) Sputtering target material for thin film formation, thin film, electrode wiring layer, optical recording medium, electronic component, electro-optical component, and electronic equipment
JP6850981B2 (en) Oxide sputtering target
CN100452112C (en) Multilayer body for forming base with wiring, base with wiring, and methods for manufacturing those
KR20090081937A (en) Etchant composition for an Indium based oxide layer and method for fabricating metal pattern
CN110117792B (en) Etchant composition for metal layer and method for manufacturing conductive pattern