[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012251006A - Polyolefin resin film - Google Patents

Polyolefin resin film Download PDF

Info

Publication number
JP2012251006A
JP2012251006A JP2011122064A JP2011122064A JP2012251006A JP 2012251006 A JP2012251006 A JP 2012251006A JP 2011122064 A JP2011122064 A JP 2011122064A JP 2011122064 A JP2011122064 A JP 2011122064A JP 2012251006 A JP2012251006 A JP 2012251006A
Authority
JP
Japan
Prior art keywords
biomass
derived
resin composition
resin film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011122064A
Other languages
Japanese (ja)
Other versions
JP5862055B2 (en
Inventor
Taku Takahashi
橋 拓 高
Kiyoshi Toda
田 清 志 戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47524134&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012251006(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011122064A priority Critical patent/JP5862055B2/en
Publication of JP2012251006A publication Critical patent/JP2012251006A/en
Application granted granted Critical
Publication of JP5862055B2 publication Critical patent/JP5862055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin film comprising a resin composition that includes polyolefin of carbon neutral that uses ethylene of a biomass origin.SOLUTION: The resin film comprises the resin composition that includes the polyolefin of a biomass origin in which a monomer including ethylene of a biomass origin is polymerized, wherein the resin composition includes at least 5 mass% of the ethylene of a biomass origin based on the total of the resin composition, and the resin composition has the density of 0.91-0.96 g/cm.

Description

本発明は、バイオマス由来のポリオレフィンを含む樹脂フィルムに関し、より詳細には、バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリオレフィンを含んでなる樹脂組成物からなるポリオレフィン樹脂フィルムに関する。   The present invention relates to a resin film containing a biomass-derived polyolefin, and more particularly to a polyolefin resin film comprising a resin composition comprising a biomass-derived polyolefin obtained by polymerizing a monomer containing biomass-derived ethylene.

近年、循環型社会の構築を求める声の高まりとともに、材料分野においてもエネルギーと同様に化石燃料からの脱却が望まれており、バイオマスの利用が注目されている。バイオマスは、二酸化炭素と水から光合成された有機化合物であり、それを利用することにより、再度二酸化炭素と水になる、いわゆるカーボンニュートラルな再生可能エネルギーである。昨今、これらバイオマスを原料としたバイオマスプラスチックの実用化が急速に進んでおり、各種の樹脂をバイオマス原料から製造する試みも行われている。   In recent years, with the growing demand for the establishment of a recycling-oriented society, the use of biomass has been attracting attention in the materials field, as it is desired to move away from fossil fuels as well as energy. Biomass is an organic compound photo-synthesized from carbon dioxide and water, and by using it, it is so-called carbon neutral renewable energy that becomes carbon dioxide and water again. In recent years, biomass plastics using these biomasses as raw materials have been rapidly put into practical use, and attempts have been made to produce various resins from biomass raw materials.

バイオマス由来の樹脂としては、乳酸発酵を経由して製造されるポリ乳酸(PLA)が先行して商業生産が始まったが、生分解性であることをはじめ、プラスチックとしての性能が現在の汎用プラスチックとは大きく異なるため、製品用途や製品製造方法に限界があり広く普及するには至っていない。また、PLAに対しては、ライフサイクルアセスメント(LCA)評価が行われており、PLA製造時の消費エネルギーおよび汎用プラスチック代替時の等価性等について議論がなされている。   As a biomass-derived resin, commercial production of polylactic acid (PLA) produced via lactic acid fermentation has begun, but it is biodegradable, and its performance as a plastic is now a general-purpose plastic. Therefore, it has not been widely used due to its limitations in product applications and product manufacturing methods. Moreover, life cycle assessment (LCA) evaluation is performed for PLA, and discussion is made on energy consumption at the time of PLA production, equivalence at the time of replacement of general-purpose plastics, and the like.

ここで、汎用プラスチックとしては、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ABS樹脂等、様々な種類が用いられている。特に、ポリエチレンは、フィルム、シート、ボトル等に成形され、包装材等の種々の用途に供されており、世界中での使用量が多い。そのため、従来の化石燃料由来のポリエチレンを用いることは環境負荷が大きい。   Here, various types such as polyethylene, polyvinyl chloride, polystyrene, and ABS resin are used as the general-purpose plastic. In particular, polyethylene is molded into films, sheets, bottles, etc., and is used for various applications such as packaging materials, and is used in large amounts all over the world. For this reason, the use of conventional fossil fuel-derived polyethylene has a large environmental impact.

そのため、ポリエチレンの製造にバイオマス由来の原料を用いて、化石燃料の使用量を削減することが望まれている。例えば、現在までに、ポリオレフィン樹脂の原料となるエチレンやブチレンを、再生可能な天然原料から製造することが研究されてきた(例えば、特許文献1を参照)。   Therefore, it is desired to reduce the amount of fossil fuel used by using raw materials derived from biomass for the production of polyethylene. For example, until now, it has been studied to produce ethylene and butylene as raw materials for polyolefin resin from renewable natural raw materials (see, for example, Patent Document 1).

特表2011−506628号公報Special table 2011-506628 gazette

本発明者らは、ポリオレフィン樹脂フィルムの原料であるエチレンに着目し、従来の化石燃料から得られるエチレンに代えて、バイオマス由来のエチレンをその原料としたポリオレフィン樹脂フィルムは、従来の化石燃料から得られるエチレンを用いて製造されたポリオレフィン樹脂フィルムと、機械的特性等の物性面で遜色ないものが得られるとの知見を得た。本発明はかかる知見によるものである。   The present inventors have focused on ethylene, which is a raw material for polyolefin resin films, and instead of ethylene obtained from conventional fossil fuels, polyolefin resin films using biomass-derived ethylene as raw materials are obtained from conventional fossil fuels. The present inventors have obtained the knowledge that a polyolefin resin film produced using ethylene can be obtained, and a film inferior in physical properties such as mechanical properties can be obtained. The present invention is based on this finding.

したがって、本発明の目的は、バイオマス由来のエチレンを用いたカーボンニュートラルなポリオレフィンを含む樹脂組成物からなる樹脂フィルムを提供することであって、従来の化石燃料から得られる原料から製造された樹脂フィルムと機械的特性等の物性面で遜色ないポリオレフィン樹脂フィルムを提供することである。   Accordingly, an object of the present invention is to provide a resin film comprising a resin composition containing carbon-neutral polyolefin using biomass-derived ethylene, and the resin film manufactured from a raw material obtained from a conventional fossil fuel Another object is to provide a polyolefin resin film that is inferior in terms of physical properties such as mechanical properties.

本発明による樹脂フィルムは、バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリオレフィンを含んでなる樹脂組成物からなるものであって、
上記の樹脂組成物が、上記のバイオマス由来のエチレンを上記の樹脂組成物全体に対して5質量%以上含んでなり、上記の樹脂組成物が、0.91〜0.96g/cmの密度を有することを特徴とするものである。
The resin film according to the present invention comprises a resin composition comprising a biomass-derived polyolefin formed by polymerizing monomers containing biomass-derived ethylene,
Said resin composition contains 5 mass% or more of said biomass-derived ethylene with respect to said whole resin composition, and said resin composition has a density of 0.91-0.96 g / cm < 3 >. It is characterized by having.

本発明の態様においては、上記の樹脂組成物が、1〜30g/10分のメルトフローレートを有することが好ましい。   In the embodiment of the present invention, the resin composition preferably has a melt flow rate of 1 to 30 g / 10 minutes.

本発明の態様においては、上記の樹脂組成物が、上記のバイオマス由来のエチレンを、上記の樹脂組成物全体に対して5〜95質量%含んでもよい。   In the embodiment of the present invention, the resin composition may include 5 to 95% by mass of the biomass-derived ethylene with respect to the entire resin composition.

本発明の態様においては、上記のモノマーが、化石燃料由来のエチレンおよび/またはα−オレフィンをさらに含んでもよい。   In the embodiment of the present invention, the monomer may further contain ethylene and / or α-olefin derived from fossil fuel.

本発明の態様においては、上記のモノマーが、バイオマス由来のα−オレフィンをさらに含んでもよい。   In the embodiment of the present invention, the monomer may further include an α-olefin derived from biomass.

本発明の態様においては、上記の樹脂組成物が、化石燃料由来のエチレンと、化石燃料由来のエチレンおよび/またはα−オレフィンとを含むモノマーが重合してなる化石燃料由来のポリオレフィンをさらに含んでもよい。   In an embodiment of the present invention, the resin composition may further include a fossil fuel-derived polyolefin obtained by polymerizing a fossil fuel-derived ethylene and a monomer containing fossil fuel-derived ethylene and / or α-olefin. Good.

本発明の態様においては、上記の樹脂組成物が、5〜90質量%の上記のバイオマス由来のポリオレフィンと、10〜95質量%の上記の化石燃料由来のポリオレフィンとを含むものであってもよい。   In the embodiment of the present invention, the resin composition may include 5 to 90% by mass of the biomass-derived polyolefin and 10 to 95% by mass of the fossil fuel-derived polyolefin. .

本発明の態様においては、上記のα−オレフィンが、ブチレン、ヘキセン、またはオクテンであることが好ましい。   In the embodiment of the present invention, the α-olefin is preferably butylene, hexene, or octene.

本発明の態様においては、上記のポリオレフィンが、ポリエチレンであることが好ましい。   In the embodiment of the present invention, the polyolefin is preferably polyethylene.

本発明の態様においては、上記の樹脂組成物が押出成形されてなる樹脂フィルムであることが好ましい。   In the embodiment of the present invention, the resin composition is preferably a resin film obtained by extrusion molding.

本発明の態様においては、上記の押出成形が、Tダイ法またはインフレーション法により行われることが好ましい。   In the embodiment of the present invention, it is preferable that the extrusion molding is performed by a T-die method or an inflation method.

本発明の態様においては、上記の樹脂フィルムからなる、包装製品であることが好ましい。   In the aspect of this invention, it is preferable that it is a packaging product which consists of said resin film.

本発明の態様においては、上記の樹脂フィルムからなる、シート成形品であることが好ましい。   In the aspect of this invention, it is preferable that it is a sheet molded product which consists of said resin film.

本発明によれば、ポリオレフィン樹脂フィルムが、バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリオレフィンを含んでなる樹脂組成物からなり、バイオマス由来のエチレンを樹脂組成物全体に対して5質量%以上含んでなることで、カーボンニュートラルなポリオレフィン樹脂フィルムを実現できる。したがって、従来に比べて化石燃料の使用量を大幅に削減することができ、環境負荷を減らすことができる。また、本発明のポリオレフィン樹脂フィルムは、従来の化石燃料から得られる原料から製造されたポリオレフィン樹脂フィルムと比べて、機械的特性等の物性面で遜色がないため、従来のポリオレフィン樹脂フィルムを代替することができる。   According to the present invention, the polyolefin resin film comprises a resin composition comprising a biomass-derived polyolefin formed by polymerizing a monomer containing ethylene derived from biomass, and the ethylene derived from biomass is 5 to the entire resin composition. By including at least mass%, a carbon neutral polyolefin resin film can be realized. Therefore, the amount of fossil fuel used can be greatly reduced compared to the conventional case, and the environmental load can be reduced. In addition, the polyolefin resin film of the present invention is not inferior in terms of physical properties such as mechanical properties as compared to a polyolefin resin film produced from a raw material obtained from a conventional fossil fuel. be able to.

バイオマス由来のエチレン
本発明において、バイオマス由来のポリオレフィンの原料となるバイオマス由来のエチレンの製造方法は、特に限定されず、従来公知の方法により得ることができる。以下、バイオマス由来のエチレンの製造方法の一例を説明する。
Biomass-derived ethylene In the present invention, a method for producing biomass-derived ethylene that is a raw material for biomass-derived polyolefin is not particularly limited, and can be obtained by a conventionally known method. Hereinafter, an example of a method for producing biomass-derived ethylene will be described.

バイオマス由来のエチレンは、バイオマス由来のエタノールを原料として製造することができる。特に、植物原料から得られるバイオマス由来の発酵エタノールを用いることが好ましい。植物原料は、特に限定されず、従来公知の植物を用いることができる。例えば、トウモロコシ、サトウキビ、ビート、およびマニオクを挙げることができる。   Biomass-derived ethylene can be produced using biomass-derived ethanol as a raw material. In particular, it is preferable to use biomass-derived fermented ethanol obtained from plant raw materials. A plant raw material is not specifically limited, A conventionally well-known plant can be used. For example, corn, sugar cane, beet, and manioc can be mentioned.

本発明において、バイオマス由来の発酵エタノールとは、植物原料より得られる炭素源を含む培養液にエタノールを生産する微生物またはその破砕物由来産物を接触させ、生産した後、精製されたエタノールを指す。培養液からのエタノールの精製は、蒸留、膜分離、および抽出等の従来公知の方法が適用可能である。例えば、ベンゼン、シクロヘキサン等を添加し、共沸させるか、または膜分離等により水分を除去する等の方法が挙げられる。   In the present invention, biomass-derived fermented ethanol refers to ethanol that has been purified after contacting a microorganism-producing product or a crushed product thereof with a culture solution containing a carbon source obtained from plant raw materials. For the purification of ethanol from the culture solution, conventionally known methods such as distillation, membrane separation, and extraction can be applied. For example, a method of adding benzene, cyclohexane or the like and azeotropically or removing water by membrane separation or the like can be mentioned.

本発明のエチレンを得るために、この段階で、エタノール中の不純物総量が1ppm以下にする等の高度な精製をさらに行ってもよい。   In order to obtain ethylene of the present invention, at this stage, advanced purification such as the total amount of impurities in ethanol being 1 ppm or less may be further performed.

エタノールの脱水反応によりエチレンを得る際には通常触媒が用いられるが、この触媒は、特に限定されず、従来公知の触媒を用いることができる。プロセス上有利なのは、触媒と生成物の分離が容易な固定床流通反応であり、例えば、γ―アルミナ等が好ましい。   When ethylene is obtained by a dehydration reaction of ethanol, a catalyst is usually used, but this catalyst is not particularly limited, and a conventionally known catalyst can be used. Advantageous in the process is a fixed bed flow reaction in which the catalyst and the product can be easily separated. For example, γ-alumina is preferable.

この脱水反応は吸熱反応であるため、通常加熱条件で行う。商業的に有用な反応速度で反応が進行すれば、加熱温度は限定されないが、好ましくは100℃以上、より好ましくは250℃以上、さらに好ましくは300℃以上の温度が適当である。上限も特に限定されないが、エネルギー収支および設備の観点から、好ましくは500℃以下、より好ましくは400℃以下である。   Since this dehydration reaction is an endothermic reaction, it is usually carried out under heating conditions. If the reaction proceeds at a commercially useful reaction rate, the heating temperature is not limited, but a temperature of preferably 100 ° C. or higher, more preferably 250 ° C. or higher, further preferably 300 ° C. or higher is appropriate. The upper limit is not particularly limited, but is preferably 500 ° C. or lower, more preferably 400 ° C. or lower, from the viewpoint of energy balance and equipment.

反応圧力も特に限定されないが、後続の気液分離を容易にするため常圧以上の圧力が好ましい。工業的には触媒の分離の容易な固定床流通反応が好適であるが、液相懸濁床、流動床等でもよい。   The reaction pressure is not particularly limited, but a pressure equal to or higher than normal pressure is preferable in order to facilitate subsequent gas-liquid separation. Industrially, a fixed bed flow reaction in which separation of the catalyst is easy is suitable, but a liquid phase suspension bed, a fluidized bed, or the like may be used.

エタノールの脱水反応においては、原料として供給するエタノール中に含まれる水分量によって反応の収率が左右される。一般的に、脱水反応を行う場合には、水の除去効率を考えると水が無いほうが好ましい。しかしながら、固体触媒を用いたエタノールの脱水反応の場合、水が存在しないと他のオレフィン、特にブテンの生成量が増加する傾向にあることが判明した。恐らく、少量の水が存在しないと脱水後のエチレン二量化を押さえることができないためと推察している。許容される水の含有量の下限は、0.1%以上、好ましくは0.5%以上必要である。上限は特に限定されないが、物質収支上および熱収支の観点から、好ましくは50重量%以下、より好ましくは30%以下、さらに好ましくは20%以下である。   In the dehydration reaction of ethanol, the yield of the reaction depends on the amount of water contained in ethanol supplied as a raw material. Generally, when performing a dehydration reaction, it is preferable that there is no water in view of water removal efficiency. However, in the case of ethanol dehydration reaction using a solid catalyst, it has been found that in the absence of water, the production of other olefins, particularly butene, tends to increase. It is presumed that ethylene dimerization after dehydration cannot be suppressed unless a small amount of water is present. The lower limit of the allowable water content is 0.1% or more, preferably 0.5% or more. The upper limit is not particularly limited, but is preferably 50% by weight or less, more preferably 30% or less, and still more preferably 20% or less from the viewpoint of mass balance and heat balance.

このようにしてエタノールの脱水反応を行うことによりエチレン、水および少量の未反応エタノールの混合部が得られるが、常温において約5MPa以下ではエチレンは気体であるため、これら混合部から気液分離により水やエタノールを除きエチレンを得ることができる。この方法は公知の方法で行えばよい。   By performing a dehydration reaction of ethanol in this way, a mixed part of ethylene, water and a small amount of unreacted ethanol can be obtained. However, since ethylene is a gas at a temperature of about 5 MPa or less at normal temperature, gas and liquid separation is performed from these mixed parts. Ethylene can be obtained except water and ethanol. This method may be performed by a known method.

気液分離により得られたエチレンはさらに蒸留され、このときの操作圧力が常圧以上であること以外は、蒸留方法、操作温度、および滞留時間等は特に制約されない。   Ethylene obtained by gas-liquid separation is further distilled, and the distillation method, operating temperature, residence time, etc. are not particularly limited except that the operating pressure at this time is normal pressure or higher.

原料がバイオマス由来のエタノールの場合、得られたエチレンには、エタノール発酵工程で混入した不純物であるケトン、アルデヒド、およびエステル等のカルボニル化合物ならびにその分解物である炭酸ガスや、酵素の分解物・夾雑物であるアミンおよびアミノ酸等の含窒素化合物ならびにその分解物であるアンモニア等が極微量含まれる。エチレンの用途によっては、これら極微量の不純物が問題となるおそれがあるので、精製により除去しても良い。精製方法は、特に限定されず、従来公知の方法により行うことができる。好適な精製操作としては、例えば、吸着精製法をあげることができる。用いる吸着剤は特に限定されず、従来公知の吸着剤を用いることができる。例えば、高表面積の材料が好ましく、吸着剤の種類としては、バイオマス由来のエタノールの脱水反応により得られるエチレン中の不純物の種類・量に応じて選択される。   When the raw material is ethanol derived from biomass, the obtained ethylene contains carbonyl compounds such as ketones, aldehydes, and esters, which are impurities mixed in the ethanol fermentation process, as well as carbon dioxide gas that is a decomposition product thereof, enzyme decomposition products, It contains trace amounts of nitrogen-containing compounds such as amines and amino acids, which are impurities, and ammonia, which is a decomposition product thereof. Depending on the use of ethylene, these trace amounts of impurities may cause a problem and may be removed by purification. The purification method is not particularly limited, and can be performed by a conventionally known method. A suitable purification operation is, for example, an adsorption purification method. The adsorbent used is not particularly limited, and a conventionally known adsorbent can be used. For example, a high surface area material is preferable, and the type of adsorbent is selected according to the type and amount of impurities in ethylene obtained by dehydration of biomass-derived ethanol.

なお、エチレン中の不純物の精製方法として苛性水処理を併用してもよい。苛性水処理をする場合は、吸着精製前に行うことが望ましい。その場合、苛性処理後、吸着精製前に水分除去処理を施す必要がある。   In addition, you may use caustic water treatment together as a refinement | purification method of the impurity in ethylene. In the case of performing caustic water treatment, it is desirable to perform it before adsorption purification. In that case, it is necessary to perform a water removal treatment after the caustic treatment and before the adsorption purification.

ポリオレフィン
本発明において、バイオマス由来のポリオレフィンは、バイオマス由来のエチレンを含むモノマーが重合してなるものである。バイオマス由来のエチレンには、上記の製造方法により得られたものを用いることが好ましい。原料であるモノマーとしてバイオマス由来のエチレンを用いているため、重合されてなるポリオレフィンはバイオマス由来となる。なお、ポリオレフィンの原料モノマーは、バイオマス由来のエチレンを100質量%含むものでなくてもよい。
Polyolefin In the present invention, biomass-derived polyolefin is obtained by polymerizing monomers containing ethylene derived from biomass. It is preferable to use what was obtained by said manufacturing method for ethylene derived from biomass. Since ethylene derived from biomass is used as a monomer as a raw material, the polymerized polyolefin is derived from biomass. In addition, the raw material monomer of polyolefin does not need to contain 100 mass% of ethylene derived from biomass.

バイオマス由来のポリオレフィンの原料であるモノマーは、化石燃料由来のエチレンおよび/またはα−オレフィンをさらに含んでもよいし、バイオマス由来のα−オレフィンをさらに含んでもよい。   The monomer that is the raw material of the polyolefin derived from biomass may further contain ethylene and / or α-olefin derived from fossil fuel, or may further include α-olefin derived from biomass.

上記のα−オレフィンは、炭素数は特に限定されないが、通常、炭素数3〜20のものを用いることができ、ブチレン、ヘキセン、またはオクテンであることが好ましい。ブチレン、ヘキセン、またはオクテンであれば、バイオマス由来の原料であるエチレンの重合により製造することが可能となるからである。また、このようなα−オレフィンを含むことで、重合されてなるポリオレフィンはアルキル基を分岐構造として有するため、単純な直鎖状のものよりも柔軟性に富むものとすることができる。   The α-olefin is not particularly limited, but can usually be one having 3 to 20 carbon atoms, and is preferably butylene, hexene or octene. This is because if it is butylene, hexene or octene, it can be produced by polymerization of ethylene which is a biomass-derived raw material. In addition, by including such an α-olefin, the polymerized polyolefin has an alkyl group as a branched structure, and therefore can be more flexible than a simple linear one.

上記のポリオレフィンが、ポリエチレンであることが好ましい。バイオマス由来の原料であるエチレンを用いることで、理論上100%バイオマス由来の成分により製造することが可能となるからである。   The polyolefin is preferably polyethylene. This is because, by using ethylene, which is a biomass-derived raw material, it is theoretically possible to manufacture with 100% biomass-derived components.

上記のポリオレフィン中のバイオマス由来のエチレン濃度(以下、「バイオマス度」ということがある)は、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量を測定した値である。大気中の二酸化炭素には、C14が一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中のC14含有量も105.5pMC程度であることが知られている。また、化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、ポリオレフィン中の全炭素原子中に含まれるC14の割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。本発明においては、ポリオレフィン中のC14の含有量をPC14とした場合の、バイオマス由来の炭素の含有量Pbioは、以下のようにして求めることができる。
bio(%)=PC14/105.5×100
The biomass-derived ethylene concentration in the polyolefin (hereinafter sometimes referred to as “biomass degree”) is a value obtained by measuring the content of biomass-derived carbon by measurement of radioactive carbon (C14). Since carbon dioxide in the atmosphere contains C14 at a constant ratio (105.5 pMC), the C14 content in plants that grow by incorporating carbon dioxide in the atmosphere, for example, corn, is also about 105.5 pMC. It is known. It is also known that fossil fuel contains almost no C14. Therefore, the proportion of carbon derived from biomass can be calculated by measuring the proportion of C14 contained in all carbon atoms in the polyolefin. In the present invention, in the case where the content of C14 in the polyolefin was P C14, the content P bio Bio carbon from biomass, can be obtained as follows.
P bio (%) = P C14 /105.5×100

本発明においては、理論上、ポリオレフィンの原料として、全てバイオマス由来のエチレンを用いれば、バイオマス由来のエチレン濃度は100%であり、バイオマス由来のポリオレフィンのバイオマス度は100%となる。また、化石燃料由来の原料のみで製造された化石燃料由来のポリオレフィン中のバイオマス由来のエチレン濃度は0%であり、化石燃料由来のポリオレフィンのバイオマス度は0%となる。   In the present invention, theoretically, if all the biomass-derived ethylene is used as the polyolefin raw material, the biomass-derived ethylene concentration is 100%, and the biomass degree of the biomass-derived polyolefin is 100%. In addition, the biomass-derived ethylene concentration in the fossil fuel-derived polyolefin produced only from the fossil fuel-derived raw material is 0%, and the biomass degree of the fossil fuel-derived polyolefin is 0%.

本発明において、バイオマス由来のポリオレフィンやバイオマス由来の樹脂フィルムは、バイオマス度が100%である必要はない。樹脂フィルムの一部にでもバイオマス由来の原料が用いられていれば、従来に比べて化石燃料の使用量を削減するという本発明の趣旨に沿うからである。   In the present invention, the biomass-derived polyolefin and the biomass-derived resin film need not have a biomass degree of 100%. This is because, if a biomass-derived raw material is used even for a part of the resin film, the amount of the fossil fuel used is reduced as compared with the conventional case.

本発明において、バイオマス由来のエチレンを含むモノマーの重合方法は、特に限定されず、従来公知の方法により行うことができる。重合温度や重合圧力は、重合方法や重合装置に応じて、適宜調節するのがよい。重合装置についても特に限定されず、従来公知の装置を用いることができる。以下、エチレンを含むモノマーの重合方法の一例を説明する。   In the present invention, the polymerization method of the monomer containing ethylene derived from biomass is not particularly limited, and can be performed by a conventionally known method. The polymerization temperature and polymerization pressure are preferably adjusted as appropriate according to the polymerization method and polymerization apparatus. The polymerization apparatus is not particularly limited, and a conventionally known apparatus can be used. Hereinafter, an example of a method for polymerizing a monomer containing ethylene will be described.

ポリオレフィン、特に、エチレン重合体やエチレンとα−オレフィンの共重合体の重合方法は、目的とするポリエチレンの種類、例えば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、および直鎖状低密度ポリエチレン(LLDPE)等の密度や分岐の違いにより、適宜選択することができる。例えば、重合触媒として、チーグラー・ナッタ触媒等のマルチサイト触媒や、メタロセン系触媒等のシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合、および高圧イオン重合のいずれかの方法により、1段または2段以上の多段で行うことが好ましい。   The polymerization method of polyolefins, particularly ethylene polymers and copolymers of ethylene and α-olefins, is the type of polyethylene of interest, such as high density polyethylene (HDPE), medium density polyethylene (MDPE), and low density polyethylene (LDPE). ), And linear low density polyethylene (LLDPE), etc. For example, as a polymerization catalyst, using a multi-site catalyst such as a Ziegler-Natta catalyst or a single site catalyst such as a metallocene catalyst, by any of gas phase polymerization, slurry polymerization, solution polymerization, and high-pressure ion polymerization, It is preferable to carry out by one stage or two or more stages.

上記のシングルサイト触媒とは、均一な活性種を形成しうる触媒であり、通常、メタロセン系遷移金属化合物や非メタロセン系遷移金属化合物と活性化用助触媒とを接触させることにより、調整される。シングルサイト触媒は、マルチサイト触媒に比べて、活性点構造が均一であるため、高分子量かつ均一度の高い構造の重合体を重合することができるため好ましい。シングルサイト触媒としては、特に、メタロセン系触媒を用いることが好ましい。メタロセン系触媒は、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物と、助触媒と、必要により有機金属化合物と、担体の各触媒成分とを含む触媒である。   The above single-site catalyst is a catalyst that can form a uniform active species, and is usually adjusted by bringing a metallocene transition metal compound or a nonmetallocene transition metal compound into contact with an activation cocatalyst. . The single site catalyst is preferable because the active site structure is uniform as compared with the multisite catalyst, and a polymer having a high molecular weight and a high uniformity can be polymerized. As the single site catalyst, it is particularly preferable to use a metallocene catalyst. The metallocene-based catalyst is a catalyst containing a transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, a cocatalyst, and if necessary, an organometallic compound, and each catalyst component of the support. is there.

上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、そのシクロペンタジエニル骨格とは、シクロペンタジエニル基、置換シクロペンタジエニル基等である。置換シクロペンタジエニル基としては、炭素数1〜30の炭化水素基、シリル基、シリル置換アルキル基、シリル置換アリール基、シアノ基、シアノアルキル基、シアノアリール基、ハロゲン基、ハロアルキル基、ハロシリル基等から選ばれた少なくとも一種の置換基を有するものである。その置換シクロペンタジエニル基の置換基は2個以上有していてもよく、また置換基同士が互いに結合して環を形成し、インデニル環、フルオレニル環、アズレニル環、その水添体等を形成してもよい。置換基同士が互いに結合し形成された環がさらに互いに置換基を有していてもよい。   In the group IV transition metal compound containing a ligand having a cyclopentadienyl skeleton, the cyclopentadienyl skeleton is a cyclopentadienyl group, a substituted cyclopentadienyl group, or the like. . Examples of substituted cyclopentadienyl groups include hydrocarbon groups having 1 to 30 carbon atoms, silyl groups, silyl substituted alkyl groups, silyl substituted aryl groups, cyano groups, cyanoalkyl groups, cyanoaryl groups, halogen groups, haloalkyl groups, halosilyl groups. It has at least one kind of substituent selected from a group and the like. The substituted cyclopentadienyl group may have two or more substituents, and the substituents are bonded to each other to form a ring, and an indenyl ring, a fluorenyl ring, an azulenyl ring, a hydrogenated product thereof, etc. You may form. Rings formed by bonding substituents to each other may further have substituents.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、その遷移金属としては、ジルコニウム、チタン、ハフニウム等が挙げられ、特にジルコニウム、ハフニウムが好ましい。該遷移金属化合物は、シクロペンタジエニル骨格を有する配位子としては通常2個を有し、各々のシクロペンタジエニル骨格を有する配位子は架橋基により互いに結合しているものが好ましい。なお、架橋基としては炭素数1〜4のアルキレン基、シリレン基、ジアルキルシリレン基、ジアリールシリレン基等の置換シリレン基、ジアルキルゲルミレン基、ジアリールゲルミレン基等の置換ゲルミレン基等が挙げられる。好ましくは、置換シリレン基である。   In the group IV transition metal compound containing a ligand having a cyclopentadienyl skeleton, examples of the transition metal include zirconium, titanium, hafnium, and zirconium and hafnium are particularly preferable. The transition metal compound usually has two ligands having a cyclopentadienyl skeleton, and each ligand having a cyclopentadienyl skeleton is preferably bonded to each other via a bridging group. Examples of the crosslinking group include C1-C4 alkylene groups, silylene groups, dialkylsilylene groups, substituted arylene groups such as diarylsilylene groups, and substituted germylene groups such as dialkylgermylene groups and diarylgermylene groups. Preferably, it is a substituted silylene group.

周期律表第IV族の遷移金属化合物において、シクロペンタジエニル骨格を有する配位子以外の配位子としては、代表的なものとして、水素、炭素数1〜20の炭化水素基(アルキル基、アルケニル基、アリール基、アルキルアリール基、アラルキル基、ポリエニル基等)、ハロゲン、メタアルキル基、メタアリール基等が挙げられる。   In the transition metal compound of Group IV of the periodic table, as a ligand other than a ligand having a cyclopentadienyl skeleton, hydrogen, a hydrocarbon group having 1 to 20 carbon atoms (an alkyl group) is typical. Alkenyl group, aryl group, alkylaryl group, aralkyl group, polyenyl group, etc.), halogen, metaalkyl group, metaaryl group and the like.

上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、一種または二種以上の混合物を触媒成分とすることができる。   The transition metal compound of Group IV of the Periodic Table containing a ligand having a cyclopentadienyl skeleton can use one or a mixture of two or more as a catalyst component.

助触媒としては、上記の周期律表第IV族の遷移金属化合物を重合触媒として有効になしうる、または触媒的に活性化された状態のイオン性電荷を均衝させうるものをいう。助触媒としては、有機アルミニウムオキシ化合物のベンゼン可溶のアルミノキサンやベンゼン不溶の有機アルミニウムオキシ化合物、イオン交換性層状珪酸塩、ホウ素化合物、活性水素基含有あるいは非含有のカチオンと非配位性アニオンからなるイオン性化合物、酸化ランタン等のランタノイド塩、酸化スズ、フルオロ基を含有するフェノキシ化合物等が挙げられる。   The co-catalyst is one that can effectively make the above-mentioned group IV transition metal compound as a polymerization catalyst, or can neutralize ionic charges in a catalytically activated state. Co-catalysts include benzene-soluble aluminoxanes of organoaluminum oxy compounds, benzene-insoluble organoaluminum oxy compounds, ion-exchange layered silicates, boron compounds, active hydrogen group-containing or non-containing cations and non-coordinating anions. Ionic compounds, lanthanoid salts such as lanthanum oxide, tin oxide, phenoxy compounds containing a fluoro group, and the like.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、無機または有機化合物の担体に担持して使用されてもよい。該担体としては無機または有機化合物の多孔質酸化物が好ましく、具体的には、モンモリロナイト等のイオン交換性層状珪酸塩、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられる。 The group IV transition metal compound containing a ligand having a cyclopentadienyl skeleton may be used by being supported on an inorganic or organic compound carrier. The support is preferably a porous oxide of an inorganic or organic compound. Specifically, an ion-exchange layered silicate such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and the like, or a mixture thereof.

また更に必要により使用される有機金属化合物としては、有機アルミニウム化合物、有機マグネシウム化合物、有機亜鉛化合物等が例示される。このうち有機アルミニウムが好適に使用される。   Furthermore, examples of the organometallic compound used as necessary include organoaluminum compounds, organomagnesium compounds, and organozinc compounds. Of these, organic aluminum is preferably used.

また、ポリオレフィンとして、エチレンの重合体やエチレンとα−オレフィンの共重合体を、単独で用いてもよいし、二種以上混合して用いてもよい。   Further, as the polyolefin, an ethylene polymer or an ethylene / α-olefin copolymer may be used alone or in combination of two or more.

樹脂組成物
本発明において、樹脂組成物は、上記のポリオレフィンを主成分として含むものである。樹脂組成物は、バイオマス由来のエチレンを樹脂組成物全体に対して5質量%以上、好ましくは5〜95質量%、より好ましくは25〜75質量%含んでなるものである。樹脂組成物中のバイオマス由来のエチレンの濃度が5質量%以上であれば、従来に比べて化石燃料の使用量を削減することができ、カーボンニュートラルなポリオレフィン樹脂フィルムを実現できる。
Resin composition In this invention, a resin composition contains said polyolefin as a main component. The resin composition contains 5 mass% or more, preferably 5 to 95 mass%, more preferably 25 to 75 mass% of biomass-derived ethylene with respect to the entire resin composition. If the concentration of ethylene derived from biomass in the resin composition is 5% by mass or more, the amount of fossil fuel used can be reduced as compared with the conventional one, and a carbon neutral polyolefin resin film can be realized.

上記の樹脂組成物は、0.91〜0.96g/cm、好ましくは0.915〜0.955g/cm、より好ましくは0.92〜0.95g/cmの密度を有するものである。樹脂組成物の密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される値である。樹脂組成物の密度が0.91g/cm以上であれば、該樹脂組成物からなる樹脂フィルムの剛性を高めることができる。また、樹脂組成物の密度が0.96g/cm以下であれば、該樹脂組成物からなる樹脂フィルムの透明性や機械的強度を高めることができる。 The resin composition has a density of 0.91 to 0.96 g / cm 3 , preferably 0.915 to 0.955 g / cm 3 , more preferably 0.92 to 0.95 g / cm 3. is there. The density of a resin composition is a value measured according to the method prescribed | regulated to A method among JISK7112-1980, after performing annealing as described in JISK6760-1995. When the density of the resin composition is 0.91 g / cm 3 or more, the rigidity of the resin film made of the resin composition can be increased. Moreover, if the density of a resin composition is 0.96 g / cm < 3 > or less, the transparency and mechanical strength of the resin film which consist of this resin composition can be improved.

上記の樹脂組成物は、1〜30g/10分、好ましくはインフレ法では1.5〜6.0g/10分、Tダイ法では、4〜20g/10分のメルトフローレート(MFR)を有するものである。メルトフローレートとは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。樹脂組成物のMFRが1g/10分以上であれば、成形加工時の押出負荷を低減することができる。また、樹脂組成物のMFRが30g/10分以下であれば、該樹脂組成物からなる樹脂フィルムの機械的強度を高めることができる。   The resin composition has a melt flow rate (MFR) of 1 to 30 g / 10 min, preferably 1.5 to 6.0 g / 10 min in the inflation method, and 4 to 20 g / 10 min in the T-die method. Is. The melt flow rate is a value measured by the method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method defined in JIS K7210-1995. If the MFR of the resin composition is 1 g / 10 min or more, the extrusion load during the molding process can be reduced. Moreover, if MFR of a resin composition is 30 g / 10min or less, the mechanical strength of the resin film which consists of this resin composition can be raised.

上記の樹脂組成物は、異なるバイオマス度のポリオレフィンを2種以上含むものであってもよく、樹脂組成物全体として、バイオマス由来のエチレンの濃度が、上記範囲内であればよい。   Said resin composition may contain 2 or more types of polyolefin of different biomass degree, and the density | concentration of biomass-derived ethylene should just be in the said range as the whole resin composition.

上記の樹脂組成物は、化石燃料由来のエチレンと、化石燃料由来のエチレンおよび/またはα−オレフィンとを含むモノマーが重合してなる化石燃料由来のポリオレフィンをさらに含んでもよい。つまり、本発明においては、樹脂組成物は、バイオマス由来のポリオレフィンと、化石燃料由来のポリオレフィンとの混合物であってもよい。混合方法は、特に限定されず、従来公知の方法で混合することができる。例えば、ドライブレンドでもよいし、メルトブレンドでもよい。   The resin composition may further include a fossil fuel-derived polyolefin formed by polymerization of a fossil fuel-derived ethylene and a fossil-fuel-derived ethylene and / or α-olefin monomer. That is, in the present invention, the resin composition may be a mixture of biomass-derived polyolefin and fossil fuel-derived polyolefin. The mixing method is not particularly limited, and mixing can be performed by a conventionally known method. For example, a dry blend or a melt blend may be used.

本発明の態様によれば、樹脂組成物は、好ましくは5〜90質量%、より好ましくは25〜75質量%のバイオマス由来のポリオレフィンと、好ましくは10〜95質量%、より好ましくは25〜75質量%の化石燃料由来のポリオレフィンとを含むものである。このような混合物の樹脂組成物を用いた場合でも、樹脂組成物全体として、バイオマス由来のエチレンの濃度が、上記範囲内であればよい。   According to an aspect of the present invention, the resin composition is preferably 5 to 90% by mass, more preferably 25 to 75% by mass of biomass-derived polyolefin, and preferably 10 to 95% by mass, more preferably 25 to 75%. And a polyolefin derived from fossil fuel in mass%. Even when the resin composition of such a mixture is used, the concentration of ethylene derived from biomass may be within the above range as the whole resin composition.

上記の樹脂組成物の製造工程において、または製造された樹脂組成物には、その特性が損なわれない範囲において、主成分であるポリオレフィン以外に、各種の添加剤を添加してもよい。添加剤としては、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、スリップ剤、離型剤、抗酸化剤、イオン交換剤、および着色顔料等を添加することができる。これら添加剤は、樹脂組成物全体に対して、好ましくは1〜20質量%、好ましくは1〜10質量%の範囲で添加される。   Various additives other than the main component polyolefin may be added to the resin composition produced in the above process or to the produced resin composition as long as the characteristics are not impaired. Examples of additives include plasticizers, UV stabilizers, anti-coloring agents, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, yarn friction reducing agents, slip agents, mold release agents, An oxidizing agent, an ion exchange agent, a coloring pigment, and the like can be added. These additives are preferably added in an amount of 1 to 20% by mass, preferably 1 to 10% by mass, based on the entire resin composition.

樹脂フィルム
本発明による樹脂フィルムは、上記の樹脂組成物からなり、樹脂組成物がバイオマス由来のエチレンを樹脂組成物全体に対して5質量%以上含んでなることで、カーボンニュートラルなポリオレフィン樹脂フィルムを実現できる。したがって、従来に比べて化石燃料の使用量を大幅に削減することができ、環境負荷を減らすことができる。また、本発明のポリオレフィン樹脂フィルムは、従来の化石燃料から得られる原料から製造されたポリオレフィン樹脂フィルムと比べて、機械的特性等の物性面で遜色がないため、従来のポリオレフィン樹脂フィルムを代替することができる。
Resin film The resin film according to the present invention comprises the above resin composition, and the resin composition contains 5 mass% or more of biomass-derived ethylene with respect to the entire resin composition, thereby providing a carbon neutral polyolefin resin film. realizable. Therefore, the amount of fossil fuel used can be greatly reduced compared to the conventional case, and the environmental load can be reduced. In addition, the polyolefin resin film of the present invention is not inferior in terms of physical properties such as mechanical properties as compared to a polyolefin resin film produced from a raw material obtained from a conventional fossil fuel, and therefore substitutes for a conventional polyolefin resin film. be able to.

本発明による樹脂フィルムの製造方法は、特に限定されず、従来公知の方法により製造することができる。本発明においては、押出成形されてなることが好ましく、押出成形が、Tダイ法またはインフレーション法により行われることがより好ましい。   The manufacturing method of the resin film by this invention is not specifically limited, It can manufacture by a conventionally well-known method. In the present invention, extrusion molding is preferable, and extrusion molding is more preferably performed by a T-die method or an inflation method.

例えば、以下の方法で、押出成形により樹脂フィルムを成形することができる。上記した樹脂組成物を乾燥させた後、ポリオレフィンの融点以上の温度(Tm)〜Tm+70℃の温度に加熱された溶融押出機に供給して、樹脂組成物を溶融し、例えばTダイ等のダイよりシート状に押出し、押出されたシート状物を回転している冷却ドラム等で急冷固化することによりフィルムを成形することができる。溶融押出機としては、一軸押出機、二軸押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。   For example, the resin film can be formed by extrusion molding by the following method. After the above resin composition is dried, the resin composition is supplied to a melt extruder heated to a temperature equal to or higher than the melting point of the polyolefin (Tm) to Tm + 70 ° C. to melt the resin composition, for example, a die such as a T die. The film can be formed by further extruding into a sheet and rapidly solidifying the extruded sheet with a rotating cooling drum or the like. As the melt extruder, a single screw extruder, a twin screw extruder, a vent extruder, a tandem extruder, or the like can be used depending on the purpose.

上記のようにして得られる樹脂フィルムの厚さは、その用途に応じて任意であるが、通常、5〜500μm程度、好ましくは5〜200μm程度である。また、樹脂フィルムは、単層のフィルムとして用いてもよいし、複数枚をラミネートして積層フィルムとして用いてもよい。   The thickness of the resin film obtained as described above is arbitrary depending on the application, but is usually about 5 to 500 μm, preferably about 5 to 200 μm. Further, the resin film may be used as a single layer film, or may be used as a laminated film by laminating a plurality of sheets.

用途
本発明による樹脂フィルムは、容器や袋等の包装製品、化粧シートやトレー等のシート成形品、積層フィルム、光学フィルム、樹脂板、各種ラベル材料、蓋材、およびラミネートチューブ等の各種用途に好適に使用することができ、特に、包装製品およびシート成形品が好ましい。
Applications The resin film according to the present invention is used in various applications such as packaging products such as containers and bags, sheet molded products such as decorative sheets and trays, laminated films, optical films, resin plates, various label materials, lid materials, and laminated tubes. It can be used suitably, and a packaged product and a sheet molded product are particularly preferable.

以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although the present invention is explained based on an example, the present invention is not limited to these.

測定・条件
下記の実施例1〜7および比較例1〜2において、バイオマス度とは、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量の値である。
Measurement / Conditions In Examples 1 to 7 and Comparative Examples 1 and 2 below, the degree of biomass is a value of the content of carbon derived from biomass as measured by radioactive carbon (C14).

樹脂フィルムの製造
下記の実施例1〜7および比較例1〜2で用いた押出製膜機の条件は、以下のとおりであった。
スクリュー径:90mm
スクリュー型式:フルフライト
L/D:28
Tダイ:11S型ストレートマニホールド
Tダイ有効開口長:560mm
Production of Resin Film The conditions of the extrusion film forming machine used in Examples 1 to 7 and Comparative Examples 1 and 2 below were as follows.
Screw diameter: 90mm
Screw type: Full flight L / D: 28
T die: 11S type straight manifold T die effective opening length: 560mm

実施例1
バイオマス由来の高密度ポリエチレン(Braskem社製、商品名:SHA7260、バイオマス度:94.5%、密度:0.955g/cm、MFR:20g/10分)を290℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 1
Biomass-derived high-density polyethylene (manufactured by Braskem, trade name: SHA7260, biomass degree: 94.5%, density: 0.955 g / cm 3 , MFR: 20 g / 10 min) at a resin temperature of 290 ° C., thickness Extruded onto a 12 μm PET film (trade name: E5100, manufactured by Toyobo Co., Ltd.), a resin film was obtained. The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

実施例2
バイオマス由来の高密度ポリエチレン(Braskem社製、商品名:SHA7260、バイオマス度:94.5%、密度:0.955g/cm、MFR:20g/10分)50質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC701、バイオマス度:0%、密度:0.919g/cm、MFR:14g/10分)50質量部とをドライブレンドした樹脂(バイオマス度:48%、密度:0.937g/cm、MFR:17g/10分)を、290℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 2
50 parts by mass of biomass-derived high-density polyethylene (manufactured by Braskem, trade name: SHA7260, biomass degree: 94.5%, density: 0.955 g / cm 3 , MFR: 20 g / 10 min) and low fossil fuel-derived Resin obtained by dry blending 50 parts by mass of density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: LC701, biomass degree: 0%, density: 0.919 g / cm 3 , MFR: 14 g / 10 min) (biomass degree: 48%) , Density: 0.937 g / cm 3 , MFR: 17 g / 10 min) at a resin temperature of 290 ° C., and extruded onto a 12 μm thick PET film (trade name: E5100, manufactured by Toyobo Co., Ltd.). Obtained. The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

実施例3
バイオマス由来の高密度ポリエチレン(Braskem社製、商品名:SHA7260、バイオマス度:94.5%、密度:0.955g/cm、MFR:20g/10分)33質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC701、バイオマス度:0%、密度:0.919g/cm、MFR:14g/10分)67質量部とをドライブレンドした樹脂(バイオマス度:32%、密度:0.931g/cm、MFR:16g/10分)を、290℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 3
33 parts by mass of biomass-derived high-density polyethylene (trade name: SHA7260, biomass degree: 94.5%, density: 0.955 g / cm 3 , MFR: 20 g / 10 min, manufactured by Braskem), low from fossil fuel Resin obtained by dry blending 67 parts by mass of density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: LC701, degree of biomass: 0%, density: 0.919 g / cm 3 , MFR: 14 g / 10 min) (biomass degree: 32% , Density: 0.931 g / cm 3 , MFR: 16 g / 10 min) at a resin temperature of 290 ° C. onto a 12 μm thick PET film (trade name: E5100, manufactured by Toyobo Co., Ltd.) Obtained. The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

比較例1
化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC701、バイオマス度:0%、密度:0.919g/cm、MFR:14g/10分)を290℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Comparative Example 1
Low density polyethylene derived from fossil fuel (manufactured by Nippon Polyethylene Co., Ltd., trade name: LC701, biomass degree: 0%, density: 0.919 g / cm 3 , MFR: 14 g / 10 min) at a resin temperature of 290 ° C., thickness Extruded onto a 12 μm PET film (trade name: E5100, manufactured by Toyobo Co., Ltd.), a resin film was obtained. The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

樹脂組成物および樹脂フィルムの評価
上記の実施例1〜3および比較例1で用いた樹脂組成物の加工適性および得られたフィルムの特性について、以下の各種評価:(1)ドローダウン、(2)ネックイン、(3)モーター負荷、(4)樹脂圧力、(5)ループスティフネス、を行った。
Evaluation of Resin Composition and Resin Film Regarding the processability of the resin composition used in Examples 1 to 3 and Comparative Example 1 above and the properties of the obtained film, the following various evaluations were made: (1) Drawdown, (2 ) Neck-in, (3) Motor load, (4) Resin pressure, (5) Loop stiffness.

(1)ドローダウン
上記の実施例1〜3および比較例1で用いた樹脂組成物を、上記の押出製膜機を用いて、Tダイ幅560mm、樹脂温度290℃、スクリュー回転数34rpmの条件で、押出コーティング膜が膜切れするか、サージングする最高引取り速度(m/分)を測定した。測定結果は、下記の表1に示される通りであった。
(1) Drawdown The resin composition used in the above Examples 1 to 3 and Comparative Example 1 was subjected to the conditions of a T-die width of 560 mm, a resin temperature of 290 ° C., and a screw rotation speed of 34 rpm using the above extrusion film forming machine. Then, the maximum take-off speed (m / min) at which the extrusion coating film was cut or surging was measured. The measurement results were as shown in Table 1 below.

(2)ネックイン
上記の実施例1〜3および比較例1で用いた樹脂組成物を、上記の押出製膜機を用いて、Tダイ幅560mm、スクリュー回転数105rpmの条件で、引取り速度140m/分、エアーギャップ120mmの時の両耳ネックイン(mm)を測定した。測定結果は、下記の表1に示される通りであった。
(2) Neck-in The resin composition used in the above Examples 1 to 3 and Comparative Example 1 was taken out under the conditions of a T-die width of 560 mm and a screw rotation speed of 105 rpm using the above-described extrusion film forming machine. The binaural neck-in (mm) at an air gap of 140 m / min and an air gap of 120 mm was measured. The measurement results were as shown in Table 1 below.

(3)モーター負荷
上記の実施例1〜3および比較例1において、上記の押出製膜機を用いて樹脂フィルムを製造した際のモーター負荷(A)を測定した。測定結果は、下記の表1に示される通りであった。
(3) Motor load In Examples 1 to 3 and Comparative Example 1 described above, the motor load (A) when a resin film was produced using the extrusion film forming machine was measured. The measurement results were as shown in Table 1 below.

(4)樹脂圧力
上記の実施例1〜3および比較例1において、上記の押出製膜機を用いて樹脂フィルムを製造した際の樹脂圧力(MPa)を測定した。測定結果は、下記の表1に示される通りであった。
(4) Resin Pressure In Examples 1 to 3 and Comparative Example 1 described above, the resin pressure (MPa) when a resin film was produced using the extrusion film forming machine was measured. The measurement results were as shown in Table 1 below.

(5)ループスティフネス
上記の実施例1〜3および比較例1で得られた樹脂フィルムを、幅15mm、長さ150mmに切り出し、剛性試験機(東洋精機製作所社製、商品名:ループステフネステスタ)を用いてフィルムの剛性(N)の測定を行った。ループの長さは60mmとした。測定結果は、下記の表1に示される通りであった。
(5) Loop stiffness The resin films obtained in Examples 1 to 3 and Comparative Example 1 were cut into a width of 15 mm and a length of 150 mm, and a stiffness tester (trade name: Loop Stiffness Tester, manufactured by Toyo Seiki Seisakusho Co., Ltd.). ) Was used to measure the rigidity (N) of the film. The length of the loop was 60 mm. The measurement results were as shown in Table 1 below.

Figure 2012251006
Figure 2012251006

実施例4
バイオマス由来の直鎖状低密度ポリエチレン(Braskem社製、商品名:SLL318、バイオマス度:87%、密度:0.918g/cm、MFR:2.7g/10分)を320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 4
Biomass-derived linear low-density polyethylene (manufactured by Braskem, trade name: SLL318, biomass degree: 87%, density: 0.918 g / cm 3 , MFR: 2.7 g / 10 min) at a resin temperature of 320 ° C. Then, it was extruded onto a 12 μm thick PET film (trade name: E5100, manufactured by Toyobo Co., Ltd.) to obtain a resin film. The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

実施例5
バイオマス由来の直鎖状低密度ポリエチレン(Braskem社製:SLL318、バイオマス度:87%、密度:0.918g/cm、MFR:2.7g/10分)33質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC604、バイオマス度:0%、密度:0.918g/cm、MFR:8g/10分)67質量部とをメルトブレンドした樹脂(バイオマス度:29%、密度:0.918g/cm、MFR:6.3g/10分)を、320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 5
33 parts by mass of biomass-derived linear low-density polyethylene (manufactured by Braskem: SLL318, biomass degree: 87%, density: 0.918 g / cm 3 , MFR: 2.7 g / 10 min) and low fossil fuel-derived Resin blended with 67 parts by mass of density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: LC604, biomass degree: 0%, density: 0.918 g / cm 3 , MFR: 8 g / 10 min) (biomass degree: 29%) , Density: 0.918 g / cm 3 , MFR: 6.3 g / 10 min) at a resin temperature of 320 ° C., and extruded onto a 12 μm thick PET film (trade name: E5100, manufactured by Toyobo Co., Ltd.) A film was obtained. The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

実施例6
バイオマス由来の直鎖状低密度ポリエチレン(Braskem社製、商品名:SLL318、バイオマス度:87%、密度:0.918g/cm、MFR:2.7g/10分)33質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC604、バイオマス度:0%、密度:0.918g/cm、MFR:8g/10分)37質量部と、化石燃料由来の直鎖状低密度ポリエチレン(日本ポリエチレン社製、商品名:KC573、バイオマス度:0%、密度:0.910g/cm、MFR:15g/10分)30質量部とをメルトブレンドした樹脂(バイオマス度:29%、密度:0.916g/cm、MFR:8.4g/10分)を、320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 6
33 parts by mass of linear low density polyethylene derived from biomass (manufactured by Braskem, trade name: SLL318, biomass degree: 87%, density: 0.918 g / cm 3 , MFR: 2.7 g / 10 min), fossil fuel Low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: LC604, biomass degree: 0%, density: 0.918 g / cm 3 , MFR: 8 g / 10 min) and 37 parts by mass, linear from fossil fuel Low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: KC573, biomass degree: 0%, density: 0.910 g / cm 3 , MFR: 15 g / 10 minutes) and 30 parts by mass of a resin (biomass degree: 29) %, Density: 0.916 g / cm 3 , MFR: 8.4 g / 10 min) at a resin temperature of 320 ° C. and a 12 μm thick PET film (east The resin film was obtained by extruding onto a product of Yobo Co., Ltd. (trade name: E5100). The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

実施例7
バイオマス由来の直鎖状低密度ポリエチレン(Braskem社製、商品名:SLL318、バイオマス度:87%、密度:0.918g/cm、MFR:2.7g/10分)33質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC604、バイオマス度:0%、密度:0.918g/cm、MFR:8g/10分)37質量部と、化石燃料由来の直鎖状低密度ポリエチレン(日本ポリエチレン社製、商品名:KS560T、バイオマス度:0%、密度:0.898g/cm、MFR:16g/10分)30質量部とをメルトブレンドした樹脂(バイオマス度は29%、密度は0.912g/cm、MFRは8.7g/10分)を、320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 7
33 parts by mass of linear low density polyethylene derived from biomass (manufactured by Braskem, trade name: SLL318, biomass degree: 87%, density: 0.918 g / cm 3 , MFR: 2.7 g / 10 min), fossil fuel Low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: LC604, biomass degree: 0%, density: 0.918 g / cm 3 , MFR: 8 g / 10 min) and 37 parts by mass, linear from fossil fuel Low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: KS560T, biomass degree: 0%, density: 0.898 g / cm 3 , MFR: 16 g / 10 minutes) 30 parts by mass of a resin (biomass degree is 29) %, Density is 0.912 g / cm 3 , MFR is 8.7 g / 10 min) at a resin temperature of 320 ° C. and a PET film having a thickness of 12 μm ( Extruded onto Toyobo Co., Ltd., trade name: E5100) to obtain a resin film. The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

比較例2
化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC600A、バイオマス度:0%、密度:0.919g/cm、MFR:7g/10分)を320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、樹脂フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Comparative Example 2
Low density polyethylene derived from fossil fuel (manufactured by Nippon Polyethylene Co., Ltd., trade name: LC600A, biomass degree: 0%, density: 0.919 g / cm 3 , MFR: 7 g / 10 min) at a resin temperature of 320 ° C., thickness Extruded onto a 12 μm PET film (trade name: E5100, manufactured by Toyobo Co., Ltd.), a resin film was obtained. The conditions for extrusion molding were set such that the effective width was 560 mm, the extrusion thickness was 30 μm, and the extrusion speed was 100 m / min.

樹脂組成物および樹脂フィルムの評価
上記の実施例4〜7および比較例2で用いた樹脂組成物の加工適性および得られたフィルムの特性について、以下の各種評価:(6)ドローダウン、(7)ネックイン、(8)モーター負荷、(9)樹脂圧力、(10)シール開始温度、を行った。
Evaluation of Resin Composition and Resin Film Regarding the processability of the resin composition used in Examples 4 to 7 and Comparative Example 2 above and the properties of the obtained film, the following various evaluations were made: (6) Drawdown, (7 ) Neck-in, (8) Motor load, (9) Resin pressure, (10) Seal start temperature.

(6)ドローダウン
上記の実施例4〜7および比較例2で用いた樹脂組成物を、上記の押出製膜機を用いて、Tダイ幅560mm、樹脂温度290℃、スクリュー回転数34rpmの条件で、押出コーティング膜が膜切れするか、サージングする最高引取り速度(m/分)を測定した。測定結果は、下記の表2に示される通りであった。
(6) Drawdown The resin compositions used in Examples 4 to 7 and Comparative Example 2 described above were subjected to the conditions of a T-die width of 560 mm, a resin temperature of 290 ° C., and a screw rotation speed of 34 rpm using the extrusion film forming machine. Then, the maximum take-off speed (m / min) at which the extrusion coating film was cut or surging was measured. The measurement results were as shown in Table 2 below.

(7)ネックイン
上記の実施例4〜7および比較例2で用いた樹脂組成物を、上記の押出製膜機を用いて、Tダイ幅560mm、スクリュー回転数105rpmの条件で、引取り速度140m/分、エアーギャップ120mmの時の両耳ネックイン(mm)を測定した。測定結果は、下記の表2に示される通りであった。
(7) Neck-in The resin composition used in the above Examples 4 to 7 and Comparative Example 2 was taken out under the conditions of a T-die width of 560 mm and a screw rotation speed of 105 rpm using the above-described extrusion film forming machine. The binaural neck-in (mm) at an air gap of 140 m / min and an air gap of 120 mm was measured. The measurement results were as shown in Table 2 below.

(8)モーター負荷
上記の実施例4〜7および比較例2において、上記の押出製膜機を用いて樹脂フィルムを製造した際のモーター負荷(A)を測定した。測定結果は、下記の表2に示される通りであった。
(8) Motor load In Examples 4 to 7 and Comparative Example 2 described above, the motor load (A) when a resin film was produced using the extrusion film forming machine was measured. The measurement results were as shown in Table 2 below.

(9)樹脂圧力
上記の実施例4〜7および比較例2において、上記の押出製膜機を用いて樹脂フィルムを製造した際の樹脂圧力(MPa)を測定した。測定結果は、下記の表2に示される通りであった。
(9) Resin Pressure In Examples 4 to 7 and Comparative Example 2 above, the resin pressure (MPa) when a resin film was produced using the extrusion film forming machine was measured. The measurement results were as shown in Table 2 below.

(10)シール開始温度
上記の実施例4〜7および比較例2で得られた樹脂フィルムを、厚さ幅15mm、長さ200mmに切り出し、シール温度は90〜150℃、シール圧力は30N/cm、シール時間は1秒でヒートシールして、シールが開始される温度(℃)を特定した。測定結果は、下記の表2に示される通りであった。
(10) Seal start temperature The resin films obtained in Examples 4 to 7 and Comparative Example 2 were cut into a thickness of 15 mm and a length of 200 mm, the seal temperature was 90 to 150 ° C., and the seal pressure was 30 N / cm. 2 , the sealing time was 1 second by heat sealing, and the temperature (° C.) at which sealing was started was specified. The measurement results were as shown in Table 2 below.

Figure 2012251006
Figure 2012251006

Claims (13)

バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリオレフィンを含んでなる樹脂組成物からなる樹脂フィルムであって、
前記樹脂組成物が、前記バイオマス由来のエチレンを前記樹脂組成物全体に対して5質量%以上含んでなり、前記樹脂組成物が、0.91〜0.96g/cmの密度を有する、樹脂フィルム。
A resin film comprising a resin composition comprising a biomass-derived polyolefin obtained by polymerizing a monomer containing ethylene derived from biomass,
The resin composition comprises 5% by mass or more of the biomass-derived ethylene with respect to the whole resin composition, and the resin composition has a density of 0.91 to 0.96 g / cm 3. the film.
前記樹脂組成物が、1〜30g/10分のメルトフローレートを有する、請求項1に記載の樹脂フィルム。   The resin film according to claim 1, wherein the resin composition has a melt flow rate of 1 to 30 g / 10 minutes. 前記樹脂組成物が、前記バイオマス由来のエチレンを、前記樹脂組成物全体に対して5〜95質量%含んでなる、請求項1または2に記載の樹脂フィルム。   The resin film according to claim 1 or 2, wherein the resin composition comprises 5 to 95 mass% of the biomass-derived ethylene with respect to the entire resin composition. 前記モノマーが、化石燃料由来のエチレンおよび/またはα−オレフィンをさらに含む、請求項1〜3のいずれか一項に記載の樹脂フィルム。   The resin film according to any one of claims 1 to 3, wherein the monomer further contains fossil fuel-derived ethylene and / or α-olefin. 前記モノマーが、バイオマス由来のα−オレフィンをさらに含む、請求項1〜3のいずれか一項に記載の樹脂フィルム。   The resin film as described in any one of Claims 1-3 in which the said monomer further contains the alpha olefin derived from biomass. 前記樹脂組成物が、化石燃料由来のエチレンと、化石燃料由来のエチレンおよび/またはα−オレフィンとを含むモノマーが重合してなる化石燃料由来のポリオレフィンをさらに含んでなる、請求項1〜5のいずれか一項に記載の樹脂フィルム。   6. The resin composition according to claim 1, wherein the resin composition further comprises a fossil fuel-derived polyolefin obtained by polymerizing a fossil fuel-derived ethylene and a fossil fuel-derived ethylene and / or α-olefin monomer. The resin film as described in any one. 前記樹脂組成物が、5〜90質量%の前記バイオマス由来のポリオレフィンと、10〜95質量%の前記化石燃料由来のポリオレフィンとを含んでなる、請求項6に記載の樹脂フィルム。   The resin film according to claim 6, wherein the resin composition comprises 5 to 90% by mass of the biomass-derived polyolefin and 10 to 95% by mass of the fossil fuel-derived polyolefin. 前記α−オレフィンが、ブチレン、ヘキセン、またはオクテンである、請求項4〜7のいずれか一項に記載の樹脂フィルム。   The resin film according to any one of claims 4 to 7, wherein the α-olefin is butylene, hexene, or octene. 前記ポリオレフィンが、ポリエチレンである、請求項1〜8のいずれか一項に記載の樹脂フィルム。   The resin film according to claim 1, wherein the polyolefin is polyethylene. 前記樹脂組成物が押出成形されてなる、請求項1〜9のいずれか一項に記載の樹脂フィルム。   The resin film according to claim 1, wherein the resin composition is extruded. 前記押出成形が、Tダイ法またはインフレーション法により行われる、請求項10に記載の樹脂フィルム。   The resin film according to claim 10, wherein the extrusion molding is performed by a T-die method or an inflation method. 請求項1〜11のいずれか一項に記載の樹脂フィルムからなる、包装製品。   Packaged product which consists of a resin film as described in any one of Claims 1-11. 請求項1〜11のいずれか一項に記載の樹脂フィルムからなる、シート成形品。   The sheet molded product which consists of a resin film as described in any one of Claims 1-11.
JP2011122064A 2011-05-31 2011-05-31 Polyolefin resin film Active JP5862055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011122064A JP5862055B2 (en) 2011-05-31 2011-05-31 Polyolefin resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122064A JP5862055B2 (en) 2011-05-31 2011-05-31 Polyolefin resin film

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP2015210633A Division JP6020975B2 (en) 2015-10-27 2015-10-27 Polyolefin resin film
JP2015210636A Division JP6024812B2 (en) 2015-10-27 2015-10-27 Polyolefin resin film
JP2015210635A Division JP6020976B2 (en) 2015-10-27 2015-10-27 Polyolefin resin film
JP2015210634A Division JP2016028159A (en) 2015-10-27 2015-10-27 Polyolefin resin film
JP2015210637A Division JP2016027172A (en) 2015-10-27 2015-10-27 Polyolefin resin film

Publications (2)

Publication Number Publication Date
JP2012251006A true JP2012251006A (en) 2012-12-20
JP5862055B2 JP5862055B2 (en) 2016-02-16

Family

ID=47524134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122064A Active JP5862055B2 (en) 2011-05-31 2011-05-31 Polyolefin resin film

Country Status (1)

Country Link
JP (1) JP5862055B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056499A1 (en) * 2013-10-15 2015-04-23 日東電工株式会社 Adhesive sheet
JP2015096431A (en) * 2013-11-15 2015-05-21 大日本印刷株式会社 Tube container
JP2015150871A (en) * 2014-02-19 2015-08-24 住化プラステック株式会社 Hollow synthetic resin sheet and box containing the same
JP2015155527A (en) * 2014-01-16 2015-08-27 リケンファブロ株式会社 Polyolefin-based wrapping film for food packaging
JP2015189160A (en) * 2014-03-28 2015-11-02 凸版印刷株式会社 Sealant film, film laminate using the same, and standing pouch
JP2015214365A (en) * 2014-05-13 2015-12-03 凸版印刷株式会社 Paper cup
JP2015231870A (en) * 2014-05-13 2015-12-24 凸版印刷株式会社 Lid material and packaging container using the same
JP2017088250A (en) * 2015-11-13 2017-05-25 モンディ・コンシューマー・パッケージング・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Film bag
JP2017196777A (en) * 2016-04-26 2017-11-02 大日本印刷株式会社 Laminate having polyolefin resin layer and packaged product having the same
KR20180022892A (en) * 2015-06-30 2018-03-06 다우 글로벌 테크놀로지스 엘엘씨 Ethylene-based polymer composition for improved extrusion coating
JP6448159B1 (en) * 2018-01-04 2019-01-09 藤森工業株式会社 Bag in box
JP2019043145A (en) * 2018-11-29 2019-03-22 大日本印刷株式会社 Laminate for packaging product having biomass-derived resin layer
JP2019043146A (en) * 2018-11-29 2019-03-22 大日本印刷株式会社 Laminate for packaging product having biomass-derived resin layer
JP2019043147A (en) * 2018-11-29 2019-03-22 大日本印刷株式会社 Laminate for packaging product having biomass-derived resin layer
JP2019059814A (en) * 2017-09-25 2019-04-18 住化積水フィルム株式会社 Resin film
JP2019119827A (en) * 2018-01-10 2019-07-22 興人フィルム&ケミカルズ株式会社 Air-permeable film
JP2020175673A (en) * 2020-07-17 2020-10-29 大日本印刷株式会社 Packaging product equipped with laminate having resin layer derived from biomass
KR20200143476A (en) * 2018-04-26 2020-12-23 가부시키가이샤 유포 코포레숀 Porous stretched film and printing film
JP2021049784A (en) * 2020-12-15 2021-04-01 大日本印刷株式会社 Laminate having resin layer derived from biomass
US10988297B2 (en) 2017-09-15 2021-04-27 Fujimori Kogyo Co., Ltd. Bag-in-box
WO2021206072A1 (en) * 2020-04-10 2021-10-14 三菱ケミカル株式会社 Resin composition, and film and multilayer structure body using same
JP2021187516A (en) * 2020-05-29 2021-12-13 株式会社吉野工業所 Tube container
JP2022008362A (en) * 2020-07-17 2022-01-13 大日本印刷株式会社 Packaging product having laminate including biomass-derived resin layer
JP2022022262A (en) * 2017-03-31 2022-02-03 大日本印刷株式会社 Laminate and packaging bag having the same
US20230212376A1 (en) * 2020-07-17 2023-07-06 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition and modifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234904B2 (en) * 2019-11-06 2023-03-08 大日本印刷株式会社 Films and packaging bags using plant-derived polyethylene resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155516A (en) * 2007-12-27 2009-07-16 Sumitomo Chemical Co Ltd Packaging bag
JP2010162748A (en) * 2009-01-15 2010-07-29 Toppan Cosmo Inc Decorative sheet
JP2010222482A (en) * 2009-03-24 2010-10-07 Yamato Esuron Kk Plant-derived biodegradable synthetic resin sheet and container
JP2011506628A (en) * 2007-12-05 2011-03-03 ブラスケム エス.エイ. Integrated process for the production of ethylene-butylene copolymers, ethylene-butylene copolymers and the use of 1-butylene as ethylene and comonomers supplied from renewable natural sources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506628A (en) * 2007-12-05 2011-03-03 ブラスケム エス.エイ. Integrated process for the production of ethylene-butylene copolymers, ethylene-butylene copolymers and the use of 1-butylene as ethylene and comonomers supplied from renewable natural sources
JP2009155516A (en) * 2007-12-27 2009-07-16 Sumitomo Chemical Co Ltd Packaging bag
JP2010162748A (en) * 2009-01-15 2010-07-29 Toppan Cosmo Inc Decorative sheet
JP2010222482A (en) * 2009-03-24 2010-10-07 Yamato Esuron Kk Plant-derived biodegradable synthetic resin sheet and container

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056499A1 (en) * 2013-10-15 2015-04-23 日東電工株式会社 Adhesive sheet
JPWO2015056499A1 (en) * 2013-10-15 2017-03-09 日東電工株式会社 Adhesive sheet
JP2015096431A (en) * 2013-11-15 2015-05-21 大日本印刷株式会社 Tube container
JP2015155527A (en) * 2014-01-16 2015-08-27 リケンファブロ株式会社 Polyolefin-based wrapping film for food packaging
JP2015150871A (en) * 2014-02-19 2015-08-24 住化プラステック株式会社 Hollow synthetic resin sheet and box containing the same
JP2015189160A (en) * 2014-03-28 2015-11-02 凸版印刷株式会社 Sealant film, film laminate using the same, and standing pouch
JP2015214365A (en) * 2014-05-13 2015-12-03 凸版印刷株式会社 Paper cup
JP2015231870A (en) * 2014-05-13 2015-12-24 凸版印刷株式会社 Lid material and packaging container using the same
US10457799B2 (en) 2015-06-30 2019-10-29 Dow Global Technologies Llc Ethylene-based polymer compositions for improved extrusion coatings
KR20180022892A (en) * 2015-06-30 2018-03-06 다우 글로벌 테크놀로지스 엘엘씨 Ethylene-based polymer composition for improved extrusion coating
CN107922681A (en) * 2015-06-30 2018-04-17 陶氏环球技术有限责任公司 Vinyl polymer compositions for improved extrusion coating
JP2018521175A (en) * 2015-06-30 2018-08-02 ダウ グローバル テクノロジーズ エルエルシー Ethylene-based polymer composition for improved extrusion coating
KR102397059B1 (en) 2015-06-30 2022-05-12 다우 글로벌 테크놀로지스 엘엘씨 Ethylene-Based Polymer Compositions for Improved Extrusion Coatings
JP7385345B2 (en) 2015-06-30 2023-11-22 ダウ グローバル テクノロジーズ エルエルシー Ethylene-based polymer compositions for improved extrusion coatings
JP2017088250A (en) * 2015-11-13 2017-05-25 モンディ・コンシューマー・パッケージング・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Film bag
JP2017196777A (en) * 2016-04-26 2017-11-02 大日本印刷株式会社 Laminate having polyolefin resin layer and packaged product having the same
JP7296059B2 (en) 2017-03-31 2023-06-22 大日本印刷株式会社 Laminate and packaging bag provided with the same
JP2022022262A (en) * 2017-03-31 2022-02-03 大日本印刷株式会社 Laminate and packaging bag having the same
US10988297B2 (en) 2017-09-15 2021-04-27 Fujimori Kogyo Co., Ltd. Bag-in-box
JP2019059814A (en) * 2017-09-25 2019-04-18 住化積水フィルム株式会社 Resin film
JP2019051989A (en) * 2018-01-04 2019-04-04 藤森工業株式会社 Bag-in-box
JP6448159B1 (en) * 2018-01-04 2019-01-09 藤森工業株式会社 Bag in box
JP2019119827A (en) * 2018-01-10 2019-07-22 興人フィルム&ケミカルズ株式会社 Air-permeable film
KR102457753B1 (en) * 2018-04-26 2022-10-21 가부시키가이샤 유포 코포레숀 Porous stretched film and printing film
KR20200143476A (en) * 2018-04-26 2020-12-23 가부시키가이샤 유포 코포레숀 Porous stretched film and printing film
JP7141448B2 (en) 2018-04-26 2022-09-22 株式会社ユポ・コーポレーション Porous stretched film and printing film
JPWO2019208692A1 (en) * 2018-04-26 2021-05-20 株式会社ユポ・コーポレーション Porous stretched film and printing film
JP2019043147A (en) * 2018-11-29 2019-03-22 大日本印刷株式会社 Laminate for packaging product having biomass-derived resin layer
JP2019043146A (en) * 2018-11-29 2019-03-22 大日本印刷株式会社 Laminate for packaging product having biomass-derived resin layer
JP2019043145A (en) * 2018-11-29 2019-03-22 大日本印刷株式会社 Laminate for packaging product having biomass-derived resin layer
WO2021206072A1 (en) * 2020-04-10 2021-10-14 三菱ケミカル株式会社 Resin composition, and film and multilayer structure body using same
CN115348991A (en) * 2020-04-10 2022-11-15 三菱化学株式会社 Resin composition, film using same, and multilayer structure
CN115348991B (en) * 2020-04-10 2024-05-10 三菱化学株式会社 Resin composition, film and multilayer structure using same
JP2021187516A (en) * 2020-05-29 2021-12-13 株式会社吉野工業所 Tube container
JP2022008362A (en) * 2020-07-17 2022-01-13 大日本印刷株式会社 Packaging product having laminate including biomass-derived resin layer
JP2020175673A (en) * 2020-07-17 2020-10-29 大日本印刷株式会社 Packaging product equipped with laminate having resin layer derived from biomass
JP7243775B2 (en) 2020-07-17 2023-03-22 大日本印刷株式会社 Packaging product comprising a laminate having a biomass-derived resin layer
US20230212376A1 (en) * 2020-07-17 2023-07-06 Toyota Boshoku Kabushiki Kaisha Thermoplastic resin composition and modifier
JP2021049784A (en) * 2020-12-15 2021-04-01 大日本印刷株式会社 Laminate having resin layer derived from biomass
JP2023017939A (en) * 2020-12-15 2023-02-07 大日本印刷株式会社 Laminate with biomass-derived resin layer

Also Published As

Publication number Publication date
JP5862055B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5862055B2 (en) Polyolefin resin film
JP5742016B2 (en) Polyolefin multilayer resin film
JP6187657B2 (en) Polyolefin resin film
JP6020975B2 (en) Polyolefin resin film
JP6136272B2 (en) Laminate with a resin layer derived from biomass
JP6704878B2 (en) Laminated film
JP6136273B2 (en) Laminate with a resin layer derived from biomass
JP6497601B2 (en) Polyolefin resin film
JP6443769B2 (en) Laminate with a resin layer derived from biomass
JP6635355B2 (en) Laminate for packaging products with biomass-derived resin layer
JP6738568B2 (en) Polyethylene resin film
JP2020163631A (en) Resin film, laminate and packaging product
JP6443768B2 (en) Packaging product comprising a laminate having a biomass-derived resin layer
JP6827892B2 (en) Polyolefin resin film
JP2017196777A (en) Laminate having polyolefin resin layer and packaged product having the same
JP2019043145A (en) Laminate for packaging product having biomass-derived resin layer
JP2019094509A (en) Polyolefin resin film
JP2020164596A (en) Resin film, laminate and packaging product
TW201036992A (en) PE film comprising interpolymers with 3-substituted C4-10-alkene with single site catalysts
JP6024812B2 (en) Polyolefin resin film
JP7375320B2 (en) Laminated bodies, lid materials and containers with lids
JP2016210511A (en) Polyolefin resin film
JP2016028159A (en) Polyolefin resin film
JP2016027172A (en) Polyolefin resin film
JP6020976B2 (en) Polyolefin resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157