[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012244861A - Insulation coil - Google Patents

Insulation coil Download PDF

Info

Publication number
JP2012244861A
JP2012244861A JP2011115466A JP2011115466A JP2012244861A JP 2012244861 A JP2012244861 A JP 2012244861A JP 2011115466 A JP2011115466 A JP 2011115466A JP 2011115466 A JP2011115466 A JP 2011115466A JP 2012244861 A JP2012244861 A JP 2012244861A
Authority
JP
Japan
Prior art keywords
insulating
coil
inorganic filler
resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011115466A
Other languages
Japanese (ja)
Inventor
Shigeyuki Yamamoto
茂之 山本
Takahiro Mabuchi
貴裕 馬渕
Makoto Tsukiji
真 築地
Toshio Isooka
利雄 磯岡
Kenji Mimura
研史 三村
Takashi Nishimura
隆 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011115466A priority Critical patent/JP2012244861A/en
Publication of JP2012244861A publication Critical patent/JP2012244861A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation coil in which a voltage resistance property is improved and a heat radiation property is also improved without making an insulation layer thicker than needed.SOLUTION: An insulation coil comprises a coil conductor and an insulation layer obtained by winding an insulation tape for which a mica layer sheet is adhered to a reinforcing material by a binder resin, around the coil conductor, and impregnating and hardening a thermosetting resin. The reinforcing material contains an inorganic aggregation filler which has an average secondary particle size within a specific range, in 8 wt.% or more and 70 wt.% or less with respect to a resin component in the insulation layer.

Description

本発明は、放熱性及び耐電圧特性に優れた絶縁コイルに関するものである。   The present invention relates to an insulating coil excellent in heat dissipation and withstand voltage characteristics.

高出力の回転電機では、発生した熱を効率良く放熱するため、絶縁コイルの熱伝導率を向上させる必要があり、従来、絶縁コイルの絶縁被覆に高熱伝導性の絶縁材料を用いることが試みられている。   In a high-output rotating electrical machine, it is necessary to improve the thermal conductivity of the insulating coil in order to efficiently dissipate the generated heat. Conventionally, it has been attempted to use an insulating material with high thermal conductivity for the insulating coating of the insulating coil. ing.

高熱伝導性の絶縁材料で絶縁されたコイルとして、ガラス繊維織布に固着されたマイカフレーク層と、このマイカフレーク層間の空間に配置され且つ無機粒子を含有する含浸樹脂とからなる絶縁材料で導体が絶縁されたコイルが知られている。この無機粒子は、5W/mK以上の熱伝導率を有し、少なくとも90重量%が0.1〜15μmの粒径を有するものであり、具体的には、窒化ホウ素、窒化アルミニウム、窒化珪素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、炭化珪素等である。   As a coil insulated with a highly heat-conductive insulating material, a conductor made of an insulating material comprising a mica flake layer fixed to a glass fiber woven fabric and an impregnating resin disposed in a space between the mica flake layers and containing inorganic particles Insulated coils are known. The inorganic particles have a thermal conductivity of 5 W / mK or more, and at least 90% by weight have a particle size of 0.1 to 15 μm. Specifically, boron nitride, aluminum nitride, silicon nitride, Examples thereof include aluminum oxide, magnesium oxide, beryllium oxide, and silicon carbide.

このような絶縁コイルは、例えば、以下に示す方法で製造されている。第1の方法としては、コイル導体に巻回する前の、ガラス繊維織布に固着されたマイカフレーク層からなる絶縁テープに液状樹脂を含浸して、この樹脂が含浸された絶縁テープの表面に、無機粒子をコーティングし、この無機粒子がコーティングされた絶縁テープをコイル導体に巻回する方法である(例えば、特許文献1参照)。   Such an insulating coil is manufactured by the method shown below, for example. As a first method, a liquid resin is impregnated into an insulating tape made of a mica flake layer fixed to a glass fiber woven fabric before being wound around a coil conductor, and the surface of the insulating tape impregnated with this resin is impregnated. In this method, inorganic particles are coated, and the insulating tape coated with the inorganic particles is wound around a coil conductor (see, for example, Patent Document 1).

さらに、第2の方法としては、コイル導体に巻回する前の、ガラス繊維織布に固着されたマイカフレーク層からなる絶縁テープに、高熱伝導率な無機粒子を含有する液状樹脂をコーティングし、無機粒子含有樹脂がコーティングされた絶縁テープをコイル導体に巻回する方法である(例えば、特許文献2参照)。   Furthermore, as a second method, a liquid resin containing inorganic particles with high thermal conductivity is coated on an insulating tape made of a mica flake layer fixed to a glass fiber woven fabric before being wound around a coil conductor, In this method, an insulating tape coated with an inorganic particle-containing resin is wound around a coil conductor (see, for example, Patent Document 2).

特開昭63−110929号公報(特に、第4頁〜第6頁)Japanese Patent Application Laid-Open No. 63-110929 (especially pages 4 to 6) 特開平11−206056号公報(特に、第3頁)Japanese Patent Laid-Open No. 11-206056 (particularly, page 3)

上記従来技術の絶縁コイルにおいて高い熱伝導性を達成しようとすると、絶縁テープを巻回してなる絶縁層におけるマイカフレーク層間に、熱伝導率が小さいガラス繊維及び樹脂だけではなく、無機粒子を多量に存在させる必要がある。しかしながら、そのような絶縁テープでは、無機粒子を含む層が厚くなり、結果として絶縁層そのものが厚くなる。   In order to achieve high thermal conductivity in the above-described prior art insulating coil, not only glass fibers and resins having low thermal conductivity but also large amounts of inorganic particles are interposed between the mica flake layers in the insulating layer formed by winding the insulating tape. It needs to exist. However, in such an insulating tape, the layer containing inorganic particles becomes thick, and as a result, the insulating layer itself becomes thick.

絶縁コイルの耐電圧特性は、一般に、絶縁層中のマイカフレーク層の層数に依存し、この層数が多いほど耐電圧特性が優れる。しかし、絶縁コイルは、回転電機の固定子のスロット溝に挿入されるため、絶縁コイルの絶縁層の厚さは制限されており、上記従来技術では、無機粒子を含む層が厚くなり、絶縁層中のマイカフレーク層の層数を減らさざるを得ず、耐電圧特性が低下したり、また、絶縁テープの柔軟性が不十分となり、絶縁テープをコイル導体に沿って巻回することが困難となるという問題があった。   The withstand voltage characteristics of the insulating coil generally depend on the number of mica flake layers in the insulating layer, and the greater the number of layers, the better the withstand voltage characteristics. However, since the insulating coil is inserted into the slot groove of the stator of the rotating electric machine, the thickness of the insulating layer of the insulating coil is limited. In the above-described prior art, the layer containing inorganic particles becomes thick, and the insulating layer The number of mica flake layers inside must be reduced, the withstand voltage characteristics are reduced, and the flexibility of the insulating tape becomes insufficient, making it difficult to wind the insulating tape along the coil conductor. There was a problem of becoming.

従って、本発明は、上述のような課題を解決するためになされたもので、絶縁層の厚さを必要以上に厚くすることなく耐電圧特性を向上させ且つ放熱性にも優れた絶縁コイルを提供することを目的とするものである。   Accordingly, the present invention has been made to solve the above-described problems, and an insulating coil that has improved withstand voltage characteristics and excellent heat dissipation without increasing the thickness of the insulating layer more than necessary. It is intended to provide.

本発明は、コイル導体と、マイカ層シートを補強材にバインダ樹脂で接着させた絶縁テープを該コイル導体に巻回し熱硬化性樹脂を含浸して硬化した絶縁層とを備える絶縁コイルであって、該補強材が、15μm以上70μm以下の平均二次粒子径を有する凝集無機充填剤を、該絶縁層中の樹脂成分に対して8重量%以上70重量%以下の量で含有することを特徴とする絶縁コイルである。   The present invention is an insulating coil comprising a coil conductor and an insulating layer obtained by winding an insulating tape in which a mica layer sheet is bonded to a reinforcing material with a binder resin around the coil conductor and impregnating a thermosetting resin. The reinforcing material contains an agglomerated inorganic filler having an average secondary particle diameter of 15 μm or more and 70 μm or less in an amount of 8% by weight or more and 70% by weight or less based on the resin component in the insulating layer. It is an insulation coil.

本発明によれば、絶縁層の厚さを必要以上に厚くすることなく耐電圧特性を向上させることができ且つ放熱性にも優れる絶縁コイルを提供することができる。   According to the present invention, it is possible to provide an insulating coil that can improve the withstand voltage characteristics without increasing the thickness of the insulating layer more than necessary and is excellent in heat dissipation.

本発明の実施の形態1による絶縁コイルの模式断面図である。It is a schematic cross section of the insulated coil by Embodiment 1 of this invention. 本発明の実施の形態1による絶縁コイルの作製に用いる絶縁テープの模式断面図である。It is a schematic cross section of the insulation tape used for preparation of the insulation coil by Embodiment 1 of this invention.

以下、本発明の実施形態を図面に基づいて説明する。
実施の形態1.
図1は、実施の形態1による絶縁コイルの模式断面図である。
図1において、実施の形態1による絶縁コイルは、コイル導体1と、マイカ層シート2を補強材3にバインダ樹脂で接着させた絶縁テープ4を、絶縁コイルの最外層が絶縁テープ4の補強材3となるようにコイル導体1に巻回し熱硬化性樹脂を含浸して硬化した絶縁層5とを備える。図2は、この絶縁テープ4の部分拡大模式断面図である。図2において、補強材3は、マイカ層シート2を支持し補強するものである。補強材3は、補強基材6と、補強基材6の隙間に充填された凝集無機充填剤7及び樹脂8とから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of an insulating coil according to the first embodiment.
In FIG. 1, the insulating coil according to Embodiment 1 includes a coil conductor 1 and an insulating tape 4 in which a mica layer sheet 2 is bonded to a reinforcing material 3 with a binder resin, and a reinforcing material in which the outermost layer of the insulating coil is an insulating tape 4. 3 and the insulating layer 5 wound around the coil conductor 1 and impregnated with a thermosetting resin and cured. FIG. 2 is a partially enlarged schematic cross-sectional view of the insulating tape 4. In FIG. 2, the reinforcing material 3 supports and reinforces the mica layer sheet 2. The reinforcing material 3 is composed of a reinforcing base material 6, an aggregated inorganic filler 7 and a resin 8 filled in a gap between the reinforcing base material 6.

マイカ層シート2は、集成マイカ箔やフレークマイカ箔等のマイカ箔と、このマイカ箔を結合させる樹脂とからなる。この樹脂には、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂等が用いられる。   The mica layer sheet 2 is made of mica foil such as laminated mica foil or flake mica foil, and a resin for bonding the mica foil. As this resin, an epoxy resin, an unsaturated polyester resin, a phenol resin, or the like is used.

補強基材6としては、凝集無機充填剤7を充填することができる隙間を有するものであればよく、ガラスクロス、ポリイミドフィルム(例えばカプトン(登録商標)フィルム)、ポリエチレンテレフタレートフィルム等が挙げられる。これらの中でも、ガラスクロスは、絶縁テープ4の引張強さを高め、絶縁テープ4をコイル導体1に巻回し易くし、また、絶縁層5の熱伝導率を大きくできるという点で好ましい。また、補強基材6の好ましい目開き率は、80%以上98%以下である。また、補強基材6の厚さは、通常、20μm以上50μm以下の範囲であるが、中でも、熱伝導率及び耐電圧特性という点で、凝集無機充填剤7の平均二次粒子径の0.6倍以上2倍以下とすることが好ましい。   The reinforcing substrate 6 only needs to have a gap that can be filled with the aggregated inorganic filler 7, and examples thereof include glass cloth, polyimide film (for example, Kapton (registered trademark) film), polyethylene terephthalate film, and the like. Among these, the glass cloth is preferable in that the tensile strength of the insulating tape 4 is increased, the insulating tape 4 can be easily wound around the coil conductor 1, and the thermal conductivity of the insulating layer 5 can be increased. Moreover, the preferable opening ratio of the reinforcement base material 6 is 80% or more and 98% or less. The thickness of the reinforcing substrate 6 is usually in the range of 20 μm or more and 50 μm or less. Among them, the average secondary particle diameter of the aggregated inorganic filler 7 is preferably from the viewpoint of thermal conductivity and withstand voltage characteristics. It is preferable to be 6 times or more and 2 times or less.

補強基材6の隙間に充填される樹脂8としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂等が挙げられる。   Examples of the resin 8 filled in the gaps of the reinforcing base 6 include epoxy resins, unsaturated polyester resins, and phenol resins.

凝集無機充填剤7は、マイカより熱伝導率が大きい無機粒子の凝集体、具体的には5W/m・K以上の熱伝導率を有する無機粒子の凝集体である。このような凝集無機充填剤7の具体例としては、窒化ホウ素粒子凝集体、窒化アルミニウム粒子凝集体、窒化珪素粒子凝集体、酸化アルミニウム粒子凝集体、酸化マグネシウム粒子凝集体、酸化ベリリウム粒子凝集体、炭化珪素粒子凝集体が挙げられる。これらの凝集無機充填剤7は、1種類を用いてもよいし、複数種のものを混合して用いてもよい。また、凝集無機充填剤7は、同種の無機粒子を2個以上凝集固着させたものでもよいし、異種の無機粒子を2個以上凝集固着させたものでもよい。   The aggregated inorganic filler 7 is an aggregate of inorganic particles having a thermal conductivity higher than that of mica, specifically, an aggregate of inorganic particles having a thermal conductivity of 5 W / m · K or more. Specific examples of such agglomerated inorganic filler 7 include boron nitride particle aggregates, aluminum nitride particle aggregates, silicon nitride particle aggregates, aluminum oxide particle aggregates, magnesium oxide particle aggregates, beryllium oxide particle aggregates, A silicon carbide particle aggregate is mentioned. One kind of these agglomerated inorganic fillers 7 may be used, or a plurality of kinds may be mixed and used. The agglomerated inorganic filler 7 may be agglomerated and fixed two or more of the same kind of inorganic particles, or may be agglomerated and fixed of two or more different kinds of inorganic particles.

凝集無機充填剤7の平均二次粒子径(凝集体の平均粒子径)は、15μm以上70μm以下であることが必要であり、好ましくは17μm以上60μm以下である。凝集無機充填剤7の平均二次粒子径が15μm未満である場合、所望の熱伝導率を得ることができず、また補強基材6の隙間から流出してしまう。一方、凝集無機充填剤7の平均二次粒子径が70μm超である場合、絶縁層5の厚みが必要以上に厚くなる上に、作製された絶縁テープ4を巻き取る際あるいはコイル導体1に絶縁テープ4を巻回する際にマイカ層を破損させてしまう。なお、凝集無機充填剤7を解凝集させたときの平均粒子径(平均一次粒子径)は、50μm以下であることが好ましい。
このような特定の平均二次粒子径を有する凝集無機充填剤7を用いることにより、樹脂8と凝集無機充填剤7の表面との接触面積が大きくなり、特に凝集無機充填剤7の内部に樹脂8が入り込み、マイカ層シート2と補強材3との接着強度が向上する。また、凝集無機充填剤7は、コイル導体1に絶縁テープ4を巻回する際に適度に解凝集されるので、補強材3から脱落することなく、補強材3内で分散される。そして、凝集無機充填剤7は、その後の熱硬化性樹脂の含浸工程、コイル加圧工程及び硬化工程でも補強材3から流出することなく、補強材3中に存在し続ける。
The average secondary particle diameter (average particle diameter of the aggregate) of the aggregated inorganic filler 7 needs to be 15 μm or more and 70 μm or less, and preferably 17 μm or more and 60 μm or less. When the average secondary particle diameter of the aggregated inorganic filler 7 is less than 15 μm, the desired thermal conductivity cannot be obtained, and the aggregated inorganic filler 7 flows out from the gaps in the reinforcing base 6. On the other hand, when the average secondary particle diameter of the aggregated inorganic filler 7 is more than 70 μm, the insulating layer 5 becomes thicker than necessary, and when the produced insulating tape 4 is wound or insulated to the coil conductor 1. The mica layer is damaged when the tape 4 is wound. The average particle size (average primary particle size) when the aggregated inorganic filler 7 is deagglomerated is preferably 50 μm or less.
By using the agglomerated inorganic filler 7 having such a specific average secondary particle size, the contact area between the resin 8 and the surface of the agglomerated inorganic filler 7 is increased. 8 enters and the adhesive strength between the mica layer sheet 2 and the reinforcing material 3 is improved. Further, the aggregated inorganic filler 7 is appropriately deagglomerated when the insulating tape 4 is wound around the coil conductor 1, so that the aggregated inorganic filler 7 is dispersed in the reinforcing material 3 without falling off the reinforcing material 3. The aggregated inorganic filler 7 continues to be present in the reinforcing material 3 without flowing out from the reinforcing material 3 in the subsequent thermosetting resin impregnation step, coil pressurizing step, and curing step.

凝集無機充填剤7の充填量は、絶縁層5中の樹脂成分(マイカ層シート2の作製に使用した樹脂、マイカ層シート2を補強材3に接着するのに使用した樹脂及び含浸された熱硬化性樹脂)に対して、8重量%以上70重量%以下であることが必要であり、好ましくは10重量%以上60重量%以下である。凝集無機充填剤7の充填量が8重量%未満である場合、所望の熱伝導率を得ることができない上に、絶縁層5における樹脂成分比率が多くなって層厚が厚くなり、結果的に所望の熱伝導率を得ることができない。一方、凝集無機充填剤7の充填量が70重量%超である場合、絶縁層5の厚みが必要以上に厚くなる上に、絶縁テープ4が硬くなるので、作製した絶縁テープ4を巻き取る際にマイカ層を破損させてしまったり、コイル導体1に絶縁テープ4を巻回することが困難となり、また、凝集無機充填剤7が補強材3から脱落してしまう。   The filling amount of the agglomerated inorganic filler 7 depends on the resin components in the insulating layer 5 (the resin used for producing the mica layer sheet 2, the resin used for bonding the mica layer sheet 2 to the reinforcing material 3 and the impregnated heat. It is necessary that the content is 8 wt% or more and 70 wt% or less, preferably 10 wt% or more and 60 wt% or less. When the filling amount of the aggregated inorganic filler 7 is less than 8% by weight, the desired thermal conductivity cannot be obtained, and the resin component ratio in the insulating layer 5 increases, resulting in a thick layer thickness. The desired thermal conductivity cannot be obtained. On the other hand, when the amount of the agglomerated inorganic filler 7 is more than 70% by weight, the insulating layer 5 becomes thicker than necessary and the insulating tape 4 becomes hard. In other words, the mica layer is damaged, it is difficult to wind the insulating tape 4 around the coil conductor 1, and the aggregated inorganic filler 7 falls off the reinforcing material 3.

また、補強材3には、上記した凝集無機充填剤7とともに、10μm以下の平均一次粒子径を有する補助無機充填剤を充填してもよい。平均一次粒子径が10μm超の補助無機充填剤を併用すると、絶縁層5の厚みが必要以上に厚くなってしまう恐れがあるので好ましくない。また、絶縁層5に必要な樹脂8の量が増え、結果的に熱伝導率が低くなる恐れもある。更に、作製された絶縁テープ4を巻き取る際あるいはコイル導体1に絶縁テープ4を巻回する際にマイカ層を破損させてしまう恐れもある。このような平均一次粒子径を有する補助無機充填剤は、15μm以上70μm以下の平均二次粒子径を有する凝集無機充填剤7の存在により、補強材3から流出することなく、補強材3中に存在することとなる。また、補助無機充填剤は、凝集無機充填剤7の間隙にも存在することとなるので、熱伝導率の向上に寄与する。   Further, the reinforcing material 3 may be filled with an auxiliary inorganic filler having an average primary particle diameter of 10 μm or less together with the above-described aggregated inorganic filler 7. If an auxiliary inorganic filler having an average primary particle size of more than 10 μm is used in combination, the insulating layer 5 may be unnecessarily thick, which is not preferable. Further, the amount of the resin 8 necessary for the insulating layer 5 increases, and as a result, the thermal conductivity may be lowered. Furthermore, when the produced insulating tape 4 is wound up or when the insulating tape 4 is wound around the coil conductor 1, the mica layer may be damaged. The auxiliary inorganic filler having such an average primary particle size does not flow out of the reinforcing material 3 due to the presence of the aggregated inorganic filler 7 having an average secondary particle size of 15 μm or more and 70 μm or less. Will exist. In addition, since the auxiliary inorganic filler is also present in the gaps between the aggregated inorganic fillers 7, it contributes to the improvement of the thermal conductivity.

10μm以下の平均一次粒子径を有する補助無機充填剤を併用する場合、補強材3に含有される凝集無機充填剤7との総量が、絶縁層5中の樹脂成分に対して20重量%以上70重量%以下となるようにすることが望ましい。   When the auxiliary inorganic filler having an average primary particle diameter of 10 μm or less is used in combination, the total amount of the aggregated inorganic filler 7 contained in the reinforcing material 3 is 20% by weight or more and 70% by weight with respect to the resin component in the insulating layer 5. It is desirable to make it not more than% by weight.

次に、本実施の形態による絶縁コイルの製造方法について説明する。
本実施の形態絶縁コイルは、マイカ層シート2を補強基材6にバインダ樹脂で接着させた接着シート体の補強基材側に、凝集無機充填剤7と樹脂8とを含有するスラリーを塗布して補強基材6の隙間に凝集無機充填剤7と樹脂8とを充填し、絶縁テープ4を得、この絶縁テープ4を絶縁テープ4のマイカ層シート側がコイル導体側となるようにコイル導体1の外周部に半重ね巻で巻回し、次いで、巻回された絶縁テープ4(主絶縁層と呼ぶことがある)に液状熱硬化性樹脂を含浸し、所定の型で押さえ、硬化炉にて加熱し、熱硬化性液状樹脂を硬化させて絶縁層5を形成することにより製造することができる。液状熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、マレイミド樹脂、シリコーン樹脂等が挙げられる。
Next, a method for manufacturing an insulated coil according to the present embodiment will be described.
In this embodiment, the insulating coil is obtained by applying a slurry containing an agglomerated inorganic filler 7 and a resin 8 to the reinforcing substrate side of an adhesive sheet body in which the mica layer sheet 2 is bonded to the reinforcing substrate 6 with a binder resin. Then, the gap between the reinforcing bases 6 is filled with the agglomerated inorganic filler 7 and the resin 8 to obtain the insulating tape 4, and the coil conductor 1 is arranged so that the mica layer sheet side of the insulating tape 4 is on the coil conductor side. Is wound in a semi-wrapped manner, and then the wound insulating tape 4 (sometimes referred to as a main insulating layer) is impregnated with a liquid thermosetting resin, pressed with a predetermined mold, and cured in a curing furnace. The insulating layer 5 can be manufactured by heating and curing the thermosetting liquid resin. Examples of the liquid thermosetting resin include epoxy resin, unsaturated polyester resin, phenol resin, polyimide resin, maleimide resin, and silicone resin.

上記スラリーの塗布方法は、特に限定されるものではなく、スプレー塗装、ロール塗装等が挙げられる。上記スラリーには、硬化剤、硬化促進剤等を添加してもよい。しかし、主剤と硬化剤と硬化促進剤とを混合すると補強基材6内で硬化反応が進行して絶縁テープ4が硬くなり、作製した絶縁テープ4を巻き取ることが困難となったり、あるいはコイル導体1に巻回することが困難となる。また、スラリーの塗工性を向上させるために有機溶剤を用いることもできる。この場合、スラリー塗布後に、有機溶剤を揮発させることが望ましい。   The method for applying the slurry is not particularly limited, and examples thereof include spray coating and roll coating. You may add a hardening | curing agent, a hardening accelerator, etc. to the said slurry. However, when the main agent, the curing agent, and the curing accelerator are mixed, the curing reaction proceeds in the reinforcing base 6 and the insulating tape 4 becomes hard, and it becomes difficult to wind the manufactured insulating tape 4 or the coil. It becomes difficult to wind the conductor 1. An organic solvent can also be used to improve the coating property of the slurry. In this case, it is desirable to volatilize the organic solvent after applying the slurry.

凝集無機充填剤7と上述した10μm以下の平均一次粒子径を有する補助無機充填剤とを併用する場合、凝集無機充填剤7と樹脂8と10μm以下の平均一次粒子径を有する補助無機充填剤とを含有するスラリーを補強基材6に塗布して補強材3内に充填してもよいし、凝集無機充填剤7と樹脂8とを含有するスラリー塗布後に、10μm以下の平均一次粒子径を有する補助無機充填剤と樹脂8とを含有するスラリーを更に塗布して補強材3内に充填してもよい。   When the aggregated inorganic filler 7 and the auxiliary inorganic filler having an average primary particle diameter of 10 μm or less are used in combination, the aggregated inorganic filler 7 and the resin 8 and the auxiliary inorganic filler having an average primary particle diameter of 10 μm or less, May be applied to the reinforcing substrate 6 and filled in the reinforcing material 3, or after application of the slurry containing the aggregated inorganic filler 7 and the resin 8, it has an average primary particle size of 10 μm or less. A slurry containing the auxiliary inorganic filler and the resin 8 may be further applied and filled in the reinforcing material 3.

本実施の形態による絶縁コイルは、マイカ層シートより熱伝導率が大きい補強材(高熱伝導層と呼ぶことがある)が絶縁層に設けられているので、熱伝導性が優れている。また、絶縁コイル作製時に使用する絶縁テープは柔軟性が高く無機充填剤を含む層の厚さを薄くできるので、絶縁コイルの絶縁層の厚さを必要以上に厚くすることなく、優れた耐電圧特性を確保することができる。   The insulating coil according to the present embodiment is excellent in thermal conductivity because a reinforcing material (sometimes referred to as a high thermal conductive layer) having a higher thermal conductivity than the mica layer sheet is provided in the insulating layer. Also, the insulation tape used in the production of the insulation coil is flexible and can reduce the thickness of the layer containing the inorganic filler, so it has excellent withstand voltage without making the insulation layer of the insulation coil thicker than necessary. Characteristics can be secured.

以下、本発明の絶縁コイルについて、実施例及び比較例を挙げて具体的に説明する。
〔実施例1〕
集成マイカ粉を水中分散し、その分散液を抄紙機にて抄造して集成マイカ箔を作製した。この集成マイカ箔に、ビスフェノールA型エポキシ樹脂{商品名:エピコート(登録商標)834(ジャパンエポキシレジン(株))}100重量部とナフテン酸亜鉛10重量部とメチルエチルケトン400重量部とを混合した樹脂組成物を、ロールコータ法により塗布するとともに、集成マイカ箔を仮の支持材である幅1000mm、厚さ0.02mmで所定の長さのポリエステルフィルムに貼合わせ、マイカ層の仕上がり厚さが0.1mmのマイカ層シートを作製した。
ビスフェノールA型エポキシ樹脂{商品名:エピコート(登録商標)834(ジャパンエポキシレジン(株))}100重量部とナフテン酸亜鉛10重量部とメチルエチルケトン1000重量部とを混合した樹脂組成物を、補強基材である幅1000mm、厚さ50μm、目開き率97%で所定の長さのガラスクロスに、ロールコータ法により塗布した後、有機溶剤を揮発させ、樹脂付着ガラスクロスシートを作製した。
次に、上記マイカ層シートのマイカ層面に、上記樹脂付着ガラスクロスシートを貼合わせた。このようにして貼合わされたものを、60℃の熱ロールで加圧し、マイカ層シートに樹脂付着ガラスクロスシートを圧着させた。
ビスフェノールA型エポキシ樹脂{商品名:エピコート(登録商標)834(ジャパンエポキシレジン(株))}とナフテン酸亜鉛とを混合し、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)を添加し、メチルエチルケトンを用いて希釈し、凝集無機充填剤のスラリーを調製した。なお、表1における無機充填剤の充填量は、絶縁層中の樹脂成分に対する割合である。
このスラリーをスプレー法により、上記マイカ層シートと樹脂付着ガラスクロスシートとの接合体における樹脂付着ガラスクロスシート面に塗布した後、有機溶剤を揮発させ、60℃の熱ロールで加圧し、ポリエステルフィルムとマイカ層シートと補強材とからなる絶縁シートを得た。この絶縁シートを幅30mmに切断し、絶縁テープとした。
次に、ポリエステルフィルムを取り除いた絶縁テープを、マイカ層シート面をテストバー(コイル導体)側にして、半重ね巻きで、50mm×12mm×1140mmのテストバーに巻回し、主絶縁層を形成した。この際、マイカ層の破損は起こらず、巻回性は良好であった。さらに、この絶縁テープからなる主絶縁層に、真空加圧含浸方式により、ビスフェノールA型エポキシ樹脂{商品名:エピコート(登録商標)828(ジャパンエポキシレジン(株))}とメチルテトラヒドロ無水フタル酸硬化剤{商品名:HN−2200(日立化成工業(株))}とからなる熱硬化性樹脂組成物を含浸させた。この主絶縁層を、4.26mmの絶縁厚さになるように治具を用いて型締めし、乾燥炉で加熱して、樹脂を硬化することによりテスト用絶縁コイルを作製した。
Hereinafter, the insulating coil of the present invention will be specifically described with reference to examples and comparative examples.
[Example 1]
Aggregated mica powder was dispersed in water, and the dispersion was made with a paper machine to produce aggregated mica foil. A resin in which 100 parts by weight of bisphenol A type epoxy resin {trade name: Epicoat (registered trademark) 834 (Japan Epoxy Resin Co., Ltd.)}, 10 parts by weight of zinc naphthenate, and 400 parts by weight of methyl ethyl ketone are mixed with this laminated mica foil. The composition is applied by a roll coater method, and the laminated mica foil is bonded to a polyester film having a width of 1000 mm and a thickness of 0.02 mm, which is a temporary support material, and a predetermined length of mica layer. A 1 mm mica layer sheet was prepared.
Bisphenol A type epoxy resin {trade name: Epicoat (registered trademark) 834 (Japan Epoxy Resin Co., Ltd.)} A resin composition prepared by mixing 100 parts by weight of zinc naphthenate and 1000 parts by weight of methyl ethyl ketone is used as a reinforcing group. A glass cloth having a width of 1000 mm, a thickness of 50 μm, and a mesh opening ratio of 97%, which was a predetermined length, was applied by a roll coater method, and then the organic solvent was volatilized to prepare a resin-attached glass cloth sheet.
Next, the resin-attached glass cloth sheet was bonded to the mica layer surface of the mica layer sheet. What was bonded in this way was pressurized with a 60 degreeC hot roll, and the resin adhesion glass cloth sheet was crimped | bonded to the mica layer sheet.
Bisphenol A type epoxy resin {trade name: Epicoat (registered trademark) 834 (Japan Epoxy Resin Co., Ltd.)} and zinc naphthenate are mixed, and an aggregated inorganic filler (nitriding) having an average secondary particle size shown in Table 1 Boron particle aggregates) were added and diluted with methyl ethyl ketone to prepare a slurry of aggregated inorganic filler. In addition, the filling amount of the inorganic filler in Table 1 is a ratio with respect to the resin component in the insulating layer.
After applying this slurry to the resin-attached glass cloth sheet surface in the joined body of the mica layer sheet and the resin-attached glass cloth sheet by a spray method, the organic solvent is volatilized, and the polyester film is pressurized with a 60 ° C. hot roll. An insulating sheet comprising a mica layer sheet and a reinforcing material was obtained. This insulating sheet was cut into a width of 30 mm to obtain an insulating tape.
Next, the insulating tape from which the polyester film was removed was wound around a test bar (50 mm × 12 mm × 1140 mm) by half-lap winding with the mica layer sheet side facing the test bar (coil conductor) side to form a main insulating layer. . At this time, the mica layer was not damaged and the winding property was good. Furthermore, the main insulating layer made of this insulating tape is bisphenol A type epoxy resin {trade name: Epicoat (registered trademark) 828 (Japan Epoxy Resin Co., Ltd.)} and methyltetrahydrophthalic anhydride cured by a vacuum pressure impregnation method. A thermosetting resin composition comprising an agent {trade name: HN-2200 (Hitachi Chemical Co., Ltd.)} was impregnated. The main insulating layer was clamped with a jig so as to have an insulating thickness of 4.26 mm, heated in a drying furnace, and the resin was cured to produce a test insulating coil.

次に、得られたテスト用絶縁コイルの絶縁層の熱伝導率と耐電圧特性とを評価した。
絶縁層の熱伝導率はテスト用絶縁コイルの絶縁層から切り出した試験片について、熱伝導率測定装置{型式:TXP−03(三鬼科学システム(株))}を用いて測定した。
耐電圧特性は、テスト用絶縁コイルの絶縁層から切り出した試験片について、25℃において、ステップバイステップ法により電圧を印加し、絶縁破壊がおこる電圧から求めた。結果を表2に示す。
Next, the thermal conductivity and withstand voltage characteristics of the insulating layer of the obtained test insulating coil were evaluated.
The thermal conductivity of the insulating layer was measured using a thermal conductivity measuring device {Model: TXP-03 (Miki Scientific System Co., Ltd.)} for the test piece cut out from the insulating layer of the test insulating coil.
The withstand voltage characteristics were obtained from the voltage at which dielectric breakdown occurred when a voltage was applied to the test piece cut out from the insulating layer of the test insulating coil at 25 ° C. by the step-by-step method. The results are shown in Table 2.

〔実施例2及び3〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)をスラリーに配合する以外は実施例1と同様にして、テスト用絶縁コイルを作製した。いずれの実施例においても、マイカ層の破損は起こらず、巻回性は良好であった。得られたテスト用絶縁コイルにおける絶縁層の熱伝導率と耐電圧特性とを表2に示す。
[Examples 2 and 3]
Insulation for test in the same manner as in Example 1 except that the reinforcing base material shown in Table 1 was used and the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter shown in Table 1 was blended into the slurry. A coil was produced. In any of the examples, the mica layer was not damaged and the winding property was good. Table 2 shows the thermal conductivity and withstand voltage characteristics of the insulating layer in the obtained test insulating coil.

〔実施例4〜9〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)及び平均一次粒子径を有する補助無機充填剤(窒化ホウ素粒子)をスラリーに配合する以外は実施例1と同様にして、テスト用絶縁コイルを作製した。いずれの実施例においても、マイカ層の破損は起こらず、巻回性は良好であった。得られたテスト用絶縁コイルにおける絶縁層の熱伝導率と耐電圧特性とを表2に示す。
[Examples 4 to 9]
Using the reinforcing substrate shown in Table 1, slurry of the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter and the auxiliary inorganic filler (boron nitride particles) having the average primary particle diameter shown in Table 1 A test insulating coil was produced in the same manner as in Example 1 except that it was blended into the above. In any of the examples, the mica layer was not damaged and the winding property was good. Table 2 shows the thermal conductivity and withstand voltage characteristics of the insulating layer in the obtained test insulating coil.

〔実施例10〜14〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)をスラリーに配合して凝集無機充填剤のスラリーを塗布した後、ビスフェノールA型エポキシ樹脂{商品名:エピコート(登録商標)834(ジャパンエポキシレジン(株))}とナフテン酸亜鉛とを混合し、表1に示す平均一次粒子径を有する補助無機充填剤(窒化ホウ素粒子)を添加し、メチルエチルケトンを用いて希釈して得られた補助無機充填剤のスラリーを塗布する以外は実施例1と同様にして、テスト用絶縁コイルを作製した。いずれの実施例においても、マイカ層の破損は起こらず、巻回性は良好であった。得られたテスト用絶縁コイルにおける絶縁層の熱伝導率と耐電圧特性とを表2に示す。
[Examples 10 to 14]
After using the reinforcing base shown in Table 1 and blending the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter shown in Table 1 into the slurry and applying the aggregated inorganic filler slurry, bisphenol A type epoxy resin {trade name: Epicoat (registered trademark) 834 (Japan Epoxy Resin Co., Ltd.)} and zinc naphthenate are mixed, and an auxiliary inorganic filler (boron nitride particles) having an average primary particle size shown in Table 1 ) And a slurry of the auxiliary inorganic filler obtained by diluting with methyl ethyl ketone was applied in the same manner as in Example 1 to produce a test insulating coil. In any of the examples, the mica layer was not damaged and the winding property was good. Table 2 shows the thermal conductivity and withstand voltage characteristics of the insulating layer in the obtained test insulating coil.

〔比較例1〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤をスラリーに配合する以外は実施例1と同様にして、テスト用絶縁コイルを作製した。テスト用絶縁コイルの作製時にマイカ層の破損は起こらず、巻回性は良好であった。得られたテスト用絶縁コイルにおける絶縁層の熱伝導率と耐電圧特性とを表2に示す。
[Comparative Example 1]
An insulating coil for testing was produced in the same manner as in Example 1 except that the reinforcing base material shown in Table 1 was used and the agglomerated inorganic filler having the average secondary particle diameter shown in Table 1 was added to the slurry. The mica layer did not break during the production of the test insulating coil, and the winding property was good. Table 2 shows the thermal conductivity and withstand voltage characteristics of the insulating layer in the obtained test insulating coil.

〔比較例2〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)及び平均一次粒子径を有する補助無機充填剤(窒化ホウ素粒子)をスラリーに配合する以外は実施例1と同様にして、テスト用絶縁コイルを作製した。テスト用絶縁コイルの作製時にマイカ層の破損は起こらず、巻回性は良好であった。得られたテスト用絶縁コイルにおける絶縁層の熱伝導率と耐電圧特性とを表2に示す。
[Comparative Example 2]
Using the reinforcing substrate shown in Table 1, slurry of the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter and the auxiliary inorganic filler (boron nitride particles) having the average primary particle diameter shown in Table 1 A test insulating coil was produced in the same manner as in Example 1 except that it was blended into the above. The mica layer did not break during the production of the test insulating coil, and the winding property was good. Table 2 shows the thermal conductivity and withstand voltage characteristics of the insulating layer in the obtained test insulating coil.

〔比較例3〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)をスラリーに配合して凝集無機充填剤のスラリーを塗布した後、ビスフェノールA型エポキシ樹脂{商品名:エピコート(登録商標)834(ジャパンエポキシレジン(株))}とナフテン酸亜鉛とを混合し、表1に示す平均一次粒子径を有する補助無機充填剤(窒化ホウ素粒子)を添加し、メチルエチルケトンを用いて希釈して得られた補助無機充填剤のスラリーを塗布する以外は実施例1と同様にして、絶縁テープを作製した。この絶縁テープを用いてテスト用絶縁コイルを作製しようとしたところ、巻回する際にマイカ層の破損が起こった。
[Comparative Example 3]
After using the reinforcing base shown in Table 1 and blending the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter shown in Table 1 into the slurry and applying the aggregated inorganic filler slurry, bisphenol A type epoxy resin {trade name: Epicoat (registered trademark) 834 (Japan Epoxy Resin Co., Ltd.)} and zinc naphthenate are mixed, and an auxiliary inorganic filler (boron nitride particles) having an average primary particle size shown in Table 1 Insulating tape was prepared in the same manner as in Example 1 except that a slurry of auxiliary inorganic filler obtained by diluting with methyl ethyl ketone was applied. An attempt was made to produce an insulating coil for testing using this insulating tape, and the mica layer was damaged during winding.

〔比較例4〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)をスラリーに配合して凝集無機充填剤のスラリーを塗布した後、ビスフェノールA型エポキシ樹脂{商品名:エピコート(登録商標)834(ジャパンエポキシレジン(株))}とナフテン酸亜鉛とを混合し、表1に示す平均一次粒子径を有する補助無機充填剤(窒化ホウ素粒子)を添加し、メチルエチルケトンを用いて希釈して得られた補助無機充填剤のスラリーを塗布する以外は実施例1と同様にして、テスト用絶縁コイルを作製した。テスト用絶縁コイルの作製時にマイカ層の破損は起こらず、巻回性は良好であった。得られたテスト用絶縁コイルにおける絶縁層の熱伝導率と耐電圧特性とを表2に示す。
[Comparative Example 4]
After using the reinforcing base shown in Table 1 and blending the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter shown in Table 1 into the slurry and applying the aggregated inorganic filler slurry, bisphenol A type epoxy resin {trade name: Epicoat (registered trademark) 834 (Japan Epoxy Resin Co., Ltd.)} and zinc naphthenate are mixed, and an auxiliary inorganic filler (boron nitride particles) having an average primary particle size shown in Table 1 ) And a slurry of the auxiliary inorganic filler obtained by diluting with methyl ethyl ketone was applied in the same manner as in Example 1 to produce a test insulating coil. The mica layer did not break during the production of the test insulating coil, and the winding property was good. Table 2 shows the thermal conductivity and withstand voltage characteristics of the insulating layer in the obtained test insulating coil.

〔比較例5〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)をスラリーに配合する以外は実施例1と同様にして、テスト用絶縁コイルを作製した。テスト用絶縁コイルの作製時にマイカ層の破損は起こらず、巻回性は良好であった。得られたテスト用絶縁コイルにおける絶縁層の熱伝導率と耐電圧特性とを表2に示す。
[Comparative Example 5]
Insulation for test in the same manner as in Example 1 except that the reinforcing base material shown in Table 1 was used and the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter shown in Table 1 was blended into the slurry. A coil was produced. The mica layer did not break during the production of the test insulating coil, and the winding property was good. Table 2 shows the thermal conductivity and withstand voltage characteristics of the insulating layer in the obtained test insulating coil.

〔比較例6〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)をスラリーに配合する以外は実施例1と同様にして、絶縁テープを作製した。この絶縁テープを用いてテスト用絶縁コイルを作製しようとしたところ、巻回する際にマイカ層の破損が起こった。
[Comparative Example 6]
An insulating tape was prepared in the same manner as in Example 1 except that the reinforcing base material shown in Table 1 was used, and the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter shown in Table 1 was blended into the slurry. Produced. An attempt was made to produce an insulating coil for testing using this insulating tape, and the mica layer was damaged during winding.

〔比較例7〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)をスラリーに配合する以外は実施例1と同様にして、テスト用絶縁コイルを作製した。テスト用絶縁コイルの作製時にマイカ層の破損は起こらず、巻回性は良好であった。得られたテスト用絶縁コイルにおける絶縁層の熱伝導率と耐電圧特性とを表2に示す。
[Comparative Example 7]
Insulation for test in the same manner as in Example 1 except that the reinforcing base material shown in Table 1 was used and the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter shown in Table 1 was blended into the slurry. A coil was produced. The mica layer did not break during the production of the test insulating coil, and the winding property was good. Table 2 shows the thermal conductivity and withstand voltage characteristics of the insulating layer in the obtained test insulating coil.

〔比較例8〕
表1に示す補強基材を用い、表1に示す平均二次粒子径を有する凝集無機充填剤(窒化ホウ素粒子凝集体)をスラリーに配合する以外は実施例1と同様にして、絶縁テープを作製した。この絶縁テープを用いてテスト用絶縁コイルを作製しようとしたところ、巻回する際にマイカ層の破損が起こった。
[Comparative Example 8]
An insulating tape was prepared in the same manner as in Example 1 except that the reinforcing base material shown in Table 1 was used, and the aggregated inorganic filler (boron nitride particle aggregate) having the average secondary particle diameter shown in Table 1 was blended into the slurry. Produced. An attempt was made to produce an insulating coil for testing using this insulating tape, and the mica layer was damaged during winding.

Figure 2012244861
Figure 2012244861

Figure 2012244861
Figure 2012244861

表2の結果から分かるように、実施例1〜14の絶縁コイルは、優れた熱伝導性と耐電圧特性とを有している。これに対し、比較例1、2、4、5及び7の絶縁コイルはいずれも、熱伝導率が低かった。また、比較例3、6及び8では絶縁テープを巻回する際にマイカ層の破損が起こった。   As can be seen from the results in Table 2, the insulating coils of Examples 1 to 14 have excellent thermal conductivity and withstand voltage characteristics. On the other hand, all of the insulating coils of Comparative Examples 1, 2, 4, 5 and 7 had low thermal conductivity. In Comparative Examples 3, 6 and 8, the mica layer was damaged when the insulating tape was wound.

1 コイル導体、2 マイカ層シート、3 補強材、4 絶縁テープ、5 絶縁層、6 補強基材、7 凝集無機充填剤、8 樹脂。   DESCRIPTION OF SYMBOLS 1 Coil conductor, 2 Mica layer sheet, 3 Reinforcement material, 4 Insulation tape, 5 Insulation layer, 6 Reinforcement base material, 7 Aggregation inorganic filler, 8 Resin.

Claims (3)

コイル導体と、マイカ層シートを補強材にバインダ樹脂で接着させた絶縁テープを該コイル導体に巻回し熱硬化性樹脂を含浸して硬化した絶縁層とを備える絶縁コイルであって、該補強材が、15μm以上70μm以下の平均二次粒子径を有する凝集無機充填剤を、該絶縁層中の樹脂成分に対して8重量%以上70重量%以下の量で含有することを特徴とする絶縁コイル。   An insulating coil comprising: a coil conductor; and an insulating layer obtained by winding an insulating tape in which a mica layer sheet is bonded to a reinforcing material with a binder resin around the coil conductor and impregnating a thermosetting resin. An insulating coil comprising an agglomerated inorganic filler having an average secondary particle diameter of 15 μm or more and 70 μm or less in an amount of 8 wt% or more and 70 wt% or less with respect to the resin component in the insulating layer . 前記補強材が、10μm以下の平均一次粒子径を有する補助無機充填剤を更に含有することを特徴とする請求項1に記載の絶縁コイル。   The insulating coil according to claim 1, wherein the reinforcing material further contains an auxiliary inorganic filler having an average primary particle diameter of 10 µm or less. 前記補強材に含有される前記凝集無機充填剤と前記補助無機充填剤との総量が、前記絶縁層中の樹脂成分に対して20重量%以上70重量%以下であることを特徴とする請求項2に記載の絶縁コイル。   The total amount of the aggregated inorganic filler and the auxiliary inorganic filler contained in the reinforcing material is 20% by weight or more and 70% by weight or less based on the resin component in the insulating layer. 2. The insulating coil according to 2.
JP2011115466A 2011-05-24 2011-05-24 Insulation coil Pending JP2012244861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115466A JP2012244861A (en) 2011-05-24 2011-05-24 Insulation coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115466A JP2012244861A (en) 2011-05-24 2011-05-24 Insulation coil

Publications (1)

Publication Number Publication Date
JP2012244861A true JP2012244861A (en) 2012-12-10

Family

ID=47465964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115466A Pending JP2012244861A (en) 2011-05-24 2011-05-24 Insulation coil

Country Status (1)

Country Link
JP (1) JP2012244861A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053374A1 (en) * 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same
WO2015114907A1 (en) * 2014-01-29 2015-08-06 三菱電機株式会社 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine
JP2015199885A (en) * 2014-04-10 2015-11-12 日立化成株式会社 Method for manufacturing prepreg tape
WO2018002973A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
WO2018179440A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material
WO2018179437A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Coil for rotary electric device, method for producing coil for rotary electric device, dry mica tape, and insulating article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028345A (en) * 1996-07-09 1998-01-27 Fuji Electric Co Ltd Insulated coil of stator in high-pressure rotating machine
WO2001016965A1 (en) * 1999-08-27 2001-03-08 Hitachi, Ltd. Insulating material, electric winding, and method of manufacture thereof
JP2002093257A (en) * 2000-09-13 2002-03-29 Japan Mica Ind Co Ltd Mica substrate sheet body and insulated coil
JP2005006389A (en) * 2003-06-11 2005-01-06 Mitsubishi Electric Corp Method of manufacturing insulated coil
JP2005104061A (en) * 2003-10-01 2005-04-21 Mitsubishi Electric Corp Method for manufacturing insulating sheet
JP2006014490A (en) * 2004-06-25 2006-01-12 Toshiba Corp Rotary electric machine
JP2007181814A (en) * 2005-11-23 2007-07-19 General Electric Co <Ge> Composite coating for groundwall insulation, method of manufacture thereof and article derived therefrom
JP2010166809A (en) * 2010-03-03 2010-07-29 Toshiba Corp Rotating electrical machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028345A (en) * 1996-07-09 1998-01-27 Fuji Electric Co Ltd Insulated coil of stator in high-pressure rotating machine
WO2001016965A1 (en) * 1999-08-27 2001-03-08 Hitachi, Ltd. Insulating material, electric winding, and method of manufacture thereof
JP2002093257A (en) * 2000-09-13 2002-03-29 Japan Mica Ind Co Ltd Mica substrate sheet body and insulated coil
JP2005006389A (en) * 2003-06-11 2005-01-06 Mitsubishi Electric Corp Method of manufacturing insulated coil
JP2005104061A (en) * 2003-10-01 2005-04-21 Mitsubishi Electric Corp Method for manufacturing insulating sheet
JP2006014490A (en) * 2004-06-25 2006-01-12 Toshiba Corp Rotary electric machine
JP2007181814A (en) * 2005-11-23 2007-07-19 General Electric Co <Ge> Composite coating for groundwall insulation, method of manufacture thereof and article derived therefrom
JP2010166809A (en) * 2010-03-03 2010-07-29 Toshiba Corp Rotating electrical machine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015053374A1 (en) * 2013-10-09 2017-03-09 日立化成株式会社 Prepreg mica tape and coil using the same
US10373727B2 (en) 2013-10-09 2019-08-06 Hitachi Chemical Company, Ltd Prepreg mica tape and coil using same
WO2015053374A1 (en) * 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same
US10199136B2 (en) 2014-01-29 2019-02-05 Mitsubishi Electric Corporation Insulating tape and production method thereof, stator coil and production method thereof, and rotating electric machine
JP6058169B2 (en) * 2014-01-29 2017-01-11 三菱電機株式会社 Insulating tape and manufacturing method thereof, stator coil and manufacturing method thereof, and rotating electric machine
WO2015114907A1 (en) * 2014-01-29 2015-08-06 三菱電機株式会社 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine
JP2015199885A (en) * 2014-04-10 2015-11-12 日立化成株式会社 Method for manufacturing prepreg tape
WO2018002973A1 (en) * 2016-07-01 2018-01-04 東芝三菱電機産業システム株式会社 Method for producing insulating structure, insulating structure, and rotating electrical machine
CN108886285A (en) * 2016-07-01 2018-11-23 东芝三菱电机产业系统株式会社 Insulation system manufacturing method, insulation system and rotating electric machine
JPWO2018002973A1 (en) * 2016-07-01 2019-04-18 東芝三菱電機産業システム株式会社 Insulation structure manufacturing method, insulation structure and rotary electric machine
EP3480922A4 (en) * 2016-07-01 2020-03-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for producing insulating structure, insulating structure, and rotating electrical machine
CN108886285B (en) * 2016-07-01 2020-10-02 东芝三菱电机产业系统株式会社 Insulation structure manufacturing method, insulation structure and rotating electrical machine
US10903710B2 (en) 2016-07-01 2021-01-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation Producing method for electrical insulating structure, electrical insulating structure and rotating electrical machine
WO2018179440A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Coil for dynamo-electric machines, method for producing coil for dynamo-electric machines, mica tape, cured product of mica tape and insulated material
WO2018179437A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Coil for rotary electric device, method for producing coil for rotary electric device, dry mica tape, and insulating article

Similar Documents

Publication Publication Date Title
JP3576119B2 (en) Coil for rotating electric machine and my car tape used for insulation of this coil
US9925744B2 (en) Insulating tape, method for producing same, and stator coil
JP6520966B2 (en) Prepreg mica tape and coil using the same
JP3843967B2 (en) Insulating coil manufacturing method
JP6058169B2 (en) Insulating tape and manufacturing method thereof, stator coil and manufacturing method thereof, and rotating electric machine
JP4103390B2 (en) Insulating material, electric winding and manufacturing method thereof
JP2008220095A (en) Coil insulator of rotating electrical machine
JP2012244861A (en) Insulation coil
JP5813225B2 (en) Method for producing tape for electrical insulation system
JP2016105688A (en) Electromagnetic coil and manufacturing method thereof
WO2016104141A1 (en) Insulating tape and method for manufacturing same, stator coil and method for manufacturing same, and generator
JP2010158113A (en) Electrical insulating member, stator coil for rotating electrical machine, and rotating electrical machine
JP3879054B2 (en) Mica base sheet and insulation coil
JPH0945133A (en) Mica base sheet-like body and insulated coil
WO2018003950A1 (en) Coil for rotary electric machine, method for producing coil for rotary electric machine, mica tape, method for producing mica tape, cured product of mica tape, and insulating article
JP6403444B2 (en) Mica tape and stator coil
JP5253832B2 (en) Insulation sheet, stator coil and rotating electric machine
JP2010166809A (en) Rotating electrical machine
WO2018179439A1 (en) Coil for rotary electric device, method for producing coil for rotary electric device, mica tape, cured product of mica tape, and insulating article
JP7203285B1 (en) Rotating machine coil, manufacturing method thereof, and rotating machine
JP7397876B2 (en) Insulating sheet, stator and stator manufacturing method
JP2018170252A (en) Coil for rotary electric machines, prepreg mica tape, method for producing prepreg mica tape, cured product of prepreg mica tape, article with insulating layer, and method for producing coil for rotary electric machines
WO2018179437A1 (en) Coil for rotary electric device, method for producing coil for rotary electric device, dry mica tape, and insulating article
JP2002374646A (en) Insulating material and insulated coil using it
JP2019217668A (en) Dry mica tape, insulator, coil for rotary electric machine, and method of manufacturing coil for rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150423

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150619