[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012137050A - 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置 - Google Patents

多気筒内燃機関の気筒間空燃比ばらつき異常検出装置 Download PDF

Info

Publication number
JP2012137050A
JP2012137050A JP2010290908A JP2010290908A JP2012137050A JP 2012137050 A JP2012137050 A JP 2012137050A JP 2010290908 A JP2010290908 A JP 2010290908A JP 2010290908 A JP2010290908 A JP 2010290908A JP 2012137050 A JP2012137050 A JP 2012137050A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
abnormality
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010290908A
Other languages
English (en)
Inventor
Taku Kadooka
卓 角岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010290908A priority Critical patent/JP2012137050A/ja
Publication of JP2012137050A publication Critical patent/JP2012137050A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)

Abstract

【課題】過給機のタービンによる攪拌の影響を抑制して検出精度を向上し、誤検出を防止する。
【課題手段】ウエストゲートバルブ27が開状態のときには、触媒前センサ17の検出値に基づいて気筒間空燃比ばらつき異常を検出し、ウエストゲートバルブ27が閉状態のときには、触媒後センサ18の検出値に基づいて気筒間空燃比ばらつき異常を検出する。触媒前センサ17に基づく検出では、ウエストゲート通路26を通過した排気が測定されるので、過給機25の排気タービン25bの影響による空燃比の平準化が抑制される。触媒後センサ18に基づく検出では、一部気筒で空燃比がリッチになる異常が生じた場合には排気中の水素量増加に伴いセンサ出力が正常時よりもリーン側になり、これによって検出を継続的に実行できる。
【選択図】図1

Description

本発明は、多気筒内燃機関の気筒間空燃比のばらつき異常を検出するための装置に係り、特に、多気筒内燃機関において気筒間の空燃比が比較的大きくばらついていることを検出する装置に関する。
一般に、触媒を利用した排気浄化システムを備える内燃機関では、排気中有害成分の触媒による浄化を高効率で行うため、内燃機関で燃焼される混合気の空気と燃料との混合割合、すなわち空燃比のコントロールが欠かせない。こうした空燃比の制御を行うため、内燃機関の排気通路に空燃比センサを設け、これによって検出された空燃比を所定の目標空燃比に一致させるようフィードバック制御を実施している。
一方、多気筒内燃機関においては、通常全気筒に対し同一の制御量を用いて空燃比制御を行うため、空燃比制御を実行したとしても実際の空燃比が気筒間でばらつくことがある。このときばらつきの程度が小さければ、空燃比フィードバック制御で吸収可能であり、また触媒でも排気中有害成分を浄化処理可能なので、排気エミッションに影響を与えず、特に問題とならない。
しかし、例えば一部の気筒の燃料噴射系が故障するなどして、気筒間の空燃比が大きくばらつくと、排気エミッションを悪化させてしまい、問題となる。このような排気エミッションを悪化させる程の大きな空燃比ばらつきは異常として検出するのが望ましい。特に自動車用内燃機関の場合、排気エミッションの悪化した車両の走行を未然に防止するため、気筒間空燃比ばらつき異常を車載状態(オンボード)で検出することが要請されており、最近ではこれを法規制化する動きもある。
例えば特許文献1に記載の装置では、空燃比センサの出力の軌跡長又は軌跡面積から、予め定められたマップ又は関数を用いて、気筒間空燃比ばらつきの度合いであるインバランス割合の値を求めている。
特開2009−209747号公報 特開2008−208740号公報
しかし、過給機を有する内燃機関において、過給機のタービンよりも下流側に空燃比センサが配置されている場合には、各気筒から排出される排気がタービンを通過することで排気が攪拌され、精度よくインバランスを検出できないおそれがある。
特許文献2に開示された装置では、過給機のウエストゲートバルブを閉状態として排気を攪拌させることで、気筒間で空燃比にばらつきが生じている場合にも空燃比を均一にしている。しかし、ウエストゲートバルブを開状態とした場合の空燃比センサ出力を利用するとの着想は開示も示唆もされていない。
そこで本発明は、以上の事情に鑑みて創案され、その目的は、検出精度を向上し、誤検出を防止し得る多気筒内燃機関の気筒間空燃比ばらつき異常検出装置を提供することにある。
本発明の一の態様は、
多気筒内燃機関に関連して設置された過給機と、
前記多気筒内燃機関の排気通路に設置され酸化還元反応により排気エミッションを浄化する機能を有する触媒コンバータと、
前記過給機のタービンをバイパスするウエストゲート通路と、
前記ウエストゲート通路を開閉するウエストゲートバルブと、
前記ウエストゲート通路の出口よりも下流側であって前記触媒コンバータよりも上流側の前記排気通路に設置された第1空燃比センサと、
前記第1空燃比センサの出力の変動度合いに相関するパラメータの値を所定の第1しきい値と比較して気筒間空燃比ばらつき異常を検出する第1異常検出手段と、
を備えた多気筒内燃機関の気筒間空燃比ばらつき異常検出装置において、
前記触媒コンバータよりも下流側の前記排気通路に設置された第2空燃比センサと、
前記第2空燃比センサの出力に相関するパラメータの値を所定の第2しきい値と比較して気筒間空燃比ばらつき異常を検出する第2異常検出手段と、
前記ウエストゲートバルブが開状態のときに前記第1異常検出手段を選択し、前記ウエストゲートバルブが閉状態のときに前記第2異常検出手段を選択する選択手段と、
を更に備えたことを特徴とする多気筒内燃機関の気筒間空燃比ばらつき異常検出装置である。
この態様では、選択手段が、ウエストゲートバルブが開状態のときに第1異常検出手段を選択し、ウエストゲートバルブが閉状態のときに第2異常検出手段を選択する。したがって、ウエストゲートバルブが開状態のときには、過給機のタービンの影響による空燃比の平準化が抑制され、検出精度を向上することができる。また、触媒コンバータが排気中の炭化水素類から水素を生成する機能を有するため、一部気筒で空燃比がリッチになる異常が生じた場合には排気中の水素量増加に伴い第2空燃比センサの出力が正常時よりもリーン側になり、これによって異常を検出することが可能である。したがって、ウエストゲートバルブが閉状態のときであっても第2異常検出手段によって異常を検出できるので、検出を継続的に実行することが可能になる。
本発明によれば、タービンによる排気の攪拌の影響を抑制して検出精度を向上し、誤検出を防止することができるという、優れた効果が発揮される。
本発明の第1実施形態に係る内燃機関の概略図である。 触媒前センサおよび触媒後センサの出力特性を示すグラフである。 大気圧に応じた空燃比センサ出力の変動を示すグラフである。 図3のIV部に相当する拡大図である。 第1実施形態における気筒間空燃比ばらつき異常検出のためのルーチンを示すフローチャートである。 参考例における気筒間空燃比ばらつき異常検出のためのルーチンを示すフローチャートである。
以下、本発明の実施形態を添付図面に基づき説明する。
図1は、本実施形態に係る内燃機関の概略図である。図示されるように、内燃機関(エンジン)1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストンを往復移動させることにより動力を発生する。本実施形態の内燃機関1は、自動車に搭載された多気筒内燃機関であり、より具体的には直列4気筒の火花点火式内燃機関即ちガソリンエンジンである。但し本発明が適用可能な内燃機関はこのようなものに限られず、多気筒内燃機関であれば気筒数、形式等は特に限定されない。
図示しないが、内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁と、排気ポートを開閉する排気弁とが気筒ごとに配設されており、各吸気弁および各排気弁はカムシャフト又はソレノイドアクチュエータによって開閉させられる。シリンダヘッドの頂部には、燃焼室3内の混合気を点火するための点火プラグが気筒ごとに取り付けられている。
各気筒の吸気ポートは、気筒毎の枝管4を介して、吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気管13が接続されており、吸気管13は過給機25のコンプレッサ25aの出口に連結されている。コンプレッサ25aの入口は、エアクリーナ9に連結されている。吸気管13には、吸入空気量(単位時間当たりの吸入空気の量すなわち吸気流量)を検出するためのエアフローメータ5と、電子制御式のスロットルバルブ10とが組み込まれている。吸気ポート、枝管4、サージタンク8及び吸気管13により吸気通路が形成される。吸気管13の周りには、吸気管13内を流れる吸入空気を冷却するためのインタークーラ11が配置されている。インタークーラ11内に機関冷却水が導かれ、機関冷却水によって吸入空気が冷却される。過給機25のコンプレッサ25aをバイパスするように、エアバイパス通路20、及びこれを開閉する電子制御式のエアバイパスバルブ(ABV)21が設置されている。このABV21は、スロットルバルブ10が急閉された場合に、スロットルバルブ10の上流側の圧力が一時的に急上昇するのを防止し、ひいては過給機25からのサージ音の発生を防止する。
吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が、気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁の開弁時に燃焼室3に吸入され、ピストンで圧縮され、点火プラグ7で点火燃焼させられる。
一方、各気筒の排気ポートは、排気マニフォールド14に接続される。排気マニフォールド14は、その上流部をなす気筒毎の枝管と、その下流部をなす排気集合部とからなる。排気集合部の下流側は、過給機25の排気タービン25bの入口に連結されている。排気タービン25bの出口は、排気管6に接続されている。排気ポート、排気マニフォールド14及び排気管6により排気通路が形成される。そして排気管6には、過給機25の排気タービン25bをバイパスするように、ウエストゲート通路26、及びこれを開閉する電子制御式のウエストゲートバルブ(WGV)27が設置されている。WGV27は、モータ及び歯車機構によって弁体を駆動するように構成されており、歯車機構にはその回転位置を検出することで弁体の開度を検出するためのWGV開度センサ28が設けられている。なおWGV27は、過給圧又は吸気管圧力によって制御されるダイヤフラム式のものであってもよい。
排気管6には、それぞれ三元触媒からなる触媒、すなわち上流触媒11と下流触媒19が直列に取り付けられている。これら上流触媒11及び下流触媒19は、例えばアルミナに、白金(Pt)、パラジウム(Ph)あるいはロジウム(Rd)などの貴金属を担持させたものであり、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)等をまとめて触媒反応により浄化できる。
上流触媒11の上流側及び下流側に、それぞれ排気ガスの空燃比を検出するための触媒前センサ17及び触媒後センサ18が設置されている。これら触媒前センサ17及び触媒後センサ18は、上流触媒11の直前及び直後の位置に設置され、排気中の酸素濃度に基づいて空燃比を検出する。触媒前センサ17が本発明にいう「第1空燃比センサ」に該当し、ウエストゲート通路26の出口すなわち終端部よりも下流側の排気管6に設置される。触媒前センサ18は本発明にいう「第2空燃比センサ」に該当する。
上述の点火プラグ7、スロットルバルブ10、インジェクタ12、ABV21及びWGV27等は、コントローラとしての電子制御ユニット(以下ECUと称す)22に電気的に接続されている。ECU22は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU22には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒後センサ18、WGV開度センサ28のほか、内燃機関1のクランク角を検出するクランク角センサ16、アクセル開度を検出するアクセル開度センサ15、内燃機関1の冷却水の温度を検出する水温センサ23、その他の各種センサが、図示されないA/D変換器等を介して電気的に接続されている。ECU22は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、スロットル開度、燃料噴射量、燃料噴射時期等を制御する。なおスロットル開度は通常アクセル開度に応じた開度に制御される。ECU22はまた、ABV21及びWGV27を制御し、吸気及び排気を必要に応じてバイパスさせる。
触媒前センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能である。図2に触媒前センサ17の出力特性を示す。図示するように、触媒前センサ17は、検出した排気空燃比(触媒前空燃比A/Ff)に比例した大きさの電圧信号Vfを出力する。排気空燃比がストイキ(理論空燃比、例えばA/F=14.6)であるときの出力電圧はVreff(例えば約3.3V)である。
他方、触媒後センサ18は所謂O2センサからなり、ストイキを境に出力値が急変する特性を持つ。図2に触媒後センサ18の出力特性を示す。図示するように、排気空燃比(触媒後空燃比A/Fr)がストイキであるときの出力電圧、すなわちストイキ相当値はVrefr(例えば0.45V)である。触媒後センサ18の出力電圧は所定の範囲(例えば0〜1(V))内で変化する。排気空燃比がストイキよりリーンのとき、触媒後センサの出力電圧はストイキ相当値Vrefrより低くなり、排気空燃比がストイキよりリッチのとき、触媒後センサの出力電圧はストイキ相当値Vrefrより高くなる。
上流触媒11及び下流触媒19は、それぞれに流入する排気ガスの空燃比A/Fがストイキ近傍のときにNOx、HCおよびCOを同時に浄化するが、この三者を同時に高効率で浄化できる空燃比の幅(ウィンドウ)は比較的狭い。
上流触媒11に流入する排気ガスの空燃比がストイキ近傍に制御されるように、空燃比制御(ストイキ制御)がECU22により実行される。この空燃比制御は、触媒前センサ17によって検出された排気空燃比を所定の目標空燃比であるストイキに一致させるような主空燃比制御(主空燃比フィードバック制御)と、触媒後センサ18によって検出された排気空燃比をストイキに一致させるような補助空燃比制御(補助空燃比フィードバック制御)とからなる。
さて、例えば全気筒のうちの一部の気筒のインジェクタ12が故障し、気筒間に空燃比のばらつき(インバランス:imbalance)が発生したとする。例えば#1気筒が他の#2、#3及び#4気筒よりも燃料噴射量が多くなり、その空燃比が大きくリッチ側にずれる場合等である。このときでも前述の主空燃比フィードバック制御により比較的大きな補正量を与えれば、触媒前センサ17に供給されるトータルガスの空燃比をストイキに制御できる場合がある。しかし、気筒別に見ると、#1気筒がストイキより大きくリッチ、#2、#3及び#4気筒がストイキよりリーンであり、全体のバランスとしてストイキとなっているに過ぎず、エミッション上好ましくないことは明らかである。そこで本実施形態では、かかる気筒間空燃比ばらつき異常を検出する装置が装備されている。
図3に示すように、触媒前センサ17によって検出される排気空燃比A/Fは、1エンジンサイクル(=720°CA)を1周期として周期的に変動する傾向にある。そして気筒間空燃比ばらつきが発生すると、1エンジンサイクル内での変動が大きくなる。(B)の空燃比線図aはWGV27を閉じている場合、bはWGV27を開いている場合をそれぞれ示す。見られるように、WGV27を閉じている場合には、空燃比変動の振幅が比較的小さくなる。なお、この図3は理解の容易のために模式的に示したものである。
ここでインバランス割合(%)とは、気筒間空燃比のばらつき度合いを表すパラメータである。即ち、インバランス割合とは、全気筒のうちある1気筒のみが燃料噴射量ズレを起こしている場合に、その燃料噴射量ズレを起こしている気筒(インバランス気筒)の燃料噴射量がどれくらいの割合で、燃料噴射量ズレを起こしていない気筒(バランス気筒)の燃料噴射量即ち基準噴射量からズレているかを示す値である。インバランス割合をIB、インバランス気筒の燃料噴射量をQib、バランス気筒の燃料噴射量即ち基準噴射量をQsとすると、IB=(Qib−Qs)/Qsで表される。インバランス割合IBが大きいほど、インバランス気筒のバランス気筒に対する燃料噴射量ズレが大きく、空燃比ばらつき度合いは大きい。
[気筒間空燃比ばらつき異常検出]
上記の説明から理解されるように、空燃比ばらつき異常が発生すると触媒前センサ出力の変動が大きくなる。そこでこの変動度合いをモニタすることで、空燃比ばらつき異常を検出することが可能である。本実施形態では、触媒前センサ出力の変動度合いに相関するパラメータである変動パラメータを算出すると共に、この変動パラメータを所定の異常判定値と比較してばらつき異常を検出する。
ここで変動パラメータの算出方法について説明する。図4は、図3のIV部に相当する拡大図であり、特に1エンジンサイクル内の触媒前センサ出力の変動を示す。ここで触媒前センサ出力としては、触媒前センサ17の出力電圧Vfを空燃比A/Fに換算した値を用いる。但し触媒前センサ17の出力電圧Vfを直接用いることも可能である。
(B)図に示すように、ECU22は、1エンジンサイクル内において、所定のサンプル周期τ(単位時間、例えば4ms)毎に、触媒前センサ出力A/Fの値を取得する。そして今回のタイミング(第2のタイミング)で取得した値A/Fnと、前回のタイミング(第1のタイミング)で取得した値A/Fn-1との差ΔA/Fnを、次式(1)により求める。この差ΔA/Fnは今回のタイミングにおける微分値あるいは傾きと言い換えることができる。
Figure 2012137050
最も単純には、この差ΔA/Fnが触媒前センサ出力の変動を表す。変動度合いが大きくなるほど空燃比線図の傾きが絶対値で大きくなり、差ΔA/Fnが絶対値で大きくなるからである。そこで所定の1タイミングにおける差ΔA/Fnの値を変動パラメータとすることができる。
但し、本実施形態では精度向上のため、複数の差ΔA/Fnの平均値を変動パラメータとする。本実施形態では、1エンジンサイクル内において、各タイミング毎に差ΔA/Fnを積算し、最終積算値をサンプル数Nで除し、1エンジンサイクル内の差ΔA/Fnの平均値を求める。そしてさらに、Mエンジンサイクル分(例えばM=100)だけ差ΔA/Fnの平均値を積算し、最終積算値をサイクル数Mで除し、Mエンジンサイクル内の差ΔA/Fnの平均値を求める。
触媒前センサ出力の変動度合いが大きいほど、Mエンジンサイクル内の差ΔA/Fnの平均値も絶対値で大きくなる。そこで当該平均値が絶対値で所定の異常判定値以上であればばらつき異常ありと判定され、当該平均値が異常判定値より小さければばらつき異常なし、即ち正常と判定される。
なお、触媒前センサ出力A/Fは増加する場合と減少する場合とがあるので、これら各場合の一方についてだけ上記差ΔA/Fnあるいはその平均値を求め、これを変動パラメータとすることができる。特に1気筒のみリッチずれの場合、当該1気筒に対応した排気ガスを触媒前センサが受けた時にその出力が急速にリッチ側に変化(すなわち急減)するので、減少側のみの値をリッチずれ検出のために用いることも可能である(リッチインバランス判定)。この場合には、図4の(B)のグラフにおける右下がりの領域のみを、リッチずれ検出のために利用することになる。一般にリーンからリッチへの移行は、リッチからリーンへの移行よりも急峻に行われる場合が多いため、この方法によればリッチずれを精度よく検出することが期待できる。もっとも、これに限定されず、増加側の値のみを用いること、あるいは、減少側と増加側の双方の値を用いる(差ΔA/Fnの絶対値を積算し、この積算値をしきい値と比較することで)ことも可能である。
また、触媒前センサ出力の変動度合いに相関する如何なる値をも変動パラメータとすることができる。例えば、1エンジンサイクル内の触媒前センサ出力の最大値と最小値の差(所謂ピークトゥピーク; peak to peak)に基づいて、変動パラメータを算出することもできる。触媒前センサ出力の変動度合いが大きいほど当該差も大きくなるからである。
ところで、過給機を有する内燃機関において、過給機のタービンよりも下流側に空燃比センサが配置されている場合には、各気筒から排出される排気がタービンを通過することで排気が攪拌され、精度よくインバランスを検出できないおそれがある。例えば、上述したとおり、図3に示すように、WGV27を開いた状態で測定(曲線b)した場合に、A/Fの値のばらつきが顕著であるエンジンでも、WGV27を閉じた状態で測定(曲線a)した場合には、A/Fの値のばらつきは顕著でなくなる。このため、WGV27の動作状態に関わらず空燃比ばらつき異常を検出すると、検出精度が低下し、誤検出が発生する虞もある。このような現象を考慮して、本実施形態では次の異常検出ルーチンにより、検出精度の低下を抑制している。
[気筒間空燃比ばらつき異常検出ルーチン]
次に、図5を用いて、気筒間空燃比ばらつき異常検出ルーチンについて説明する。
まずステップS101では、異常検出を行うのに適した所定の前提条件が成立しているか否かが判断される。この前提条件は、次の各条件が成立したときに成立する。
(1)エンジンの暖機が終了している。例えば水温センサ23で検出された水温が所定値以上であるとき暖機終了とされる。
(2)少なくとも触媒前センサ17が活性化している。
(3)エンジンが定常運転中である。
(4)ストイキ制御中である。
(5)エンジンが検出領域内で運転している。
(6)触媒前センサ17の出力A/Fが減少中である。
これらのうち(6)は、このルーチンが上述したリッチインバランス判定(減少側の値のみをリッチずれ検出のために用いる方法)によっていることを示す。前提条件が成立していない場合にはルーチンが終了される。
他方、前提条件が成立している場合には、WGV開度センサ28からの信号により、WGV27の開閉状態が検出される(S102)。そして、この検出結果に基づいて、WGV27が開状態であるかが判断される(S103)。
ステップS103で肯定、すなわちWGV27が開状態であるときは、排気タービン25bを通過せずウエストゲート通路26を通じて流れる排気が、触媒前センサ17に供給されることになる。この場合には次に、触媒前センサ17の出力に基づいて、空燃比変動が検出される(S104)。ここでは、今回のタイミングにおける触媒前センサ17(第1空燃比センサ)の出力A/Fnが取得され、今回のタイミングにおける出力差ΔA/Fnが、前式(1)より算出され記憶される。そして、これらの処理がMサイクル(Mは任意の整数)について終了するまで繰返し実行される。Mサイクルが終了すると、これまでに算出された出力差ΔA/Fnの平均値ΔA/FAVが、例えば上述のように差ΔA/Fnの積算値をサンプル数N及びエンジンサイクル数Mで除することによって算出される。この平均値ΔA/FAVが空燃比変動を表す。
そして、差ΔA/Fnの平均値ΔA/FAVの絶対値が、予め定められた異常しきい値αよりも大であるかが判定される(S105)。平均値ΔA/FAVの絶対値が異常しきい値αよりも小さい場合、ステップS109に進んで、ばらつき異常無しすなわち正常と判定され、ルーチンが終了される。
他方、平均値ΔA/FAVの絶対値が異常しきい値α以上であるときは、ステップS106に進んで、ばらつき異常有りすなわち異常と判定され、ルーチンが終了される。なお、異常判定と同時に、あるいは異常判定が2トリップ(すなわち、エンジン始動から停止までの1トリップを2回連続で)続けて出された場合に、異常の事実をユーザに知らせるべくチェックランプ等の警告装置を起動させ、且つ所定のダイアグノーシスメモリに異常情報を、整備作業者による呼び出しが可能な態様で記憶させるのが好ましい。
他方、ステップS103で否定、すなわちWGV27が閉状態であるときは、排気タービン25bを通過することで攪拌された排気が、触媒前センサ17に供給されることになるため、触媒前センサ17の出力に基づく異常判定は行われない。代わりに、この場合には触媒後センサ18(第2空燃比センサ)の出力に基づく異常判定が行われる。ここでは、触媒後センサ18の出力A/FnがMサイクル(Mは任意の整数)にわたって繰返し取得され、Mサイクルが終了すると、これまでに算出された出力A/Fnの平均値A/FAVが、例えばA/Fnの積算値をサンプル数N及びエンジンサイクル数Mで除することによって算出される(S107)。この平均値A/FAVが空燃比を表す。
そして、空燃比A/Fnの平均値A/FAVが、予め定められた異常しきい値βよりも大すなわちリーンであるかが判定される(S108)。平均値A/FAVが異常しきい値βよりも小さい場合、ステップS109に進んで、ばらつき異常無しすなわち正常と判定され、ルーチンが終了される。
他方、平均値A/FAVが異常しきい値β以上であるとき(すなわち、リーンである場合)は、ステップS106に進んで、上述の触媒前センサ17による判定の場合と同様の処理により、ばらつき異常有りすなわち異常と判定され、ルーチンが終了される。
このような一連の処理の結果、本実施形態では、WGV27が開状態のときには、触媒前センサ17(第1空燃比センサ)の出力に基づく異常検出が選択され、WGV27が閉状態のときには、触媒後センサ18(第2空燃比センサ)の出力に基づく異常検出が選択される。したがって、WGV27が開状態のときには、過給機25の排気タービン25bの影響による空燃比の平準化が抑制され、検出精度を向上することができる。
また、一部気筒で空燃比がリッチになる異常が生じた場合には排気中の水素量増加に伴い触媒後センサ18(第2空燃比センサ)の出力が正常時よりもリーン側になり、これによって異常を検出することが可能である。したがって、WGV27が閉状態のときであっても触媒後センサ18の出力に基づく異常検出によって異常を検出できるので、検出を継続的に実行することが可能になる。
次に、本発明に関連する参考例について説明する。図6に示される参考例は、検出精度を向上し、誤検出を防止するために、気筒間空燃比ばらつき異常の検出を、ウエストゲート通路26を通過する排気の割合が所定値以上である場合に限って実行するものである。この参考例の機械的構成は上記第1実施形態と同様であるため、その詳細の説明を省略する。
この参考例のECU22における処理について説明する。図6において、まずECU22は、WGV開度センサ28及びエアフローメータ5からの信号に基づいて、WGV27の開閉状態、及び排気流量を検出する(S201)。次にECU22は、これら検出したWGV27の開閉状態及び排気流量に基づいて、排気タービン25bの通過流量に対するウエストゲート通路26の通過流量の比率kwgを算出する(S202)。
次にECU22は、算出した比率kwgを、予め定められた基準値と比較し、基準値以上であるかを判断する(S203)。否定すなわちウエストゲート通路26の通過流量の比率kwgが低い場合には本ルーチンを終了する。
ステップS203で肯定、すなわちウエストゲート通路26の通過流量の比率kwgが基準値以上である場合には、ECU22は触媒前センサ17の出力に基づいて、空燃比変動を検出し(S204)、検出値を異常しきい値αと比較し(S205)、肯定の場合には異常判定が(S207)、また否定の場合には正常判定が(S206)選択される。これらステップS205,S206及びS207における処理は、上記第1実施形態におけるステップS105、S106及びS109の処理と同様である。
このような一連の処理の結果、本実施形態では、上記第1実施形態と同様に、タービンの影響による空燃比の平準化が抑制され、検出精度を向上することができる。
本発明は前述の各態様のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
例えば、上記第1実施形態では触媒前センサ17の出力による異常検出では、出力差ΔA/Fnの平均値A/FAVを用いたが、出力の変動度合いに相関するパラメータであれば他の値を用いてもよい。触媒後センサ18の出力による異常検出では空燃比A/Fnの平均値A/FAVを用いたが、出力に相関するパラメータであれば他の値を用いてもよい。
前記各態様では減少時(リッチ側への変化時)のみの空燃比センサ出力を利用してリッチずれ異常を検出した。しかしながら、増大時(リーン側への変化時)のみの空燃比センサ出力を利用する態様や、減少時および増大時の両者の空燃比センサ出力を利用する態様も可能である。またリッチずれ異常のみならず、リーンずれ異常をも検出することが可能であるし、これらリッチずれ及びリーンずれを区別せず、広く空燃比ばらつき異常を検出するようにしてもよい。
1 内燃機関
3 燃焼室
5 エアフローメータ
6 排気管
11 上流触媒
12 インジェクタ
14 排気マニフォールド
17 触媒前センサ
18 触媒後センサ
22 電子制御ユニット(ECU)
26 ウエストゲート通路
27 ウエストゲートバルブ(WGV)

Claims (1)

  1. 多気筒内燃機関に関連して設置された過給機と、
    前記多気筒内燃機関の排気通路に設置され酸化還元反応により排気エミッションを浄化する機能を有する触媒コンバータと、
    前記過給機のタービンをバイパスするウエストゲート通路と、
    前記ウエストゲート通路を開閉するウエストゲートバルブと、
    前記ウエストゲート通路の出口よりも下流側であって前記触媒コンバータよりも上流側の前記排気通路に設置された第1空燃比センサと、
    前記第1空燃比センサの出力の変動度合いに相関するパラメータの値を所定の第1しきい値と比較して気筒間空燃比ばらつき異常を検出する第1異常検出手段と、
    を備えた多気筒内燃機関の気筒間空燃比ばらつき異常検出装置において、
    前記触媒コンバータよりも下流側の前記排気通路に設置された第2空燃比センサと、
    前記第2空燃比センサの出力に相関するパラメータの値を所定の第2しきい値と比較して気筒間空燃比ばらつき異常を検出する第2異常検出手段と、
    前記ウエストゲートバルブが開状態のときに前記第1異常検出手段を選択し、前記ウエストゲートバルブが閉状態のときに前記第2異常検出手段を選択する選択手段と、
    を更に備えたことを特徴とする多気筒内燃機関の気筒間空燃比ばらつき異常検出装置。
JP2010290908A 2010-12-27 2010-12-27 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置 Pending JP2012137050A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010290908A JP2012137050A (ja) 2010-12-27 2010-12-27 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010290908A JP2012137050A (ja) 2010-12-27 2010-12-27 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Publications (1)

Publication Number Publication Date
JP2012137050A true JP2012137050A (ja) 2012-07-19

Family

ID=46674642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010290908A Pending JP2012137050A (ja) 2010-12-27 2010-12-27 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Country Status (1)

Country Link
JP (1) JP2012137050A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118850A1 (ja) * 2013-02-04 2014-08-07 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比インバランス検出装置
JP2014214668A (ja) * 2013-04-25 2014-11-17 トヨタ自動車株式会社 空燃比インバランス判定装置
CN104696088A (zh) * 2013-12-06 2015-06-10 现代自动车株式会社 具有铝涡轮机外壳的发动机系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118850A1 (ja) * 2013-02-04 2014-08-07 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比インバランス検出装置
JP2014148965A (ja) * 2013-02-04 2014-08-21 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比インバランス検出装置
US10006382B2 (en) 2013-02-04 2018-06-26 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine
JP2014214668A (ja) * 2013-04-25 2014-11-17 トヨタ自動車株式会社 空燃比インバランス判定装置
CN104696088A (zh) * 2013-12-06 2015-06-10 现代自动车株式会社 具有铝涡轮机外壳的发动机系统
KR101534701B1 (ko) * 2013-12-06 2015-07-24 현대자동차 주식회사 알루미늄 터빈하우징을 갖는 엔진시스템

Similar Documents

Publication Publication Date Title
US9027539B2 (en) Control apparatus for internal combustion engine
US8413497B2 (en) Abnormality diagnostic device of internal combustion engine with turbocharger
JP5765350B2 (ja) 多気筒内燃機関の気筒間空燃比インバランス検出装置
JP4798508B2 (ja) 触媒の劣化診断装置
JP5062529B2 (ja) 触媒の劣化を診断するための装置及び方法
JP4877610B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5067509B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US7325393B2 (en) Deterioration diagnosing device and diagnosing method for exhaust gas purification catalyst
US20120297866A1 (en) Apparatus and method for detecting abnormal air-fuel ratio variation
JP2010190089A (ja) 多気筒内燃機関の異常診断装置
US9027535B2 (en) Control apparatus for internal combustion engine
US7168237B2 (en) Deterioration diagnosing device and diagnosing method for exhaust gas purification catalyst
JP2012092803A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2014013032A (ja) 気筒間空燃比ばらつき異常検出装置
JP5999008B2 (ja) 多気筒内燃機関の気筒間空燃比インバランス検出装置
JP2012137050A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2005240716A (ja) 触媒の劣化診断装置
JP2014181650A (ja) 多気筒型内燃機関の異常検出装置
JP2012145054A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2010255490A (ja) 触媒異常診断装置
US20120116644A1 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection apparatus for multi-cylinder internal combustion engine
US20240408530A1 (en) Method for monitoring a regeneration of a particulate filter in the exhaust system of an internal combustion engine
JP2022083541A (ja) 内燃機関の制御装置
JP2013015051A (ja) 気筒間空燃比ばらつき異常検出装置