[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012127899A - Positioning accuracy determining device - Google Patents

Positioning accuracy determining device Download PDF

Info

Publication number
JP2012127899A
JP2012127899A JP2010281407A JP2010281407A JP2012127899A JP 2012127899 A JP2012127899 A JP 2012127899A JP 2010281407 A JP2010281407 A JP 2010281407A JP 2010281407 A JP2010281407 A JP 2010281407A JP 2012127899 A JP2012127899 A JP 2012127899A
Authority
JP
Japan
Prior art keywords
speed
positioning
derived
acceleration sensor
satellite positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010281407A
Other languages
Japanese (ja)
Other versions
JP5601188B2 (en
Inventor
Yasuyuki Mishima
康之 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010281407A priority Critical patent/JP5601188B2/en
Publication of JP2012127899A publication Critical patent/JP2012127899A/en
Application granted granted Critical
Publication of JP5601188B2 publication Critical patent/JP5601188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positioning accuracy determining device capable of determining a magnitude of a position error of GPS positioning.SOLUTION: The positioning accuracy determining device includes: a moving distance operation unit 9 that calculates moving distances by a velocity sensor-derived velocity by a velocity sensor 2, a satellite positioning velocity by a satellite positioning velocity operation unit 6, a Doppler velocity by a Doppler velocity operation unit 7, and an acceleration sensor-derived velocity by an acceleration sensor-derived velocity operation unit 8 respectively; and an accuracy determining unit 10 that calculates a difference between a moving distance obtained by the satellite positioning velocity and other moving distances and, when the difference is larger than a threshold, determines that the GPS positioning accuracy is lowered.

Description

本発明は、GPS測位の位置誤差の大小が判定できる測位精度判定装置に関する。   The present invention relates to a positioning accuracy determination device capable of determining the size of a position error of GPS positioning.

移動体の現在位置を検出する測位装置として、従来よりアメリカ合衆国のGPS(Global Positioning System)を利用した測位装置が知られている。GPSの測位精度は、GPS衛星の配置やそれに基づく受信感度、電離層の状態などを考慮した、精度の劣化係数(Dilution of Precision;精度低下率ともいう、以下、DOP)で評価される。DOPが大きいほど、測位精度が低い。よって、DOPの大小を基に位置誤差の推定が行われる。例えば、DOPが1のとき、5.6m程の位置誤差があると言われる。DOPは、GPS衛星から受信機に対して提供される。   As a positioning device for detecting the current position of a moving body, a positioning device using a GPS (Global Positioning System) in the United States has been known. The positioning accuracy of GPS is evaluated by a degradation factor (Dilution of Precision; hereinafter referred to as “DOP”), which takes into account the arrangement of GPS satellites, the reception sensitivity based on the GPS satellite, the ionospheric state, and the like. The larger the DOP, the lower the positioning accuracy. Therefore, the position error is estimated based on the size of DOP. For example, when DOP is 1, it is said that there is a position error of about 5.6 m. The DOP is provided from the GPS satellite to the receiver.

特開平9−304096号公報Japanese Patent Laid-Open No. 9-304096 特開2010−8095号公報JP 2010-8095 A

GPSの測位精度をDOPで評価する場合、GPS衛星の電波を遮るビル等の障害物がない開放地などでは、比較的、DOPに比例した位置誤差を得ることができる。しかし、障害物がある場所では、障害物による電波の乱反射に起因するマルチパスが測位精度に影響をもたらし、位置誤差がDOPに比例しないことが多い。なお、マルチパスは局地的な現象であるため、GPS以外のシステムからの補正信号を利用しても、マルチパスによる測位精度低下は改善されないことがある。このため、GPSの測位情報を利用したシステム全般においても、マルチパスによるGPS測位精度低下を改善することが課題となっている。   When GPS positioning accuracy is evaluated by DOP, a position error relatively proportional to DOP can be obtained in an open area where there is no obstacle such as a building that blocks radio waves from GPS satellites. However, in places where there are obstacles, the multipath resulting from the irregular reflection of radio waves by the obstacles affects the positioning accuracy, and the position error is often not proportional to DOP. In addition, since multipath is a local phenomenon, even if a correction signal from a system other than GPS is used, a decrease in positioning accuracy due to multipath may not be improved. For this reason, in general systems using GPS positioning information, it is an issue to improve the GPS positioning accuracy degradation due to multipath.

また、近年実用化された高感度受信機では、従来よりGPS衛星の電波が受信しやすくなったため、DOPのみでは位置誤差の大小を推定することが困難となっている。   In addition, high sensitivity receivers that have been put into practical use in recent years have been easier to receive radio waves from GPS satellites than before, so it is difficult to estimate the size of the position error using only DOP.

一般に移動体に対して様々なサービスを行う場合、移動体が認識している現在位置が正確であることが重要であるが、前述のように、従来技術ではGPS測位の現在の位置誤差の大小が判定できないため、リアルタイムに位置補正を行うのが困難である。   In general, when various services are performed on a moving body, it is important that the current position recognized by the moving body is accurate. However, as described above, in the conventional technology, the current position error of GPS positioning is small or large. Therefore, it is difficult to perform position correction in real time.

そこで、本発明の目的は、上記課題を解決し、GPS測位の位置誤差の大小が判定できる測位精度判定装置を提供することにある。   Therefore, an object of the present invention is to provide a positioning accuracy determination device that can solve the above-described problems and can determine the size of a position error of GPS positioning.

上記目的を達成するために本発明は、移動体に搭載されて前記移動体の速度を検出する速度センサと、前記移動体に搭載されて前記移動体の加速度を検出する加速度センサと、前記移動体に搭載されて測位衛星からの信号を受信する受信機と、前記受信機の受信信号に基づいて前記移動体の位置を測位する衛星測位部と、前記衛星測位部が求めた複数の位置間の距離を時間微分して速度(衛星測位速度という)を演算する衛星測位速度演算部と、前記受信機の受信信号に基づいて前記移動体の速度(ドップラー速度という)を演算するドップラー速度演算部と、前記加速度センサが検出した加速度から速度(加速度センサ由来速度という)を演算する加速度センサ由来速度演算部と、前記速度センサによる速度(速度センサ由来速度という)と前記衛星測位速度演算部による衛星測位速度と前記ドップラー速度演算部によるドップラー速度と前記加速度センサ由来速度演算部による加速度センサ由来速度についてそれぞれ移動距離を演算する移動距離演算部と、衛星測位速度から得た移動距離と他の移動距離との差を演算し、差が閾値より大のとき、GPS測位精度が低下していると判定する精度判定部とを備えたものである。   To achieve the above object, the present invention provides a speed sensor that is mounted on a moving body and detects the speed of the moving body, an acceleration sensor that is mounted on the moving body and detects the acceleration of the moving body, and the movement A receiver mounted on the body for receiving a signal from a positioning satellite, a satellite positioning unit for positioning the position of the moving body based on a received signal of the receiver, and a plurality of positions determined by the satellite positioning unit A satellite positioning speed calculator that calculates the speed (referred to as satellite positioning speed) by differentiating the distance between the two and a Doppler speed calculator that calculates the speed of the moving body (referred to as Doppler speed) based on the received signal of the receiver And an acceleration sensor-derived speed calculation unit that calculates a speed (referred to as an acceleration sensor-derived speed) from the acceleration detected by the acceleration sensor, and a speed (referred to as a speed sensor-derived speed) generated by the speed sensor. Obtained from the satellite positioning speed, the moving distance calculating section for calculating the moving distance for the satellite positioning speed by the satellite positioning speed calculating section, the Doppler speed by the Doppler speed calculating section, and the acceleration sensor derived speed by the acceleration sensor derived speed calculating section. And an accuracy determination unit that calculates a difference between the travel distance and another travel distance and determines that the GPS positioning accuracy is lowered when the difference is greater than a threshold value.

前記移動距離演算部は、異なる複数の時間幅における移動距離を演算し、前記精度判定部は、時間幅ごとに移動距離間の差を演算し、いずれかの時間幅で差が閾値より大のとき、GPS測位精度が低下していると判定してもよい。   The movement distance calculation unit calculates a movement distance in a plurality of different time widths, and the accuracy determination unit calculates a difference between the movement distances for each time width, and the difference is larger than a threshold in any time width. Sometimes, it may be determined that the GPS positioning accuracy is degraded.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)GPS測位の位置誤差の大小が判定できる。   (1) The position error of GPS positioning can be determined.

本発明の一実施形態を示す測位精度判定装置の構成図である。It is a block diagram of the positioning accuracy determination apparatus which shows one Embodiment of this invention. 図1の測位精度判定装置による演算の流れを示すブロック図である。It is a block diagram which shows the flow of the calculation by the positioning accuracy determination apparatus of FIG. 車速の時間的変化と時間幅を示すグラフである。It is a graph which shows the time change and time width of a vehicle speed. 車速の時間的変化の実測例を示すグラフである。It is a graph which shows the example of actual measurement of the time change of vehicle speed.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る測位精度判定装置1は、移動体(図示せず)に搭載されて移動体の速度を検出する速度センサ2と、移動体に搭載されて移動体の加速度を検出する加速度センサ3と、移動体に搭載されて測位衛星からの信号を受信する受信機4と、受信機4の受信信号に基づいて移動体の位置を測位する衛星測位部5と、衛星測位部5が求めた複数の位置間の距離を時間微分して衛星測位速度を演算する衛星測位速度演算部6と、受信機4の受信信号に基づいて移動体のドップラー速度を演算するドップラー速度演算部7と、加速度センサ3が検出した加速度から加速度センサ由来速度を演算する加速度センサ由来速度演算部8と、速度センサ2による速度センサ由来速度と衛星測位速度演算部6による衛星測位速度とドップラー速度演算部7によるドップラー速度と加速度センサ由来速度演算部8による加速度センサ由来速度についてそれぞれ移動距離を演算する移動距離演算部9と、衛星測位速度から得た移動距離と他の移動距離との差を演算し、差が閾値より大のとき、GPS測位精度が低下していると判定する精度判定部10と、精度判定部10で求めた移動距離間の差から位置誤差の補正値を演算し衛星測位部5が求めた位置を補正する位置補正演算部11とを備える。   As shown in FIG. 1, a positioning accuracy determination apparatus 1 according to the present invention is mounted on a moving body (not shown) and detects a speed of the moving body, and a moving body mounted on the moving body. An acceleration sensor 3 for detecting the acceleration of the receiver, a receiver 4 mounted on the moving body for receiving a signal from a positioning satellite, and a satellite positioning unit 5 for positioning the position of the moving body based on a received signal of the receiver 4; The satellite positioning speed calculator 6 calculates the satellite positioning speed by time-differentiating the distances between the plurality of positions obtained by the satellite positioning section 5, and calculates the Doppler speed of the mobile body based on the received signal of the receiver 4. Doppler speed calculation unit 7, acceleration sensor-derived speed calculation unit 8 that calculates acceleration sensor-derived speed from the acceleration detected by acceleration sensor 3, speed sensor-derived speed calculated by speed sensor 2 and satellite positioning speed calculation unit 6 When The movement distance calculation unit 9 that calculates the movement distance for the Doppler velocity by the puller velocity calculation unit 7 and the acceleration sensor-derived speed by the acceleration sensor-derived speed calculation unit 8, and the movement distance obtained from the satellite positioning speed and other movement distances The difference is calculated, and when the difference is larger than the threshold value, the accuracy determination unit 10 that determines that the GPS positioning accuracy is lowered, and the correction value of the position error is calculated from the difference between the movement distances obtained by the accuracy determination unit 10 And a position correction calculation unit 11 that corrects the position obtained by the satellite positioning unit 5.

本実施形態では移動体として自動車(以下、車両)を用いる。速度センサ2、加速度センサ3、受信機4は、従来より車両に搭載されており、これらより直接得られる速度、加速度、位置を時間で微分あるいは積分することにより、移動距離、速度、加速度を演算することも従来より可能である。衛星測位部5、衛星測位速度演算部6、ドップラー速度演算部7、加速度センサ由来速度演算部8、移動距離演算部9、精度判定部10は、電子制御装置(Electronical Control Unit;ECU)12にソフトウェアとして搭載することができる。また、測位衛星としてはGPS衛星を利用する。受信機4と衛星測位部5と衛星測位速度演算部6とドップラー速度演算部7は、既に市販のGPS測位装置13(図2参照)に組み込まれているので、これを利用することも可能である。   In the present embodiment, an automobile (hereinafter referred to as a vehicle) is used as the moving body. The speed sensor 2, the acceleration sensor 3, and the receiver 4 are conventionally mounted on a vehicle, and the distance, speed, and acceleration are calculated by differentiating or integrating the speed, acceleration, and position obtained directly from these with time. It is also possible conventionally. The satellite positioning unit 5, the satellite positioning speed calculation unit 6, the Doppler speed calculation unit 7, the acceleration sensor-derived speed calculation unit 8, the movement distance calculation unit 9, and the accuracy determination unit 10 are connected to an electronic control unit (ECU) 12. Can be installed as software. A GPS satellite is used as a positioning satellite. The receiver 4, the satellite positioning unit 5, the satellite positioning speed calculation unit 6, and the Doppler speed calculation unit 7 are already incorporated in the commercially available GPS positioning device 13 (see FIG. 2), and can be used. is there.

以下、本発明の測位精度判定装置1の原理と具体的動作を説明する。   Hereinafter, the principle and specific operation of the positioning accuracy determination apparatus 1 of the present invention will be described.

GPS測位における位置誤差を推定し、補正を簡便に行うためには、GPS衛星が提供するDOP以外の指標があると好ましい。例えば、従来から車両に搭載されている部材を利用して測位演算ができるシステムとして、速度センサ(車速センサ)2が検出する車速パルス信号や加速度センサ3が検出する加速度信号を利用した相対移動距離計測システム(自立航法システムとも言う)がある。自立航法は短期的には比較的精度が高く、しかも、マルチパスの影響でGPSによる測位精度が低下する場所でも利用が可能である。この特性を利用して自立航法による移動距離と測位衛星の受信信号から導いた移動距離とを比較し、その結果から、GPS測位における位置誤差を推定することが考えられる。この位置誤差を補正値として、GPS測位による位置が補正できることが望まれる。   In order to estimate a position error in GPS positioning and perform correction easily, it is preferable that there is an index other than DOP provided by a GPS satellite. For example, a relative movement distance using a vehicle speed pulse signal detected by a speed sensor (vehicle speed sensor) 2 or an acceleration signal detected by an acceleration sensor 3 as a system capable of performing positioning calculation using members conventionally mounted on a vehicle. There is a measurement system (also called a self-contained navigation system). Self-contained navigation has relatively high accuracy in the short term, and can also be used in places where the positioning accuracy by GPS decreases due to the influence of multipath. It is conceivable to use this characteristic to compare the distance traveled by the self-contained navigation and the distance traveled from the received signal of the positioning satellite and to estimate the position error in GPS positioning from the result. It is desired that the position by GPS positioning can be corrected using this position error as a correction value.

なお、従来より、GPS測位と自立航法を比較したとき、GPS測位のほうが測位精度が良い場合と自立航法のほうが測位精度が良い場合とがあるので、DOPに基づいて精度の良い方に切り替えることを行っている。しかし、課題の欄で述べたようにDOPでは位置誤差の大小を推定できない場合がある。   Conventionally, when comparing GPS positioning and autonomous navigation, there are cases where GPS positioning has better positioning accuracy and autonomous navigation has better positioning accuracy, so switch to the more accurate one based on DOP. It is carried out. However, as described in the problem column, there are cases where the DOP cannot estimate the size of the position error.

そこで、本発明の測位精度判定装置1では、各センサ及び受信信号由来の速度を各々積分して移動距離を求め、相互に比較する。例えば、速度センサ由来速度から求めた移動距離と衛星測位速度から求めた移動距離との差分、あるいは加速度センサ由来速度から求めた移動距離と衛星測位速度から求めた移動距離との差分を求める。この差分は理論上では0であるから、差分が十分に小さければ、測位精度が高いと判定できる。差分があらかじめ設定した閾値より大きいとき、GPS測位精度が低下していると判定することになる。また、このときGPSの測位周期を利用してその定数倍の時間幅(時定数ともいう)を定義し、移動距離の演算に用いる。定速走行時や急加減速走行時などの速度変化の違いに応じられるよう、時定数を複数用いる。   Therefore, in the positioning accuracy determination apparatus 1 of the present invention, the movement distances are obtained by integrating the speeds derived from the sensors and the received signals, and compared with each other. For example, the difference between the movement distance obtained from the speed sensor-derived speed and the movement distance obtained from the satellite positioning speed, or the difference between the movement distance obtained from the acceleration sensor-derived speed and the movement distance obtained from the satellite positioning speed is obtained. Since this difference is theoretically 0, if the difference is sufficiently small, it can be determined that the positioning accuracy is high. When the difference is larger than a preset threshold value, it is determined that the GPS positioning accuracy is lowered. At this time, a time width (also referred to as a time constant) that is a multiple of the constant is defined using the GPS positioning cycle, and is used for calculating the movement distance. A plurality of time constants are used so as to respond to the difference in speed change during constant speed traveling or rapid acceleration / deceleration traveling.

具体的には、図2に示されるように、速度センサ2が移動体の速度(速度センサ由来速度)を検出する。加速度センサ3が移動体の加速度を検出し、加速度センサ由来速度演算部8がその加速度から加速度センサ由来速度を演算する。GPS測位装置13からは衛星測位速度とドップラー速度が得られる。衛星測位速度は、測位周期ごとの測位位置間距離を測位周期で除したものである。ドップラー速度は、測位衛星における信号送信間隔(既知)と受信機4での信号受信間隔との差から測位衛星と移動体の相対速度を演算し、測位衛星の速度(既知)を用いて求めた移動体の速度である。測位位置が3個、4個ないし5個以上の測位衛星からの同時受信によってはじめて検出可能であるのに対し、ドップラー速度は1ないし2個の測位衛星からの受信があれば検出可能である。   Specifically, as shown in FIG. 2, the speed sensor 2 detects the speed of the moving body (speed derived from the speed sensor). The acceleration sensor 3 detects the acceleration of the moving body, and the acceleration sensor-derived speed calculation unit 8 calculates the acceleration sensor-derived speed from the acceleration. From the GPS positioning device 13, the satellite positioning speed and the Doppler speed can be obtained. The satellite positioning speed is obtained by dividing the distance between positioning positions for each positioning cycle by the positioning cycle. The Doppler velocity was calculated by calculating the relative velocity between the positioning satellite and the moving object from the difference between the signal transmission interval (known) in the positioning satellite and the signal reception interval in the receiver 4, and using the velocity (known) of the positioning satellite. The speed of the moving object. Whereas the positioning position can be detected only by simultaneous reception from three, four to five or more positioning satellites, the Doppler velocity can be detected if there is reception from one or two positioning satellites.

移動距離演算部9は、速度センサ2による速度センサ由来速度と衛星測位速度演算部6による衛星測位速度とドップラー速度演算部7によるドップラー速度と加速度センサ由来速度演算部8による加速度センサ由来速度についてそれぞれ移動距離を演算する。この演算は具体的には積分である。本実施形態では、積分する時間幅(時定数)として、時定数小、時定数中、時定数大の3種類を用いる。   The moving distance calculation unit 9 has a speed sensor-derived speed by the speed sensor 2, a satellite positioning speed by the satellite positioning speed calculation unit 6, a Doppler speed by the Doppler speed calculation unit 7, and an acceleration sensor-derived speed by the acceleration sensor-derived speed calculation unit 8. Calculate the travel distance. This operation is specifically integration. In the present embodiment, three types of time width (time constant) to be integrated are used: small time constant, medium time constant, and large time constant.

図3に示されるように、車両の速度は、時間的変化が大きい場合から小さい場合までさまざまである。なお、ここでは説明を簡単にするため、速度は方向成分を無視し、大きさ成分のみ取り扱う。速度の時間的変化が大きいとき、その特徴は短時間のうちに表れ、長時間観測すると平均化されて変化が緩やかになってしまう。逆に、速度の時間的変化が小さいとき、その特徴は長時間観測するほど顕著となる。よって、速度の積分によって特徴量である移動距離を演算する場合、速度変化が大(加速度が大)であれば時定数を小とし、速度変化が小(加速度が小)であれば時定数を大とするのが好ましい。時定数は小から大まで2種類でも3種類でも4種類以上でもよい。リアルタイム計測では、現時点の速度がその後どう変化するか未知であるので、全ての時定数での積分を同時に実行する。   As shown in FIG. 3, the speed of the vehicle varies from when the temporal change is large to when it is small. Here, for simplicity of explanation, the velocity ignores the direction component and handles only the magnitude component. When the temporal change in speed is large, the characteristic appears in a short time, and when observed for a long time, it is averaged and the change becomes gradual. On the other hand, when the temporal change in speed is small, the feature becomes more prominent as the observation is continued for a long time. Therefore, when calculating the moving distance, which is a feature value, by integrating the speed, the time constant is small if the speed change is large (acceleration is large), and the time constant is small if the speed change is small (acceleration is small). It is preferable to make it large. The time constant may be two types from small to large, three types, or four or more types. In real-time measurement, it is unknown how the current speed will change thereafter, so integration with all time constants is performed simultaneously.

精度判定部10は、各移動距離間の差を演算し、衛星測位速度から得た移動距離と他の移動距離との差が閾値より大のとき、GPS測位精度が低下していると判定する。移動距離演算部9において異なる複数の時間幅(時定数)における移動距離が演算されているので、精度判定部10では、時間幅ごとに移動距離間の差を演算し、いずれかの時間幅で差が閾値より大のとき、GPS測位精度が低下していると判定する。   The accuracy determination unit 10 calculates a difference between the moving distances, and determines that the GPS positioning accuracy is lowered when the difference between the moving distance obtained from the satellite positioning speed and the other moving distance is larger than the threshold value. . Since the movement distance calculation unit 9 calculates the movement distances in a plurality of different time widths (time constants), the accuracy determination unit 10 calculates the difference between the movement distances for each time width, and in any time width When the difference is larger than the threshold value, it is determined that the GPS positioning accuracy is lowered.

例えば、図4に示されるように、実線で示した速度センサ由来速度41と破線で示した衛星測位速度42とが車両の急激な加速時に乖離していたとする。この場合、時定数小で求めた移動距離間に顕著な差が現れるので、GPS測位精度が低下していると判定できる。また、図には示さないが、車両が定速走行しているときにマルチパスによってGPS測位精度が低下すると、時定数大で求めた移動距離間に顕著な差が現れるので、GPS測位精度が低下していると判定できる。   For example, as shown in FIG. 4, it is assumed that the speed sensor-derived speed 41 indicated by a solid line and the satellite positioning speed 42 indicated by a broken line are different at the time of rapid acceleration of the vehicle. In this case, since a significant difference appears between the travel distances obtained with a small time constant, it can be determined that the GPS positioning accuracy is degraded. Although not shown in the figure, if the GPS positioning accuracy decreases due to multipath when the vehicle is traveling at a constant speed, a significant difference appears between the travel distances obtained with a large time constant. It can be determined that it has decreased.

また、速度センサ2が検出する速度センサ由来速度は、タイヤの回転を精度よく表す車速パルス信号を用いているので、速度センサ由来速度から求めた移動距離は基本的には正確な移動距離を表すが、路面の摩擦状況によってタイヤが空転したりロックすると、正確でなくなる。この場合、加速度センサ由来速度から求めた移動距離をGPS測位から求めた移動距離と比べるとよい。   In addition, the speed sensor-derived speed detected by the speed sensor 2 uses a vehicle speed pulse signal that accurately represents the rotation of the tire. Therefore, the travel distance obtained from the speed sensor-derived speed basically represents an accurate travel distance. However, it becomes inaccurate if the tire slips or locks due to the frictional condition of the road surface. In this case, the movement distance obtained from the acceleration sensor-derived speed may be compared with the movement distance obtained from GPS positioning.

また、衛星測位速度演算部6による衛星測位速度とドップラー速度演算部7によるドップラー速度とを比較することでもGPS測位精度の低下が分かる。   Further, a decrease in GPS positioning accuracy can also be seen by comparing the satellite positioning speed by the satellite positioning speed calculator 6 and the Doppler speed by the Doppler speed calculator 7.

このように、本発明の測位精度判定装置1は、衛星測位速度から求めた移動距離と他の速度から求めた移動距離とを比較することでGPS測位精度を評価するようにしたので、DOPが大きいことによってあらかじめ測位精度が低いことが知らされているときはもちろん、DOPが小さくても移動体の動きが変化しているとき、あるいは局地的にマルチパスが生じているときなどに、当該移動体においてGPS測位精度が低下していることをリアルタイムで知ることができる。   As described above, the positioning accuracy determination device 1 of the present invention evaluates the GPS positioning accuracy by comparing the movement distance obtained from the satellite positioning speed with the movement distance obtained from other speeds. Not only when the positioning accuracy is known to be low due to the large size, but also when the movement of the moving object is changing even if the DOP is small, or when multipath is locally generated, etc. It can be known in real time that the GPS positioning accuracy is lowered in the moving body.

本実施形態では、GPS測位精度が低下していると判定された場合は、位置補正演算部11において衛星測位部5が求めた位置を補正する。精度判定部10において移動距離間の差が演算されているので、位置補正演算部11では、この移動距離間の差を位置誤差の補正値とすればよい。   In the present embodiment, when it is determined that the GPS positioning accuracy is lowered, the position correction calculation unit 11 corrects the position obtained by the satellite positioning unit 5. Since the difference between the movement distances is calculated in the accuracy determination unit 10, the position correction calculation unit 11 may use the difference between the movement distances as a correction value for the position error.

このとき、移動距離としては、速度センサ由来速度を積分した移動距離、加速度センサ由来速度を積分した移動距離、衛星測位速度を積分した移動距離、ドップラー速度を積分した移動距離の4つがあり、しかも、それぞれ時定数小、時定数中、時定数大の3通りの積分で求めた値がある。どの速度に由来する移動距離の組み合わせで、どの時定数による値を採用して補正値を演算するかは、あらかじめ実験により、速度変化の大きさと移動距離の組み合わせ及び時定数との関係を調べておき、速度変化に応じて移動距離の組み合わせと時定数を選択するようにしておくのが好ましい。また、各移動距離間の差に速度変化に応じた重み付けを行って補正値を求めてもよい。   At this time, there are four moving distances: a moving distance obtained by integrating the speed derived from the speed sensor, a moving distance obtained by integrating the speed derived from the acceleration sensor, a moving distance obtained by integrating the satellite positioning speed, and a moving distance obtained by integrating the Doppler speed. There are values obtained by integration in three ways: small time constant, medium time constant, and large time constant. To determine which time constant is used to calculate the correction value for the combination of travel distances derived from which speed, the relationship between the speed change magnitude and the combination of travel distance and the time constant is examined in advance through experiments. It is preferable to select a combination of moving distances and a time constant according to the speed change. Further, the correction value may be obtained by weighting the difference between the moving distances according to the speed change.

このように、GPS測位による現在位置が補正値によって正確な位置に補正されると、移動体に対して様々なサービスが好適に提供できるようになる。また、GPS測位精度の低下が判定できることにより、低下の度合い、位置誤差の大きさ等に応じて提供するサービスのレベルやタイミングを調節することが可能となる。   As described above, when the current position by GPS positioning is corrected to an accurate position by the correction value, various services can be suitably provided to the moving body. Further, since it is possible to determine a decrease in GPS positioning accuracy, it is possible to adjust the level and timing of the service provided according to the degree of decrease, the size of the position error, and the like.

本発明の測位精度判定装置1は、さらに、加速度センサ3が検出した加速度を積分して求めた加速度センサ由来速度と速度センサ2が検出した速度センサ由来速度との比較からタイヤ空転又はタイヤロックを検出することができる。タイヤ空転又はタイヤロックが検出された場合に、速度センサ由来速度から求められる移動距離に対して補正を行うようにしてもよい。   The positioning accuracy determination device 1 of the present invention further detects tire idling or tire lock from a comparison between the acceleration sensor-derived speed obtained by integrating the acceleration detected by the acceleration sensor 3 and the speed sensor-derived speed detected by the speed sensor 2. Can be detected. When tire idling or tire lock is detected, the movement distance obtained from the speed sensor-derived speed may be corrected.

1 測位精度判定装置
2 速度センサ
3 加速度センサ
4 受信機
5 衛星測位部
6 衛星測位速度演算部
7 ドップラー速度演算部
8 加速度センサ由来速度演算部
9 移動距離演算部
10 精度判定部
11 位置補正演算部
12 ECU
13 GPS測位装置
DESCRIPTION OF SYMBOLS 1 Positioning accuracy determination apparatus 2 Speed sensor 3 Acceleration sensor 4 Receiver 5 Satellite positioning part 6 Satellite positioning speed calculating part 7 Doppler speed calculating part 8 Acceleration sensor origin speed calculating part 9 Moving distance calculating part 10 Accuracy determining part 11 Position correction calculating part 11 12 ECU
13 GPS positioning device

Claims (2)

移動体に搭載されて前記移動体の速度を検出する速度センサと、
前記移動体に搭載されて前記移動体の加速度を検出する加速度センサと、
前記移動体に搭載されて測位衛星からの信号を受信する受信機と、
前記受信機の受信信号に基づいて前記移動体の位置を測位する衛星測位部と、
前記衛星測位部が求めた複数の位置間の距離を時間微分して速度(衛星測位速度という)を演算する衛星測位速度演算部と、
前記受信機の受信信号に基づいて前記移動体の速度(ドップラー速度という)を演算するドップラー速度演算部と、
前記加速度センサが検出した加速度から速度(加速度センサ由来速度という)を演算する加速度センサ由来速度演算部と、
前記速度センサによる速度(速度センサ由来速度という)と前記衛星測位速度演算部による衛星測位速度と前記ドップラー速度演算部によるドップラー速度と前記加速度センサ由来速度演算部による加速度センサ由来速度についてそれぞれ移動距離を演算する移動距離演算部と、
衛星測位速度から得た移動距離と他の移動距離との差を演算し、差が閾値より大のとき、GPS測位精度が低下していると判定する精度判定部とを備えたことを特徴とする測位精度判定装置。
A speed sensor mounted on the moving body for detecting the speed of the moving body;
An acceleration sensor mounted on the moving body for detecting the acceleration of the moving body;
A receiver mounted on the mobile body for receiving signals from positioning satellites;
A satellite positioning unit for positioning the position of the moving body based on a reception signal of the receiver;
A satellite positioning speed calculation unit that calculates a speed (referred to as a satellite positioning speed) by differentiating the distance between a plurality of positions obtained by the satellite positioning unit;
A Doppler speed calculator that calculates the speed of the moving body (referred to as Doppler speed) based on the received signal of the receiver;
An acceleration sensor-derived speed calculation unit that calculates a speed (referred to as an acceleration sensor-derived speed) from the acceleration detected by the acceleration sensor;
The movement distances of the speed (speed sensor-derived speed) by the speed sensor, the satellite positioning speed by the satellite positioning speed calculation section, the Doppler speed by the Doppler speed calculation section, and the acceleration sensor-derived speed by the acceleration sensor-derived speed calculation section, respectively. A moving distance calculation unit to calculate,
An accuracy determining unit that calculates a difference between a moving distance obtained from a satellite positioning speed and another moving distance and determines that the GPS positioning accuracy is lowered when the difference is larger than a threshold value. Positioning accuracy determination device.
前記移動距離演算部は、異なる複数の時間幅における移動距離を演算し、
前記精度判定部は、時間幅ごとに移動距離の差を演算し、いずれかの時間幅で差が閾値より大のとき、GPS測位精度が低下していると判定することを特徴とする請求項1記載の測位精度判定装置。
The moving distance calculation unit calculates moving distances in different time widths,
The accuracy determination unit calculates a difference in moving distance for each time width, and determines that the GPS positioning accuracy is lowered when the difference is larger than a threshold value in any time width. The positioning accuracy determination device according to 1.
JP2010281407A 2010-12-17 2010-12-17 Positioning accuracy judgment device Active JP5601188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281407A JP5601188B2 (en) 2010-12-17 2010-12-17 Positioning accuracy judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281407A JP5601188B2 (en) 2010-12-17 2010-12-17 Positioning accuracy judgment device

Publications (2)

Publication Number Publication Date
JP2012127899A true JP2012127899A (en) 2012-07-05
JP5601188B2 JP5601188B2 (en) 2014-10-08

Family

ID=46645090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281407A Active JP5601188B2 (en) 2010-12-17 2010-12-17 Positioning accuracy judgment device

Country Status (1)

Country Link
JP (1) JP5601188B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071003A (en) * 2012-09-28 2014-04-21 Jvc Kenwood Corp Reliability derivation device, navigation device, and reliability derivation method
JP2014167444A (en) * 2013-02-28 2014-09-11 Pioneer Electronic Corp Information processor, information processing method, and information processing program
JP2017106842A (en) * 2015-12-10 2017-06-15 三菱重工業株式会社 Position measuring device, position measuring method and program
JP2021092444A (en) * 2019-12-10 2021-06-17 株式会社デンソー Distance estimation device
WO2024139465A1 (en) * 2022-12-29 2024-07-04 腾讯科技(深圳)有限公司 Positioning information processing method and apparatus, and device and medium

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137089A (en) * 1990-09-28 1992-05-12 Toshiba Corp Running state recording device
JPH0666916A (en) * 1992-08-13 1994-03-11 Fujitsu Ten Ltd Gps receiver
JPH09304096A (en) * 1996-05-18 1997-11-28 Casio Comput Co Ltd Method and apparatus for correcting error in measured position
JP2000249565A (en) * 1998-12-31 2000-09-14 Casio Comput Co Ltd Positioning apparatus and receiver
JP2001305206A (en) * 2000-04-25 2001-10-31 Matsushita Electric Works Ltd Gps receiving device
JP2004271339A (en) * 2003-03-07 2004-09-30 Yamaha Motor Co Ltd Circuit of calculating speed of moving object
JP2005031082A (en) * 2003-07-07 2005-02-03 Robert Bosch Gmbh Test method of integrity of gps measuring, error detection method in special vehicle, mapping method and system of gps multipath level, and system installed in vehicle for testing integrity of gps measuring
JP2005077114A (en) * 2003-08-29 2005-03-24 Pioneer Electronic Corp Multipath detector, multipath detection method, navigation system, and computer program
JP2006322753A (en) * 2005-05-17 2006-11-30 Fuji Heavy Ind Ltd Traveling controller for vehicle
JP2007010554A (en) * 2005-07-01 2007-01-18 Japan Radio Co Ltd Positioning device
JP2007036480A (en) * 2005-07-25 2007-02-08 Fujitsu Ltd Mobile terminal
JP2008157705A (en) * 2006-12-22 2008-07-10 Clarion Co Ltd Navigation system and gps position accuracy determination method
JP2008170278A (en) * 2007-01-11 2008-07-24 Hitachi Ltd Position detection method
JP2008196907A (en) * 2007-02-09 2008-08-28 Sumitomo Electric Ind Ltd Distance conversion information creating system, on-board equipment and distance conversion information creating method
JP2009257892A (en) * 2008-04-15 2009-11-05 Sumitomo Electric Ind Ltd Locating apparatus, locating system, locating method, and computer program
JP2010008095A (en) * 2008-06-24 2010-01-14 Aisin Aw Co Ltd Own vehicle position correcting system and program
JP2010145179A (en) * 2008-12-17 2010-07-01 Toyota Motor Corp Gnss receiving device and positioning method
JP2010164423A (en) * 2009-01-15 2010-07-29 Toshiba Corp Positioning device and position measurement time interval control method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137089A (en) * 1990-09-28 1992-05-12 Toshiba Corp Running state recording device
JPH0666916A (en) * 1992-08-13 1994-03-11 Fujitsu Ten Ltd Gps receiver
JPH09304096A (en) * 1996-05-18 1997-11-28 Casio Comput Co Ltd Method and apparatus for correcting error in measured position
JP2000249565A (en) * 1998-12-31 2000-09-14 Casio Comput Co Ltd Positioning apparatus and receiver
JP2001305206A (en) * 2000-04-25 2001-10-31 Matsushita Electric Works Ltd Gps receiving device
JP2004271339A (en) * 2003-03-07 2004-09-30 Yamaha Motor Co Ltd Circuit of calculating speed of moving object
JP2005031082A (en) * 2003-07-07 2005-02-03 Robert Bosch Gmbh Test method of integrity of gps measuring, error detection method in special vehicle, mapping method and system of gps multipath level, and system installed in vehicle for testing integrity of gps measuring
JP2005077114A (en) * 2003-08-29 2005-03-24 Pioneer Electronic Corp Multipath detector, multipath detection method, navigation system, and computer program
JP2006322753A (en) * 2005-05-17 2006-11-30 Fuji Heavy Ind Ltd Traveling controller for vehicle
JP2007010554A (en) * 2005-07-01 2007-01-18 Japan Radio Co Ltd Positioning device
JP2007036480A (en) * 2005-07-25 2007-02-08 Fujitsu Ltd Mobile terminal
JP2008157705A (en) * 2006-12-22 2008-07-10 Clarion Co Ltd Navigation system and gps position accuracy determination method
JP2008170278A (en) * 2007-01-11 2008-07-24 Hitachi Ltd Position detection method
JP2008196907A (en) * 2007-02-09 2008-08-28 Sumitomo Electric Ind Ltd Distance conversion information creating system, on-board equipment and distance conversion information creating method
JP2009257892A (en) * 2008-04-15 2009-11-05 Sumitomo Electric Ind Ltd Locating apparatus, locating system, locating method, and computer program
JP2010008095A (en) * 2008-06-24 2010-01-14 Aisin Aw Co Ltd Own vehicle position correcting system and program
JP2010145179A (en) * 2008-12-17 2010-07-01 Toyota Motor Corp Gnss receiving device and positioning method
JP2010164423A (en) * 2009-01-15 2010-07-29 Toshiba Corp Positioning device and position measurement time interval control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071003A (en) * 2012-09-28 2014-04-21 Jvc Kenwood Corp Reliability derivation device, navigation device, and reliability derivation method
JP2014167444A (en) * 2013-02-28 2014-09-11 Pioneer Electronic Corp Information processor, information processing method, and information processing program
JP2017106842A (en) * 2015-12-10 2017-06-15 三菱重工業株式会社 Position measuring device, position measuring method and program
JP2021092444A (en) * 2019-12-10 2021-06-17 株式会社デンソー Distance estimation device
JP7380165B2 (en) 2019-12-10 2023-11-15 株式会社デンソー distance estimation device
WO2024139465A1 (en) * 2022-12-29 2024-07-04 腾讯科技(深圳)有限公司 Positioning information processing method and apparatus, and device and medium

Also Published As

Publication number Publication date
JP5601188B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5855249B2 (en) Positioning device
CN104157167B (en) A kind of vehicle collision avoidance method based on collaborative relative localization technology
US7957897B2 (en) GPS-based in-vehicle sensor calibration algorithm
US9983301B2 (en) Automated vehicle radar system to determine yaw-rate of a target vehicle
JP6408860B2 (en) Object detection device
US7096116B2 (en) Vehicle behavior detector, in-vehicle processing system, detection information calibrator, and in-vehicle processor
US7286933B2 (en) GPS/dead-reckoning combination system and operating method thereof
CN102057247B (en) Inclinometer
EP1818682B1 (en) Position calculating apparatus
KR102288771B1 (en) Time differenced carrier phase measurement based navigation system and positioning method
JP4037131B2 (en) Behavior measuring device
US7856336B2 (en) Forward-looking altitude detector
JP5601188B2 (en) Positioning accuracy judgment device
KR20150062561A (en) Car navition system and method merged gnss with dr
JP4931113B2 (en) Own vehicle position determination device
JP2016218015A (en) On-vehicle sensor correction device, self-position estimation device, and program
CN109477898B (en) Device and method for detecting incorrect determination of a geographical position of a vehicle
JP2004148910A (en) Detection device for lowering of air pressure and correction method of sensor performed using the detection device
US8890747B2 (en) Longitudinal and lateral velocity estimation using single antenna GPS and magnetic compass
JP2016057131A (en) Travel trajectory estimation device and travel trajectory estimation method
JP5222814B2 (en) Positioning method and apparatus
JP3505494B2 (en) Moving body direction estimation device and position estimation device
JP7140443B2 (en) Antenna relative position estimation method and antenna relative position estimation program
US20210088673A1 (en) Method For Determining The Position Of A Vehicle As A Function Of The Vehicle Velocity
KR101428992B1 (en) Device for calculating curvature of the trace of wheels during driving and method for calibrating curvature thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5601188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150