[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012124345A - Drive control method of light-emitting diode - Google Patents

Drive control method of light-emitting diode Download PDF

Info

Publication number
JP2012124345A
JP2012124345A JP2010274219A JP2010274219A JP2012124345A JP 2012124345 A JP2012124345 A JP 2012124345A JP 2010274219 A JP2010274219 A JP 2010274219A JP 2010274219 A JP2010274219 A JP 2010274219A JP 2012124345 A JP2012124345 A JP 2012124345A
Authority
JP
Japan
Prior art keywords
temperature
drive
driving
emitting diode
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010274219A
Other languages
Japanese (ja)
Other versions
JP5546437B2 (en
Inventor
Tadao Kozu
忠夫 神頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2010274219A priority Critical patent/JP5546437B2/en
Publication of JP2012124345A publication Critical patent/JP2012124345A/en
Application granted granted Critical
Publication of JP5546437B2 publication Critical patent/JP5546437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drive control method of an LED.SOLUTION: In the drive control method of an LED, a drive control means 6 predicts the expected temperature to reach of a light-emitting diode 1 according to the temperature near the drive start time detected by a temperature sensor 4 and the drive conditions, and does not change the drive conditions if the expected temperature to reach is below the upper limit value of a set temperature range. If the expected temperature to reach is higher than the upper limit value of a set temperature range, the drive control means 6 changes the drive conditions from the difference of the expected temperature to reach and the upper limit value, and reduces the magnitude of the driving current so that the expected temperature to reach under the drive conditions thus changed falls within the set temperature range.

Description

本発明は、発光ダイオードの駆動制御方法に関し、特に発光ダイオードのジャンクション温度を考慮して発光ダイオードの発光輝度を制御する発光ダイオードの制御方法に関する。   The present invention relates to a light emitting diode drive control method, and more particularly to a light emitting diode control method for controlling light emission luminance of a light emitting diode in consideration of a junction temperature of the light emitting diode.

発光ダイオード(LED)は、駆動時における自身での発熱やその周囲部品の発熱に起因して温度上昇するので、そのジャンクション温度、すなわちPN接合部の温度がある温度(たとえば120℃〜150℃など)以上に上昇するとLEDが破損するので、この限界となる最大ジャンクション温度を超えないようにして駆動しなければならない。
このため、LEDの駆動にあっては、その時のジャンクション温度を検出する必要があるが、LEDは一般的に樹脂等の保護部材で被覆されるため、直接、温度センサを取りつけてジャンクション温度を検出することは難しい。
Light-emitting diodes (LEDs) rise in temperature due to their own heat generation during driving and their surrounding components, so the junction temperature, that is, the temperature of the PN junction, for example, 120 ° C to 150 ° C, etc. ) If the temperature rises above, the LED will be damaged, so it must be driven without exceeding the maximum junction temperature, which is the limit.
For this reason, when driving an LED, it is necessary to detect the junction temperature at that time, but since an LED is generally covered with a protective member such as resin, the temperature of the LED is directly attached to detect the junction temperature. Difficult to do.

そこで、従来のLEDの駆動方法にあっては、以下に示す方法でジャンクション温度を間接的に検出し、この検出温度に応じてLEDの駆動電流を制御するようにしていた。
すなわち、一般的にダイオードでは温度に応じて順方向の両端電圧(Vf)が変化し、たとえば定電流投入時では温度が高くなると上記電圧(Vf)が低くなる傾向を示す。そこで、この性質を利用して、LEDの順方向の両端電圧(Vf)を検出し、この電圧(Vf)からLEDのジャンクション温度を推定して、この推定温度がLEDの破壊しない温度範囲内の最高温度に近い一定温度になるようにLEDへ供給する駆動電流を制御する方法が知られている(例えば、特許文献1参照)。
Therefore, in the conventional LED driving method, the junction temperature is indirectly detected by the following method, and the LED driving current is controlled according to the detected temperature.
That is, in general, in the diode, the forward voltage (Vf) varies in accordance with the temperature. For example, when the constant current is applied, the voltage (Vf) tends to decrease as the temperature increases. Therefore, utilizing this property, the forward voltage of the LED (Vf) is detected, the junction temperature of the LED is estimated from this voltage (Vf), and the estimated temperature is within a temperature range where the LED does not break down. There is known a method of controlling a drive current supplied to an LED so that a constant temperature close to the maximum temperature is obtained (see, for example, Patent Document 1).

また、別な方法としては、LEDの近傍に配置した温度センサを用いて検出した、バックライト(LEDを利用)の近傍温度(周辺温度)とそのLEDのジャンクション温度とが相関関係を有することから、検出した近傍温度(50℃以下、50℃を越えて100℃未満、100℃以上の3つの温度範囲)およびその温度変化(近傍温度50℃を越えて100℃未満の場合に0.5℃の温度変化)に応じてLEDへ供給する駆動電流の大きさを変えてバックライトの輝度を制御し、近傍温度が設定温度より高くなる場合にはバックライトの輝度を下げるように制御する方法が知られている(例えば、特許文献2参照)。   Another method is that there is a correlation between the temperature near the backlight (using the LED) detected using a temperature sensor located in the vicinity of the LED and the junction temperature of the LED. , Detected near temperature (less than 50 ° C, more than 50 ° C and less than 100 ° C, three temperature ranges of 100 ° C and more) and its temperature change (nearly over 50 ° C and less than 100 ° C, 0.5 ° C The brightness of the backlight is controlled by changing the magnitude of the drive current supplied to the LED in accordance with the temperature change of the backlight, and the backlight brightness is reduced when the neighborhood temperature is higher than the set temperature. It is known (see, for example, Patent Document 2).

特開2004−214519号公報JP 2004-214519 A 特開2007−219008号公報JP 2007-219008

しかしながら、上記従来のLEDの駆動制御方法にあっては、以下のような問題点がある。   However, the conventional LED drive control method has the following problems.

すなわち、上記前者による従来のLEDの駆動制御方法にあっては、検出したLEDの順方向両端電圧(Vf)に基づき推定したジャンクション温度がLEDの破壊しない温度範囲内の最高温度に近い一定温度になるように制御しているので、駆動電流は駆動制御中、たえず減少、保持、増加を繰り返すこととなるので、駆動電流の大きさで決まるLEDの輝度も高くなったり低くなったりして、その明るさに大きな変動が生じてしまう。この結果、ユーザーにとって表示が見にくくなったりその信頼性に不安が生じてしまったりといった問題点が生じる。   In other words, in the conventional LED drive control method by the former, the junction temperature estimated based on the detected forward voltage (Vf) of the forward direction of the LED is a constant temperature close to the maximum temperature within the temperature range where the LED does not break down. Since the drive current is constantly reduced, held, and increased during drive control, the brightness of the LED, which is determined by the magnitude of the drive current, increases and decreases. Large fluctuations in brightness occur. As a result, there are problems that it is difficult for the user to see the display and that the reliability is uneasy.

一方、上記後者による従来のLEDの駆動制御方法にあっては、近傍温度が50℃以下である場合には最高駆動電流でLEDを駆動し、近傍温度50℃を越えて100℃未満の場合には0.5℃の温度上昇がある場合にデューティ比を下げて駆動電流を小さくすることでこの範囲で駆動電流を高低させ、100℃以上ではデューティ比をゼロとしてLEDの駆動を停止するようにしているので、長時間電源OFFの状態から駆動開始し駆動電流が最大となる時と、近傍温度50℃を越えて100℃未満の範囲で駆動電流が変化させられる通常の駆動時と、では、LEDの輝度に大きな変化が生じてしまう。この結果、ユーザーにとって表示が見にくくなったりその信頼性に不安が生じてしまったりといった問題点が生じる。   On the other hand, in the conventional LED drive control method according to the latter, the LED is driven at the maximum drive current when the near temperature is 50 ° C. or less, and when the near temperature exceeds 50 ° C. and less than 100 ° C. When the temperature rises by 0.5 ° C, the duty ratio is decreased to reduce the drive current, thereby increasing the drive current within this range, and at 100 ° C or higher, the duty ratio is set to zero and the LED drive is stopped. Therefore, when driving is started from a power-off state for a long time and the driving current becomes maximum, and during normal driving in which the driving current can be changed in the range of more than 50 ° C. and less than 100 ° C., A big change occurs in the brightness of the LED. As a result, there are problems that it is difficult for the user to see the display and that the reliability is uneasy.

このように、上記従来のLED駆動方法のいずれにあっても、ある設定範囲内で駆動電流が大きくなったり小さくなったりして変化するため、LEDの輝度の大きな変化を避けることができないといった問題点がある。
この問題点につき、図6に基づき、さらに具体的に説明する。図6は、LEDに供給する駆動電流Iの変化(同図(a)、(c)に示す)と、そのときのLEDのジャンクション温度T(周囲温度に対応)の変化(同図(b)、(d)に示す)とを表わしている。ここで、同図中、(a)、(b)は駆動開始時の周囲温度が比較的低い場合、(c)、(d)は駆動開始時の周囲温度が比較的高い場合である。
As described above, in any of the above conventional LED driving methods, the driving current increases or decreases within a certain setting range, so that a large change in the luminance of the LED cannot be avoided. There is a point.
This problem will be described more specifically with reference to FIG. FIG. 6 shows a change in the drive current I supplied to the LED (shown in FIGS. 6A and 6C) and a change in the junction temperature T J (corresponding to the ambient temperature) at that time (shown in FIG. 6B). ) And (shown in (d)). Here, in the figure, (a) and (b) are cases where the ambient temperature at the start of driving is relatively low, and (c) and (d) are cases where the ambient temperature at the start of driving is relatively high.

まず、駆動開始時の周囲温度が比較的低い場合につき説明する。この場合、同図(a)、(b)に示すように、駆動開始時(時刻t)のLEDのジャンクション温度Tは周囲温度に等しい。
駆動電流Iはまず、たとえばデューティ率100%で駆動される結果、図示しない近傍温度と相関関係があるLEDのジャンクション温度Tは急激に立ちあがって行く。時刻tでジャンクション温度Tが限界温度Tに達すると、デユーティ率が40%程度に下げられて駆動電流Iが減少される。その分、LEDの輝度は小さくなるがジャンクション温度Tは減少していくので、LEDの破損は避けられる。時刻tでジャンクション温度Tが復帰温度T(<T)になると、駆動電流Iのデユーティ率は80%程度に増加されるので、ジャンクション温度Tは再度増大していく。時刻tでジャンクション温度Tが限界温度Tに到達すると、その後デューティ比は再度40%程度にされて駆動電流Iを減少する。時刻tでジャンクション温度Tが復帰温度Tになると、デューティ比を60%程度にして駆動電流Iを増大させる。この設定によりジャンクション温度Tは緩やかに上昇して少なくともしばらくは限界温度Tと復帰温度Tとの設定温度範囲内にとどまる。
First, the case where the ambient temperature at the start of driving is relatively low will be described. In this case, FIG. (A), (b), the junction temperature T J of the LED drive start (time t 0) is equal to ambient temperature.
Drive current I is first example results that are driven at a duty rate of 100%, the junction temperature T J of the correlation LED and vicinity temperature not shown is gradually risen sharply. If at time t 1 the junction temperature T J reaches the limit temperature T L, the driving current I is reduced duty ratio is lowered to about 40%. As a result, the brightness of the LED decreases, but the junction temperature TJ decreases, so that the LED can be prevented from being damaged. When the junction temperature T J at time t 2 is the return temperature T R (<T L), since the duty ratio of the drive current I is increased to about 80%, the junction temperature T J is gradually increased again. When at time t 3 the junction temperature T J reaches the limit temperature T L, then the duty ratio decreases the driving current I is again about 40%. When the junction temperature T J is the return temperature T R at time t 4, thereby increasing the drive current I and the duty ratio to about 60%. Junction temperature T J is at least while gently rises This setting remains within the set temperature range and the return temperature T R with the limit temperature T L.

これに対し、駆動開始時の周囲温度が同図(a)、(b)の場合より高い場合には、同図(c)、(d)に示すように、たとえばデューティ比100%で駆動される駆動電流Iによりジャンクション温度Tは時刻tまで急激に立ち上がって行き、ここでデューティ比が40%程度に減少されて駆動電流Iが小さくさせられる。時刻tでジャンクション温度Tが復帰温度Tになるとデューティ比が80%程度まで増加され駆動電流Iが増大される。時刻tでジャンクション温度Tが限界温度Tに達すると、デューティ比が40%に減少され駆動電流Iを小さくする。時刻tでジャンクション温度TJが復帰温度Tになると、デューティ比を増加させるものの、今回は駆動開始時の周囲温度が高くジャンクション温度Tの温度上昇が駆動開始時の周囲温度が低い場合より早いので、周囲温度が低い場合に用いた60%程度ではなくそれより低い50%程度に設定することで、ジャンクション温度Tを緩やかに上昇させ少なくともしばらくは限界温度Tと復帰温度Tとの範囲内にとどまるようにしている。 On the other hand, when the ambient temperature at the start of driving is higher than the cases shown in FIGS. 9A and 9B, the drive is performed with a duty ratio of 100%, for example, as shown in FIGS. that the driving current I by the junction temperature T J went rises rapidly until time t 5, wherein the drive current I is reduced to the duty ratio of about 40% can be allowed to decrease. Junction temperature T J at time t 6 the return temperature T becomes R the duty ratio is increased up to about 80% drive current I is increased. When the junction temperature T J reaches the limit temperature T L at time t 7, the duty ratio is reduced to 40% to reduce the driving current I. When the junction temperature T J is the return temperature T R at time t 8, when although increasing the duty ratio, this time the ambient temperature at the time of temperature rise is the start of driving of the higher junction temperature T J ambient temperature at the start of driving is low Because it is faster, the junction temperature T J is gradually increased by setting it to about 50% lower than the 60% used when the ambient temperature is low, and at least for a while, the limit temperature T L and the return temperature T R And try to stay within range.

このように、駆動開始時のすぐ後の時刻t1、t5とその後駆動電流が減少させられるよう駆動制御する駆動電流制御時とでは、デューティ比にしたがって駆動電流の大きさが大きく異なることとなり、その結果、印加される駆動電流の大きさによって決まるLEDの輝度も大きく変化することになる。
この場合、上記説明から分かるように、特に、駆動開始時での周囲温度が高いとさらにその相違は大きくなる。このようにLEDの輝度が大きく変化するのはユーザーにとって表示の見やすさ、装置への信頼性の観点から好ましいことではない。
本発明は、上記問題に着目してなされたもので、その目的とするところは、駆動開始から駆動中にわたってLEDの輝度が大きく変化するのを抑制することができるようにした発光ダイオードの駆動制御方法を提供することにある。
As described above, the magnitudes of the drive currents greatly differ according to the duty ratio between the times t 1 and t 5 immediately after the start of the drive and the drive current control in which the drive current is controlled so as to reduce the drive current thereafter. As a result, the brightness of the LED, which is determined by the magnitude of the applied drive current, also changes greatly.
In this case, as can be seen from the above description, the difference is particularly large when the ambient temperature at the start of driving is high. Such a large change in the luminance of the LED is not preferable for the user from the viewpoint of easy viewing and reliability of the device.
The present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to control the driving of a light emitting diode that can suppress a large change in the luminance of the LED from the start of driving to during driving. It is to provide a method.

この目的のため本発明による発光ダイオードの駆動制御方法は、
駆動電流が印加されることで発光する発光ダイオードと、
この発光ダイオードの近傍温度を検出可能な温度センサと、
この温度センサで検出した近傍温度に応じて駆動電流の大きさを可変に制御可能な駆動制御手段と、
を備えた発光ダイオード駆動装置の駆動制御方法であって、
駆動制御手段は、温度センサで検出した駆動開始時の近傍温度と駆動電流を制御する駆動条件とに応じて発光ダイオードの到達予想温度を予測し、
この到達予想温度が設定温度範囲の上限値以下の場合は駆動条件を変えることなく駆動電流を制御し、
到達予想温度が設定温度範囲の上限値より高いときは到達予想温度と設定温度範囲の上限値との差から駆動条件を変更してこの変更した駆動条件での到達予想温度が設定温度範囲内に収まるように駆動電流の大きさを低減するようにした、
ことを特徴とする。
For this purpose, the driving control method of the light emitting diode according to the present invention is:
A light emitting diode that emits light when a drive current is applied;
A temperature sensor capable of detecting the temperature near the light emitting diode;
Drive control means capable of variably controlling the magnitude of the drive current according to the vicinity temperature detected by the temperature sensor;
A drive control method for a light emitting diode drive device comprising:
The drive control means predicts the expected temperature reached by the light emitting diode according to the vicinity temperature at the start of driving detected by the temperature sensor and the driving condition for controlling the driving current,
If this expected temperature is below the upper limit of the set temperature range, the drive current is controlled without changing the drive conditions.
When the predicted temperature is higher than the upper limit of the set temperature range, the drive condition is changed based on the difference between the predicted temperature and the upper limit of the set temperature range, and the expected temperature reached under this changed drive condition is within the set temperature range. The size of the drive current was reduced to fit.
It is characterized by that.

本発明の発光ダイオードの駆動制御方法にあっては、駆動開始時の近傍温度と駆動電流を制御する駆動条件とから到達予想温度を予測し、この到達予想温度が設定温度範囲の上限値以下の場合は駆動条件を変えることなく駆動電流を制御し、到達予想温度が設定温度範囲の上限値より高いときは到達予想温度と設定温度範囲の上限値との差から駆動条件を変更してこの変更した駆動条件での到達予想温度が設定温度範囲内に収まるように駆動電流の大きさを低減するようにしたので、駆動開始から駆動中にわたって駆動電流が実質変化しないようにしてLEDの輝度がその期間中大きく変化するのを抑制することができる。したがって、発光ダイオードの輝度の大きな変化で表示等が見にくくなったり、ユーザーに発光ダイオードへの信頼性に不安が生じたりするのを防止することができる。   In the light emitting diode drive control method of the present invention, the predicted temperature reached is predicted from the vicinity temperature at the start of driving and the drive conditions for controlling the drive current, and this predicted temperature is less than or equal to the upper limit value of the set temperature range. In this case, the drive current is controlled without changing the drive conditions, and when the expected temperature reaches higher than the upper limit value of the set temperature range, the drive condition is changed based on the difference between the expected temperature and the upper limit value of the set temperature range. The drive current was reduced so that the expected temperature reached under the set drive conditions was within the set temperature range, so that the drive current did not change substantially from the start of drive to during the drive. It is possible to suppress a large change during the period. Therefore, it is possible to prevent the display or the like from being difficult to see due to a large change in the luminance of the light emitting diode or the user from being uneasy about the reliability of the light emitting diode.

本発明に係る実施例1の発光ダイオードの駆動制御方法を実現するためのLED駆動装置の構成を示すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram illustrating a configuration of an LED driving device for realizing a light emitting diode driving control method according to a first embodiment of the present invention. 図1のLED駆動装置で実行され、実施例1のLEDの駆動制御方法を実施する制御フローチャートである。3 is a control flowchart for executing the LED drive control method according to the first embodiment, which is executed by the LED drive device of FIG. 1. 図1のLED駆動装置で実行され、電源再投入時における実施例1のLEDの駆動制御方法を実施する制御フローチャートである。2 is a control flowchart executed by the LED drive device of FIG. 1 and implementing the LED drive control method of Embodiment 1 when power is turned on again. 実施例1でのLED駆動装置のLED駆動時の状態を示し、(a)、(b)は周囲温度が比較的低い場合であって、(a)はそのときLEDに加える駆動電流の大きさを、また(b)はそのときのLEDのジャンクション温度をそれぞれ示す図である。また(c)、(d)は周囲温度が比較的高い場合であって、(c)はそのときLEDに加える駆動電流の大きさを、また(d)はそのときのLEDのジャンクション温度をそれぞれ示す図である。The LED driving state of the LED driving device in Example 1 is shown, (a), (b) is a case where the ambient temperature is relatively low, (a) is the magnitude of the drive current applied to the LED at that time (B) is a diagram showing the junction temperature of the LED at that time. (C) and (d) are cases where the ambient temperature is relatively high, (c) shows the magnitude of the drive current applied to the LED at that time, and (d) shows the junction temperature of the LED at that time. FIG. 実施例1でのLED駆動装置のLED再駆動時の状態を示し、(a)、(b)は周囲温度が比較的低い場合であって、(a)はそのときLEDに加える駆動電流の大きさを、また(b)はそのときのLEDのジャンクション温度をそれぞれ示す図である。また(c)、(d)は周囲温度が比較的高い場合であって、(c)はそのときLEDに加える駆動電流の大きさを、また(d)はそのときのLEDのジャンクション温度をそれぞれ示す図である。The state at the time of LED redrive of the LED drive device in Example 1 is shown, (a), (b) is a case where ambient temperature is comparatively low, Comprising: (a) is the magnitude | size of the drive current applied to LED at that time FIG. 5B is a diagram showing the junction temperature of the LED at that time. (C) and (d) are cases where the ambient temperature is relatively high, (c) shows the magnitude of the drive current applied to the LED at that time, and (d) shows the junction temperature of the LED at that time. FIG. 従来のLEDの駆動制御方法を示し、(a)、(b)は周囲温度が比較的低い場合であって、(a)はそのときLEDに加える駆動電流の大きさを、また(b)はそのときのLEDのジャンクション温度をそれぞれ示す図である。また(c)、(d)は周囲温度が比較的高い場合であって、(c)はそのときLEDに加える駆動電流の大きさを、また(d)はそのときのLEDのジャンクション温度をそれぞれ示す図である。A conventional LED drive control method is shown, in which (a) and (b) are cases where the ambient temperature is relatively low, (a) shows the magnitude of the drive current applied to the LED at that time, and (b) It is a figure which shows the junction temperature of LED at that time, respectively. (C) and (d) are cases where the ambient temperature is relatively high, (c) shows the magnitude of the drive current applied to the LED at that time, and (d) shows the junction temperature of the LED at that time. FIG.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.

まず、実施例1の全体構成を説明する。
この実施例1の発光ダイオード(LED)の駆動制御方法を実施するLED駆動装置は、図1に示すように、LEDアレイ1と、LED駆動回路2と、輝度設定部3と、温度センサ4と、温度検出部5と、駆動制御部6と、予測計算部7と、記憶部8と、を備えている。
First, the overall configuration of the first embodiment will be described.
As shown in FIG. 1, an LED drive device that implements the light emitting diode (LED) drive control method of Embodiment 1 includes an LED array 1, an LED drive circuit 2, a brightness setting unit 3, a temperature sensor 4, and the like. , A temperature detection unit 5, a drive control unit 6, a prediction calculation unit 7, and a storage unit 8.

LEDアレイ1は、複数のLED1aを直列接続配置したもので、駆動電流が印加されると光を発し、図示しない表示部のバックライト等に利用される。このLEDアレイ1は、本発明の発光ダイオードに相当する。   The LED array 1 includes a plurality of LEDs 1a connected in series, emits light when a drive current is applied, and is used for a backlight of a display unit (not shown). This LED array 1 corresponds to a light emitting diode of the present invention.

LED駆動回路2は、駆動制御部6で決定されたデューティ比に応じて、パルス幅変調(Pulse Width Modulation)した大きさの駆動電流を発生させるもので、この駆動電流をLEDアレイ1に印加することによりLED1aを所望の輝度で発光させる。   The LED drive circuit 2 generates a drive current having a pulse width modulation magnitude according to the duty ratio determined by the drive control unit 6, and applies this drive current to the LED array 1. As a result, the LED 1a emits light with a desired luminance.

輝度設定部3は、ユーザーが図示しないボタンやスイッチなどで希望するLEDアレイ1の輝度を選択設定するもので、ここで選定された輝度設定値に対応する輝度設定信号を駆動制御部6に入力する。   The brightness setting unit 3 is used to select and set the desired brightness of the LED array 1 by a button or switch (not shown), and the brightness setting signal corresponding to the selected brightness setting value is input to the drive control unit 6. To do.

温度センサ4は、LEDアレイ1の近傍に配置され、検出した近傍温度に応じたアナログの温度信号電流を連続的に発生し、温度検出部5に入力する。   The temperature sensor 4 is disposed in the vicinity of the LED array 1, continuously generates an analog temperature signal current corresponding to the detected vicinity temperature, and inputs the analog temperature signal current to the temperature detection unit 5.

温度検出部5は、温度センサ4で検出した温度信号電流を、対応するディジタル値としての近傍温度信号に変えて、駆動制御部6と予測計算部7とに入力する。なお、この近傍温度は、LED1aのジャンクション温度に相当する温度として利用するものであり、これら間でのずれが大きい場合には予め実験やシミュレーションで得た関係に基づき補正し、この補正値を用いるようにしても良い。   The temperature detection unit 5 changes the temperature signal current detected by the temperature sensor 4 into a neighboring temperature signal as a corresponding digital value, and inputs it to the drive control unit 6 and the prediction calculation unit 7. In addition, this neighborhood temperature is used as a temperature corresponding to the junction temperature of the LED 1a, and when the difference between them is large, it is corrected based on a relationship obtained in advance through experiments and simulations, and this correction value is used. You may do it.

駆動制御部6では、輝度設定部3で設定された輝度設定値と電源投入時に温度検出部5から得られた近傍温度とに応じて記憶部8に記憶した駆動条件テーブルを用いてLEDアレイ1の駆動条件を設定する。ここで、駆動条件とは、駆動電流の大きさ、デューティ比等でLEDアレイ1を駆動する条件であり、輝度設定値の大きさに応じてそれぞれ最適な駆動条件が設定してある。そして、この駆動条件にあっては、少なくともこの駆動電流の大きさは、駆動開始時からLEDアレイ1のジャンクション温度TJが安定して落ち着くまでの期間は、実質一定値を保つように設定してある。これらの関係は予め実験等で計測され、最適値を見つけることで上記駆動条件テーブルを構築している。また、後述の予測計算部7で予測した到達予測温度と設定温度範囲の上限値との大小関係に応じて上記駆動条件をそのまま使用するか変更するかを決定し、この駆動条件に合った駆動指令信号をLED駆動回路2へ入力する。 The drive control unit 6 uses the drive condition table stored in the storage unit 8 according to the brightness set value set by the brightness setting unit 3 and the neighborhood temperature obtained from the temperature detection unit 5 when the power is turned on. Set the drive conditions. Here, the drive condition is a condition for driving the LED array 1 based on the magnitude of the drive current, the duty ratio, and the like, and the optimum drive condition is set according to the magnitude of the brightness setting value. Then, in the driving condition, at least the magnitude of the drive current period from the start of driving to the junction temperature T J of the LED array 1 settles stable, set to maintain a substantially constant value It is. These relationships are measured in advance through experiments or the like, and the drive condition table is constructed by finding the optimum values. In addition, it is determined whether to use or change the drive condition as it is according to the magnitude relationship between the predicted arrival temperature predicted by the prediction calculation unit 7 to be described later and the upper limit value of the set temperature range, and a drive that matches the drive condition. A command signal is input to the LED drive circuit 2.

予測計算部7は、温度検出部5で得た近傍温度および駆動制御部7で得られた駆動条件に基づき、この駆動条件で駆動した場合、LEDアレイ1が発熱していきやがて落ち着いて安定する到達予測温度を予測し、ここで得た到達予測温度信号を駆動制御部6に入力する。   Based on the vicinity temperature obtained by the temperature detection unit 5 and the drive condition obtained by the drive control unit 7, the prediction calculation unit 7 generates heat and gradually settles and stabilizes when driven under this drive condition. The predicted arrival temperature is predicted, and the predicted arrival temperature signal obtained here is input to the drive control unit 6.

記憶部8は、上記駆動条件テーブル、LED駆動装置の駆動を停止した時に演算される予想近傍温度、およびこの停止時直前での駆動条件を記憶し、これらのデータを駆動制御部6に供給可能である。   The storage unit 8 stores the above driving condition table, the predicted near temperature calculated when driving of the LED driving device is stopped, and the driving conditions immediately before the stop, and can supply these data to the driving control unit 6 It is.

なお、駆動制御部6では、上述のように駆動条件を決定するが、さらに、起動再開時に温度検出部5で検出した近傍温度と、記憶部8にその直前の駆動終了時に記憶した予想近傍温度と、の差の大きさに応じて、記憶部8に直前の駆動終了時に記憶した駆動条件を変更せずそのまま使うか、あるいは変更するかを決定して、駆動指令信号をLED駆動回路2へ入力するようにもしてある。   The drive control unit 6 determines the drive conditions as described above. Further, the drive controller 6 further determines the vicinity temperature detected by the temperature detection unit 5 when restarting the startup, and the expected vicinity temperature stored in the storage unit 8 at the end of the previous drive. Depending on the magnitude of the difference, the drive condition stored at the end of the previous drive in the storage unit 8 is decided to be used as it is without change, or the drive command signal is sent to the LED drive circuit 2 There is also input.

上記のように構成したLED駆動装置に電源が投入されると、上記LED駆動装置では、温度センサ4がLEDアレイ1の検出温度信号電流を温度検出部5へ送り始め、ここで近傍温度TCを得て検出近接温度信号として、駆動制御オブ6と予測計算部7とに入力するようになる。そうして、図2に示すフローチャートに従ってLED駆動制御が実行される。 When power is supplied to the LED driving device configured as described above, in the LED driving device, the temperature sensor 4 starts to send the detected temperature signal current of the LED array 1 to the temperature detecting unit 5, where the temperature T C And is input to the drive control object 6 and the prediction calculator 7 as a detected proximity temperature signal. Then, LED drive control is executed according to the flowchart shown in FIG.

すなわち、ステップS1にて、駆動制御部6および予測計算部7が、温度検出部5から電源投入時の近傍温度TCを読み込む。この電源投入時における近傍温度TC(LEDのジャンクション温度Tに対応)は、LEDアレイ1の周囲温度と同じである。 That is, in step S1, the drive control unit 6 and the prediction calculation unit 7 read from the temperature detection unit 5 the neighborhood temperature T C at the time of power-on. The neighborhood temperature T C (corresponding to the LED junction temperature T J ) when the power is turned on is the same as the ambient temperature of the LED array 1.

続くステップS2では、駆動制御部6が、ユーザーが輝度設定部3で設定した輝度設定値BRを読みこむ。 In step S2, the drive control unit 6, Reads a luminance setting value B R set by the user in the brightness setting portion 3.

続くステップS3では、駆動制御部6が、温度検出部5から入力された近傍温度TCと輝度設定部3で設定された輝度設定値BRとに応じて、LEDアレイ1の駆動条件(駆動電流の大きさ、デューティ比など)を設定する。 In step S3, the drive controller 6, depending on the brightness setting value is set in the vicinity temperature T C and the brightness setting portion 3 which is input from the temperature detecting section 5 B R, driving conditions of the LED array 1 (driving Set the current magnitude and duty ratio.

続くステップS4では、予測計算部7が、温度検出部5から入力された近傍温度TCと駆動制御部6で設定した駆動条件とに基づいて、到達予想温度TAPを予測する。 In the subsequent step S4, the prediction calculation unit 7 predicts the predicted arrival temperature T AP based on the neighborhood temperature T C input from the temperature detection unit 5 and the drive conditions set by the drive control unit 6.

続くステップS5では、駆動制御部6が、上記駆動条件の下で、到達予想温度TAPが設定温度範囲の上限温度(上限値)Tを超えるか否かを判断する。到達予想温度TAPが設定温度範囲の上限値Tを超えない場合(判断がNOの場合)にはステップS6へ進み、また到達予想温度TAPが設定温度範囲の上限値Tを超える場合(YESの場合)にはステップS9へ進む。なお、ここで上限値Tとは、近傍温度TCがLED1aを破壊しない温度の最高値あるいはそれより若干下の値であり、設定温度範囲とは長時間駆動してLEDアレイ1の近傍温度TCが下がったときデューティ率を増加させる基準となる復帰温度(下限値)TRとの間の温度範囲である。 In subsequent step S5, the drive control unit 6 determines whether or not the expected temperature TAP exceeds the upper limit temperature (upper limit value) T L of the set temperature range under the above drive conditions. If the expected temperature T AP does not exceed the upper limit value TL of the set temperature range (when the determination is NO), the process proceeds to step S6, and if the expected temperature T AP exceeds the upper limit value TL of the set temperature range In the case of YES (YES), the process proceeds to step S9. Here, the upper limit value T L is the maximum temperature at which the neighborhood temperature T C does not destroy the LED 1a or a value slightly below it, and the set temperature range is the temperature near the LED array 1 after long-term driving. T C as a reference to increase the duty ratio when the drops restoration temperature (lower limit) at a temperature range between T R.

ステップS6では、駆動制御部6が、ステップS3で設定した駆動条件を変更することなく、このままの駆動条件(少なくとも駆動開始時からジャンクション温度TJが安定して落ち着くまでの期間は実質一定の駆動電流I)にてLED駆動回路2で駆動電流を発生させ、LEDアレイ1を駆動させる。 In step S6, the drive control unit 6 does not change the drive condition set in step S3, and the drive condition remains unchanged (at least a period of time from the start of the drive until the junction temperature T J settles down is substantially constant) A drive current is generated in the LED drive circuit 2 by the current I), and the LED array 1 is driven.

続くステップS7では、駆動制御部6が、駆動終了か否かを判断する。駆動終了でない場合(NOの場合)には、ステップS6に戻りそれまでと同じ駆動条件でLEDアレイ1を駆動し、発光させる。これに対し、駆動終了の場合(YESの場合)には、ステップS8へ進む。   In the subsequent step S7, the drive control unit 6 determines whether or not the drive is finished. When the driving is not finished (in the case of NO), the process returns to step S6 to drive the LED array 1 under the same driving conditions as before and emit light. On the other hand, if the driving is completed (YES), the process proceeds to step S8.

ステップS8では、駆動制御部6が、駆動終了時から一定時間、近傍温度TCの推移を測定し、この一定時間の間における近傍温度TCの変化の状態から近傍温度TCが最終的に安定して落ち着く予想近傍温度TCPを予測し、これを記憶部8に記憶するとともに、ステップS6で使用した駆動条件をそれぞれ記憶してLED駆動制御を終了する。なお、予想近傍温度TCPは、電源OFFでLEDアレイ1やその周辺部品が十分冷えて安定した場合の周囲温度に相当する。 In step S8, the drive control unit 6 measures the transition of the neighborhood temperature T C for a certain time from the end of driving, and finally the neighborhood temperature T C is determined from the change state of the neighborhood temperature T C during this certain time. It predicts a stably settled expected near the temperature T CP, stores it in the storage unit 8, and respectively stored using the driving conditions at step S6 and terminates the LED drive control. The expected near temperature T CP corresponds to the ambient temperature when the LED array 1 and its peripheral components are sufficiently cooled and stabilized when the power is turned off.

一方、ステップS5で、駆動制御部6が、到達予想温度TApが設定温度範囲の上限値Tを超えると判断した場合(YESの場合)には、ステップS9にて、到達予想温度TAPと設定温度範囲の上限値Tとの差ΔTSに基づき上記駆動条件を駆動電流の大きさやデューティ比が減少する方向に変更して、到達予想温度TAPが設定温度範囲の上限値Tを超えなくなる新たな駆動条件を設定する。 On the other hand, in step S5, when the drive control unit 6 determines that the predicted temperature T Ap exceeds the upper limit value TL of the set temperature range (in the case of YES), the predicted target temperature T AP is determined in step S9. set temperature range size and the duty ratio of the difference [Delta] T S in basis the driving conditions the drive current of the upper limit value T L is changed in the direction to decrease the upper limit value T L of the set temperature range estimated arrival temperature T AP Set new drive conditions that will not exceed.

続くステップS10では、駆動制御部6が、ステップS9で新しく設定した駆動条件(駆動電流の大きさやデューティ比を減少し、かつ、少なくとも駆動開始時からジャンクション温度TJが安定して落ち着くまでの期間は実質一定の駆動電流I)にて、LED駆動回路2で駆動電流を発生させ、LEFアレイ1を駆動し、発光させる。 In the subsequent step S10, the drive control unit 6 reduces the drive conditions newly set in step S9 (the period until the junction temperature T J stabilizes at least from the start of the drive, while reducing the drive current magnitude and duty ratio) Generates a drive current in the LED drive circuit 2 at a substantially constant drive current I), drives the LEF array 1 to emit light.

続くステップS11では、駆動制御部6が、駆動終了か否かを判断する。駆動終了でない場合(NOの場合)には、ステップS10に戻りステップS9で新しく設定した駆動条件を変えることなくLEDアレイ1を駆動し、発光させる。これに対し、駆動終了の場合(YESの場合)には、ステップS8へ進んだ後、予想近傍温度TCPとステップS10で使用した駆動条件をそれぞれ記憶し、LED駆動制御を終了する。 In the subsequent step S11, the drive control unit 6 determines whether or not the drive is finished. When the driving is not finished (in the case of NO), the process returns to step S10, and the LED array 1 is driven to emit light without changing the driving condition newly set in step S9. On the other hand, in the case of the end of driving (in the case of YES), after proceeding to step S8, the predicted neighborhood temperature T CP and the driving conditions used in step S10 are stored, and the LED driving control is ended.

次に、図3は、図2のステップS7で駆動終了と判断された後、再度LED駆動装置の電源投入(再起動)が行われた場合に実行されるフローチャートを示す。この場合、以下に説明するように、再起動が、駆動終了後、LEDアレイ1がその周囲温度まで十分冷えたか否かを判定して、再起動後の駆動条件を最適なものにする。   Next, FIG. 3 shows a flowchart executed when it is determined that the driving is finished in step S7 of FIG. In this case, as described below, after the restart is finished, it is determined whether or not the LED array 1 has sufficiently cooled down to the ambient temperature to optimize the drive conditions after the restart.

駆動終了後に電源が再投入されると、温度センサ4がLEDアレイ1の検出温度信号電流を温度検出部5に連続的に送り始め、ここで近傍温度TCが得られるようになるとともに、LED駆動装置にて図3に示すフローチャートに沿ってLED駆動制御が実行される。 When power returns after the drive-end is turned on again, the temperature sensor 4 begins to send the detected temperature signal current of the LED array 1 continuously to the temperature detector 5, so that the vicinity of the temperature T C is obtained here, LED The LED driving control is executed by the driving device along the flowchart shown in FIG.

まず、ステップS21にて、駆動制御部6が、温度検出部5からLED駆動装置の再起動時における近傍温度TCを読み込む。 First, in step S21, the drive control unit 6 reads the temperature near T C at restart of the LED driving apparatus from the temperature detection unit 5.

続くステップS22では、図2のステップS8にて先の駆動終了時に記憶した周囲予測温度TCPを読み込む。 In the subsequent step S22, the predicted ambient temperature TCP stored at the end of the previous drive in step S8 of FIG. 2 is read.

続くステップS23では、温度検出部5から読み込んだ再起動時の検出温度信号TCと記憶部8から読みだした前回駆動終了時の周囲予測温度TCPとの間に所定値ΔTCの温度差があるか否かを判断する。この温度差が所定値ΔTCより大きい場合(YESの場合)には、LEDアレイ1がまだ十分その周囲温度まで下がり切っていないと判断し、前回駆動終了時直前の駆動条件、すなわち記憶部8にステップS8で記憶された駆動条件を変更することなくこのままの駆動条件でLEDアレイ1を駆動する。すなわち、図2のステップS6へと進み、それまでと同じ駆動条件でLEDアレイ1を駆動する。
これに対し、再起動時に検出した近傍温度信号TCと前回の周囲予測温度TCPとの間に所定値ΔTCの温度差がない場合(NOの場合)には、LEDアレイ1は十分冷えていてその検出近傍温度TCが周囲温度とほぼ同等であると判断し、図2のステップS2へと進み、記憶部8に記憶した駆動条件を読み込み、これらから到達予想温度TCPを予測して、この到達予想温度TCPと上限値TLとから、駆動条件の変更の有無へと図2のフローチャートに従って進む。
Subsequent step S23, the temperature difference between the predetermined value [Delta] T C between the ambient predicted temperature T CP of the previous drive termination read out from the detected temperature signal T C and the storage unit 8 at Restart read from the temperature detector 5 Judge whether there is. In the case the temperature difference is larger than the predetermined value [Delta] T C (case of YES), determines that the LED array 1 is not fully down to yet sufficiently its ambient temperature, the previous drive end just before the driving conditions, i.e. storage unit 8 Then, the LED array 1 is driven under the same driving conditions without changing the driving conditions stored in step S8. That is, the process proceeds to step S6 in FIG. 2, and the LED array 1 is driven under the same driving conditions as before.
In contrast, if there is no temperature difference between the predetermined value [Delta] T C between the neighboring temperature signal T C and ambient predicted temperature T CP last detected upon reboot (if NO), LED array 1 is sufficiently cooled Therefore, it is determined that the detected temperature T C is substantially equal to the ambient temperature, the process proceeds to Step S2 in FIG. 2, the driving conditions stored in the storage unit 8 are read, and the expected temperature T CP is predicted from these. Then, the process proceeds from the expected temperature T CP and the upper limit value T L to whether or not the drive condition is changed according to the flowchart of FIG.

上記図2のフローチャートに従って実行したLED駆動制御の例を図4に示す。同図(a)、(b)は長時間の電源OFF時が続いた後での電源投入時における周囲温度が低い場合を、また同図(c)、(d)はその電源投入時の周囲温度が高い場合をそれぞれ示す。また、同図(a)、(c)はLED駆動電流Iの大きさの時間推移を、また同図(b)、(d)は近傍温度TC(LED1aのジャンクション温度TJに相当)の時間推移をそれぞれ示す。 An example of LED drive control executed according to the flowchart of FIG. 2 is shown in FIG. FIGS. 4A and 4B show the case where the ambient temperature is low when the power is turned on after the power is turned off for a long time, and FIGS. 4C and 4D show the surroundings when the power is turned on. Each case shows a high temperature. FIGS. 9A and 9C show the time transition of the magnitude of the LED driving current I, and FIGS. 9B and 9D show the vicinity temperature T C (corresponding to the junction temperature T J of the LED 1a). Each time transition is shown.

まず、電源投入時の周囲温度が低い場合は、ステップS3でデューティ率をたとえば70%程度とした駆動条件での到達予想温度TAPが設定温度範囲の上限値(限界温度)TLを超えないので、同図(a)に示すように、ステップS3でデューティ率を70%とした駆動条件を変えることなく、駆動電流Iを立ち上げ、以後この値を保つ。この結果、同図(b)に示すように、駆動開始時刻t0には周囲温度(長時間電源OFF後に電源ONとしたときの近傍温度TCと同じ温度)に等しかった近傍温度TC(したがって、LEDアレイ1の素子温度TJ)は、急激に立ちあがって上昇して行くが、その上昇率は次第に低下して行き、時刻taで設定範囲の下限値である復帰温度TRを超えた後、設定温度範囲の上限値である限界温度TLに徐々に近づいて行く。しかしながら、上記のようにデューティ比を設定した駆動条件のため、近傍温度TCは限界温度TLを超えることなくこの限界温度TLに近づいて行き、時刻tbでほぼ等しくなり、これ以後その値が安定して保たれる。したがって、LED1aのジャンクション温度は、LED1aが破壊される温度より低い値に保たれる。また、駆動開始時から駆動制御時にあっては、駆動電流を変化させないので、LEDアレイ1の輝度の変動が抑制されることとなる。 First, if the ambient temperature is low when the power is turned on, the expected temperature TAP under the driving condition in which the duty factor is about 70% in step S3 does not exceed the upper limit (limit temperature) T L of the set temperature range. Therefore, as shown in FIG. 5A, the drive current I is raised without changing the drive condition in which the duty ratio is 70% in step S3, and this value is maintained thereafter. As a result, as shown in FIG. (B), the drive starting time t 0 the vicinity temperature was equal to (the same temperature as the temperature near T C when the power supply ON after prolonged power OFF) ambient temperature is T C ( Therefore, the element temperature T J of the LED array 1) is rises risen sharply, the rate of increase gradually decreases gradually exceed the recovery temperature T R which is the lower limit of the set range at time t a After that, the temperature gradually approaches the limit temperature TL which is the upper limit value of the set temperature range. However, since the driving conditions set duty ratio as described above, the temperature near T C went close to the limit temperature T L without exceeding the limit temperature T L, approximately equal at time t b, which thereafter the The value is kept stable. Therefore, the junction temperature of the LED 1a is kept at a value lower than the temperature at which the LED 1a is destroyed. In addition, since the drive current is not changed from the start of driving to the time of drive control, fluctuations in luminance of the LED array 1 are suppressed.

一方、電源投入時の周囲温度が同図(a)の場合より高い場合は、同図(c)に示すように、ステップS9でデューティ率をたとえば55%と減少させた新たな駆動条件により駆動電流Iを立ち上げ、以後この値を保つ。この結果、同図(d)に示すように、駆動開始の時刻tには周囲温度に等しかった近傍温度TCは、急激に立ちあがって上昇して行くが、その上昇率はデューティ率が減少されているため周囲温度がより低い同図(b)の場合より小さく抑えられている。また、上昇率は次第に低下して行き、時刻tで設定範囲の復帰温度TRを超え、設定温度範囲の上限値である限界温度TLに徐々に近づいて行く。しかしながら、上記のようにより小さいデューティ比を設定した駆動条件を用いるため、近傍温度TCは限界温度TLを超えることなくこれに近づいて行き時刻tでほぼ等しくなり、これ以後その値が安定して保たれる。したがって、LED1aのジャンクション温度は、LED1aが破壊される温度より低い値に保たれる。また、駆動開始時から駆動制御時にあっては、駆動電流を変化させないので、LEDアレイ1の輝度の変動が抑制されることとなる。 On the other hand, when the ambient temperature at the time of power-on is higher than that in FIG. 6A, as shown in FIG. 5C, the driving is performed under the new driving condition in which the duty ratio is reduced to, for example, 55% in step S9. Raise current I and keep this value thereafter. As a result, as shown in FIG. 4D, the neighborhood temperature T C which is equal to the ambient temperature at the drive start time t 0 rises rapidly and rises, but the rate of increase decreases the duty factor. Therefore, the ambient temperature is kept smaller than in the case of FIG. Moreover, rate of increase gradually decreases gradually, beyond the return temperature T R of the set range at time t c, approaches gradually to the limit temperature T L which is the upper limit value of the set temperature range. However, since the driving condition in which a smaller duty ratio is set as described above is used, the near temperature T C approaches the limit temperature T L without exceeding the limit temperature T L and becomes substantially equal at the time t d , and thereafter, the value is stable. And kept. Therefore, the junction temperature of the LED 1a is kept at a value lower than the temperature at which the LED 1a is destroyed. In addition, since the drive current is not changed from the start of driving to the time of drive control, fluctuations in luminance of the LED array 1 are suppressed.

次に、上記図3のフローチャートに従って実行した、LED駆動装置の再起動時におけるLED駆動制御の例を図5に示す。同図(a)、(b)は再起動時に検出した近傍温度TCとステップS8で得て記憶部8に記憶していた予想周囲温度TCPとの差が所定値ΔTCより大きい場合を、また同図(c)、(d)は再起動時に検出した近傍温度TCと予想周囲温度TCとの差が所定値ΔTC以下の場合をそれぞれ示す。また、同図(a)、(c)はLED駆動電流Iの大きさの時間推移を、また同図(b)、(d)は近傍温度TCの時間推移をそれぞれ示す。 Next, FIG. 5 shows an example of LED drive control executed when the LED drive device is restarted, which is executed according to the flowchart of FIG. FIGS. 4A and 4B show the case where the difference between the near temperature T C detected at the time of restart and the predicted ambient temperature T CP obtained in step S8 and stored in the storage unit 8 is larger than a predetermined value ΔT C. FIGS. 7C and 7D respectively show cases where the difference between the near temperature T C detected at the time of restart and the expected ambient temperature T C is equal to or less than a predetermined value ΔT C. Further, FIG. (A), (c) shows a time transition of the magnitude of the LED drive current I, also FIG. (B), (d) is a time transition of the temperature near T C respectively.

同図(b)に示すように、時刻teに駆動終了し、その後、再起動した時刻tfに検出した近傍温度TC(図中、駆動再開温度TSとして示す)と、ステップS8で得て記憶部8に記憶していた予想周囲温度TCPと、の温度差ΔTが所定値ΔTCより大きい場合には、LEDアレイ1がまだその周囲温度まで下がりきっていない、すなわち駆動終了時から短時間のうちに再起動されたことから周囲温度もほとんど変わっていないと推定される。したがって、この場合、記憶部8に記憶していた駆動終了直前の駆動条件をかえることなく、そのままの駆動条件(同図(a)に示すようにたとえば同じデューティ比70%での駆動電流I)でLEDアレイ1を駆動し発光させる。したがって、LED1aのジャンクション温度は、LED1aが破壊される温度より低い値に保たれる。また、駆動開始時から駆動制御時にあっては、駆動電流Iの大きさを変化させないので、LEDアレイ1の輝度の変動が抑制されることとなる。 As shown in FIG. 6B, the temperature near the temperature T C (shown as the drive resumption temperature T S in the figure) detected at the time t f after the driving is finished at the time t e , and at step S8 when obtained the expected ambient temperature T CP which has been stored in the storage unit 8, the temperature difference [Delta] T of greater than a predetermined value [Delta] T C is, LED array 1 is not fully down yet to its ambient temperature, i.e. at the drive-end Therefore, it is estimated that the ambient temperature has hardly changed since it was restarted in a short time. Therefore, in this case, without changing the driving condition immediately before the end of driving stored in the storage unit 8, the driving condition is maintained as it is (for example, the driving current I with the same duty ratio of 70% as shown in FIG. To drive the LED array 1 to emit light. Therefore, the junction temperature of the LED 1a is kept at a value lower than the temperature at which the LED 1a is destroyed. In addition, since the magnitude of the drive current I is not changed from the start of driving to the time of drive control, fluctuations in luminance of the LED array 1 are suppressed.

一方、同図(d)に示すように、時刻teに駆動終了し、その後、再起動した時刻t(>tf)に検出した近傍温度TC(図中、駆動再開温度TSとして示す)と、ステップS8で得て記憶部8に記憶していた予想周囲温度TCPと、の温度差ΔTが所定値ΔTCより大きい場合には、駆動終了時から十分時間が経ち、LEDアレイ1の温度がその周囲温度まで、あるいはその近くまで十分下がったことから、周囲温度が大きく変化している可能性がある。そこで、同図(c)に示すように、たとえば前回終了時のデューティ比が70%だったのをデューティ比80%へ増加させた新しい駆動条件で駆動電流Iを駆動する。したがって、LED1aのジャンクション温度は、LED1aが破壊される温度より低い値に保たれる。また、駆動開始時から駆動制御時にあっては、駆動電流Iの大きさを変化させないので、LEDアレイ1の輝度の変動が抑制されることとなる。 On the other hand, as shown in FIG. 4D, the temperature near the temperature T C detected at the time t g (> t f ) at which the driving ends at the time t e and then restarts (in the figure, as the driving resumption temperature T S and shown), the expected ambient temperature T CP which has been stored in the storage unit 8 are obtained in the step S8, when the temperature difference [Delta] T of greater than a predetermined value [Delta] T C is passed since sufficient time from the time of the drive-end, LED array Since the temperature of 1 has sufficiently decreased to or near that ambient temperature, the ambient temperature may have changed significantly. Therefore, as shown in FIG. 6C, for example, the drive current I is driven under a new drive condition in which the duty ratio at the end of the previous time is increased from 70% to a duty ratio of 80%. Therefore, the junction temperature of the LED 1a is kept at a value lower than the temperature at which the LED 1a is destroyed. In addition, since the magnitude of the drive current I is not changed from the start of driving to the time of drive control, fluctuations in luminance of the LED array 1 are suppressed.

このように、本実施例のLED駆動装置にあっては、温度センサ4で検出した駆動開始時の近傍温度TCと駆動条件とに応じてLEDアレイ1の到達予想温度TAPを予測し、到達予想温度TAPが設定温度範囲の上限値TL以下の場合は駆動条件を変えることなく、また到達予想温度TAPが設定温度範囲の上限値TLより高いときは到達予想温度TAPと上限値TLとの差ΔTから駆動条件を変更してこの変更した駆動条件での到達予想温度TAPが設定温度範囲内に収まるように駆動電流の大きさを低減するようにしたので、起動開始時から少なくともLEDアレイ1のジャンクション温度TJが安定して落ち着くまでの駆動制御の期間、駆動電流を実質一定に保つことが可能となり、この結果、この期間中LEDアレイ1の輝度の大きな変化を抑えることができ、ユーザーにとって見やすい表示やLEDへの信頼性向上を図ることが可能となる。 Thus, in the LED driving device of the present embodiment, the expected arrival temperature T AP of the LED array 1 is predicted according to the vicinity temperature T C at the start of driving detected by the temperature sensor 4 and the driving conditions, If the expected temperature T AP is less than the upper limit value T L of the set temperature range, the driving conditions are not changed.If the expected temperature T AP is higher than the upper limit value T L of the set temperature range, the expected temperature T AP is Since the drive condition was changed from the difference ΔT with the upper limit value T L and the expected current temperature T AP under this changed drive condition was reduced within the set temperature range, the magnitude of the drive current was reduced. It is possible to keep the drive current substantially constant during the drive control period from the start until at least the junction temperature TJ of the LED array 1 stabilizes, and as a result, a large change in the brightness of the LED array 1 can be achieved during this period. It can be suppressed and is easy for the user to see It is possible to improve the reliability of the display and LED.

また、上記駆動条件の設定にあっては、輝度設定部3でユーザーが設定したLEDアレイ1の輝度を考慮して設定できるので、ユーザーにとって見やすい表示が可能となる。   Further, since the driving condition can be set in consideration of the luminance of the LED array 1 set by the user in the luminance setting unit 3, a display that is easy for the user to see is possible.

また、LEDアレイ1の駆動が終了した場合、駆動終了時から所定時間後の近傍温度TCの変化を検出してLEDアレイ1の温度が駆動終了により減少し安定して落ち着く予想近傍温度TAPを予想してこの予想近傍温度TAPと終了時直前の駆動条件とを記憶し、LED駆動装置の再起動時に、この再起動時に温度センサ4で検出した近傍温度TCと記憶した予想近傍温度TAPと差が所定値ΔTCより大きい場合には終了時直前の駆動条件での駆動電流IでLEDアレイ1を駆動し、LED駆動装置の再起動時に、この再起動時に温度センサ4で検出した近傍温度TCと記憶した予想近傍温度TAPと差が所定値ΔTC以下の場合には終了時直前の駆動条件を変更して得た駆動電流IでLEDアレイ1を駆動するようにしたので、再起動が駆動終了後短時間でLEDアレイ1の温度が周囲温度まで下がっていない状態なのか、あるいはLEDアレイ1の温度が周囲温度まで十分下がった状態なのかを判定でき、その判定結果に応じて最適な駆動条件を決定することが可能となる。 Further, when the driving of the LED array 1 is finished, a change in the neighborhood temperature T C after a predetermined time from the end of the driving is detected, and the expected neighborhood temperature T AP where the temperature of the LED array 1 decreases and stabilizes stably by the end of the driving. in anticipation of storing the driving condition at the end immediately before this predicted temperature near T AP, upon restart of the LED driving device, the expected temperature near that stores the temperature near T C detected by the temperature sensor 4 to the restart T AP and difference drives the LED array 1 by the driving current I of the driving conditions at the end just before is greater than a predetermined value [Delta] T C, upon restart of the LED driving device, detected by the temperature sensor 4 to the restart The LED array 1 is driven by the driving current I obtained by changing the driving condition immediately before the end when the difference between the measured neighboring temperature T C and the stored predicted neighboring temperature T AP is equal to or smaller than the predetermined value ΔT C. As a result, the temperature of the LED array 1 drops to the ambient temperature in a short time after the restart is completed. Or state of no, or a temperature of the LED array 1 can determine whether sufficient lowered state until ambient temperature, it is possible to determine the optimum driving conditions according to the determination result.

以上、本発明を上記各実施例に基づき説明してきたが、本発明はこれらの実施例に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。   The present invention has been described based on the above embodiments. However, the present invention is not limited to these embodiments, and is included in the present invention even when there is a design change or the like without departing from the gist of the present invention. .

たとえば、本発明の発光ダイオードは、本実施例のLEDアレイ1では、複数のLEDを1列配列したが、LEDを複数列としてもよいし、LED1個のみで構成してもよい。   For example, in the LED array 1 of the present embodiment, the light emitting diode of the present invention has a plurality of LEDs arranged in one column, but the LEDs may be arranged in a plurality of columns or may be composed of only one LED.

また、本発明のLEDの駆動制御方法は、上記実施例のデューティ比とは異なる値をとるように設定してもよい。   Further, the LED drive control method of the present invention may be set to take a value different from the duty ratio of the above embodiment.

1 LEDアレイ
2 LED駆動回路
3 輝度設定部
4 温度センサ
5 温度検出部
6 駆動制御部
7 予測計算部
8 記憶部
DESCRIPTION OF SYMBOLS 1 LED array 2 LED drive circuit 3 Brightness setting part 4 Temperature sensor 5 Temperature detection part 6 Drive control part 7 Prediction calculation part 8 Memory | storage part

Claims (3)

駆動電流が印加されることで発光する発光ダイオードと、
該発光ダイオードの近傍温度を検出可能な温度センサと、
該温度センサで検出した近傍温度に応じて前記駆動電流の大きさを可変に制御可能な駆動制御手段と、
を備えた発光ダイオード駆動装置の駆動制御方法であって、
前記駆動制御手段は、前記温度センサで検出した駆動開始時の近傍温度と前記駆動電流を制御する駆動条件とに応じて前記発光ダイオードの到達予想温度を予測し、
該到達予想温度が設定温度範囲の上限値以下の場合は前記駆動条件を変えることなく前記駆動電流を制御し、
前記到達予想温度が前記設定温度範囲の上限値より高いときは前記到達予想温度と前記設定温度範囲の上限値との差から前記駆動条件を変更して該変更した駆動条件での到達予想温度が前記設定温度範囲内に収まるように前記駆動電流の大きさを低減するようにした、
ことを特徴とする発光ダイオードの駆動制御方法。
A light emitting diode that emits light when a drive current is applied;
A temperature sensor capable of detecting the temperature in the vicinity of the light emitting diode;
Drive control means capable of variably controlling the magnitude of the drive current according to the vicinity temperature detected by the temperature sensor;
A drive control method for a light emitting diode drive device comprising:
The drive control means predicts an expected arrival temperature of the light emitting diode according to a temperature near the start of driving detected by the temperature sensor and a driving condition for controlling the driving current,
If the expected temperature is below the upper limit value of the set temperature range, the drive current is controlled without changing the drive condition,
When the predicted temperature reached is higher than the upper limit value of the set temperature range, the drive condition is changed from the difference between the predicted temperature reached and the upper limit value of the set temperature range, and the predicted temperature reached under the changed drive condition is The magnitude of the drive current is reduced so as to be within the set temperature range.
A drive control method for a light-emitting diode.
請求項1に記載の発光ダイオードの駆動制御方法において、
前記駆動条件は、前記近傍温度に加え前記発光ダイオードの輝度設定値にも応じて設定される、
ことを特徴とする発光ダイオードの駆動制御方法。
The light emitting diode drive control method according to claim 1,
The driving condition is set according to the brightness setting value of the light emitting diode in addition to the vicinity temperature,
A drive control method for a light-emitting diode.
請求項1又は請求項2に記載の発光ダイオードの駆動制御方法において、
前記発光ダイオードの駆動が終了した場合、該駆動終了時から所定時間後の近傍温度の変化を検出して前記発光ダイオードの温度が駆動終了により減少し安定して落ち着く予想近傍温度を予想して該予想近傍温度と終了時直前の駆動条件とを記憶し、
前記発光ダイオード駆動装置の再起動時に、該再起動時に前記温度センサで検出した近傍温度と前記記憶した予想近傍温度と差が所定値より大きい場合には前記終了時直前の駆動条件での駆動電流で前記発光ダイオードを駆動し、
前記発光ダイオード装置の再起動時に、該再起動時に前記温度センサで検出した近傍温度と前記記憶した予想近傍温度と差が前記所定値以下の場合には前記終了時直前の駆動条件を変更して得た駆動電流で前記発光ダイオードを駆動するようにした、
ことを特徴とする発光ダイオードの駆動制御方法。
In the drive control method of the light emitting diode according to claim 1 or 2,
When the driving of the light emitting diode is completed, a change in the vicinity temperature after a predetermined time from the end of the driving is detected, and an expected near temperature at which the temperature of the light emitting diode decreases and stabilizes stably is predicted. Memorize the expected near temperature and the driving conditions just before the end,
When the light emitting diode driving device is restarted, if the difference between the vicinity temperature detected by the temperature sensor at the time of restarting and the stored predicted vicinity temperature is larger than a predetermined value, the driving current under the driving condition immediately before the end To drive the light emitting diode,
When the light emitting diode device is restarted, if the difference between the vicinity temperature detected by the temperature sensor at the time of restart and the stored predicted vicinity temperature is equal to or less than the predetermined value, the driving condition immediately before the end time is changed. The light emitting diode was driven with the obtained drive current.
A drive control method for a light-emitting diode.
JP2010274219A 2010-12-09 2010-12-09 Driving control method of light emitting diode Expired - Fee Related JP5546437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274219A JP5546437B2 (en) 2010-12-09 2010-12-09 Driving control method of light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274219A JP5546437B2 (en) 2010-12-09 2010-12-09 Driving control method of light emitting diode

Publications (2)

Publication Number Publication Date
JP2012124345A true JP2012124345A (en) 2012-06-28
JP5546437B2 JP5546437B2 (en) 2014-07-09

Family

ID=46505490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274219A Expired - Fee Related JP5546437B2 (en) 2010-12-09 2010-12-09 Driving control method of light emitting diode

Country Status (1)

Country Link
JP (1) JP5546437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063751A (en) * 2012-07-05 2014-04-10 Panasonic Corp Lighting circuit unit, and illuminating device
WO2015170405A1 (en) * 2014-05-09 2015-11-12 日立マクセル株式会社 Projection-type image display device
KR20200124415A (en) * 2019-04-24 2020-11-03 영남대학교 산학협력단 Surface-mounted LED available of measuring junction temperature in real time, and Junction temperature sensing method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214519A (en) * 2003-01-08 2004-07-29 Matsushita Electric Ind Co Ltd Led lighting device
JP2007095391A (en) * 2005-09-27 2007-04-12 Hitachi Lighting Ltd Led light source device
JP2007112237A (en) * 2005-10-19 2007-05-10 Koito Mfg Co Ltd Lighting control device of lighting fixture for vehicle
JP2007219008A (en) * 2006-02-14 2007-08-30 Seiko Epson Corp Information processor
JP2008166412A (en) * 2006-12-27 2008-07-17 Koito Mfg Co Ltd Light-emitting element driving circuit, and lighting equipment for vehicle
WO2009028058A1 (en) * 2007-08-29 2009-03-05 Pioneer Corporation Light emitting control device and the like

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214519A (en) * 2003-01-08 2004-07-29 Matsushita Electric Ind Co Ltd Led lighting device
JP2007095391A (en) * 2005-09-27 2007-04-12 Hitachi Lighting Ltd Led light source device
JP2007112237A (en) * 2005-10-19 2007-05-10 Koito Mfg Co Ltd Lighting control device of lighting fixture for vehicle
JP2007219008A (en) * 2006-02-14 2007-08-30 Seiko Epson Corp Information processor
JP2008166412A (en) * 2006-12-27 2008-07-17 Koito Mfg Co Ltd Light-emitting element driving circuit, and lighting equipment for vehicle
WO2009028058A1 (en) * 2007-08-29 2009-03-05 Pioneer Corporation Light emitting control device and the like

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063751A (en) * 2012-07-05 2014-04-10 Panasonic Corp Lighting circuit unit, and illuminating device
WO2015170405A1 (en) * 2014-05-09 2015-11-12 日立マクセル株式会社 Projection-type image display device
CN106233200A (en) * 2014-05-09 2016-12-14 日立麦克赛尔株式会社 Projection-type image display device
US10264227B2 (en) 2014-05-09 2019-04-16 Maxell, Ltd. Projection-type image display device
KR20200124415A (en) * 2019-04-24 2020-11-03 영남대학교 산학협력단 Surface-mounted LED available of measuring junction temperature in real time, and Junction temperature sensing method using the same
KR102247106B1 (en) * 2019-04-24 2021-04-30 영남대학교 산학협력단 Surface-mounted LED available of measuring junction temperature in real time, and Junction temperature sensing method using the same

Also Published As

Publication number Publication date
JP5546437B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP3984214B2 (en) Light emission control device
JP4320651B2 (en) LED driving device and light emission amount control method
US8766540B2 (en) Lighting device, headlamp lighting device, and headlamp unit and vehicle having same
US8610360B2 (en) LED device and method for preventing soft-start flicker
US20060267922A1 (en) Display apparatus with backlight driver control
US9060408B2 (en) Thermal de-rating power supply for LED loads
EP3376493B1 (en) Backlight circuit, electronic device and backlight adjustment method
JP5546437B2 (en) Driving control method of light emitting diode
JP2003029710A (en) Drive circuit for organic electroluminescence element
JP2019032476A (en) Current limiting circuit, display device, and current limiting method
JP2007219008A (en) Information processor
JP6138561B2 (en) Power circuit
US20100033102A1 (en) Light Adjusting Device for a Light Emitting Diode and Related Light Adjusting Method and Light Emitting Device
US8542711B2 (en) Fiber laser device
JP2007109747A (en) Led lighting controller
US20080055301A1 (en) Display apparatus and brightness control method thereof
JP6226592B2 (en) LED display device
US9057938B2 (en) Projector
JP5152970B2 (en) Lighting device
CN106505406B (en) Control method of working state of laser and optical module
JP2006191309A (en) Optical transmitter
JP2016162613A5 (en)
JP2009021287A (en) Optical output control unit for laser diode
JP7558646B2 (en) Lighting fixtures and temperature sensing units
JP2014143100A (en) Light-emitting device and controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees