[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012197951A - Vacuum insulation panel - Google Patents

Vacuum insulation panel Download PDF

Info

Publication number
JP2012197951A
JP2012197951A JP2012166768A JP2012166768A JP2012197951A JP 2012197951 A JP2012197951 A JP 2012197951A JP 2012166768 A JP2012166768 A JP 2012166768A JP 2012166768 A JP2012166768 A JP 2012166768A JP 2012197951 A JP2012197951 A JP 2012197951A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
protrusion
vacuum
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012166768A
Other languages
Japanese (ja)
Other versions
JP5418643B2 (en
Inventor
Masamichi Hashida
昌道 橋田
Kiyoshi Kinoshita
清志 木下
Takashi Okuya
隆 奥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012166768A priority Critical patent/JP5418643B2/en
Publication of JP2012197951A publication Critical patent/JP2012197951A/en
Application granted granted Critical
Publication of JP5418643B2 publication Critical patent/JP5418643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum insulation panel that dissolves an adverse effect caused by installation of an air adsorption material and has a high thermal conductivity reduction effect.SOLUTION: The vacuum insulation panel 1 is configured to vacuum-seal the inside of an outer coating material 6 so that the outer coating material 6 having superior gas barrier properties coats a core material 2 including at least a fiber material, a gas adsorption material 5 that is vacuum-sealed in a bag made of a gas barrier wrapping material 4, and a material 3 having a protrusion that can thirl the wrapping material 4 when an external force is applied. The material 3 is configured so that it deforms and the protrusion thirls the wrapping material 4 to communicate the inside of the wrapping material 4 with the outer coating material 6 when pressed at a side of to the gas adsorption body 5 via the outer coating material 6, wherein the fiber-based core material 2 having superior heat-insulating properties and the gas adsorption material 5 are used, and the wrapping material 4 of the gas adsorption material 5 and the outer coating material 6 of the vacuum heat-insulating material 1 are internally communicated without increasing the number of man-hour so as to maintain superior heat-insulating properties under a low pressure of the fiber-based core material 2.

Description

本発明は、高性能真空断熱材に関するものである。   The present invention relates to a high performance vacuum heat insulating material.

近年、高真空を必要とする工業技術への期待が高まりつつある。例えば、地球温暖化防止の観点から省エネルギーが強く望まれており、家庭用電化製品についても省エネルギー化は緊急の課題となっている。特に、冷蔵庫、冷凍庫、自動販売機等の保温保冷機器では熱を効率的に利用するという観点から、優れた断熱性能を有する断熱材が求められている。   In recent years, expectations for industrial technology that requires high vacuum are increasing. For example, energy saving is strongly desired from the viewpoint of preventing global warming, and energy saving is an urgent issue for household appliances. In particular, a heat insulating material having excellent heat insulating performance is required from the viewpoint of efficiently using heat in a heat and cold insulation device such as a refrigerator, a freezer, and a vending machine.

一般的な断熱材として、グラスウールなどの繊維材やウレタンフォームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性能を向上するためには断熱材の厚さを増す必要があり、断熱材を充填できる空間に制限があって省スペースや空間の有効利用が必要な場合には適用することができない。   As general heat insulating materials, fiber materials such as glass wool and foams such as urethane foam are used. However, in order to improve the heat insulation performance of these heat insulating materials, it is necessary to increase the thickness of the heat insulating material, and there is a limit to the space that can be filled with the heat insulating material, so when space saving and effective use of the space are necessary It cannot be applied.

そこで、高性能な断熱材として、真空断熱材が提案されている。これは、スペーサの役割を持つ芯材を、ガスバリア性を有する外被材中に挿入し内部を減圧して封止した断熱体である。   Therefore, vacuum heat insulating materials have been proposed as high performance heat insulating materials. This is a heat insulator in which a core material serving as a spacer is inserted into a jacket material having gas barrier properties and the inside is decompressed and sealed.

真空断熱材内部の真空度を上げることにより、高性能な断熱性能を得ることができるが、真空断熱材内部に存在する気体には大きく分けて次の3つがある。一つは、真空断熱材作製時、排気できずに残存する気体、別の一つは、減圧封止後、芯材や外被材から発生する気体(芯材や外被材に吸着している気体や、芯材の未反応成分が反応することによって発生する反応ガス等)、残りの一つは、外被材を通過して外部から侵入してくる気体である。   By increasing the degree of vacuum inside the vacuum heat insulating material, high-performance heat insulating performance can be obtained, but the gas existing inside the vacuum heat insulating material is roughly divided into the following three types. One is the gas that cannot be evacuated during the vacuum insulation material preparation, and the other is the gas generated from the core material and the jacket material after being sealed under reduced pressure (adsorbed on the core material and the jacket material). The remaining gas is a gas that passes through the jacket material and enters from the outside.

これらの気体を吸着するために気体吸着材を充填する方法が考案されている。気体吸着材は保存時の劣化を防ぐため、外部雰囲気と非接触の環境で保存される必要がある。一方、真空断熱材に充填された際は、真空断熱材内部の雰囲気と連通して、気体を吸着する必要がある。気体吸着材と真空断熱材内部を連通させるための方法もまた考案されている(特許文献1参照)。   In order to adsorb these gases, a method of filling a gas adsorbent has been devised. The gas adsorbent needs to be stored in a non-contact environment with an external atmosphere in order to prevent deterioration during storage. On the other hand, when filled in the vacuum heat insulating material, it is necessary to communicate with the atmosphere inside the vacuum heat insulating material and adsorb gas. A method for communicating between the gas adsorbent and the inside of the vacuum heat insulating material has also been devised (see Patent Document 1).

特許文献1において、密封袋に減圧封止した気体吸着材と磁性体の鋲を予め外被材中に設置しておき、真空封止後に永久磁石で鋲を移動させ、密封袋に貫通孔を生じさせるものである。これにより、気体吸着材と外被材内部が連通し、気体の吸着が可能になる。   In Patent Document 1, a gas adsorbent and a magnetic material bag sealed under reduced pressure in a sealing bag are set in advance in a jacket material, the bag is moved with a permanent magnet after vacuum sealing, and a through hole is formed in the sealing bag. It is what is generated. As a result, the gas adsorbing material and the inside of the jacket material communicate with each other, and gas can be adsorbed.

特公平4−51752号公報Japanese Patent Publication No. 4-51752

しかしながら、上記従来の構成では芯材として粉末を用いている。一方、包材内部と外被材内部を連通させるために工数を必要とする。一般に、粉末系芯材の真空断熱材は外被材内部の圧力に対する依存性が小さい。従って外部から気体が侵入しても、熱伝導率の増大が小さくなる。これに対し、包材内部と外被材内部を連通させるために工数によりコストが増大する。これらの理由により、コストの増大に対して熱伝導率低減効果が小さいと
いう課題があった。また、連通する際に鋲を用いたプロセスが必要であるため、真空断熱材の厚さが増大し、外被材に負荷がかかるという課題があった。
However, in the above conventional configuration, powder is used as the core material. On the other hand, man-hours are required to connect the interior of the packaging material and the interior of the jacket material. Generally, the vacuum heat insulating material of the powder-based core material is less dependent on the pressure inside the jacket material. Therefore, even if gas enters from the outside, the increase in thermal conductivity is small. On the other hand, since the inside of the packaging material and the inside of the jacket material are communicated, the cost increases depending on the number of steps. For these reasons, there has been a problem that the effect of reducing thermal conductivity is small with respect to an increase in cost. Moreover, since the process using a gutter was required when communicating, there existed a subject that the thickness of a vacuum heat insulating material increased and a load was applied to the jacket material.

本発明は、上記従来の課題を解決するもので、空気吸着材の設置による弊害を解決して、熱伝導率低減の効果が大きい真空断熱材を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a vacuum heat insulating material that has a large effect of reducing thermal conductivity by solving the harmful effects caused by the installation of an air adsorbent.

上記目的を達成するために、本発明の真空断熱材は、少なくとも繊維材料を含む芯材と、ガスバリア性の包材からなる袋に真空封止された気体吸着材と、外力が加えられた場合に前記包材に孔を開けることが可能な突起物を有する部材とを、ガスバリア性に優れた外被材で被って前記外被材内部を真空封止してなり、前記部材は、前記突起物が前記包材に孔を開けて前記包材内部と前記外被材内部を連通させるように構成されており、前記包材内部と前記外被材内部の連通が、前記突起物と前記包材の接触によりなされ、前記突起物を有する部材が樹脂よりなることを特徴とするものである。   In order to achieve the above object, the vacuum heat insulating material of the present invention includes a core material containing at least a fiber material, a gas adsorbing material vacuum-sealed in a bag made of a gas barrier packaging material, and an external force. A member having a projection capable of opening a hole in the packaging material is covered with a jacket material having an excellent gas barrier property, and the inside of the jacket material is vacuum-sealed. An object is configured to open a hole in the packaging material so that the interior of the packaging material communicates with the interior of the jacket material, and the communication between the interior of the packaging material and the interior of the jacket material It is made by contact of the material, and the member having the protrusion is made of resin.

つまり、低圧力下において粉末系の芯材に比較して熱伝導率が小さい、すなわち断熱性に優れる繊維系の芯材と気体吸着材を用い、気体吸着材の包材内部と真空断熱材の外被材内部の連通を工数の増大を伴わずに行うものである。   In other words, the fiber core material and the gas adsorbent have a lower thermal conductivity than that of the powder-based core material under low pressure, that is, excellent heat insulation properties. Communication within the jacket material is performed without increasing man-hours.

このようにすることで、繊維系芯材の低圧力下における優れた断熱性能を維持する。また、工数を増大させないため、コスト増大を抑えることができる。   By doing in this way, the outstanding heat insulation performance under the low pressure of a fiber type core material is maintained. Further, since the number of man-hours is not increased, an increase in cost can be suppressed.

本発明によれば、繊維系芯材の低圧力における優れた断熱性を維持し、気体吸着材の設置によるコストの増大を抑え、費用対効果に優れた真空断熱材を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding heat insulation in the low pressure of a fiber type core material is maintained, the increase in cost by installation of a gas adsorbent is suppressed, and the vacuum heat insulating material excellent in cost effectiveness can be obtained.

本発明の実施の形態1における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention (a)同実施の形態の真空断熱材に使用した突起物を有する部材の断面図(b)同実施の形態の真空断熱材に使用した突起物を有する部材の上面図(A) Sectional drawing of the member which has the protrusion used for the vacuum heat insulating material of the embodiment (b) Top view of the member which has the protrusion used for the vacuum heat insulating material of the embodiment 同実施の形態の真空断熱材の真空封止前の空気吸着デバイスを示す断面図Sectional drawing which shows the air adsorption device before the vacuum sealing of the vacuum heat insulating material of the embodiment 同実施の形態の真空断熱材の真空封止後の空気吸着デバイスを示す断面図Sectional drawing which shows the air adsorption device after the vacuum sealing of the vacuum heat insulating material of the embodiment (a)本発明の実施の形態2における真空断熱材に使用した突起物を有する部材の断面図(b)同実施の形態の真空断熱材に使用した突起物を有する部材の上面図(A) Sectional drawing of the member which has the protrusion used for the vacuum heat insulating material in Embodiment 2 of this invention (b) Top view of the member which has the protrusion used for the vacuum heat insulating material of the embodiment (a)本発明の実施の形態3における真空断熱材に使用した突起物を有する部材の断面図(b)同実施の形態の真空断熱材に使用した突起物を有する部材の上面図(A) Sectional drawing of the member which has the protrusion used for the vacuum heat insulating material in Embodiment 3 of this invention (b) Top view of the member which has the protrusion used for the vacuum heat insulating material of the embodiment 同実施の形態における真空断熱材の真空封止前の気体吸着デバイスの断面図Sectional drawing of the gas adsorption device before the vacuum sealing of the vacuum heat insulating material in the embodiment

第1の発明は、少なくとも繊維材料を含む芯材と、ガスバリア性の包材からなる袋に真空封止された気体吸着材と、外力が加えられた場合に前記包材に孔を開けることが可能な突起物を有する部材とを、ガスバリア性に優れた外被材で被って前記外被材内部を真空封止してなり、前記部材は、前記突起物が前記包材に孔を開けて前記包材内部と前記外被材内部を連通させるように構成されており、前記包材内部と前記外被材内部の連通が、前記突起物と前記包材の接触によりなされ、前記突起物を有する部材が樹脂よりなることを特徴とするものである。   In the first invention, a core material including at least a fiber material, a gas adsorbent vacuum-sealed in a bag made of a gas barrier packaging material, and a hole can be formed in the packaging material when an external force is applied. A member having a projection that can be covered with a jacket material having excellent gas barrier properties, and the inside of the jacket material is vacuum-sealed, and the member has a hole formed in the packaging material. The inside of the packaging material and the inside of the jacket material are communicated, and the inside of the packaging material and the inside of the jacket material are communicated by contact between the projection and the packaging material, and the projection The member has a resin.

繊維材料を含む芯材を用いて作製した真空断熱材の熱伝導率は、粉末材料のみからなる芯材を用いて作製した真空断熱材の熱伝導率に比較して、低圧力領域では小さく、高圧力領域では大きい。従って、繊維材料を含む芯材を用いて作製した真空断熱材は、その外被
材内部の圧力を低く維持することが重要である。
The heat conductivity of the vacuum heat insulating material produced using the core material containing the fiber material is smaller in the low pressure region than the heat conductivity of the vacuum heat insulating material produced using the core material made only of the powder material, Large in high pressure range. Therefore, it is important for the vacuum heat insulating material produced using the core material containing the fiber material to keep the pressure inside the jacket material low.

本発明の真空断熱材は、外被材内に気体吸着材を有しているため、外被材内部は圧力が低く維持され、繊維材料を含む芯材を用いた真空断熱材の熱伝導率は低く維持される。   Since the vacuum heat insulating material of the present invention has a gas adsorbing material in the jacket material, the pressure inside the jacket material is kept low, and the thermal conductivity of the vacuum heat insulating material using the core material containing the fiber material Is kept low.

ここで繊維材料を含む芯材とは、芯材の重量に対して繊維を1パーセント以上100パーセント以下含むものであって、繊維材料と繊維材料以外の複合体であっても良い。   Here, the core material including the fiber material includes fibers of 1% to 100% with respect to the weight of the core material, and may be a composite other than the fiber material and the fiber material.

ガスバリア性に優れた包材とは、気体難透過性の製袋可能なフィルムまたはシート状の部材である。例えば、ポリプロピレンフィルム、アルミニウム箔、低密度ポリエチレンの順にラミネートしたフィルムなどがあげられる。また、袋とは気体吸着材を包み込むことにより、周囲の空間と独立させるものであり、4方をヒートシールした袋、ピロー袋、ガゼット袋等がある。また、気体透過度が10[cm/m・day・atm]以下であることが好ましく、より望ましくは10[cm/m・day・atm]以下となるものである。 The packaging material excellent in gas barrier properties is a film or sheet-like member that is difficult to gas and can be produced. For example, a film in which a polypropylene film, an aluminum foil, and a low density polyethylene are laminated in this order can be used. Further, the bag encloses the gas adsorbing material to make it independent from the surrounding space, and includes a bag heat-sealed in four directions, a pillow bag, a gusset bag, and the like. Further, the gas permeability is preferably 10 4 [cm 3 / m 2 · day · atm] or less, and more preferably 10 3 [cm 3 / m 2 · day · atm] or less.

突起物を有する部材とは、周囲の曲率に比較して、曲率が著しく大きい部分を有するものである。曲率が大きい部分は、同一の力をより小さい面積で受けるため、単位面積あたりに加わる力が大きくなる。従って曲率が大きい部分が包材に押し付けられた際、包材に貫通孔が生じやすくなる。   The member having a protrusion has a portion having a remarkably large curvature as compared with the surrounding curvature. Since the portion having a large curvature receives the same force in a smaller area, the force applied per unit area increases. Therefore, when a portion having a large curvature is pressed against the packaging material, a through hole is likely to be formed in the packaging material.

ガスバリア性に優れた外被材とは、芯材、包材、気体吸着材、突起物を有する部材を包み込むことにより、周囲の空間と独立させるものである。また、気体透過度が10[cm/m・day・atm]以下であることが好ましく、より望ましくは10[cm/m・day・atm]以下となるものである。 The jacket material having excellent gas barrier properties is a material that is independent of the surrounding space by wrapping a core material, a wrapping material, a gas adsorbing material, and a member having a protrusion. Further, the gas permeability is preferably 10 4 [cm 3 / m 2 · day · atm] or less, and more preferably 10 3 [cm 3 / m 2 · day · atm] or less.

孔を開ける方法は、突起物が外被材に接触することによりなされるものである。   The method of making a hole is made by a protrusion contacting a jacket material.

連通とは、包材内部と包材外部で隔てられていた空間を一続きの空間にすることである。   The term “communication” means that a space separated between the inside of the packaging material and the outside of the packaging material is made into a continuous space.

突起物により応力を集中して包材の内部と外被材の内部を連通するため、突起物以外では連通しないように包材の強度を大きくすることができる。このため、真空断熱材に適用するまで包材を取り扱う際の破損を防ぐことができ、歩留まりを向上することができる。   Since the stress is concentrated by the protrusions and the inside of the packaging material and the inside of the covering material are communicated with each other, the strength of the packaging material can be increased so as not to communicate with other than the projections. For this reason, it can prevent the damage at the time of handling a packaging material until it applies to a vacuum heat insulating material, and can improve a yield.

ここで、接触とは二つ以上の物体間に、別の物体或いは空間が存在しない状態のことであり、突起物が包材に接触することで、突刺し力、切断力等が働き、包材に割れが生ずることを含む。   Here, the contact is a state in which there is no other object or space between two or more objects. When the projection comes into contact with the packaging material, the piercing force, the cutting force, etc. work, Including cracking in the material.

破損とは、真空断熱材に適用する前に、包材内部と包材外部の連通が意図せずしてなされることである。   The breakage refers to an unintentional communication between the inside of the packaging material and the outside of the packaging material before being applied to the vacuum heat insulating material.

樹脂成型によると突起物を有する部材の形状自由度が大きくなる。従って、包材の強度に適した突起物を作製することができ、包材の設計自由度も大きくなる。この結果、真空断熱材の用途に応じて適切な設計が可能である。また、必要最小限の強度で作製できるため、外被材内部の圧力と大気圧の差により変形するように作製でき、薄型化された真空断熱材を得ることができる。   According to resin molding, the degree of freedom of shape of a member having a protrusion increases. Therefore, a projection suitable for the strength of the packaging material can be produced, and the design flexibility of the packaging material is increased. As a result, appropriate design is possible according to the use of the vacuum heat insulating material. Moreover, since it can be produced with the minimum required strength, it can be produced so as to be deformed by the difference between the pressure inside the jacket material and the atmospheric pressure, and a thin vacuum heat insulating material can be obtained.

樹脂の種類は、突起物の硬さを確保でき、ガス発生が少ないものであればよく、ポリプロピレン、ポリブチレンテレフタレート、ポリスチレン、ポリアミド、ポリカーボネート
、AS樹脂、ABS樹脂などを用いることができ、コストを考慮するとポリプロピレンが望ましい。
The type of the resin may be any material that can ensure the hardness of the protrusion and generates less gas, and can use polypropylene, polybutylene terephthalate, polystyrene, polyamide, polycarbonate, AS resin, ABS resin, etc. Considering polypropylene, it is desirable.

また、第2の発明は、芯材が、繊維集合体からなるものである。   In the second invention, the core material comprises a fiber assembly.

一般に、真空断熱材の熱伝導率は、芯材による熱伝導と、外被材内の残留ガスによる熱伝導の和により決定する。例えば、芯材が粉末を含む場合は、芯材内部に存在する気体の平均自由工程が短いため、気体による熱伝導率は非常に小さく、芯材による熱伝導が支配的である。   Generally, the thermal conductivity of the vacuum heat insulating material is determined by the sum of the heat conduction by the core material and the heat conduction by the residual gas in the jacket material. For example, when the core material contains powder, the mean free path of the gas existing inside the core material is short, so that the thermal conductivity by the gas is very small, and the heat conduction by the core material is dominant.

一方、芯材が繊維の場合は、繊維同士の接点が少ないため、芯材の熱伝導率は非常に小さくなるが、気体の平均自由工程が大きいため、わずかな圧力上昇で、気体による熱伝導率が支配的になってしまう。   On the other hand, when the core material is a fiber, the thermal conductivity of the core material is very small because there are few contact points between the fibers, but since the mean free path of the gas is large, the heat conduction by the gas with a slight pressure increase The rate becomes dominant.

従って、芯材が繊維のみからなるときは、このような効果が大きいため繊維芯材では外被材内部を低圧に保つことが、真空断熱材の熱伝導率を低減するために非常に有効な手段となる。   Therefore, when the core material is composed only of fibers, such an effect is large, and therefore, in the fiber core material, keeping the inside of the jacket material at a low pressure is very effective for reducing the thermal conductivity of the vacuum heat insulating material. It becomes a means.

ここで、繊維集合体とは、繊維のみからなる集合体であって、バインダーや酸、熱等で成型されていても良い。   Here, the fiber aggregate is an aggregate composed only of fibers, and may be molded with a binder, acid, heat, or the like.

また、第3の発明は、突起物を有する部材が、圧力負荷時には変形により平板状に近くなるものである。   In the third aspect of the invention, the member having the protrusions is close to a flat plate shape by deformation when pressure is applied.

真空断熱材は、他の断熱材に比較して同じ厚さあたりでの断熱性能に優れているため、同じ断熱性能を得るために用いる厚さを少なくすることができる。これは、異なる熱伝導率の断熱材で同等の断熱性を得るために必要な厚さは、それぞれの断熱材の熱伝導率に比例するためである。一方、真空断熱材の厚さは、概ね一気圧下での芯材の厚さと吸着材と、吸着材の特性を発揮させるための機構の厚さの和になる。   Since the vacuum heat insulating material is superior in heat insulating performance around the same thickness as other heat insulating materials, the thickness used for obtaining the same heat insulating performance can be reduced. This is because the thickness required to obtain the same heat insulating property with heat insulating materials having different thermal conductivities is proportional to the thermal conductivity of each heat insulating material. On the other hand, the thickness of the vacuum heat insulating material is approximately the sum of the thickness of the core material under one atmospheric pressure, the adsorbing material, and the thickness of the mechanism for exerting the characteristics of the adsorbing material.

ここで、吸着材の特性を発揮させるための機構とは、吸着材の不使用時には大気との接触を防ぐ包材と、包材内部と外被材内部を連通するための突起物を有する部材である。従って、突起物を有する部材の薄型化がなされれば、真空断熱材の薄型化が可能になる。   Here, the mechanism for exerting the characteristics of the adsorbent is a member having a packaging material for preventing contact with the atmosphere when the adsorbent is not used, and a projection for communicating the inside of the packaging material with the inside of the jacket material. It is. Therefore, if the member having the protrusions is thinned, the vacuum heat insulating material can be thinned.

突起物を有する部材は、大気圧負荷時には平板状に近くなるため真空断熱材の厚さ増大に対する寄与度が小さい。従って、粉末の気体吸着材を用いることにより薄型化された真空断熱材を得ることができる。   The member having the protrusions has a small contribution to the increase in the thickness of the vacuum heat insulating material because the member has a flat plate shape under atmospheric pressure load. Therefore, a thin vacuum insulation material can be obtained by using a powdered gas adsorbent.

平板状とは、ある部材が、互いに平行で曲率が0の二枚の面で定義される空間内に収まり、この部材において最も離れた二点間の距離が、平面の距離の10倍以上であるものである。従って、必ずしも、ある部材の表面の曲率がこの部材全体で一様であることを意味しない。また、真空断熱材を薄くするため、互いに平行で曲率が0の二枚の面の距離は3mm以下が望ましい。   In the flat shape, a certain member fits in a space defined by two planes parallel to each other and having a curvature of 0, and the distance between the two most distant points in this member is 10 times or more the plane distance. There is something. Therefore, it does not necessarily mean that the curvature of the surface of a certain member is uniform throughout the member. Further, in order to make the vacuum heat insulating material thin, the distance between two surfaces parallel to each other and having a curvature of 0 is preferably 3 mm or less.

また、第4の発明は、突起物を有する部材が、ポリプロピレンであるものである。   Moreover, 4th invention is a member in which the member which has a protrusion is a polypropylene.

ポリプロピレンは、低コストであるため、突起物を有する部材のコストを低減することができる。また、樹脂を真空断熱材に適用する際は、ガス発生が問題となるが、ポリプロピレンからのガス発生は少なく、真空断熱材の特性を妨げることがない。   Since polypropylene is low in cost, the cost of a member having protrusions can be reduced. Moreover, when resin is applied to a vacuum heat insulating material, gas generation becomes a problem, but gas generation from polypropylene is small, and the characteristics of the vacuum heat insulating material are not hindered.

また、第5の発明は、突起物を有する部材が、繊維強化プラスチックであるものである。   According to a fifth aspect of the invention, the member having the protrusion is a fiber reinforced plastic.

強化のための繊維としてガラス繊維を用いた場合は、繊維からのガス発生が少なく、また、樹脂を強化する効果も高い。ガラス繊維により強化された樹脂を用いることにより、突起物の強度を確保することができ、よりスムーズに包材内部と外被材内部の連通をすることができる。   When glass fiber is used as the reinforcing fiber, gas generation from the fiber is small, and the effect of reinforcing the resin is high. By using a resin reinforced with glass fiber, the strength of the projection can be ensured, and the inside of the packaging material and the inside of the jacket material can be more smoothly communicated.

繊維とは、3次元空間において、一方向が他の方向に比較して著しく長いものであり、ガラス繊維、カーボン繊維、金属繊維があるが、ガス発生の少なさ、プラスチックを強化する能力、コストから総合的に判断して、ガラス繊維が望ましい。   A fiber is one that is significantly longer in one direction than the other in a three-dimensional space. There are glass fibers, carbon fibers, and metal fibers. However, there is less gas generation, the ability to reinforce plastics, and cost. Judging comprehensively, glass fiber is desirable.

また、第6の発明は、突起物を有する部材が、金属と樹脂の複合体であるものである。   In the sixth invention, the member having the protrusion is a composite of a metal and a resin.

突起物を有する部材が、金属と樹脂の複合体であるため、それぞれの材料特性に応じた構成で設計することができる。つまり、確実に包材内部と外被材内部を連通するため、高い強度が必要である突起物を金属、外被材を保護するために柔軟性が必要な部分を樹脂とすることにより、優れた特性を有する真空断熱材を得ることができる。   Since the member having the protrusions is a composite of metal and resin, it can be designed with a configuration corresponding to each material characteristic. In other words, in order to ensure communication between the inside of the packaging material and the inside of the jacket material, it is excellent by using metal as the projection that requires high strength and resin as the part that requires flexibility to protect the jacket material. A vacuum heat insulating material having the above characteristics can be obtained.

ここで、金属は突起物の強度を確保するため、一定の強度を有するものが望ましく、鉄、銅等の単一元素からなる金属、ステンレスやりん青銅等の合金も用いることができるが、特に指定するものではない。   Here, in order to ensure the strength of the protrusion, it is desirable that the metal has a certain strength, and a metal composed of a single element such as iron or copper, or an alloy such as stainless steel or phosphor bronze can be used. Not specified.

樹脂の種類は、突起物の硬さを確保でき、ガス発生が少ないものであればよく、ポリプロピレン、ポリブチレンテレフタレート、ポリスチレン、ポリアミド、ポリカーボネート、AS樹脂、ABS樹脂などを用いることができ、コストを考慮するとポリプロピレンが望ましい。   The type of the resin may be any material that can ensure the hardness of the protrusion and generates less gas, and can use polypropylene, polybutylene terephthalate, polystyrene, polyamide, polycarbonate, AS resin, ABS resin, etc. Considering polypropylene, it is desirable.

また、第7の発明は、突起物を有する部材が、包材に固定されているものである。   In the seventh invention, the member having the protrusion is fixed to the packaging material.

突起物を有する部材が包材に固定されているため、真空断熱材に吸着材を設置する際の工数を減らすことができ、コストを低減することができる。   Since the member having the protrusion is fixed to the packaging material, the number of steps for installing the adsorbent on the vacuum heat insulating material can be reduced, and the cost can be reduced.

突起物を有する部材を包材に固定する方法は、特に指定するものではないが、突起物を有する部材にフック状の部分を設ける、両面に粘着物を塗布した面状の部材で貼り付ける等の方法を用いることができる。   The method for fixing the member having the protrusion to the packaging material is not particularly specified, but a hook-like portion is provided on the member having the protrusion, and the surface member having the adhesive applied on both sides is attached. This method can be used.

また、第8の発明は、突起物の長さが、大気圧下での気体吸着材の厚さより短いものである。   In the eighth invention, the length of the protrusion is shorter than the thickness of the gas adsorbent under atmospheric pressure.

突起物の長さが、大気圧下での気体吸着材の厚さより短いため、突起物は包材の内部で留まる。従って、突起物は真空断熱材の外被材にダメージを与えず、信頼性に優れた真空断熱材を得ることができる。   Since the length of the protrusion is shorter than the thickness of the gas adsorbent under atmospheric pressure, the protrusion remains inside the packaging material. Accordingly, the protrusions do not damage the outer cover material of the vacuum heat insulating material, and a vacuum heat insulating material with excellent reliability can be obtained.

以下、本発明の真空断熱材の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the vacuum heat insulating material of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における真空断熱材の断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention.

図1に示すように、本実施の形態の真空断熱材1は、芯材2と、突起物を有する部材3と、予め包材4の中に真空封止された気体吸着材5を、外被材6中に設置後真空封止し、包材4内部と外被材6内部を連通させたものであり、詳しくは、少なくとも繊維材料を含む芯材2と、ガスバリア性の包材4からなる袋に真空封止された気体吸着材5と、外力が加えられた場合に包材4に孔を開けることが可能な突起物を有する部材3とを、ガスバリア性に優れた外被材6で被って外被材6内部を真空封止してなり、部材3は、外被材6を介して気体吸着材5側に押された場合に変形して突起物が包材4に孔を開けて包材4内部と外被材6内部を連通させるように構成されている。   As shown in FIG. 1, the vacuum heat insulating material 1 of the present embodiment includes a core material 2, a member 3 having protrusions, and a gas adsorbing material 5 that is previously vacuum-sealed in a packaging material 4. After being installed in the substrate 6 and vacuum sealed, the inside of the packaging material 4 and the inside of the coating material 6 are communicated. Specifically, the core material 2 including at least a fiber material and the gas barrier packaging material 4 are used. A gas adsorbent 5 that is vacuum-sealed in a bag, and a member 3 having a projection that can open a hole in the packaging material 4 when an external force is applied. And the inside of the jacket material 6 is vacuum-sealed, and the member 3 is deformed when it is pushed to the gas adsorbing material 5 side through the jacket material 6 so that the projections form holes in the packaging material 4. It is configured to open and allow the inside of the packaging material 4 and the inside of the jacket material 6 to communicate.

芯材2はガラス繊維集合体を熱成型により板状としたものであり、包材4はガスバリア性を有するラミネートフィルム、吸着材5は粉末状のCuZSM−5、外被材6はガスバリア性を有するラミネートフィルムである。   The core material 2 is a glass fiber aggregate formed into a plate shape by thermoforming, the packaging material 4 is a laminated film having a gas barrier property, the adsorbent material 5 is a powdered CuZSM-5, and the jacket material 6 is a gas barrier property. It is a laminate film.

図2は本発明の実施の形態1における真空断熱材に使用した突起物を有する部材3の概略図であり、(a)は断面図、(b)は上面図である。   2A and 2B are schematic views of the member 3 having protrusions used for the vacuum heat insulating material according to Embodiment 1 of the present invention, where FIG. 2A is a cross-sectional view and FIG. 2B is a top view.

突起物を有する部材3は、厚さが0.25mmのりん青銅からなる板を折り曲げ、板ばねとしたものの、中央部付近を切り欠いて曲げることにより突起物を作製している。また、折り曲げ部には切り欠き部7を有している。   The member 3 having protrusions is a protrusion made by bending a plate made of phosphor bronze having a thickness of 0.25 mm to form a leaf spring, but cutting and bending the vicinity of the center. Further, the bent portion has a notch portion 7.

図3は本発明の実施の形態1における真空断熱材の真空封止前の気体吸着材と部材とからなる空気吸着デバイスを示す断面図である。図4は本発明の実施の形態1における真空断熱材の真空封止後の気体吸着材と部材とからなる空気吸着デバイスを示す断面図である。   FIG. 3 is a cross-sectional view showing an air adsorption device composed of a gas adsorbent and a member before vacuum sealing of the vacuum heat insulating material in Embodiment 1 of the present invention. FIG. 4 is a cross-sectional view showing an air adsorption device composed of a gas adsorbent and a member after vacuum sealing of the vacuum heat insulating material in Embodiment 1 of the present invention.

図4は大気圧が加わることにより、突起物が包材に貫通孔を生じさせ、包材内部と外被材内部を連通させてなることにより、気体吸着材が外被材内部の気体を吸着可能になった状態を示す。   In FIG. 4, when atmospheric pressure is applied, the projections cause through holes in the packaging material, and the interior of the packaging material and the interior of the jacket material communicate with each other, so that the gas adsorbent adsorbs the gas inside the jacket material. Indicates a possible state.

以上のように構成された真空断熱材1についてその動作、作用を説明する。   The operation | movement and effect | action are demonstrated about the vacuum heat insulating material 1 comprised as mentioned above.

まず、図3に示されている通り、気体吸着デバイスでは、気体吸着材5は包材4に真空封止されている。また、突起物を有する部材3は包材4に、突起物以外の部分で接触している。従って、包材4に貫通孔は生じないため、気体吸着材5は外部の空気に接触しない。従って、真空断熱材に適用するまで気体吸着材5の吸着能力は維持される。   First, as shown in FIG. 3, in the gas adsorption device, the gas adsorbent 5 is vacuum-sealed with the packaging material 4. Further, the member 3 having the protrusion is in contact with the packaging material 4 at a portion other than the protrusion. Therefore, since no through-hole is generated in the packaging material 4, the gas adsorbent 5 does not come into contact with external air. Therefore, the adsorption capacity of the gas adsorbent 5 is maintained until it is applied to a vacuum heat insulating material.

真空断熱材1を真空封止する際、芯材2の上に気体吸着デバイスを置く。この際、包材4を芯材2に接触する配置とした。これらを、予め3方をシールした外被材6内部に挿入し、真空に排気した後、開口部を熱溶着により封止した。   When vacuum-sealing the vacuum heat insulating material 1, a gas adsorption device is placed on the core material 2. At this time, the packaging material 4 was placed in contact with the core material 2. These were inserted into the jacket material 6 that had been sealed in three directions in advance, evacuated to vacuum, and then the opening was sealed by thermal welding.

外被材6内部は減圧されているため、芯材2、突起物を有する部材3に外被材内部の圧力と外部の圧力の差に相当する圧力が加わる。突起物を有する部材3の材料であるりん青銅は外力が加わると弾性変形する。この変形により、応力が加わっていない状態においては、包材4と距離があった突起物は、包材4に近づく。さらに突起物は包材4に接触して突刺力を加えるため、包材4には貫通孔が生じる。このようにして、包材4内部と外被材6内部は連通し、吸着材5による気体の吸着が可能になる。   Since the inside of the jacket material 6 is depressurized, a pressure corresponding to the difference between the pressure inside the jacket material and the external pressure is applied to the core material 2 and the member 3 having the protrusions. Phosphor bronze, which is the material of the member 3 having protrusions, is elastically deformed when an external force is applied. Due to this deformation, in a state where no stress is applied, the protrusions that are spaced from the packaging material 4 approach the packaging material 4. Furthermore, since the protrusions contact the packaging material 4 and apply a piercing force, the packaging material 4 has a through hole. In this way, the inside of the packaging material 4 and the inside of the jacket material 6 communicate with each other, and gas adsorption by the adsorbent material 5 becomes possible.

図4に示すように、真空包装後は、突起物を有する部材は平板状に近くなり、真空断熱材の厚さ増大への寄与度が小さくなる。   As shown in FIG. 4, after vacuum packaging, the member having the protrusions becomes nearly flat, and the contribution to the increase in the thickness of the vacuum heat insulating material is reduced.

本実施の形態において、空気吸着デバイスとは圧力の非負荷時には、気体吸着材と周囲の空間を隔てることにより、気体吸着材の劣化を防ぎ、圧力負荷時には、気体吸着材と周囲の空間が連通し、空気吸着材が外部の気体を吸着できるようにする機構であり、突起物を有する部材3、気体吸着材5、包材4からなる。   In this embodiment, the air adsorbing device separates the gas adsorbing material from the surrounding space when pressure is not applied, thereby preventing the gas adsorbing material from deteriorating. At the time of pressure loading, the gas adsorbing material communicates with the surrounding space. The air adsorbing material can adsorb external gas, and includes a member 3 having a protrusion, a gas adsorbing material 5, and a packaging material 4.

なお、本実施の形態では、金属としてりん青銅を用いたが、りん青銅に限定するものではなく、ばね材として用いられるものであれば他の金属であっても用いることが可能である。また、ばね材と異なる場合であっても厚さを薄くして変形を容易にすることにより、使用することが可能である。   In this embodiment, phosphor bronze is used as the metal. However, the present invention is not limited to phosphor bronze, and any other metal can be used as long as it is used as a spring material. Even if it is different from the spring material, it can be used by reducing the thickness to facilitate deformation.

また、突起物と包材の接触と貫通孔の生成が大気圧と外被材内部の圧力差によりなされたが、これに限定するものではなく、真空封止後に機械的に応力を加えても良い。   In addition, the contact between the projection and the packaging material and the generation of the through hole were made by the atmospheric pressure and the pressure difference inside the jacket material. However, the invention is not limited to this, and mechanical stress may be applied after vacuum sealing. good.

(実施の形態2)
図5は本発明の実施の形態2における真空断熱材に使用した突起物を有する部材の概略図であり、(a)は断面図、(b)は上面図である。
(Embodiment 2)
5A and 5B are schematic views of a member having protrusions used in the vacuum heat insulating material according to Embodiment 2 of the present invention, where FIG. 5A is a cross-sectional view and FIG. 5B is a top view.

図5において、突起物を有する部材3はガラス繊維で強化されたポリプロピレン樹脂であり、ガラス繊維は20重量パーセント含まれている。また、折り曲げ部は他の部分と比較して薄くなっている。このような構成の突起物を有する部材3を用いて真空断熱材を作製した。突起物を有する部材3以外の構成要素および真空封止方法は、実施の形態1と同等である。   In FIG. 5, the member 3 having protrusions is a polypropylene resin reinforced with glass fiber, and the glass fiber is contained in 20 weight percent. Further, the bent portion is thinner than other portions. A vacuum heat insulating material was produced using the member 3 having the projection having such a configuration. The components other than the member 3 having the protrusions and the vacuum sealing method are the same as those in the first embodiment.

突起物を有する部材3には外被材内部の圧力と外部の圧力の差に相当する圧力が加わる。突起物を有する部材3はガラス繊維により強化されているため、本来はこの圧力では変形が小さいため突起物は包材4に押し付けられない。しかし、折り曲げ部が他の部分より薄くなっているため、この部分により大きく変形して、突起物が包材に押し付けられる。   A pressure corresponding to the difference between the pressure inside the jacket material and the external pressure is applied to the member 3 having the protrusions. Since the member 3 having protrusions is reinforced by glass fiber, the protrusions are not pressed against the packaging material 4 because the deformation is small at the original pressure. However, since the bent portion is thinner than the other portions, the bent portion is greatly deformed and the protrusion is pressed against the packaging material.

ここで、突起物はガラス繊維により強化されたポリプロピレンであり十分な強度を有するため、包材には貫通孔が生じる。このようにして、包材4内部と外被材内部は連通し、気体吸着材5による気体の吸着が可能になる。   Here, since the protrusion is polypropylene reinforced with glass fiber and has sufficient strength, a through hole is formed in the packaging material. In this way, the inside of the packaging material 4 and the inside of the jacket material communicate with each other, and gas adsorption by the gas adsorbing material 5 becomes possible.

本実施の形態では、樹脂としてポリプロピレンを用いたが、これに限定するものではなく、包材に貫通孔を生じさせることができるものであればよい。   In the present embodiment, polypropylene is used as the resin. However, the present invention is not limited to this, and any resin can be used as long as it can generate a through hole in the packaging material.

(実施の形態3)
図6は本発明の実施の形態3における真空断熱材に使用した突起物を有する部材の略図であり、(a)は断面図であり、(b)は上面図である。図7は本発明の実施の形態3における真空断熱材の真空封止前の気体吸着材と部材とからなる気体吸着デバイスの断面図である。
(Embodiment 3)
FIG. 6 is a schematic view of a member having a projection used for the vacuum heat insulating material in Embodiment 3 of the present invention, (a) is a cross-sectional view, and (b) is a top view. FIG. 7 is a cross-sectional view of a gas adsorption device including a gas adsorbent and a member before vacuum sealing of the vacuum heat insulating material in Embodiment 3 of the present invention.

図6において、突起物を有する部材3の突起物は銅により構成されており、突起物以外の部分はポリプロピレンで構成されている。また、応力が加わっていない状態で包材に接触する部分の一方がフック状になっている。   In FIG. 6, the protrusions of the member 3 having protrusions are made of copper, and the portions other than the protrusions are made of polypropylene. Moreover, one of the parts which contact a packaging material in the state which has not added stress is hook shape.

図7において、突起物を有する部材3は、フック状の部分で包材4に固定されているため、突起物を有する部材3と包材4は一体の部材として取り扱うことが可能である。   In FIG. 7, the member 3 having a protrusion is fixed to the packaging material 4 at a hook-like portion, and therefore the member 3 having the protrusion and the packaging material 4 can be handled as an integral member.

このような構成の突起物を有する部材3を用いて真空断熱材を作製した。突起物を有する部材3以外の構成要素および真空封止方法は、実施の形態1と同等である。突起物を有
する部材3には外被材内部の圧力と外部の圧力の差に相当する圧力が加わる。突起物を有する部材3の突起物以外の部分は、ポリプロピレンであり容易に変形するため、突起物は包材4に押し付けられる。突起物は銅製であり十分な強度を有するため包材4には貫通孔が生じる。このようにして、包材4内部と外被材6内部は連通し、気体吸着材5による気体の吸着が可能になる。
A vacuum heat insulating material was produced using the member 3 having the projection having such a configuration. The components other than the member 3 having the protrusions and the vacuum sealing method are the same as those in the first embodiment. A pressure corresponding to the difference between the pressure inside the jacket material and the external pressure is applied to the member 3 having the protrusions. Since parts other than the protrusions of the member 3 having the protrusions are polypropylene and easily deform, the protrusions are pressed against the packaging material 4. Since the protrusion is made of copper and has sufficient strength, the packaging material 4 has a through hole. In this way, the inside of the packaging material 4 and the inside of the jacket material 6 communicate with each other, and the gas adsorbing material 5 can adsorb gas.

本実施の形態では、金属として銅を用いたが、これに限定するものではなく、包材に貫通孔を生じさせることができるものであればよい。   In the present embodiment, copper is used as the metal. However, the present invention is not limited to this, and any metal can be used as long as it can generate a through hole in the packaging material.

(実施例1)
芯材はガラス繊維の集合体を加圧加熱成型して板状にして作製し、厚さが5mmとなるようにした。
Example 1
The core material was produced by pressing and heat-molding an aggregate of glass fibers into a plate shape so that the thickness was 5 mm.

気体吸着材として粉末状のCuZSM−5を用いた。包材として厚さが15μmの2軸延伸ポリプロピレンフィルム、厚さが6μmのアルミニウム箔、厚さが50μmの低密度ポリエチレンフィルムをラミネートしたフィルムを用いた。このフィルムを3方シールして袋状にし、希ガス雰囲気中で気体吸着材を内包させたものを真空チャンバーに設置後、1Paまで減圧後、封止した。   Powdered CuZSM-5 was used as the gas adsorbent. A film obtained by laminating a biaxially stretched polypropylene film having a thickness of 15 μm, an aluminum foil having a thickness of 6 μm, and a low-density polyethylene film having a thickness of 50 μm was used as the packaging material. This film was sealed in three directions to form a bag, and the gas adsorbent encapsulated in a rare gas atmosphere was placed in a vacuum chamber, and then reduced to 1 Pa and sealed.

突起物を有する部材は、長さが30mm、幅が12mm、厚さが0.25mmのりん青銅の板を長さ方向に4箇所で折り曲げ、包材に設置する面と、包材に接触しない面との距離が圧力非負荷時には3mmとなるようにした。突起物は長さ方向と幅方向に対する中央部を切り欠いて曲げることにより作製しし、長さは2mmとした。これにより、圧力非負荷時は包材と突起物は1mmの隙間が開くようにした。   A member having protrusions is formed by bending a phosphor bronze plate having a length of 30 mm, a width of 12 mm, and a thickness of 0.25 mm at four locations in the length direction, and does not contact the surface of the packaging material. The distance from the surface was 3 mm when no pressure was applied. The protrusions were produced by cutting out and bending the central part in the length direction and the width direction, and the length was 2 mm. As a result, a gap of 1 mm was opened between the packaging material and the projection when no pressure was applied.

外被材は厚さが15μmの2軸延伸ナイロンフィルム、厚さが25μmの2軸延伸ナイロンフィルム、厚さが6μmのアルミニウム箔、厚さが50μmの低密度ポリエチレンフィルムをラミネートしたフィルムを用いた。予め3方をシールして袋状にした外被材内に、芯材、包材、突起物を有する部材の順に重ねて挿入して真空チャンバーに設置し、10Paまで減圧後封止した。   As the jacket material, a film obtained by laminating a biaxially stretched nylon film having a thickness of 15 μm, a biaxially stretched nylon film having a thickness of 25 μm, an aluminum foil having a thickness of 6 μm, and a low density polyethylene film having a thickness of 50 μm was used. . The core material, the packaging material, and the member having the protrusions were stacked in this order in a jacket material that had been sealed in three directions in advance to form a bag, placed in a vacuum chamber, and sealed after reducing pressure to 10 Pa.

このようにして作製した真空断熱材の熱伝導率を測定すると、0.0015W/mKと優れた結果が得られた。(比較例1)に示すように、気体吸着材を用いない場合の熱伝導率0.0020W/mKと比較して低減していることがわかる。このことから、気体吸着材は外被材内部の気体を吸着していることがわかる。   When the thermal conductivity of the vacuum heat insulating material thus produced was measured, an excellent result of 0.0015 W / mK was obtained. As shown in (Comparative Example 1), it can be seen that the thermal conductivity is reduced compared to 0.0020 W / mK when no gas adsorbent is used. From this, it can be seen that the gas adsorbent adsorbs the gas inside the jacket material.

また、真空断熱材の厚さを測定すると、突起物を有する部材の部分は6.0mmであり、それ以外の部分は5.0mmであった。この結果から、突起物を有する部材は、大気により、厚さが3mmから1mmまで減少する方向に変形し、突起物が包材に押し付けられたと考えられる。さらに、この真空断熱材を100℃で1ヶ月間エージングした後に熱伝導率を測定しても、その値は変わらなかった。   Moreover, when the thickness of the vacuum heat insulating material was measured, the part of the member having the protrusion was 6.0 mm, and the other part was 5.0 mm. From this result, it is considered that the member having the protrusions was deformed in the direction in which the thickness was reduced from 3 mm to 1 mm by the air, and the protrusions were pressed against the packaging material. Furthermore, even if the thermal conductivity was measured after aging the vacuum heat insulating material at 100 ° C. for one month, the value did not change.

(比較例1)に示すように、気体吸着材を用いない場合、100℃で1ヶ月エージングした場合の熱伝導率0.0080W/mKと比較して低く抑えられている。このことから、シール層を通して侵入する気体を空気吸着材が吸着していることがわかる。熱伝導率測定後に真空断熱材を解体して、包材を観察した結果、突起物との接触により生じた貫通孔の存在が確認された。   As shown in (Comparative Example 1), when no gas adsorbent is used, the thermal conductivity is kept low compared to 0.0080 W / mK when aged at 100 ° C. for one month. From this, it can be seen that the air adsorbent adsorbs the gas entering through the seal layer. As a result of disassembling the vacuum heat insulating material after the thermal conductivity measurement and observing the packaging material, it was confirmed that there was a through hole caused by contact with the protrusion.

(実施例2)
突起物を有する部材は、ガラス繊維を20重量パーセント含むポリプロピレン樹脂を、射出成型により実施の形態1と同様の形状に成型した。折り曲げ部の厚さは0.1mmで、折り曲げ部以外の厚さは0.2mmである。突起物を有する部材以外の構成要素および真空断熱材の作製方法は実施の形態1と同等である。
(Example 2)
The member having the protrusions was formed by molding a polypropylene resin containing 20% by weight of glass fiber into the same shape as in the first embodiment by injection molding. The thickness of the bent portion is 0.1 mm, and the thickness other than the bent portion is 0.2 mm. The constituent elements other than the members having protrusions and the method for manufacturing the vacuum heat insulating material are the same as those in the first embodiment.

このようにして作製した真空断熱材の熱伝導率を測定すると、0.0015W/mKと優れた結果が得られた。(比較例1)に示すように、気体吸着材を用いない場合の熱伝導率0.0020W/mKと比較して低減していることがわかる。このことから、気体吸着材は外被材内部の気体を吸着していることがわかる。   When the thermal conductivity of the vacuum heat insulating material thus produced was measured, an excellent result of 0.0015 W / mK was obtained. As shown in (Comparative Example 1), it can be seen that the thermal conductivity is reduced compared to 0.0020 W / mK when no gas adsorbent is used. From this, it can be seen that the gas adsorbent adsorbs the gas inside the jacket material.

また、真空断熱材の厚さを測定すると、突起物を有する部材の部分は5.8mmであり、それ以外の部分は5.0mmであった。実施の形態1の場合に比較して突起物を有する部分の厚さが0.2mm薄くなっている。これは、ポリプロピレンが銅に比較して柔らかく、大気圧が加わることでより容易に変形するためである。さらに、この真空断熱材を100℃で1ヶ月間エージングした後に熱伝導率を測定しても、その値は変わらなかった。   Moreover, when the thickness of the vacuum heat insulating material was measured, the part of the member having protrusions was 5.8 mm, and the other part was 5.0 mm. Compared with the case of Embodiment 1, the thickness of the part which has a protrusion is 0.2 mm thin. This is because polypropylene is softer than copper and deforms more easily when atmospheric pressure is applied. Furthermore, even if the thermal conductivity was measured after aging the vacuum heat insulating material at 100 ° C. for one month, the value did not change.

(比較例1)に示すように、気体吸着材を用いない場合、100℃で1ヶ月エージングした場合の熱伝導率0.0080W/mKと比較して低く抑えられている。このことから、シール層を通して侵入する気体を空気吸着材が吸着していることがわかる。熱伝導率測定後に真空断熱材を解体して、包材を観察した結果、突起物との接触により生じた貫通孔の存在が確認された。   As shown in (Comparative Example 1), when no gas adsorbent is used, the thermal conductivity is kept low compared to 0.0080 W / mK when aged at 100 ° C. for one month. From this, it can be seen that the air adsorbent adsorbs the gas entering through the seal layer. As a result of disassembling the vacuum heat insulating material after the thermal conductivity measurement and observing the packaging material, it was confirmed that there was a through hole caused by contact with the protrusion.

(実施例3)
突起物を有する部材は、ポリプロピレン樹脂で射出成型したものに銅の突起物を取り付けることにより作製した。折り曲げ部の厚さは0.1mmで、折り曲げ部以外の厚さは0.2mmである。突起物を有する部材以外の構成要素および真空断熱材の作製方法は実施の形態1と同等である。
(Example 3)
The member having the protrusions was prepared by attaching a copper protrusion to one that was injection-molded with polypropylene resin. The thickness of the bent portion is 0.1 mm, and the thickness other than the bent portion is 0.2 mm. The constituent elements other than the members having protrusions and the method for manufacturing the vacuum heat insulating material are the same as those in the first embodiment.

このようにして作製した真空断熱材の熱伝導率を測定すると、0.0015W/mKと優れた結果が得られた。(比較例1)に示すように、気体吸着材を用いない場合の熱伝導率0.0020W/mKと比較して低減していることがわかる。このことから、気体吸着材は外被材内部の気体を吸着していることがわかる。   When the thermal conductivity of the vacuum heat insulating material thus produced was measured, an excellent result of 0.0015 W / mK was obtained. As shown in (Comparative Example 1), it can be seen that the thermal conductivity is reduced compared to 0.0020 W / mK when no gas adsorbent is used. From this, it can be seen that the gas adsorbent adsorbs the gas inside the jacket material.

また、真空断熱材の厚さを測定すると、突起物を有する部分は5.7mmであり、それ以外の部分は5.0mmであった。実施の形態1の場合に比較して突起物を有する部分の厚さが0.3mm、実施の形態2に比較して0.1mm薄くなっている。これは、ポリプロピレン樹脂がガラス繊維を含まないため、より柔らかいためであると考えられる。   Moreover, when the thickness of the vacuum heat insulating material was measured, the part which has a protrusion was 5.7 mm, and the other part was 5.0 mm. Compared to the case of the first embodiment, the thickness of the portion having the protrusion is 0.3 mm, and is 0.1 mm thinner than that of the second embodiment. This is thought to be because the polypropylene resin is softer because it does not contain glass fibers.

また、突起物に銅を用いているため包材に貫通孔を生成する機能は優れており、熱伝導率測定後に真空断熱材を解体して、包材を観察した結果、突起物との接触により生じた貫通孔の存在が確認された。   In addition, because copper is used for the projections, the function of generating through holes in the packaging material is excellent. After measuring the thermal conductivity, the vacuum insulation material was disassembled and the packaging material was observed. The presence of the through-hole generated by the above was confirmed.

(実施例4)
突起物を有する部材は、ガラス繊維を20重量パーセント含むポリプロピレン樹脂を、射出成型により作製した。包材に接触する部分の一方はフック状になっており、包材に取り付けることができる。真空断熱材作製の工程で、フック状の部分を包材に取り付けて外被材内部に設置した。このようにすることで、突起物を有する部材と包材のずれを防ぐことができる。突起物を有する部材以外の構成および真空包装工程は実施の形態1と同等である。
Example 4
The member having the protrusions was produced by injection molding a polypropylene resin containing 20% by weight of glass fiber. One of the portions in contact with the packaging material has a hook shape and can be attached to the packaging material. In the process of manufacturing the vacuum heat insulating material, the hook-shaped portion was attached to the packaging material and installed inside the jacket material. By doing in this way, the shift | offset | difference of the member which has a protrusion, and a packaging material can be prevented. The configuration other than the members having protrusions and the vacuum packaging process are the same as those in the first embodiment.

(実施例5)
突起物を有する部材は、長さが30mm、厚さが12mm、厚さが0.25mmのりん青銅の板を長さ方向に4箇所で折り曲げ、包材に設置する面と、包材に接触しない面との距離が圧力非負荷時には3mmとなるようにした。突起物は長さ方向と幅方向の中央部を切り欠いて曲げることにより作製して、長さは1mmとした。気体吸着材を封入した包材に大気圧を負荷した際の厚さは、1.2mmであった。これら以外の構成要素は実施の形態1と同等である。
(Example 5)
The member with protrusions is a phosphor bronze plate with a length of 30 mm, a thickness of 12 mm, and a thickness of 0.25 mm. The distance from the non-applied surface was set to 3 mm when no pressure was applied. The protrusions were produced by cutting out and bending the central part in the length direction and the width direction, and the length was 1 mm. The thickness when atmospheric pressure was applied to the packaging material in which the gas adsorbent was sealed was 1.2 mm. The other components are the same as those in the first embodiment.

真空断熱材の作製は以下の通り行った。予め3方をシールして袋状とした外被材に芯材を設置し、包材を芯材と重なり合わないように設置した。さらに、突起物を有する部材を包材に重ねて設置した。さらに、外被材内部を10Paまで減圧後封止した。このようにして作製した真空断熱材の熱伝導率を測定すると、0.0015W/mKと優れた結果が得られた。(比較例1)に示すように、気体吸着材を用いない場合の熱伝導率0.0020W/mKと比較して低減していることがわかる。このことから、気体吸着材は外被材内部の気体を吸着していることがわかる。   The vacuum heat insulating material was produced as follows. A core material was placed on a jacket material that had been sealed in three directions in advance, and the packaging material was placed so as not to overlap the core material. Further, a member having a protrusion was placed on the packaging material. Further, the inside of the jacket material was sealed after being reduced to 10 Pa. When the thermal conductivity of the vacuum heat insulating material thus produced was measured, an excellent result of 0.0015 W / mK was obtained. As shown in (Comparative Example 1), it can be seen that the thermal conductivity is reduced compared to 0.0020 W / mK when no gas adsorbent is used. From this, it can be seen that the gas adsorbent adsorbs the gas inside the jacket material.

また、真空断熱材の厚さを測定すると、芯材部は5.0mmであり、突起物を有する部材の場所は1.5mmであった。このように、突起物を有する部材により、真空断熱材の最大厚さは増大しない。従って、真空断熱材をより薄型化することが可能である。また、低い熱伝導率が得られていることから外被材に貫通孔は生じていないことがわかる。これは、突起物が、包材内部に留まり、外被材に接触しないためである。   Moreover, when the thickness of the vacuum heat insulating material was measured, the core part was 5.0 mm and the location of the member having the protrusion was 1.5 mm. As described above, the maximum thickness of the vacuum heat insulating material is not increased by the member having the protrusions. Therefore, the vacuum heat insulating material can be made thinner. Moreover, since the low heat conductivity is acquired, it turns out that the through-hole has not arisen in the jacket material. This is because the protrusions remain inside the packaging material and do not contact the outer covering material.

(比較例1)
気体吸着材、包材、突起物を有する部材を用いず、これら以外の構成、作製方法は(実施例1)と同様にして真空断熱材を作製した。このようにして作製した真空断熱材の熱伝導率を測定すると、0.0020W/mKであり、気体吸着材を用いた場合の熱伝導率0.0015W/mKに比較して大きくなっていることがわかる。
(Comparative Example 1)
A vacuum heat insulating material was produced in the same manner as in Example 1 except that the gas adsorbing material, the packaging material, and the member having the protrusions were not used. When the thermal conductivity of the vacuum heat insulating material thus produced is measured, it is 0.0020 W / mK, which is larger than the thermal conductivity of 0.0015 W / mK when a gas adsorbent is used. I understand.

また、本比較例で作成した真空断熱材を100℃で1時間エージングした後の熱伝導率は0.0080W/mKであり、これは、外被材を介して侵入した気体により熱伝導率が大きくなったためである。   Moreover, the thermal conductivity after aging the vacuum heat insulating material created in this comparative example at 100 ° C. for 1 hour is 0.0080 W / mK, and this is because the thermal conductivity is caused by the gas that has entered through the jacket material. This is because it has grown.

以上のように、本発明にかかる真空断熱材は、薄型の真空断熱材をより安価に得ることができるため、住宅の断熱等の分野にも適用できる。   As mentioned above, since the vacuum heat insulating material concerning this invention can obtain a thin vacuum heat insulating material more cheaply, it can be applied also to fields, such as heat insulation of a house.

1 真空断熱材
2 芯材
3 突起物を有する部材
4 包材
5 気体吸着材
6 外被材
7 切り欠き部
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 3 Member which has a protrusion 4 Packaging material 5 Gas adsorbent material 6 Cover material 7 Notch part

Claims (8)

少なくとも繊維材料を含む芯材と、ガスバリア性の包材からなる袋に真空封止された気体吸着材と、外力が加えられた場合に前記包材に孔を開けることが可能な突起物を有する部材とを、ガスバリア性に優れた外被材で被って前記外被材内部を真空封止してなり、前記部材は、前記突起物が前記包材に孔を開けて前記包材内部と前記外被材内部とを連通させるように構成されており、前記包材内部と前記外被材内部との連通が、前記突起物と前記包材との接触によりなされ、前記突起物が樹脂よりなることを特徴とする真空断熱材。 A core material including at least a fiber material, a gas adsorbent vacuum-sealed in a bag made of a gas barrier packaging material, and a protrusion capable of opening a hole in the packaging material when an external force is applied The member is covered with a covering material having excellent gas barrier properties, and the inside of the covering material is vacuum-sealed, and the member includes a hole formed in the covering material and the inside of the covering material and the member. It is comprised so that the inside of a jacket material may be connected, The communication between the said packaging material inside and the said jacket material is made | formed by the contact of the said protrusion and the said packaging material, and the said protrusion consists of resin Vacuum insulation characterized by that. 前記芯材が、繊維集合体からなることを特徴とする請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the core material is made of a fiber assembly. 前記突起物を有する部材が、圧力負荷時には変形により平板状に近くなることを特徴とする請求項1または2に記載の真空断熱材。 3. The vacuum heat insulating material according to claim 1, wherein the member having the protrusions is close to a flat plate shape by deformation when pressure is applied. 前記突起物を有する部材が、ポリプロピレンである請求項1から3のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 3, wherein the member having the protrusion is polypropylene. 前記突起物を有する部材が繊維強化プラスチックである請求項1から3のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 3, wherein the member having the protrusion is a fiber reinforced plastic. 前記突起物を有する部材が、金属と樹脂の複合体である請求項1から5のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 5, wherein the member having the protrusion is a composite of metal and resin. 前記突起物を有する部材が、包材に固定されている請求項1から6のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material as described in any one of Claim 1 to 6 with which the member which has the said protrusion is being fixed to the packaging material. 前記突起物の長さが、大気圧下での気体吸着材の厚さより短い請求項1から7のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material as described in any one of Claim 1 to 7 with which the length of the said protrusion is shorter than the thickness of the gas adsorbent under atmospheric pressure.
JP2012166768A 2012-07-27 2012-07-27 Vacuum insulation Expired - Fee Related JP5418643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166768A JP5418643B2 (en) 2012-07-27 2012-07-27 Vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166768A JP5418643B2 (en) 2012-07-27 2012-07-27 Vacuum insulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007219526A Division JP5056269B2 (en) 2007-08-27 2007-08-27 Vacuum insulation

Publications (2)

Publication Number Publication Date
JP2012197951A true JP2012197951A (en) 2012-10-18
JP5418643B2 JP5418643B2 (en) 2014-02-19

Family

ID=47180360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166768A Expired - Fee Related JP5418643B2 (en) 2012-07-27 2012-07-27 Vacuum insulation

Country Status (1)

Country Link
JP (1) JP5418643B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006186A1 (en) * 2014-07-08 2016-01-14 パナソニックIpマネジメント株式会社 Gas-adsorbing device, vacuum insulation material including same, and refrigerator and heat-insulating wall
JP2020131146A (en) * 2019-02-22 2020-08-31 パナソニックIpマネジメント株式会社 Gas adsorption device and vacuum heat insulation material
JP2021134819A (en) * 2020-02-25 2021-09-13 パナソニックIpマネジメント株式会社 Vacuum heat insulating material and heat insulating container

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891380U (en) * 1981-12-16 1983-06-21 中村 一弥 sewing needle with sewing thread
JPS60147388U (en) * 1984-03-08 1985-09-30 天井 照子 Sewing needle that does not require threading
JPH0451752B2 (en) * 1984-09-07 1992-08-19 Tokyo Shibaura Electric Co
JPH0672581U (en) * 1993-03-29 1994-10-11 大日化成工業株式会社 Needle with thread
JP2006051245A (en) * 2004-08-13 2006-02-23 Teiboo Kk Sewing needle
WO2007034906A1 (en) * 2005-09-26 2007-03-29 Matsushita Electric Industrial Co., Ltd. Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
JP2007159659A (en) * 2005-12-09 2007-06-28 Fujifilm Corp Hollow needle for blood sampling
JP2007159657A (en) * 2005-12-09 2007-06-28 Fujifilm Corp Puncturing needle for blood sampling
JP2012159201A (en) * 2012-05-18 2012-08-23 Panasonic Corp Vacuum insulation material
JP5056269B2 (en) * 2007-08-27 2012-10-24 パナソニック株式会社 Vacuum insulation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891380U (en) * 1981-12-16 1983-06-21 中村 一弥 sewing needle with sewing thread
JPS60147388U (en) * 1984-03-08 1985-09-30 天井 照子 Sewing needle that does not require threading
JPH0451752B2 (en) * 1984-09-07 1992-08-19 Tokyo Shibaura Electric Co
JPH0672581U (en) * 1993-03-29 1994-10-11 大日化成工業株式会社 Needle with thread
JP2006051245A (en) * 2004-08-13 2006-02-23 Teiboo Kk Sewing needle
WO2007034906A1 (en) * 2005-09-26 2007-03-29 Matsushita Electric Industrial Co., Ltd. Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
JP2007159659A (en) * 2005-12-09 2007-06-28 Fujifilm Corp Hollow needle for blood sampling
JP2007159657A (en) * 2005-12-09 2007-06-28 Fujifilm Corp Puncturing needle for blood sampling
JP5056269B2 (en) * 2007-08-27 2012-10-24 パナソニック株式会社 Vacuum insulation
JP2012159201A (en) * 2012-05-18 2012-08-23 Panasonic Corp Vacuum insulation material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006186A1 (en) * 2014-07-08 2016-01-14 パナソニックIpマネジメント株式会社 Gas-adsorbing device, vacuum insulation material including same, and refrigerator and heat-insulating wall
JP2020131146A (en) * 2019-02-22 2020-08-31 パナソニックIpマネジメント株式会社 Gas adsorption device and vacuum heat insulation material
JP7174938B2 (en) 2019-02-22 2022-11-18 パナソニックIpマネジメント株式会社 Gas adsorption device and vacuum insulation
JP2021134819A (en) * 2020-02-25 2021-09-13 パナソニックIpマネジメント株式会社 Vacuum heat insulating material and heat insulating container
JP7482437B2 (en) 2020-02-25 2024-05-14 パナソニックIpマネジメント株式会社 Method for producing vacuum insulation material, method for producing vacuum insulation container, and method for producing thermal insulation bag

Also Published As

Publication number Publication date
JP5418643B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US8940084B2 (en) Gas adsorbing device and vacuum insulation panel provided with same
US20180266620A1 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
JP5198167B2 (en) Vacuum insulation box
WO2007034906A1 (en) Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
JP2009063064A (en) Vacuum heat insulating material and refrigerator using the same
JP4960801B2 (en) Insulated container and manufacturing method thereof
WO2003102460A1 (en) Vacuum thermal insulating material, process for producing the same and refrigerator including the same
US10443921B2 (en) Refrigerator
JP4580843B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5056269B2 (en) Vacuum insulation
JP5418643B2 (en) Vacuum insulation
JP2010060045A (en) Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
JP5865581B2 (en) refrigerator
JP5256597B2 (en) Gas adsorption device and vacuum insulation
JP4867699B2 (en) Gas adsorption device
JP6413309B2 (en) Vacuum heat insulating material and outer packaging material for vacuum heat insulating material
JP2015014326A (en) Heat insulation member and cold/hot storage box
JP5338944B2 (en) Vacuum insulation
JP5194823B2 (en) Vacuum insulation box
JP2010096291A (en) Vacuum heat insulated casing
SG180078A1 (en) Refrigerator
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP2009287791A (en) Vacuum heat insulating housing
JP2009092224A (en) Vacuum heat insulating material and building adopting vacuum heat insulation material
JP4941313B2 (en) Gas adsorption device, vacuum heat insulating material and vacuum heat insulating box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R151 Written notification of patent or utility model registration

Ref document number: 5418643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees