[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012173093A - Inspection method of rubber material - Google Patents

Inspection method of rubber material Download PDF

Info

Publication number
JP2012173093A
JP2012173093A JP2011034555A JP2011034555A JP2012173093A JP 2012173093 A JP2012173093 A JP 2012173093A JP 2011034555 A JP2011034555 A JP 2011034555A JP 2011034555 A JP2011034555 A JP 2011034555A JP 2012173093 A JP2012173093 A JP 2012173093A
Authority
JP
Japan
Prior art keywords
relaxation time
component
rubber
rubber material
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011034555A
Other languages
Japanese (ja)
Inventor
Naoko Nishikita
直子 西北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011034555A priority Critical patent/JP2012173093A/en
Publication of JP2012173093A publication Critical patent/JP2012173093A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method of rubber material, capable of quickly and easily evaluating a cross-linked state in rubber (a state of deterioration).SOLUTION: An inspection method of rubber material using a pulsed nuclear magnetic resonance (P-NMR) apparatus, includes the steps of: measuring a spin-spin relaxation time Tof rubber by a Carr-Purcell-Meiboom-Gill (CPMG) method; dividing an obtained Trelaxation curve (a free induction decay curve) into a Tcomponent having a short relaxation time and a Tcomponent having a long relaxation time by a formula (1); and estimating a breaking elongation Eb from a value of the Tcomponent and a hardness Hd from a value of the Tcomponent. (where Tis a relaxation time of the component having the short relaxation time; Tis a relaxation time of the component having the long relaxation time; Ais strength at t=0 of the component having the short relaxation time; Ais strength at t=0 of the component having the long relaxation time; and t is an observation time.)

Description

本発明は、迅速かつ簡便にゴムの劣化の状態を評価することができるゴム材料の検査方法に関する。   The present invention relates to a method for inspecting a rubber material capable of quickly and easily evaluating a state of deterioration of rubber.

ゴム材料は、タイヤ、ゴムクローラ、コンベアベルト、空気バネ、防振ゴム、免震ゴム、海洋商品、建築資材など様々な分野の製品で使用されており、産業において欠かすことのできないものである。また、これらの製品は、大型で長期間使用されるものが多く、安全かつ安定的に使用するために長期にわたるメンテナンスが必要とされる。   Rubber materials are used in products of various fields such as tires, rubber crawlers, conveyor belts, air springs, anti-vibration rubbers, seismic isolation rubbers, marine products and building materials, and are indispensable in industry. Moreover, many of these products are large and used for a long period of time, and long-term maintenance is required for safe and stable use.

ゴムは、通常の使用においてもオゾンなどによる酸化劣化や、光、熱、並びに紫外線などの放射線による化学変化等によって劣化が進行するため、安全面等から上記タイヤ等のゴム製品は一定の稼働時間、走行距離あるいは使用期間に達した際に交換することが必要である。このようなメンテナンスを怠った場合には、タイヤであれば走行中にスリップやバーストを起こし、また、コンベアベルトでは使用中に破断して、装置の破損や駆動停止等のトラブルを起こし、更に重大な事故につながるおそれがある。そのため、これらゴム製品の劣化の状態を把握することは、適切な交換時期を見極め、装置等の安全かつ安定的な運用を実施する一助となり、突発的なトラブルや重大な事故を防止する上で重要なものである。   Rubber is deteriorated due to oxidative deterioration caused by ozone, etc., or chemical changes caused by radiation such as light, heat, and ultraviolet rays even during normal use. For safety reasons, rubber products such as tires have a certain operating time. It is necessary to exchange when the mileage or usage period is reached. If such maintenance is neglected, if it is a tire, it will cause slipping or bursting while traveling, and the conveyor belt will break during use, causing troubles such as damage to the device and stoppage of the drive. May lead to serious accidents. Therefore, grasping the state of deterioration of these rubber products helps to determine the appropriate replacement time, and to implement safe and stable operation of equipment, etc., and to prevent sudden troubles and serious accidents. It is important.

ゴムの劣化・老化の主な原因は、上述のようにオゾンなどによる酸化劣化や、光、熱、並びに紫外線などの放射線による化学変化等によるものであり、いずれもゴムの架橋構造が変化する点においては共通している。即ち、ゴムの架橋構造の変化を経時的に調査することにより劣化の進行状態を調べることができる。ゴムの架橋構造を調べる一般的な方法としては、核磁気共鳴法(NMR)や赤外分光法(IR)による方法(化学構造の変化)、ゲルパーミエーションクロマトグラフィ(GPC)による方法(分子量分布の変化)、X線回折法(XRD)による方法(結晶構造の変化)、膨潤網目密度測定による方法(架橋構造の変化)などが挙げられる。しかしながら、これらの分析法からゴムの架橋構造の変化を知ることはできるが、ゴム製品の性能に直接影響する物性(硬度、粘弾性、伸び、強力、引裂き強力等)を把握することは難しい。   The main causes of deterioration and aging of rubber are due to oxidative deterioration due to ozone as described above, chemical changes due to radiation such as light, heat, and ultraviolet rays, etc., all of which change the cross-linked structure of rubber. Is common. That is, the progress of deterioration can be examined by examining the change in the cross-linked structure of the rubber over time. As a general method for examining the crosslinked structure of rubber, a method using nuclear magnetic resonance (NMR) or infrared spectroscopy (IR) (change in chemical structure), a method using gel permeation chromatography (GPC) (of molecular weight distribution) Change), a method by X-ray diffraction (XRD) (change in crystal structure), a method by swollen network density measurement (change in cross-linked structure), and the like. However, although it is possible to know the change in the crosslinked structure of rubber from these analytical methods, it is difficult to grasp the physical properties (hardness, viscoelasticity, elongation, strength, tear strength, etc.) that directly affect the performance of the rubber product.

一方、ゴム製品の性能は、ゴム材料の硬度、粘弾性、伸び、強力、引裂き強力等の物性の変化を調べることによって確認することができる。しかしながら、試験片の作製には手間と時間を要することが多い上、ゴム製品はその用途により形状が様々であることから、物性試験用の試験片の作製に適さない場合も少なくない。また、製品の劣化が進行してぼろぼろになってしまった場合には試験片を作製することができないこともある。   On the other hand, the performance of a rubber product can be confirmed by examining changes in physical properties such as hardness, viscoelasticity, elongation, strength, and tear strength of the rubber material. However, the preparation of the test piece often requires labor and time, and the shape of the rubber product varies depending on its use, and therefore it is often not suitable for the preparation of a test piece for physical property testing. In addition, when the deterioration of the product progresses and becomes rag, it may not be possible to produce a test piece.

従来、ゴムの架橋状態を測定・評価する技術として、例えば、パルスNMR(以下、「P−NMR」と表記することもある。)法でゴムのスピン−スピン緩和時間T2を測定し、得られたスピン−スピン緩和時間T2をもとに、平均緩和時間MT2を算出してゴムの架橋度を評価する方法(特許文献1:特開2002−71595号公報)や、P−NMR法により測定された平均緩和時間MT2と、ゴムベルトの走行試験結果から得られた耐久寿命との関係からゴムベルトの耐久寿命を推定する方法(特許文献2:特開2001−249091号公報)などが提案されている。 Conventionally, as a technique for measuring and evaluating the crosslinked state of rubber, for example, the spin-spin relaxation time T 2 of rubber is measured by a pulse NMR (hereinafter, sometimes referred to as “P-NMR”) method, and obtained. A method of calculating the average relaxation time MT 2 based on the obtained spin-spin relaxation time T 2 and evaluating the degree of crosslinking of the rubber (Patent Document 1: Japanese Patent Laid-Open No. 2002-71595), or a P-NMR method A method of estimating the durable life of a rubber belt from the relationship between the average relaxation time MT 2 measured by the above and the durable life obtained from the running test result of the rubber belt (Patent Document 2: Japanese Patent Laid-Open No. 2001-249091) is proposed. Has been.

それらの通常法では、P−NMR装置によりゴムの架橋構造を測定する場合、シーケンスとしてソリッドエコー法が一般的に採用される。このソリッドエコー法は、非常に短い緩和時間を持つ成分に着目したもので、通常500μs〜1msのごく短い緩和時間を測定し、主にゴムの分子同士の架橋点やカーボンなどの補強材によって拘束されている(硬い)部分の状態を観測するものである。そのため、その観測結果は必ずしもゴムの架橋構造全体の状態を精度よく反映したものとはならない。   In these ordinary methods, the solid echo method is generally employed as a sequence when the rubber cross-linked structure is measured by a P-NMR apparatus. This solid echo method focuses on components with a very short relaxation time, and usually measures a very short relaxation time of 500 μs to 1 ms, and is mainly constrained by a crosslinking point between rubber molecules and a reinforcing material such as carbon. The state of the hard (hard) part is observed. Therefore, the observation results do not necessarily accurately reflect the state of the entire rubber crosslinked structure.

一方、P−NMRには、シーケンスとしてCarr−Purcell−Meiboom−Gill(CPMG)法を用いた測定方法もあるが、数ms〜数十ms程度の長い緩和時間の領域を測定対象とするものであり、従来は主に高粘性の液体などを分析対象としていた。そのため、ゴム材料の架橋構造の分析に対する有用性はほとんど検討されていないのが現状である。   On the other hand, P-NMR also has a measurement method using the Carr-Purcell-Meiboom-Gill (CPMG) method as a sequence, but the measurement target is a long relaxation time region of about several ms to several tens of ms. In the past, high-viscosity liquids were the subject of analysis. Therefore, at present, the usefulness for analysis of the crosslinked structure of the rubber material has not been studied.

このように、ゴム材料の架橋状態(劣化の状態)の分析を試みようとしても、従来の手法は迅速性及び簡便性等の点で必ずしも満足し得るものではなかった。そのため、ゴム材料の架橋状態を迅速かつ簡便に評価することができる検査方法の開発が望まれている。   As described above, even if an attempt is made to analyze the crosslinked state (degraded state) of the rubber material, the conventional method is not always satisfactory in terms of speed and simplicity. Therefore, it is desired to develop an inspection method that can quickly and easily evaluate the crosslinked state of the rubber material.

なお、本願出願人は、上記の問題を解消し得るゴム材料の評価方法として、特願2009−187921において、シーケンスとしてCPMG法を用いたP−NMR測定により得られるT2緩和曲線を緩和時間の異なる2成分に分離し、各々の緩和時間及び成分比率を重回帰分析してゴム物性を解析する手法を提案しているが、本発明はこの手法よりも更に迅速かつ簡便に検査することができる新たなゴム材料の検査方法を提案するものである。 The applicant of the present invention, as a method for evaluating a rubber material capable of solving the above-mentioned problem, in Japanese Patent Application No. 2009-187721, shows a T 2 relaxation curve obtained by P-NMR measurement using a CPMG method as a sequence. We have proposed a method of separating rubber components into two different components, and analyzing the physical properties of rubber by multiple regression analysis of each relaxation time and component ratio. The present invention can be inspected more quickly and easily than this method. A new rubber material inspection method is proposed.

特開2002−71595号公報JP 2002-71595 A 特開2001−249091号公報JP 2001-249091 A

本発明は、上記事情に鑑みなされたもので、迅速かつ簡便にゴムの架橋状態(劣化の状態)を評価することができるゴム材料の検査方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the test | inspection method of the rubber material which can evaluate the crosslinked state (deterioration state) of rubber | gum quickly and easily.

本発明者は、上記の課題を解決するために鋭意検討した結果、シーケンスとしてCarr−Purcell−Meiboom−Gill(CPMG)法を用いたP−NMR測定によれば、ソリッドエコー法を用いる従来の評価方法に比較して、ゴムの分子構造の状態を良好に反映したデータ(T2緩和曲線)が得られることを知見した。 As a result of intensive studies to solve the above problems, the present inventor has conducted conventional evaluation using a solid echo method according to P-NMR measurement using a Carr-Purcell-Meiboom-Gill (CPMG) method as a sequence. It was found that data (T 2 relaxation curve) that better reflects the state of the molecular structure of rubber was obtained compared to the method.

そこで、本発明者は、CPMG法による測定で得た上記T2緩和曲線を緩和時間の長いT2L成分と緩和時間の短いT2M成分とに分割し、得られた緩和時間とゴム材料の物性との関係について更に検討を進めた。その結果、T2L成分の緩和時間(以下、緩和時間T2Lと表記することもある)が破断伸びEbに対して極めて高い相関を示すこと、そしてT2M成分の緩和時間(以下、緩和時間T2Mと表記することもある)が硬度Hdに対して極めて高い相関を示すことを知見し、更に、これらのパラメータを利用することでゴムの架橋状態、即ち劣化の状態を迅速かつ簡便に予測し得ることを見出し、本発明に到達した。 Therefore, the present inventor divides the T 2 relaxation curve obtained by measurement by the CPMG method into a T 2L component having a long relaxation time and a T 2M component having a short relaxation time, and the obtained relaxation time and physical properties of the rubber material. We further investigated the relationship with As a result, the relaxation time of the T 2L component (hereinafter also referred to as relaxation time T 2L ) shows a very high correlation with the elongation at break Eb, and the relaxation time of the T 2M component (hereinafter referred to as relaxation time T 2M ) may show a very high correlation with the hardness Hd, and by using these parameters, the crosslinked state of the rubber, that is, the state of deterioration can be predicted quickly and easily. The present invention has been found.

即ち、本発明は下記の[1]〜[4]の発明を提供する。
[1]パルス法核磁気共鳴(P−NMR)装置を用いるゴム材料の検査方法であって、
Carr−Purcell−Meiboom−Gill(CPMG)法によりゴムのスピン−スピン緩和時間T2を測定し、
得られたT2緩和曲線(自由誘導減衰曲線)を、下記式(1)により緩和時間の短いT2M成分と、緩和時間の長いT2L成分とに分割し、
上記T2L成分の緩和時間(緩和時間T2L)から破断伸びEbを予測することを特徴とするゴム材料の検査方法。

Figure 2012173093
(式中、T2Mは緩和時間の短い成分の緩和時間、T2Lは緩和時間の長い成分の緩和時間、A2Mは緩和時間の短い成分のt=0時の強度、A2Lは緩和時間の長い成分のt=0時の強度、tは観測時間である。)
[2]検査対象のゴム材料と同種のゴム材料を標準試料とし、該標準試料について架橋状態(劣化の状態)の異なる2以上の条件でP−NMR及び破断伸びEbを測定し、得られた緩和時間T2Lと破断伸びEbとから検量線を作成した後、検査対象のゴム材料についてP−NMRを測定して得た緩和時間T2Lから、上記検量線に基づいて破断伸びEbを予測する[1]記載のゴム材料の検査方法。
[3]パルス法核磁気共鳴(P−NMR)装置を用いるゴム材料の検査方法であって、
Carr−Purcell−Meiboom−Gill(CPMG)法によりゴムのスピン−スピン緩和時間T2を測定し、
得られたT2緩和曲線(自由誘導減衰曲線)を、下記式(1)により緩和時間の短いT2M成分と、緩和時間の長いT2L成分とに分割し、
上記T2M成分の緩和時間(緩和時間T2M)から硬度Hdを予測することを特徴とするゴム材料の検査方法。
Figure 2012173093
(式中、T2Mは緩和時間の短い成分の緩和時間、T2Lは緩和時間の長い成分の緩和時間、A2Mは緩和時間の短い成分のt=0時の強度、A2Lは緩和時間の長い成分のt=0時の強度、tは観測時間である。)
[4]検査対象のゴム材料と同種のゴム材料を標準試料とし、該標準試料について架橋状態(劣化の状態)の異なる2以上の条件でP−NMR及び硬度Hdを測定し、得られた緩和時間T2Mと硬度Hdとから検量線を作成した後、検査対象のゴム材料についてP−NMRを測定して得た緩和時間T2Mから、上記検量線に基づいて硬度Hdを予測する[3]記載のゴム材料の検査方法。 That is, the present invention provides the following inventions [1] to [4].
[1] A method for inspecting a rubber material using a pulsed nuclear magnetic resonance (P-NMR) apparatus,
The spin-spin relaxation time T 2 of rubber was measured by the Carr-Purcell-Meiboom-Gill (CPMG) method,
The obtained T 2 relaxation curve (free induction decay curve) is divided into a T 2M component having a short relaxation time and a T 2L component having a long relaxation time by the following equation (1):
A method for inspecting a rubber material, wherein a breaking elongation Eb is predicted from a relaxation time (relaxation time T 2L ) of the T 2L component.
Figure 2012173093
( Where T 2M is the relaxation time of the component having a short relaxation time, T 2L is the relaxation time of the component having a long relaxation time, A 2M is the strength at t = 0 of the component having a short relaxation time, and A 2L is the relaxation time of the component. (The intensity of the long component at t = 0, t is the observation time.)
[2] A rubber material of the same type as the rubber material to be inspected was used as a standard sample, and the P-NMR and elongation at break Eb were measured for the standard sample under two or more conditions with different crosslinking states (degradation states). After preparing a calibration curve from the relaxation time T 2L and the breaking elongation Eb, the breaking elongation Eb is predicted from the relaxation time T 2L obtained by measuring P-NMR for the rubber material to be inspected based on the calibration curve. [1] The method for inspecting a rubber material according to [1].
[3] A method for inspecting a rubber material using a pulsed nuclear magnetic resonance (P-NMR) apparatus,
The spin-spin relaxation time T 2 of rubber was measured by the Carr-Purcell-Meiboom-Gill (CPMG) method,
The obtained T 2 relaxation curve (free induction decay curve) is divided into a T 2M component having a short relaxation time and a T 2L component having a long relaxation time by the following equation (1):
A method for inspecting a rubber material, wherein the hardness Hd is predicted from the relaxation time (relaxation time T 2M ) of the T 2M component.
Figure 2012173093
( Where T 2M is the relaxation time of the component having a short relaxation time, T 2L is the relaxation time of the component having a long relaxation time, A 2M is the strength at t = 0 of the component having a short relaxation time, and A 2L is the relaxation time of the component. (The intensity of the long component at t = 0, t is the observation time.)
[4] Using the same rubber material as the rubber material to be inspected as a standard sample, the standard sample was measured for P-NMR and hardness Hd under two or more conditions with different crosslinking states (degradation states), and the obtained relaxation After creating a calibration curve from time T 2M and hardness Hd, hardness Hd is predicted based on the calibration curve from relaxation time T 2M obtained by measuring P-NMR for the rubber material to be inspected [3]. The inspection method of the rubber material as described.

本発明の検査方法は、あらゆるゴム材料について、検査対象の形状に影響されることなく迅速かつ簡便に劣化の状態を評価することができるものである。本発明の検査方法を採用することにより、特にタイヤ、ゴムクローラ、コンベアベルト、防振ゴム等のゴム製品が使用される装置等の効率的かつ適切なメンテナンスを行うための一助となり、運用面における経済性及び安全性の向上に貢献することができる。   The inspection method of the present invention can quickly and easily evaluate the deterioration state of any rubber material without being affected by the shape of the inspection object. By adopting the inspection method of the present invention, it helps to perform efficient and appropriate maintenance of devices such as tires, rubber crawlers, conveyor belts, anti-vibration rubber, etc. It can contribute to the improvement of economy and safety.

加熱処理前のゴムのT2緩和曲線、並びに該T2緩和曲線に式(1)をフィッティングして、緩和時間の長いT2L成分と緩和時間の短いT2M成分とに分割した結果を示したグラフである。The T 2 relaxation curve of the rubber before heat treatment and the result of fitting the equation (1) to the T 2 relaxation curve and dividing it into a T 2L component with a long relaxation time and a T 2M component with a short relaxation time are shown. It is a graph. 破断伸びEbをT2L成分の緩和時間に対してプロットしたグラフである。It is the graph which plotted breaking elongation Eb with respect to the relaxation time of a T2L component. 硬度HdをT2M成分の緩和時間に対してプロットしたグラフである。It is the graph which plotted hardness Hd with respect to the relaxation time of a T2M component.

本発明はパルスNMR(P−NMR)法により測定される緩和時間T2と物性値との間の相関関係に基づいてゴム材料の状態を検査する方法である。以下、実施例に沿ってその詳細を具体的に説明する。 The present invention is a method for inspecting the state of a rubber material based on a correlation between a relaxation time T 2 measured by a pulse NMR (P-NMR) method and a physical property value. Hereinafter, the details will be specifically described with reference to examples.

P−NMR装置は、ゴムや樹脂等のポリマー分子の運動性をポリマー鎖中の水素原子の運動性(緩和時間)から評価するための装置である。本発明では、そのシーケンスとして、従来、ゴムの架橋状態の分析に多く採用されていたソリッドエコー法ではなく、Carr−Purcell−Meiboom−Gill(CPMG)法を用いる。なお、本発明で用いるP−NMR装置は、シーケンスとしてCPMG法を使用するものであれば特に制限されない。   The P-NMR apparatus is an apparatus for evaluating the mobility of polymer molecules such as rubber and resin from the mobility (relaxation time) of hydrogen atoms in the polymer chain. In the present invention, the Carr-Purcell-Meiboom-Gill (CPMG) method is used as the sequence instead of the solid echo method that has been widely employed in the analysis of the crosslinked state of rubber. The P-NMR apparatus used in the present invention is not particularly limited as long as it uses the CPMG method as a sequence.

本発明の検査方法では、好適な検査対象として、上記の通り、タイヤ、ゴムクローラ、コンベアベルト、防振ゴムといった使用中のゴム製品が挙げられるが、ここでは検査対象を防振ゴムとした場合を例に挙げて、該防振ゴムと同種のゴム材料を標準試料としてP−NMR、破断伸びEb及び硬度Hdを測定し、得られた測定結果から検量線を作成する過程について説明する。なお、本発明において「同種のゴム材料」とは、少なくともゴム成分の種類及び配合比率、並びに架橋系(加硫系)の配合が同じであることを意味し、更に好ましくは充填材の配合量も同じであることを意味する。   In the inspection method of the present invention, examples of suitable inspection objects include rubber products in use such as tires, rubber crawlers, conveyor belts, and anti-vibration rubber as described above. As an example, P-NMR, elongation at break Eb, and hardness Hd are measured using a rubber material of the same type as the vibration-proof rubber as a standard sample, and a process of creating a calibration curve from the obtained measurement results will be described. In the present invention, the “same kind of rubber material” means that at least the kind and blending ratio of the rubber component and the blending of the crosslinking system (vulcanizing system) are the same, and more preferably the blending amount of the filler Means the same.

防振ゴム用ゴム組成物の配合を表1に示す。該ゴム組成物は、常法に従って混練りした後、通常の条件で加硫成形して長さ100mm×幅100mm×厚さ2mmのスラブシートとした。次いで、このスラブシートを表2に示す条件で加熱処理したものを標準試料とし、該シートから各々の物性試験に応じた試験片を作製した。なお、表1に示した配合は、本発明の検査方法を説明するための一例として示したものであるが、本発明はこれに制限されるものではない。また、表2に示した加熱条件も、本発明の検査方法を説明するための一例として示したものであり、これに限定されるものではなく、検査対象の種類や使用環境等に応じて適宜設定し得るものである。   Table 1 shows the composition of the rubber composition for vibration-proof rubber. The rubber composition was kneaded according to a conventional method and then vulcanized and molded under normal conditions to obtain a slab sheet having a length of 100 mm × width of 100 mm × thickness of 2 mm. Next, the slab sheet heat-treated under the conditions shown in Table 2 was used as a standard sample, and test pieces corresponding to each physical property test were prepared from the sheet. In addition, although the mixing | blending shown in Table 1 was shown as an example for demonstrating the test | inspection method of this invention, this invention is not restrict | limited to this. Moreover, the heating conditions shown in Table 2 are also shown as an example for explaining the inspection method of the present invention, and are not limited to this, and may be appropriately selected according to the type of inspection object and the use environment. It can be set.

Figure 2012173093
Figure 2012173093

上記表1に記載した各成分の詳細は以下の通りである。
NR:RSS#1
カーボンブラック:FEF級カーボンブラック
ステアリン酸:新日本理化社製「ステアリン酸50S」
亜鉛華:東邦亜鉛社製「銀嶺SR」
ワックス:Rhein Chemie社製「Antilux654」
老化防止剤RD:2,2,4−トリメチル−1,2−ジヒドロキノリン重合体、大内新興化学工業(株)製「ノクラック224」
老化防止剤6PPD:N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、大内新興化学工業(株)製「ノクラック6C」
オイル:パラフィン系プロセスオイル
硫黄:鶴見化学工業(株)製「粉末硫黄」
加硫促進剤TBT:大内新興化学工業(株)製「ノクセラーTBT」
加硫促進剤NS:大内新興化学工業(株)製「ノクセラーNS」
The detail of each component described in the said Table 1 is as follows.
NR: RSS # 1
Carbon black: FEF grade carbon black stearic acid: “Stearic acid 50S” manufactured by Shin Nippon Chemical Co., Ltd.
Zinc Hana: “Ginza SR” manufactured by Toho Zinc Co., Ltd.
Wax: “Antilux 654” manufactured by Rhein Chemie
Anti-aging agent RD: 2,2,4-trimethyl-1,2-dihydroquinoline polymer, “NOCRACK 224” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Anti-aging agent 6PPD: N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, “NOCRACK 6C” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Oil: Paraffinic process oil Sulfur: "Powder sulfur" manufactured by Tsurumi Chemical Co., Ltd.
Vulcanization accelerator TBT: “Noxeller TBT” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Vulcanization accelerator NS: “Noxeller NS” manufactured by Ouchi Shinsei Chemical Co., Ltd.

Figure 2012173093
Figure 2012173093

上記で作製した各条件(表2参照)の標準試料についてP−NMRを測定する。ここでは、上記の各スラブシートを約5mm角にカットしたものを測定用サンプルとし、下記のP−NMR装置に供した。測定で使用した具体的な装置及び測定条件は以下の通りである。なお、測定装置や測定条件は、検査対象や測定環境等に応じて適宜選定されるものであり、特に限定されるものではない。
装置:据置型P−NMR装置、Burker minispec
シーケンス:CPMG
Scans:64
Recycle Delay:0.5
Gain:75dB
90−180Pulse Separation:0.04msec
Data point:500
測定温度:40℃
P-NMR is measured about the standard sample of each conditions (refer Table 2) produced above. Here, what cut each said slab sheet into about 5 square mm was made into the sample for a measurement, and it used for the following P-NMR apparatus. Specific devices and measurement conditions used in the measurement are as follows. Note that the measurement apparatus and measurement conditions are appropriately selected according to the inspection object, measurement environment, and the like, and are not particularly limited.
Apparatus: Stationary P-NMR apparatus, Burker minispec
Sequence: CPMG
Scans: 64
Recycle Delay: 0.5
Gain: 75 dB
90-180 Pulse Separation: 0.04msec
Data point: 500
Measurement temperature: 40 ° C

図1に測定結果の一例として、加熱前(加熱時間0時間)のサンプルについて得られたT2緩和曲線を示す。ここで図1に示されたT2緩和曲線は下記式(1)で表される。

Figure 2012173093
(式中、T2Mは緩和時間の短い成分の緩和時間、T2Lは緩和時間の長い成分の緩和時間、A2Mは緩和時間の短い成分のt=0時の強度、A2Lは緩和時間の長い成分のt=0時の強度、tは観測時間である。) FIG. 1 shows a T 2 relaxation curve obtained for a sample before heating (heating time 0 hour) as an example of the measurement result. Here, the T 2 relaxation curve shown in FIG. 1 is represented by the following formula (1).
Figure 2012173093
( Where T 2M is the relaxation time of the component having a short relaxation time, T 2L is the relaxation time of the component having a long relaxation time, A 2M is the strength at t = 0 of the component having a short relaxation time, and A 2L is the relaxation time of the component. (The intensity of the long component at t = 0, t is the observation time.)

上記式(1)について更に詳述すると、緩和時間の長い成分であるT2L成分は、

Figure 2012173093
を指し、一方、緩和時間の短い成分であるT2M成分は、
Figure 2012173093
を指す。即ち、図1のT2緩和曲線は、上記式(1)でフィッティングすることにより緩和時間の長いT2L成分及び緩和時間の短いT2M成分の2成分に分割することができる。なお、本発明では、上記式(1)によるフィッティングの際に両成分の緩和時間T2L及び緩和時間T2Mは任意の値とすることができ、特に制限されるものではないが、T2M成分では緩和時間T2Mを0.1〜5msとし、T2L成分では緩和時間T2Lを2ms以上とし、かつ上記T2Mより長い時間とすることが推奨される。 The above formula (1) will be described in further detail. The T 2L component, which is a component having a long relaxation time, is
Figure 2012173093
On the other hand, the T 2M component, which is a component with a short relaxation time, is
Figure 2012173093
Point to. That is, the T 2 relaxation curve of FIG. 1 can be divided into two components, a T 2L component with a long relaxation time and a T 2M component with a short relaxation time, by fitting with the above equation (1). In the present invention, the relaxation time of both components T 2L and the relaxation time T 2M during fitting by the formula (1) may be any value, but are not particularly limited, T 2M component In this case, it is recommended that the relaxation time T 2M is 0.1 to 5 ms, the relaxation time T 2L is 2 ms or longer for the T 2L component, and is longer than the above T 2M .

上記式(1)に基づいてフィッティングを行い、図1中のT2緩和曲線をT2L成分とT2M成分とに分割した結果をそれぞれ図1に示した。また、得られた上記両成分の緩和時間を表3に示した(加熱時間0時間の欄を参照)。 FIG. 1 shows the results of fitting based on the above equation (1) and dividing the T 2 relaxation curve in FIG. 1 into a T 2L component and a T 2M component. In addition, the relaxation times of the two components obtained are shown in Table 3 (see the column of heating time 0 hours).

更に、上記の加熱処理を施した各サンプルのT2緩和曲線についても、上記の方法に従ってT2L成分及びT2M成分に分割した。得られた緩和時間を表3に示した。 Furthermore, the T 2 relaxation curve of each sample subjected to the heat treatment was also divided into a T 2L component and a T 2M component according to the above method. The obtained relaxation times are shown in Table 3.

Figure 2012173093
Figure 2012173093

表3の結果から、緩和時間T2Lは、時間の経過に伴って減少することが確認された。一方、緩和時間T2Mは、加熱を開始してから一度減少した後、時間の経過に伴って増加する傾向が確認された。なお、上記の緩和時間T2L及び緩和時間T2Mの変化の傾向は、通常、ゴム材料を構成するポリマー種により異なるものであり、ここでは特にT2M成分において、標準試料に含まれるNRに特有の変化が確認された。 From the results in Table 3, it was confirmed that the relaxation time T 2L decreases with time. On the other hand, it was confirmed that the relaxation time T 2M tended to increase with the passage of time after decreasing once after the start of heating. In addition, the tendency of the change of the relaxation time T 2L and the relaxation time T 2M is usually different depending on the polymer type constituting the rubber material. Here, in particular, the T 2M component is specific to the NR contained in the standard sample. The change was confirmed.

また、上記の加熱処理を施した各サンプルについて破断伸びEb及び硬度Hdを測定し、その結果を表4に示した。ここで、破断伸びEbの測定は、JIS K6251に準拠し、ダンベル状3号型試験片を作製して行ったものであり、硬度Hdは、JIS K6253に準拠し、タイプAデュロメータを用いて測定した値である。   Further, the elongation at break Eb and the hardness Hd were measured for each of the samples subjected to the heat treatment, and the results are shown in Table 4. Here, the measurement of the elongation at break Eb was made by preparing a dumbbell-shaped No. 3 type test piece in accordance with JIS K6251, and the hardness Hd was measured by using a type A durometer in accordance with JIS K6253. It is the value.

Figure 2012173093
Figure 2012173093

表4の結果から、破断伸びEbは、時間の経過に伴って減少することが確認された。一方、硬度Hdは、加熱を開始してから一度減少した後、時間の経過に伴って増加する傾向が確認された。なお、上記の破断伸びEb及び硬度Hdの経時変化は、表3の緩和時間T2L及び緩和時間T2Mの変化と同様に、通常はゴム材料を構成するポリマー種により異なるものである。ここで表3及び表4に示した物性値及び緩和時間の変化の傾向を見ると、緩和時間T2Lと破断伸びEb、そして緩和時間T2Mと硬度Hdとの間に相関関係があることが確認できる。 From the results in Table 4, it was confirmed that the breaking elongation Eb decreased with the passage of time. On the other hand, it was confirmed that the hardness Hd decreased once after the heating was started and then increased with the passage of time. The change with time of the breaking elongation Eb and the hardness Hd described above usually differs depending on the polymer type constituting the rubber material, similarly to the change of the relaxation time T 2L and the relaxation time T 2M in Table 3. Here, looking at the tendency of changes in physical property values and relaxation times shown in Tables 3 and 4, there is a correlation between the relaxation time T 2L and the breaking elongation Eb, and the relaxation time T 2M and the hardness Hd. I can confirm.

そして、上記で得た物性値を緩和時間に対してプロットすることにより、両者の関係を示す検量線を作成することができる。図2に破断伸びEbを緩和時間T2Lに対してプロットしたグラフを、図3に硬度Hdを緩和時間T2Mに対してプロットしたグラフをそれぞれ示した。その結果、いずれも良好な直線関係を示しており、緩和時間T2Lの値が破断伸びEbに対して極めて高い相関を示すこと、そして緩和時間T2Mの値が硬度Hdに対して極めて高い相関を示すことが確認された。 Then, by plotting the physical property values obtained above with respect to the relaxation time, a calibration curve showing the relationship between the two can be created. FIG. 2 shows a graph in which the elongation at break Eb is plotted against the relaxation time T 2L , and FIG. 3 shows a graph in which the hardness Hd is plotted against the relaxation time T 2M . As a result, all showed a good linear relationship, the value of the relaxation time T 2L showed a very high correlation with the breaking elongation Eb, and the value of the relaxation time T 2M showed a very high correlation with the hardness Hd. It was confirmed that

このように、検査対象のゴム材料と同種の材料(標準試料)について、P−NMR測定から得られる緩和時間と破断伸びEb及び硬度Hdとの関係を検量線で把握しておくことにより、検査対象についてP−NMRを測定するだけで、これらの物性値を迅速かつ簡便に予測することができる。即ち、本発明の検査方法を採用することにより、ゴム製品の劣化の状態をより容易に把握することができる。なお、本発明では、破断伸びEb及び緩和時間T2L、硬度Hd及び緩和時間T2Mのいずれの組み合わせからでもゴム製品の劣化の状態を把握できるが、必ずしも単独で行う必要はなく、両者から得られる結果を組み合わせることでより詳細に把握することができる。 Thus, for the same type of material (standard sample) as the rubber material to be inspected, the relationship between the relaxation time obtained from the P-NMR measurement, the elongation at break Eb and the hardness Hd is grasped by a calibration curve, thereby inspecting. These physical property values can be predicted quickly and simply by measuring P-NMR for the object. That is, by adopting the inspection method of the present invention, the state of deterioration of the rubber product can be grasped more easily. In the present invention, the state of deterioration of the rubber product can be grasped from any combination of the elongation at break Eb and the relaxation time T 2L , the hardness Hd and the relaxation time T 2M , but it is not always necessary to carry out alone, and it is obtained from both. It is possible to grasp in more detail by combining the obtained results.

以上のように、シーケンスとしてCPMG法を用いたP−NMR装置による測定から得られたT2緩和曲線を解析して、緩和時間の短いT2M成分と緩和時間の長いT2L成分とに分割し、得られた緩和時間T2Lを破断伸びEbに、そして緩和時間T2Mを硬度Hdに相関させることによりゴムの劣化状態を迅速かつ簡便に評価することが可能になる。そして、本発明の検査方法は、あらゆるゴム製品に対して適用することができるものであり、特にタイヤ、ゴムクローラ、コンベアベルト、防振ゴム等の劣化の状態を評価する場合に好適に採用し得、これらのゴム製品が使用される製品装置等の効率的かつ適切なメンテナンスを行うための一助となり、運用面における経済性及び安全性の向上に貢献することができる。また、本発明の検査方法は、検査対象の形状に影響されず、劣化の状態がひどく、物性試験用の試験片が作製できないほどぼろぼろであっても実施できるため、汎用性が非常に高いものである。 As described above, the T 2 relaxation curve obtained from the measurement by the P-NMR apparatus using the CPMG method as a sequence is analyzed and divided into a T 2M component having a short relaxation time and a T 2L component having a long relaxation time. By correlating the obtained relaxation time T 2L with the breaking elongation Eb and the relaxation time T 2M with the hardness Hd, it becomes possible to evaluate the deterioration state of the rubber quickly and easily. The inspection method of the present invention can be applied to any rubber product, and is particularly suitably used for evaluating the deterioration state of tires, rubber crawlers, conveyor belts, anti-vibration rubbers, and the like. As a result, it helps to perform efficient and appropriate maintenance of the product apparatus etc. in which these rubber products are used, and can contribute to the improvement of economical efficiency and safety in operation. In addition, the inspection method of the present invention is not affected by the shape of the object to be inspected, can be carried out even if the deterioration state is severe, and the test piece for physical property testing cannot be produced, so the versatility is very high It is.

Claims (4)

パルス法核磁気共鳴(P−NMR)装置を用いるゴム材料の検査方法であって、
Carr−Purcell−Meiboom−Gill(CPMG)法によりゴムのスピン−スピン緩和時間T2を測定し、
得られたT2緩和曲線(自由誘導減衰曲線)を、下記式(1)により緩和時間の短いT2M成分と、緩和時間の長いT2L成分とに分割し、
上記T2L成分の緩和時間(緩和時間T2L)から破断伸びEbを予測することを特徴とするゴム材料の検査方法。
Figure 2012173093
(式中、T2Mは緩和時間の短い成分の緩和時間、T2Lは緩和時間の長い成分の緩和時間、A2Mは緩和時間の短い成分のt=0時の強度、A2Lは緩和時間の長い成分のt=0時の強度、tは観測時間である。)
A method for inspecting a rubber material using a pulsed nuclear magnetic resonance (P-NMR) apparatus,
The spin-spin relaxation time T 2 of rubber was measured by the Carr-Purcell-Meiboom-Gill (CPMG) method,
The obtained T 2 relaxation curve (free induction decay curve) is divided into a T 2M component having a short relaxation time and a T 2L component having a long relaxation time by the following equation (1):
A method for inspecting a rubber material, wherein a breaking elongation Eb is predicted from a relaxation time (relaxation time T 2L ) of the T 2L component.
Figure 2012173093
( Where T 2M is the relaxation time of the component having a short relaxation time, T 2L is the relaxation time of the component having a long relaxation time, A 2M is the strength at t = 0 of the component having a short relaxation time, and A 2L is the relaxation time of the component. (The intensity of the long component at t = 0, t is the observation time.)
検査対象のゴム材料と同種のゴム材料を標準試料とし、該標準試料について架橋状態(劣化の状態)の異なる2以上の条件でP−NMR及び破断伸びEbを測定し、得られた緩和時間T2Lと破断伸びEbとから検量線を作成した後、検査対象のゴム材料についてP−NMRを測定して得た緩和時間T2Lから、上記検量線に基づいて破断伸びEbを予測する請求項1記載のゴム材料の検査方法。 Using a rubber material of the same type as the rubber material to be inspected as a standard sample, P-NMR and elongation at break Eb were measured for the standard sample under two or more conditions with different crosslinking states (degradation states), and the obtained relaxation time T 2. A breaking curve Eb is predicted based on the calibration curve from a relaxation time T2L obtained by measuring P-NMR for a rubber material to be inspected after preparing a calibration curve from 2L and breaking elongation Eb. The inspection method of the rubber material as described. パルス法核磁気共鳴(P−NMR)装置を用いるゴム材料の検査方法であって、
Carr−Purcell−Meiboom−Gill(CPMG)法によりゴムのスピン−スピン緩和時間T2を測定し、
得られたT2緩和曲線(自由誘導減衰曲線)を、下記式(1)により緩和時間の短いT2M成分と、緩和時間の長いT2L成分とに分割し、
上記T2M成分の緩和時間(緩和時間T2M)から硬度Hdを予測することを特徴とするゴム材料の検査方法。
Figure 2012173093
(式中、T2Mは緩和時間の短い成分の緩和時間、T2Lは緩和時間の長い成分の緩和時間、A2Mは緩和時間の短い成分のt=0時の強度、A2Lは緩和時間の長い成分のt=0時の強度、tは観測時間である。)
A method for inspecting a rubber material using a pulsed nuclear magnetic resonance (P-NMR) apparatus,
The spin-spin relaxation time T 2 of rubber was measured by the Carr-Purcell-Meiboom-Gill (CPMG) method,
The obtained T 2 relaxation curve (free induction decay curve) is divided into a T 2M component having a short relaxation time and a T 2L component having a long relaxation time by the following equation (1):
A method for inspecting a rubber material, wherein the hardness Hd is predicted from the relaxation time (relaxation time T 2M ) of the T 2M component.
Figure 2012173093
( Where T 2M is the relaxation time of the component having a short relaxation time, T 2L is the relaxation time of the component having a long relaxation time, A 2M is the strength at t = 0 of the component having a short relaxation time, and A 2L is the relaxation time of the component. (The intensity of the long component at t = 0, t is the observation time.)
検査対象のゴム材料と同種のゴム材料を標準試料とし、該標準試料について架橋状態(劣化の状態)の異なる2以上の条件でP−NMR及び硬度Hdを測定し、得られた緩和時間T2Mと硬度Hdとから検量線を作成した後、検査対象のゴム材料についてP−NMRを測定して得た緩和時間T2Mから、上記検量線に基づいて硬度Hdを予測する請求項3記載のゴム材料の検査方法。 A rubber material of the same type as the rubber material to be inspected is used as a standard sample, P-NMR and hardness Hd are measured under two or more conditions with different crosslinking states (degradation states) for the standard sample, and the obtained relaxation time T 2M The rubber according to claim 3, wherein a hardness curve is predicted from a relaxation time T2M obtained by measuring P-NMR for a rubber material to be inspected after preparing a calibration curve from the hardness and hardness Hd. Material inspection method.
JP2011034555A 2011-02-21 2011-02-21 Inspection method of rubber material Withdrawn JP2012173093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034555A JP2012173093A (en) 2011-02-21 2011-02-21 Inspection method of rubber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034555A JP2012173093A (en) 2011-02-21 2011-02-21 Inspection method of rubber material

Publications (1)

Publication Number Publication Date
JP2012173093A true JP2012173093A (en) 2012-09-10

Family

ID=46976138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034555A Withdrawn JP2012173093A (en) 2011-02-21 2011-02-21 Inspection method of rubber material

Country Status (1)

Country Link
JP (1) JP2012173093A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486073B1 (en) * 2012-12-06 2014-05-07 住友ゴム工業株式会社 Degradation analysis method
JP2015045524A (en) * 2013-08-27 2015-03-12 東京瓦斯株式会社 Life evaluation method of rubber seal material
JP2017003431A (en) * 2015-06-10 2017-01-05 東洋ゴム工業株式会社 Measuring method of vulcanized rubber
JP2017223586A (en) * 2016-06-16 2017-12-21 住友ゴム工業株式会社 Method for evaluating deterioration of vulcanized rubber composition
JP7531179B2 (en) 2020-08-27 2024-08-09 住友ゴム工業株式会社 Vulcanization state analysis method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486073B1 (en) * 2012-12-06 2014-05-07 住友ゴム工業株式会社 Degradation analysis method
WO2014088051A1 (en) * 2012-12-06 2014-06-12 住友ゴム工業株式会社 Method for analyzing degradation
JP2014115102A (en) * 2012-12-06 2014-06-26 Sumitomo Rubber Ind Ltd Deterioration analysis method
JP2015045524A (en) * 2013-08-27 2015-03-12 東京瓦斯株式会社 Life evaluation method of rubber seal material
JP2017003431A (en) * 2015-06-10 2017-01-05 東洋ゴム工業株式会社 Measuring method of vulcanized rubber
JP2017223586A (en) * 2016-06-16 2017-12-21 住友ゴム工業株式会社 Method for evaluating deterioration of vulcanized rubber composition
JP7531179B2 (en) 2020-08-27 2024-08-09 住友ゴム工業株式会社 Vulcanization state analysis method

Similar Documents

Publication Publication Date Title
Chakraborty et al. Application of FTIR in characterization of acrylonitrile-butadiene rubber (nitrile rubber)
Li et al. Compressive stress-thermo oxidative ageing behaviour and mechanism of EPDM rubber gaskets for sealing resilience assessment
Somers et al. Quantifying rubber degradation using NMR
Liu et al. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy
JP2012173093A (en) Inspection method of rubber material
Zhi et al. Coupled analysis on hyper-viscoelastic mechanical behavior and macromolecular network alteration of rubber during thermo-oxidative aging process
Nie et al. Aging of natural rubber studied via Fourier-transform rheology and double quantum NMR to correlate local chain dynamics with macroscopic mechanical response
Miyaji et al. Study on homogeneity in sulfur cross-linked network structures of isoprene rubber by TD-NMR and AFM–zinc stearate system
Moon et al. Fatigue life prediction of tire sidewall using modified Arrhenius equation
Stoček et al. Fatigue crack growth vs. chip and cut wear of NR and NR/SBR blend-based rubber compounds
Hintze et al. Dynamic behavior of short aramid fiber‐filled elastomer composites
Pliquet et al. Multiscale analysis of thermal degradation of polyamide 6, 6-Influence of temperature on oxygen diffusion-limited oxidation profiles
da Silva Ruiz et al. Time domain NMR evaluation of thermal and thermochemical aging of nitrile rubber on crosslinking and mechanical properties
JP6401010B2 (en) Fracture strength prediction method and tire rubber composition
JP2011038945A (en) Nondestructive inspection method of rubber material
Lellinger et al. Accelerated thermal aging of thermoplastic materials for the motor compartment: Characterization, degradation model and lifetime prediction
Treib et al. Ozone ageing: experimental methods on pristine and protected natural rubber
JP6135971B2 (en) Test method for crosslink density
Ratrout et al. Adequacy of the tensile/elongation test as a quality control criterion for vehicle tires
Oßwald et al. Aspects of the ageing of elastomeric materials
Hou et al. A non-destructive method using low-field nuclear magnetic resonance for characterizing the molecular weight of PBAT during thermo-oxidative degradation
CN103487454B (en) Method for predicting resistance to heat deterioration of isoprene rubber
Pazur et al. Low field 1H NMR investigation of plasticizer and filler effects in epdm
JP6075246B2 (en) Rubber seal material life evaluation method
Roche et al. Influence of elastomers formulation on fatigue crack growth properties

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513