[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012153911A - Soft magnetic steel component for direct current - Google Patents

Soft magnetic steel component for direct current Download PDF

Info

Publication number
JP2012153911A
JP2012153911A JP2011011162A JP2011011162A JP2012153911A JP 2012153911 A JP2012153911 A JP 2012153911A JP 2011011162 A JP2011011162 A JP 2011011162A JP 2011011162 A JP2011011162 A JP 2011011162A JP 2012153911 A JP2012153911 A JP 2012153911A
Authority
JP
Japan
Prior art keywords
less
steel
soft magnetic
magnetic
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011011162A
Other languages
Japanese (ja)
Other versions
JP5615727B2 (en
Inventor
Atsuhiko Takeda
敦彦 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011011162A priority Critical patent/JP5615727B2/en
Publication of JP2012153911A publication Critical patent/JP2012153911A/en
Application granted granted Critical
Publication of JP5615727B2 publication Critical patent/JP5615727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic steel component for direct current having high strength without deteriorating magnetic characteristic in a direct current field and a soft magnetic steel component for direct current having excellent cold forging performance when forming in component shape.SOLUTION: In the steel component, a chemical component composition of a matrix phase comprises C: 0.002-0.20% (hereinafter% means mass%) Si: 1.2% or less (not including 0%), Mn: 0.05-2.6%, P: 0.050% or less (not including 0%), S: 0.05% or less (not including 0%), Cr: 4% or less (not including 0%), Al: 0.002-2.2%, N:0.01% or less (not including 0%), O: 0.03% or less (not including 0%), and a balance: iron and inevitable impurities. In the soft magnetic steel component for direct current, an Al diffuse layer containing 10-30 mass% of Al is formed on the surface of the soft magnetic steel component and the thickness of the Al diffuse layer is 10-80 μm.

Description

本発明は、軟磁性鋼部品に関し、詳細には、直流磁界中で用いられる直流用軟磁性鋼部品に関するものである。   The present invention relates to a soft magnetic steel part, and more particularly to a DC soft magnetic steel part used in a DC magnetic field.

自動車には快適性向上のため多数の電装部品が用いられている。自動車電装部品等における磁気回路を構成する鋼部品(例えば、電子制御部品や電磁制御部品)には、磁気特性として直流磁界で低い外部磁界中で容易に磁化する特性(以下、直流磁気特性ということがある)に加え、保磁力が小さく、しかも消費電力が小さいという特性が要求される。鋼部品の材料としては、部品内部の磁束密度が外部磁界に応答し易い軟磁性鋼材が一般に用いられており、例えばC量が約0.01質量%以下の鋼材が通常用いられている。   Many electrical components are used in automobiles to improve comfort. Steel parts (for example, electronic control parts and electromagnetic control parts) that make up magnetic circuits in automotive electrical parts and the like are easily magnetized in a low external magnetic field with a DC magnetic field (hereinafter referred to as DC magnetic characteristics). In addition, there is a demand for characteristics such as low coercive force and low power consumption. As a material of the steel part, a soft magnetic steel material in which the magnetic flux density inside the part easily responds to an external magnetic field is generally used. For example, a steel material having a C content of about 0.01% by mass or less is usually used.

また、地球環境を保護する観点から、自動車の低燃費化が求められており、上記鋼部品を高強度化し、小型化および軽量化することによって低燃費化することが検討されている。鋼部品の強度を高めるには、上記軟磁性鋼材にCを積極的に添加することが有効であり、上記軟磁性鋼材としては、例えばC量が0.01質量%程度の鋼材が通常用いられる。しかし、Cを0.01質量%を超えて過剰に含有させると、鋼材の直流磁気特性が大幅に低下し、また保磁力が大きくなり、しかも磁気回路の抵抗を高めることが知られている。そのため直流磁気特性、低保磁力、および低消費電力を満足したうえで鋼部品の強度を高めることが求められている。   In addition, from the viewpoint of protecting the global environment, there is a demand for lower fuel consumption of automobiles, and studies have been made on reducing fuel consumption by increasing the strength, reducing the size and weight of the steel parts. In order to increase the strength of steel parts, it is effective to positively add C to the soft magnetic steel material. As the soft magnetic steel material, for example, a steel material having a C content of about 0.01% by mass is usually used. . However, it is known that when C is excessively contained in excess of 0.01% by mass, the direct current magnetic characteristics of the steel material are significantly lowered, the coercive force is increased, and the resistance of the magnetic circuit is increased. Therefore, it is required to increase the strength of steel parts while satisfying DC magnetic characteristics, low coercive force, and low power consumption.

鋼部品の磁気特性と強度の両方を改善する技術が特許文献1に提案されている。この文献には、Cuを0.3〜2.0%の範囲で添加することによって、Cuの時効硬化を利用して磁気特性と強度を改善する技術が開示されている。しかし本発明者が検討したところ、この技術で改善されている磁気特性と強度のレベルは不充分であり、更なる改善が求められている。   A technique for improving both the magnetic properties and strength of steel parts is proposed in Patent Document 1. This document discloses a technique for improving magnetic characteristics and strength by using Cu age hardening by adding Cu in the range of 0.3 to 2.0%. However, as a result of studies by the present inventor, the level of magnetic properties and strength improved by this technique is insufficient, and further improvement is required.

また、コア用軟磁性鋼板の磁気特性を改善する技術として、特許文献2には、鋼板表面付近のαFe相の{222}面集積度を55%以上と高める技術が提案されている。この文献には、母材鋼板の表面にAlとSiの一方又は両方を主成分とする金属からなる第二相を付着させ、冷間圧延した後、熱処理することによって再結晶させて{222}面集積度を高めることが開示されている。しかしこの文献で改善している磁気特性は交流磁界で容易に磁化する特性であり、直流磁気特性ではない。また、軟磁性鋼板の強度や冷間加工性については考慮されていなかった。   As a technique for improving the magnetic properties of the core soft magnetic steel sheet, Patent Document 2 proposes a technique for increasing the {222} plane integration degree of the αFe phase near the steel sheet surface to 55% or more. In this document, a second phase composed of a metal mainly composed of one or both of Al and Si is attached to the surface of a base steel plate, cold-rolled, and then recrystallized by heat treatment {222} Increasing the degree of surface integration is disclosed. However, the magnetic characteristics improved in this document are characteristics that are easily magnetized by an alternating magnetic field, and are not direct current magnetic characteristics. Further, the strength and cold workability of the soft magnetic steel sheet were not considered.

ところで上記軟磁性鋼材には、部品形状に成形するために冷間鍛造性が良好であることも求められる。冷間鍛造性としては、変形抵抗が小さく、変形能が高いことが必要である。変形抵抗を小さくすることによって鍛造時の荷重を低減できるため、冷間鍛造で使用する金型の寿命を向上させることができる。また、変形能を高くし、冷間鍛造しても割れが発生し難くすることによって軟磁性鋼部品を小型化したり、部品形状を複雑化できる。   By the way, the soft magnetic steel material is also required to have good cold forgeability in order to be formed into a part shape. As cold forgeability, it is necessary that the deformation resistance is small and the deformability is high. Since the load during forging can be reduced by reducing the deformation resistance, the life of the mold used in cold forging can be improved. Further, by increasing the deformability and making it difficult for cracks to occur even when cold forged, it is possible to reduce the size of the soft magnetic steel part and to complicate the part shape.

鋼の冷間加工性を改善する技術としては、特許文献3、4が知られている。これらのうち特許文献3には、フェライトとパーライトの混合組織を有する鋼にBおよびZrを添加することによって、フェライト結晶粒の微細化による強化を抑制し、引張強度を低減させ、室温での変形抵抗の上昇を小さくして冷間加工性を向上する技術が開示されている。また、特許文献4には、圧延材の中心〜直径/8の範囲にあるフェライト組織中のフェライト粒度番号および圧延材の最表層にあるフェライト組織中のフェライト粒度番号を夫々所定の範囲に制御することによって、フェライト結晶粒の微細化による強化を抑制して冷間加工時の引張強度を低減し、室温での変形抵抗を小さくして冷間加工性を改善する技術が開示されている。しかしこれらの文献で対象としている鋼は、冷間鍛造まま、或いは冷間鍛造後に切削加工した状態でボルトやナット等の機械部品として用いることを想定したものであり、軟磁性鋼材ではない。そのため直流磁気特性については全く考慮されていなかった。   Patent Documents 3 and 4 are known as techniques for improving the cold workability of steel. Among these, in Patent Document 3, by adding B and Zr to steel having a mixed structure of ferrite and pearlite, the strengthening due to refinement of ferrite crystal grains is suppressed, the tensile strength is reduced, and deformation at room temperature is performed. A technique for improving cold workability by reducing an increase in resistance is disclosed. In Patent Document 4, the ferrite grain size number in the ferrite structure in the range from the center of the rolled material to the diameter / 8 and the ferrite grain size number in the ferrite structure in the outermost layer of the rolled material are respectively controlled within predetermined ranges. Thus, a technique for improving the cold workability by suppressing the strengthening due to the refinement of ferrite crystal grains to reduce the tensile strength during cold working and reducing the deformation resistance at room temperature is disclosed. However, the steels targeted in these documents are assumed to be used as machine parts such as bolts and nuts in the state of being cold forged or cut after cold forging, and are not soft magnetic steel materials. Therefore, no consideration was given to the DC magnetic characteristics.

また、特許文献5には、電気抵抗が高く、優れた高速応答性を有し、且つ量産を可能にして製品コストの低減化を図り得る交流用の電磁弁用磁気回路部材が開示されている。この文献には、磁気回路部材の母材として電磁軟鉄あるいは低炭素鋼を用いることで切削加工性および冷間鍛造性を改善できること、磁気回路部材中にAlを含有させることにより電気抵抗が高くなり、渦電流損を低減できることが記載されている。磁気回路部材中にAlを含有させる方法としては、Al粉末とAl23粉末の混合粉にNH4Clを加えたものの中に電磁軟鉄製の磁気回路部材を埋め込み、水素気流中で900℃、3時間の加熱処理を施した後、更にArガス気流中で1000℃、20時間の拡散処理を施す方法を採用している。そして表面層で約6%Al−Fe、中心部で1%Al−Feの濃度勾配を持ったAl−Fe合金が得られたと記載されている。 Patent Document 5 discloses a magnetic circuit member for an electromagnetic valve for alternating current that has high electrical resistance, has excellent high-speed response, and can be mass-produced to reduce product cost. . In this document, it is possible to improve the machinability and cold forgeability by using electromagnetic soft iron or low carbon steel as the base material of the magnetic circuit member, and the electrical resistance is increased by containing Al in the magnetic circuit member. It is described that eddy current loss can be reduced. As a method for incorporating Al in the magnetic circuit member, a magnetic circuit member made of electromagnetic soft iron is embedded in a mixture of Al powder and Al 2 O 3 powder and NH 4 Cl added, and 900 ° C. in a hydrogen stream. After performing the heat treatment for 3 hours, a method of further performing a diffusion treatment at 1000 ° C. for 20 hours in an Ar gas stream is adopted. It is described that an Al—Fe alloy having a concentration gradient of about 6% Al—Fe in the surface layer and 1% Al—Fe in the center is obtained.

特開2007−46076号公報JP 2007-46076 A 特開2009-256758号公報JP 2009-256758 A 特開2001−303189号公報JP 2001-303189 A 特開2001−342544号公報JP 2001-342544 A 特開昭63−318380号公報JP-A-63-3318380

上記特許文献5に開示されているように、混合粉末中に磁気回路部材を埋め込んで磁気回路部材の表面にAlを拡散浸透させる方法では、皮膜処理と拡散処理が同時に行われるため、表層部におけるAl濃度管理を行うことが困難であった。また、上記特許文献5は、交流磁気特性の向上を狙ったもので、直流磁気特性の向上については考慮されておらず、上記特許文献5に記載されているAl拡散量では直流磁気特性を向上できなかった。さらに、上記特許文献5では、強度について全く考慮されていなかった。   As disclosed in Patent Document 5, in the method of embedding a magnetic circuit member in the mixed powder and diffusing and infiltrating Al into the surface of the magnetic circuit member, the film treatment and the diffusion treatment are performed at the same time. It was difficult to manage the Al concentration. Further, Patent Document 5 aims at improving the AC magnetic characteristics, and does not consider the improvement of the DC magnetic characteristics. With the Al diffusion amount described in Patent Document 5, the DC magnetic characteristics are improved. could not. Furthermore, in the said patent document 5, intensity | strength was not considered at all.

本発明は、このような状況に鑑みてなされたものであり、直流磁界における磁気特性を劣化させることなく、高強度の直流用軟磁性鋼部品を提供することにある。また、本発明の他の目的は、部品形状に成形するときの冷間鍛造性が良好な直流用軟磁性鋼部品を提供することにある。   This invention is made | formed in view of such a condition, It is providing the high intensity | strength soft magnetic steel part for direct current | flow without deteriorating the magnetic characteristic in a direct current magnetic field. Another object of the present invention is to provide a soft magnetic steel part for direct current with good cold forgeability when formed into a part shape.

上記課題を解決することのできた本発明に係る直流用軟磁性鋼部品とは、母相の化学成分組成が、C:0.002〜0.20%(質量%の意味。以下同じ。)、Si:1.2%以下(0%を含まない)、Mn:0.05〜2.6%、P:0.050%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Cr:4%以下(0%を含まない)、Al:0.002〜2.2%、N:0.01%以下(0%を含まない)、O:0.03%以下(0%を含まない)、残部:鉄および不可避不純物である鋼部品である。そして、表層部に、Alを10〜30質量%含有するAl拡散層が形成されており、且つ前記Al拡散層の厚みが10〜80μmである点に要旨を有している。   The direct-current soft magnetic steel part according to the present invention that has solved the above problems has a chemical composition composition of the parent phase of C: 0.002 to 0.20% (meaning mass%, the same applies hereinafter). Si: 1.2% or less (excluding 0%), Mn: 0.05 to 2.6%, P: 0.050% or less (not including 0%), S: 0.05% or less (0 %), Cr: 4% or less (not including 0%), Al: 0.002 to 2.2%, N: 0.01% or less (not including 0%), O: 0.03 % Or less (excluding 0%), balance: steel and steel parts that are inevitable impurities. And the Al diffusion layer containing 10-30 mass% of Al is formed in the surface layer part, and it has the summary in the point whose thickness of the said Al diffusion layer is 10-80 micrometers.

上記化学成分組成は、更に、下記式(1)を満足していることが好ましい。下記式(1)中、[ ]は、各元素の含有量(質量%)を示している。
13×[C]+2×[Si]+[Mn]+[Cr]/5+[Al]≦2.8 ・・(1)
上記鋼部品は、更に、他の元素として、Cu:0.5%以下(0%を含まない)、および/またはNi:0.5%以下(0%を含まない)を含有してもよい。
It is preferable that the chemical component composition further satisfies the following formula (1). In the following formula (1), [] indicates the content (% by mass) of each element.
13 × [C] + 2 × [Si] + [Mn] + [Cr] / 5 + [Al] ≦ 2.8 (1)
The steel part may further contain Cu: 0.5% or less (not including 0%) and / or Ni: 0.5% or less (not including 0%) as other elements. .

本発明によれば、軟磁性鋼部品の表層部に、母材に含まれるAl量よりも高濃度のAlを含有するAl拡散層を所定の厚みで形成しているため、直流磁界における磁気特性の劣化を最小限に抑えたうえで、表面硬度を高めることができ、軟磁性鋼部品を高強度化できる。また、本発明では、上記軟磁性鋼部品の素材となる鋼材に合金元素として含有させるC、Si、Mn、CrおよびAl量の関係を適切に調整することによって、鋼材の変形抵抗を小さく、変形能を良好にできるため、部品形状に成形するときの冷間鍛造性も改善できる。   According to the present invention, since the Al diffusion layer containing Al having a higher concentration than the Al amount contained in the base material is formed on the surface layer portion of the soft magnetic steel part with a predetermined thickness, the magnetic characteristics in a DC magnetic field The surface hardness can be increased and the strength of soft magnetic steel parts can be increased. Moreover, in the present invention, the deformation resistance of the steel material is reduced by appropriately adjusting the relationship among the amounts of C, Si, Mn, Cr and Al contained as alloy elements in the steel material as the material of the soft magnetic steel part. Since the performance can be improved, the cold forgeability when forming into a part shape can also be improved.

図1は、実施例で用いた試験片について、Al拡散層の厚みと表面硬さとの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the thickness of the Al diffusion layer and the surface hardness of the test pieces used in the examples. 図2は、実施例で用いた試験片について、Al拡散層の厚みと磁束密度の比との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the thickness of the Al diffusion layer and the ratio of magnetic flux density for the test pieces used in the examples. 図3は、実施例で用いた試験片について、本発明で規定する式(1)の左辺の値(Z値)と変形抵抗との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the value (Z value) on the left side of the equation (1) defined in the present invention and the deformation resistance for the test pieces used in the examples.

直流磁界中で用いられる軟磁性鋼部品の強度を高めるには、軟磁性鋼材にC、Si、Alなどを添加し、鋼中に固溶させて固溶強化することが有効である。しかしこうした元素を固溶させて鋼材全体を高強度化すると、直流磁気特性が低下する傾向がある。そこで本発明者は、軟磁性鋼部品表面の硬度を高めれば、軟磁性鋼部品を高強度化でき、しかも軟磁性鋼部品内部の硬度は高めていないため、直流磁気特性の劣化も防止できるのではないかと考え、検討を重ねてきた。その結果、
(1)固溶元素のうちAlを利用し、鋼部品の表層部にFe−Al系の固溶体および化合物を形成させれば、鋼部品表面の硬度を高めることができ、鋼部品を高強度化できること、
(2)具体的には、鋼部品の表層部にAlを10〜30質量%含有するAl拡散層を厚み10〜80μmで形成すれば、上述した強度向上効果が発揮されること、
(3)上記Al拡散層は鋼部品の表層部のみに形成しているため、鋼材内部の磁気モーメントの低下は防止され、鋼部品全体の直流磁気特性は殆ど劣化しないこと、
(4)上記Alは、熱処理によって鋼材中に容易に拡散するため、上記Al拡散層は、例えば、表面にAl皮膜を有し、且つ部品形状に加工された鋼材に熱処理を施すことによって簡単に形成できること、
(5)上記Al拡散層を設けることによって鋼部品を高強度化できるため、鋼材の強度を高めるために添加する合金元素量(例えば、C、Si、Mn等)を低減でき、鋼材の変形抵抗が小さくなり、部品形状に加工するときの冷間鍛造性を改善できることが判明した。
In order to increase the strength of soft magnetic steel parts used in a DC magnetic field, it is effective to add C, Si, Al or the like to the soft magnetic steel material and dissolve it in the steel to strengthen the solution. However, when these elements are dissolved to increase the strength of the entire steel material, the DC magnetic characteristics tend to deteriorate. Therefore, the present inventor can increase the strength of the soft magnetic steel part by increasing the hardness of the surface of the soft magnetic steel part, and further, since the hardness inside the soft magnetic steel part is not increased, the deterioration of the DC magnetic characteristics can be prevented. I thought that it might be, and have been examining it repeatedly. as a result,
(1) Utilizing Al among solid solution elements and forming Fe-Al based solid solutions and compounds on the surface layer of steel parts can increase the hardness of the steel part surface and increase the strength of the steel parts. What you can do,
(2) Specifically, if an Al diffusion layer containing 10 to 30% by mass of Al is formed on the surface layer part of the steel part with a thickness of 10 to 80 μm, the above-described strength improvement effect is exhibited.
(3) Since the Al diffusion layer is formed only in the surface layer portion of the steel part, a decrease in the magnetic moment inside the steel material is prevented, and the direct current magnetic characteristics of the entire steel part are hardly deteriorated.
(4) Since the Al easily diffuses into the steel material by heat treatment, the Al diffusion layer can be easily obtained by, for example, heat-treating the steel material having an Al film on the surface and processed into a part shape. That can be formed,
(5) Since the steel part can be strengthened by providing the Al diffusion layer, the amount of alloying elements (for example, C, Si, Mn, etc.) added to increase the strength of the steel material can be reduced, and the deformation resistance of the steel material It has been found that the cold forgeability when machining into a part shape can be improved.

以下、本発明の軟磁性鋼部品について詳細に説明する。   Hereinafter, the soft magnetic steel part of the present invention will be described in detail.

本発明の軟磁性鋼部品は表層部に、Alを10〜30質量%含有するAl拡散層が形成されている。本発明ではAlを10〜30質量%含有している領域をAl拡散層と定義し、このAl拡散層を鋼部品の表層部に形成することによって軟磁性鋼部品の表面硬度を高めている。Alが10質量%未満では、表層部の硬度を高めることができない。一方、Alが30質量%を超えると延性が低下するため、割れなどが発生し易くなる。   In the soft magnetic steel part of the present invention, an Al diffusion layer containing 10 to 30% by mass of Al is formed in the surface layer portion. In the present invention, a region containing 10 to 30% by mass of Al is defined as an Al diffusion layer, and the surface hardness of the soft magnetic steel part is increased by forming this Al diffusion layer on the surface layer of the steel part. When Al is less than 10% by mass, the hardness of the surface layer portion cannot be increased. On the other hand, if the Al content exceeds 30% by mass, the ductility is lowered, so that cracks and the like are likely to occur.

上記表層部とは、軟磁性鋼部品のうち最表面を含む表面近傍を意味し、具体的には、最表面から深さ200μm位置程度までの領域を指す。   The said surface layer part means the surface vicinity including the outermost surface among soft-magnetic steel components, and specifically points out the area | region from the outermost surface to a depth of about 200 micrometers position.

上記Al拡散層は、最表面側から中心部に向かってAl量が減少していることが好ましい。表層部におけるAl濃度を傾斜させることによって直流磁気特性を効果的に向上させることができる。   The Al diffusion layer preferably has an Al content decreasing from the outermost surface side toward the center. The DC magnetic characteristics can be effectively improved by inclining the Al concentration in the surface layer portion.

上記Al拡散層の厚みは10〜80μmとする。上記Al拡散層の厚みを10μm以上にすることによって表層部の硬度を高めることができる。上記Al拡散層の厚みは、好ましくは15μm以上、より好ましくは20μm以上である。しかし上記Al拡散層の厚みが大きくなり過ぎると直流磁気特性が劣化する。従って上記Al拡散層の厚みは80μm以下、好ましくは70μm以下、より好ましくは60μm以下である。   The thickness of the Al diffusion layer is 10 to 80 μm. The hardness of the surface layer portion can be increased by setting the thickness of the Al diffusion layer to 10 μm or more. The thickness of the Al diffusion layer is preferably 15 μm or more, more preferably 20 μm or more. However, if the thickness of the Al diffusion layer becomes too large, the DC magnetic characteristics are deteriorated. Therefore, the thickness of the Al diffusion layer is 80 μm or less, preferably 70 μm or less, more preferably 60 μm or less.

上記表層部におけるAl濃度は、鋼部品の最表面から深さ200μm位置までの領域を、例えば、電子プローブX線マイクロアナライザー(Electron Probe X-ray Micro Analyzer;EPMA)で、深さ方向に等間隔(例えば、数μm間隔)で測定すればよい。上記Al拡散層の厚みは、EPMAによる測定結果に基づいて算出できる。   The Al concentration in the surface layer is the same distance in the depth direction in the region from the outermost surface of the steel part to the depth of 200 μm, for example, with an electron probe X-ray micro analyzer (EPMA). What is necessary is just to measure by (for example, several micrometer interval). The thickness of the Al diffusion layer can be calculated based on the measurement result by EPMA.

次に、本発明に係る軟磁性鋼部品の素材となる鋼材(母相)の成分組成について説明する。本発明で用いる鋼材は、C:0.002〜0.20%、Si:1.2%以下(0%を含まない)、Mn:0.05〜2.6%、P:0.050%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Cr:4%以下(0%を含まない)、Al:0.002〜2.2%、N:0.01%以下(0%を含まない)、O:0.03%以下(0%を含まない)を含有し、残部:鉄および不可避不純物である。こうした範囲を規定した理由は次の通りである。   Next, the component composition of the steel material (matrix) that is the material of the soft magnetic steel part according to the present invention will be described. Steel materials used in the present invention are: C: 0.002 to 0.20%, Si: 1.2% or less (excluding 0%), Mn: 0.05 to 2.6%, P: 0.050% Or less (excluding 0%), S: 0.05% or less (not including 0%), Cr: 4% or less (not including 0%), Al: 0.002 to 2.2%, N: It contains 0.01% or less (not including 0%), O: 0.03% or less (not including 0%), and the balance: iron and inevitable impurities. The reason for specifying such a range is as follows.

Cは、鋼材の強度と延性をバランスよく確保するために重要な元素である。しかしCが0.20%を超えると、強度が高くなり過ぎて変形抵抗が大きくなり、冷間鍛造性が悪くなる。また、鋼中に固溶したCにより部品成形時にひずみ時効が生じ、直流磁気特性も悪くなる。従ってCは0.20%以下、好ましくは0.1%以下、より好ましくは0.08%以下である。Cは少ないほど強度が低下し、延性が向上するため冷間鍛造性が良好となる。しかしC量を低減し過ぎると鋼部品の強度が低下し過ぎる。従ってCは0.002%以上、好ましくは0.003%以上である。   C is an important element for ensuring the balance between strength and ductility of the steel material. However, if C exceeds 0.20%, the strength becomes too high, the deformation resistance increases, and the cold forgeability deteriorates. Further, due to C dissolved in the steel, strain aging occurs at the time of forming the part, and the DC magnetic characteristics are also deteriorated. Therefore, C is 0.20% or less, preferably 0.1% or less, more preferably 0.08% or less. The smaller the C, the lower the strength and the better the ductility, so the cold forgeability becomes better. However, if the amount of C is reduced too much, the strength of the steel part is reduced too much. Therefore, C is 0.002% or more, preferably 0.003% or more.

Siは、溶製時に脱酸剤として用いる元素であり、また磁気特性の向上にも作用する元素である。しかし1.2%を超えて含有すると、変形抵抗が大きくなり、冷間鍛造性が悪くなる。従ってSiは1.2%以下、好ましくは1.0%以下、より好ましくは0.8%以下である。特に、鋼材の変形抵抗を小さくして冷間鍛造性を改善するには、Siを0.7%以下とすることが好ましく、より好ましくは0.5%以下、更に好ましくは0.1%以下である。   Si is an element used as a deoxidizer at the time of melting, and is also an element that acts to improve magnetic properties. However, if it exceeds 1.2%, the deformation resistance increases and the cold forgeability deteriorates. Therefore, Si is 1.2% or less, preferably 1.0% or less, more preferably 0.8% or less. In particular, in order to reduce the deformation resistance of the steel material and improve the cold forgeability, Si is preferably 0.7% or less, more preferably 0.5% or less, still more preferably 0.1% or less. It is.

Mnは、溶製時に脱酸剤として用いる元素であり、また鋼中ではSと結合してSによる脆化を抑制する作用を有している。従ってMnは0.05%以上、好ましくは0.1%以上、更に好ましくは0.15%以上である。しかしMnが2.6%を超えると、変形抵抗が大きくなり過ぎて冷間鍛造性が劣化する。また、Mnが過剰になると、磁気モーメントが低下し、直流磁気特性が劣化する。従ってMnは2.6%以下、好ましくは2%以下、より好ましくは1%以下、更に好ましくは0.5%以下である。   Mn is an element used as a deoxidizer at the time of melting, and has an action of binding to S in steel and suppressing embrittlement due to S. Therefore, Mn is 0.05% or more, preferably 0.1% or more, more preferably 0.15% or more. However, if Mn exceeds 2.6%, the deformation resistance becomes too large and the cold forgeability deteriorates. Further, when Mn is excessive, the magnetic moment is lowered and the DC magnetic characteristics are deteriorated. Therefore, Mn is 2.6% or less, preferably 2% or less, more preferably 1% or less, and still more preferably 0.5% or less.

Pは、粒界に偏析して変形能を低下させ、冷間鍛造時に割れを発生させる原因となる。また、過剰に含有すると直流磁気特性も劣化する。従ってPは0.050%以下、好ましくは0.02%以下、更に好ましくは0.01%以下である。Pはできるだけ低減することが望ましい。   P segregates at the grain boundaries to lower the deformability and cause cracks during cold forging. Moreover, when it contains excessively, a DC magnetic characteristic will also deteriorate. Therefore, P is 0.050% or less, preferably 0.02% or less, and more preferably 0.01% or less. It is desirable to reduce P as much as possible.

Sは、Mn等と結合して硫化物を形成し、この硫化物が粒界に析出することによって変形能が低下し、冷間鍛造性が劣化する。従ってSは0.05%以下、好ましくは0.02%以下、より好ましくは0.015%以下である。   S combines with Mn or the like to form a sulfide, and the sulfide is precipitated at the grain boundary, so that the deformability is lowered and the cold forgeability is deteriorated. Therefore, S is 0.05% or less, preferably 0.02% or less, more preferably 0.015% or less.

Crは、鋼部品の強度を高めるのに作用する元素であるが、4%を超えると固溶したCrによりフェライト組織の硬度が上昇し過ぎるため変形能が低下し、冷間鍛造時に割れが発生する。従ってCrは4%以下、好ましくは2%以下、より好ましくは1%以下、更に好ましくは0.5%以下である。   Cr is an element that acts to increase the strength of steel parts. However, if it exceeds 4%, the hardness of the ferrite structure increases too much due to the solid solution of Cr, so the deformability decreases and cracking occurs during cold forging. To do. Therefore, Cr is 4% or less, preferably 2% or less, more preferably 1% or less, and still more preferably 0.5% or less.

Alは、鋼中の固溶NをAlNとして固定し、変形抵抗を小さくして冷間鍛造性を改善する作用を有する元素である。従ってAlは0.002%以上、好ましくは0.003%以上含有させる。しかし2.2%を超えて含有させると、鋼材の変形抵抗が大きくなり過ぎて冷間鍛造性が劣化する。従ってAlは2.2%以下、好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.5%以下、特に好ましくは0.1%以下である。   Al is an element having an action of fixing the solid solution N in the steel as AlN and reducing the deformation resistance to improve the cold forgeability. Therefore, Al is contained in an amount of 0.002% or more, preferably 0.003% or more. However, if the content exceeds 2.2%, the deformation resistance of the steel material becomes too large and the cold forgeability deteriorates. Therefore, Al is 2.2% or less, preferably 1% or less, more preferably 0.8% or less, still more preferably 0.5% or less, and particularly preferably 0.1% or less.

Nは、鋼材を時効硬化させる元素であり、0.01%を超えて含有すると鋼材の変形能が低下し、冷間鍛造時に割れが発生する原因となる。従ってNは0.01%以下、好ましくは0.008%以下、より好ましくは0.005%以下である。Nはできるだけ低減することが望ましい。   N is an element that age hardens the steel, and if it exceeds 0.01%, the deformability of the steel decreases and causes cracking during cold forging. Therefore, N is 0.01% or less, preferably 0.008% or less, more preferably 0.005% or less. It is desirable to reduce N as much as possible.

O(酸素)は、鋼中に酸化物を形成し、鋼材の変形能を低下させて冷間鍛造時に割れを発生させる元素である。また、鋼中に形成された酸化物は直流磁気特性を劣化させる原因となる。従ってOは0.03%以下、好ましくは0.01%以下、より好ましくは0.005%以下である。Oはできるだけ低減することが望ましい。   O (oxygen) is an element that forms an oxide in the steel, reduces the deformability of the steel material, and generates cracks during cold forging. Moreover, the oxide formed in steel becomes a cause of deteriorating DC magnetic characteristics. Therefore, O is 0.03% or less, preferably 0.01% or less, more preferably 0.005% or less. It is desirable to reduce O as much as possible.

上記鋼材の残部は、鉄および不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって混入する元素が許容される。   The balance of the steel material is iron and inevitable impurities. As inevitable impurities, elements mixed in depending on the situation of raw materials, materials, manufacturing equipment, etc. are allowed.

上記鋼材は、更に他の元素として、Cu:0.5%以下(0%を含まない)、および/またはNi:0.5%以下(0%を含まない)を含有してもよい。CuとNiは、不可避的に混入してくる元素であるが、CuまたはNiが0.5%を超えて過剰に含有すると、磁気モーメントが低下して直流磁気特性が却って劣化する。従ってCuとNiの好ましい上限は0.5%と定めた。Cuはより好ましくは0.1%以下、Niはより好ましくは0.1%以下である。   The steel material may further contain Cu: 0.5% or less (not including 0%) and / or Ni: 0.5% or less (not including 0%) as other elements. Cu and Ni are inevitably mixed elements. However, if Cu or Ni is contained in excess of 0.5%, the magnetic moment is lowered and the DC magnetic characteristics are deteriorated. Therefore, the preferable upper limit of Cu and Ni is set to 0.5%. Cu is more preferably 0.1% or less, and Ni is more preferably 0.1% or less.

本発明で用いる鋼材は、化学成分組成が上記範囲を満足すると共に、下記式(1)を満足していることが推奨される。下記式(1)は、鋼材に含まれる合金元素のうち、鋼材の変形抵抗に影響を及ぼす元素を抽出し、各元素の影響度合いに基づいて規定した関係式を示している。下記式(1)の左辺の値をZ値としたとき、Z値を好ましくは2.8以下に抑えることによって鋼材の変形抵抗を小さくでき、冷間鍛造性の改善が可能となる。なお、下記式(1)中、[ ]は、各元素の含有量(質量%)を示している。
13×[C]+2×[Si]+[Mn]+[Cr]/5+[Al]≦2.8 ・・(1)
It is recommended that the steel material used in the present invention satisfies the following formula (1) as well as the chemical component composition satisfying the above range. The following formula (1) shows a relational expression defined based on the degree of influence of each element by extracting elements that affect the deformation resistance of the steel material from among the alloy elements contained in the steel material. When the value on the left side of the following formula (1) is the Z value, the deformation resistance of the steel material can be reduced by suppressing the Z value to preferably 2.8 or less, and the cold forgeability can be improved. In addition, in following formula (1), [] has shown content (mass%) of each element.
13 × [C] + 2 × [Si] + [Mn] + [Cr] / 5 + [Al] ≦ 2.8 (1)

即ち、C、Si、Mn、Cr、Alは鋼材の強度を高め、軟磁性鋼部品の高強度化に寄与する元素であるが、これらの元素は、いずれも鋼中に固溶したり、析出物を形成して鋼材の強度を高め、鋼材の変形抵抗を大きくするのにも作用する。そのため含有量が多くなると、冷間鍛造性が劣化する傾向が認められた。   In other words, C, Si, Mn, Cr, and Al are elements that increase the strength of steel materials and contribute to increasing the strength of soft magnetic steel parts, but all of these elements are dissolved or precipitated in steel. It also acts to increase the strength of steel materials by forming objects and to increase the deformation resistance of steel materials. Therefore, the tendency for cold forgeability to deteriorate was recognized when content increased.

これに対し、本発明では上述したように、軟磁性鋼部品の表層部にAl拡散層を形成することによって表層部の硬度を高め、軟磁性鋼部品を高強度化しているため、C、Si、Mn、Cr、Alの含有量を低減できる。従って本発明では、これらの元素の含有量に基づいて算出されるZ値を好ましくは2.8以下に抑えることによって鋼材の冷間鍛造性を更に向上させることができる。Z値は、より好ましくは2.5以下、更に好ましくは2以下、特に好ましくは1以下である。   On the other hand, in the present invention, as described above, the hardness of the surface layer portion is increased by forming an Al diffusion layer in the surface layer portion of the soft magnetic steel part, and the strength of the soft magnetic steel part is increased. , Mn, Cr, Al content can be reduced. Therefore, in this invention, the cold forgeability of steel materials can further be improved by restraining the Z value calculated based on the content of these elements to preferably 2.8 or less. The Z value is more preferably 2.5 or less, still more preferably 2 or less, and particularly preferably 1 or less.

次に、本発明の軟磁性鋼部品を製造するにあたり、好適に採用できる製造方法について説明する。   Next, a manufacturing method that can be suitably employed in manufacturing the soft magnetic steel part of the present invention will be described.

上記軟磁性鋼部品は、表面にAl皮膜を有している鋼材を熱処理することによって製造できる。即ち、鋼材の表面にAl皮膜を形成し、これを熱処理することによって、鋼材表面からAlを一様に拡散浸透させることができ、鋼部品の表層部に上記Al拡散層を形成できる。本発明では、鋼材の表面からAlを一様に拡散浸透させているため、軟磁性鋼部品の表層部にAlが局所的に濃化することを防止できる。また、本発明で用いる鋼材は、上述したように、好ましくはC、Si、Mn、Cr、Alの合金元素量に基づいて算出される上記Z値を所定値以下に抑えているため、変形抵抗を小さくでき、冷間鍛造性を一層良好にできるという作用も発揮される。   The soft magnetic steel part can be manufactured by heat-treating a steel material having an Al film on the surface. That is, by forming an Al film on the surface of the steel material and heat-treating it, Al can be uniformly diffused and penetrated from the surface of the steel material, and the Al diffusion layer can be formed on the surface layer portion of the steel part. In the present invention, since Al is uniformly diffused and penetrated from the surface of the steel material, it is possible to prevent Al from locally concentrating on the surface layer portion of the soft magnetic steel part. Further, as described above, the steel material used in the present invention preferably suppresses the Z value calculated based on the alloy element amount of C, Si, Mn, Cr, and Al below a predetermined value. The effect that the cold forgeability can be further improved can be exhibited.

熱処理前の上記鋼材は、表面にAl皮膜を有し、部品形状に加工されていればよく、鋼材の表面にAl皮膜を形成する工程と、鋼材を部品形状に加工する工程の順番は特に限定されない。即ち、上記鋼材を部品形状に加工してからAl皮膜を形成してもよいし、上記鋼材にAl皮膜を形成してから部品形状に加工してもよい。部品形状への加工は、例えば、冷間鍛造によって行えばよい。   The steel material before the heat treatment only needs to have an Al film on the surface and processed into a part shape, and the order of the process of forming the Al film on the surface of the steel material and the process of processing the steel material into a part shape is particularly limited. Not. That is, the Al film may be formed after the steel material is processed into a part shape, or the Al film may be formed after forming the Al film on the steel material. The processing to the part shape may be performed by cold forging, for example.

上記Al皮膜は、Al元素を含有する皮膜(Al含有皮膜)であればよく、このAl皮膜を形成する方法は特に限定されず、例えば、化学気相蒸着(CVD)法、物理気相蒸着(PVD)法、めっき法等が挙げられる。めっき法としては、溶融Alめっき法や電気Alめっき法が挙げられる。これらの中でも溶融Alめっき法によって製造することが好ましい。   The Al film may be a film containing Al element (Al-containing film), and the method for forming the Al film is not particularly limited. For example, chemical vapor deposition (CVD), physical vapor deposition ( PVD) method, plating method and the like. Examples of the plating method include a molten Al plating method and an electric Al plating method. Among these, it is preferable to manufacture by the hot Al plating method.

鋼材表面からAlを一様に拡散浸透させるための上記熱処理は、鋼部品の表層部にAl拡散層の厚みが10〜80μm形成されるように、加熱温度、加熱時間、Al皮膜の付着量(Al皮膜量)等を調整すればよい。例えば、加熱温度は750℃以上、加熱時間は1時間以上、Al皮膜の付着量は30g/m2以上の範囲で調整することが好ましい。 The above heat treatment for uniformly diffusing and infiltrating Al from the steel material surface is carried out so that the thickness of the Al diffusion layer is formed in the surface layer portion of the steel part by 10 to 80 μm. What is necessary is just to adjust Al coating amount etc. For example, it is preferable to adjust the heating temperature to 750 ° C. or more, the heating time to 1 hour or more, and the Al coating amount to be adjusted in the range of 30 g / m 2 or more.

上記加熱温度は800℃以上とすることがより好ましく、更に好ましくは850℃以上である。しかし加熱温度が高過ぎるとAlが鋼材の奥深くまで拡散し過ぎて鋼部品の表層部に所望の厚みのAl拡散層を形成することが困難となる。従って上記加熱温度の上限は1000℃とすることが好ましい。   The heating temperature is more preferably 800 ° C. or higher, and further preferably 850 ° C. or higher. However, if the heating temperature is too high, Al diffuses too deep into the steel material, making it difficult to form an Al diffusion layer with a desired thickness on the surface layer of the steel part. Therefore, the upper limit of the heating temperature is preferably 1000 ° C.

上記加熱時間は2時間以上とすることがより好ましく、更に好ましくは3時間以上である。しかし、加熱時間を長くし過ぎるとAlが鋼材の奥深くまで拡散し過ぎて鋼部品の表層部に所望の厚みのAl拡散層を形成することが困難となる。従って加熱時間の上限は10時間とすることが好ましい。   The heating time is more preferably 2 hours or more, and further preferably 3 hours or more. However, if the heating time is too long, Al diffuses too deep into the steel material, making it difficult to form an Al diffusion layer with a desired thickness on the surface layer of the steel part. Therefore, the upper limit of the heating time is preferably 10 hours.

上記Al皮膜の付着量は40g/m2以上とすることがより好ましく、更に好ましくは50g/m2以上である。しかし、Al皮膜の付着量を多くし過ぎるとAl拡散層が厚くなり過ぎて直流磁気特性が低下するため、上限は例えば110g/m2とすることが好ましい。 The adhesion amount of the Al film is more preferably 40 g / m 2 or more, and further preferably 50 g / m 2 or more. However, if the amount of Al coating deposited is too large, the Al diffusion layer becomes too thick and the DC magnetic characteristics deteriorate, so the upper limit is preferably set to 110 g / m 2 , for example.

上記加熱温度に加熱するときの昇温速度は、例えば、100〜400℃/時間とすればよい。また、熱処理後、室温まで冷却するときの降温速度は、例えば、100〜400℃/時間とすればよい。   What is necessary is just to let the temperature increase rate when heating to the said heating temperature be 100-400 degreeC / hour, for example. Moreover, what is necessary is just to let the temperature fall rate when cooling to room temperature after heat processing be 100-400 degreeC / hour, for example.

こうして得られる本発明に係る軟磁性鋼部品は、例えば、自動車や産業機械に実装されている鋼部品のうち、磁力を介して駆動する電装部品や電磁コイル、オルタネータの鉄心として用いられる。   The thus obtained soft magnetic steel parts according to the present invention are used, for example, as electrical cores, electromagnetic coils, and alternator iron cores that are driven through magnetic force among steel parts mounted on automobiles and industrial machines.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記実験例1では軟磁性鋼部品の直流磁気特性を評価し、下記実験例2では軟磁性鋼部品の素材となる鋼材の冷間鍛造性を評価した。   In Experimental Example 1 below, the DC magnetic characteristics of the soft magnetic steel part were evaluated, and in Experimental Example 2 below, the cold forgeability of the steel material used as the material of the soft magnetic steel part was evaluated.

[実験例1]
下記表1に示す化学成分を含有する鋼(残部は、鉄および不可避不純物)を真空溶製して150kgの溶製材を作製した。下記表1に、参考値として、上記式(1)の左辺の値(Z値)を算出して示す。
[Experimental Example 1]
Steel containing chemical components shown in Table 1 below (with the balance being iron and inevitable impurities) was vacuum-melted to prepare 150 kg of melted material. In Table 1 below, the value (Z value) on the left side of the above formula (1) is calculated and shown as a reference value.

得られた溶製材を鍛伸加工して直径40mmの鋼材を製造し、この鋼材からリング状の試験片を切り出し、この試験片にAl拡散層を設けたときの直流磁気特性を次の手順で評価した。具体的には、上記鋼材(直径40mm)から、外径38mm、内径30mm、厚み4mmのリング状試験片を切り出し、試験片表面に溶融Alめっき法によりAl皮膜を形成した後、熱処理して試験片表面のAlを試験片内部へ拡散浸透させた。また、比較例では、粉末塗布法により試験片の表面から内部へAlを拡散浸透させた。詳細な条件は次の通りである。   The obtained molten material is forged to produce a steel material having a diameter of 40 mm, a ring-shaped test piece is cut out from this steel material, and the DC magnetic characteristics when an Al diffusion layer is provided on the test piece are as follows. evaluated. Specifically, a ring-shaped test piece having an outer diameter of 38 mm, an inner diameter of 30 mm, and a thickness of 4 mm is cut out from the steel material (diameter 40 mm), an Al film is formed on the surface of the test piece by a molten Al plating method, and then heat-treated for testing. Al on one surface was diffused and penetrated into the test piece. In the comparative example, Al was diffused and penetrated from the surface of the test piece to the inside by a powder coating method. The detailed conditions are as follows.

溶融Alめっき法では、上記リング状試験片を、純Alめっき浴またはSiを約10質量%含有する溶融Alめっき浴を用い、浴温は650〜700℃とし、1〜10分間浸漬してAl皮膜を形成した。リング状試験片表面に形成したAl皮膜の付着量をEPMA(日本電子株式会社製「JXA−8900RL(装置名)」)で測定し、下記表2にAl皮膜の付着量(g/m2)を示す。Al皮膜形成後、水素還元雰囲気中で、下記表2に示す温度まで昇温速度300℃/時間で加熱し、この温度で下記表2に示す時間保持して熱処理し、試験片表面のAlを試験片内部へ拡散浸透させた。熱処理後、降温速度300℃/時間で室温まで冷却した。 In the hot-dip Al plating method, the ring-shaped test piece is used as a pure Al plating bath or a hot Al plating bath containing about 10% by mass of Si, and the bath temperature is set to 650 to 700 ° C. and immersed for 1 to 10 minutes. A film was formed. The adhesion amount of the Al film formed on the surface of the ring-shaped test piece was measured with EPMA (“JXA-8900RL (device name)” manufactured by JEOL Ltd.), and the adhesion amount of the Al film (g / m 2 ) is shown in Table 2 below. Indicates. After the formation of the Al film, it was heated to a temperature shown in the following Table 2 at a heating rate of 300 ° C./hour in a hydrogen reducing atmosphere, and kept at this temperature for the time shown in the following Table 2 to heat-treat, and Al on the test piece surface was The sample was diffused and penetrated into the specimen. After the heat treatment, it was cooled to room temperature at a temperature drop rate of 300 ° C./hour.

粉末塗布法では、Al粉末(500g)およびAl23粉末(500g)を等量混合した混合粉に、NH4Clを10g加えたものをスレンレスケースに入れ、この中に上記リング状試験片を埋め込み、水素還元雰囲気中で、下記表2に示す温度で加熱した後、この温度で下記表2に示す時間保持して熱処理し、試験片の表面から内部へAlを拡散浸透させた。 In the powder coating method, a mixed powder obtained by mixing equal amounts of Al powder (500 g) and Al 2 O 3 powder (500 g) and 10 g of NH 4 Cl is placed in a slushless case, and the above ring-shaped test piece is contained therein. After heating at a temperature shown in the following Table 2 in a hydrogen reduction atmosphere, heat treatment was performed at this temperature for the time shown in the following Table 2 to diffuse Al infiltrate from the surface of the test piece to the inside.

なお、下記表2のNo.1は、Al皮膜の形成および熱処理を行っていない比較例である。   In Table 2 below, No. 1 is a comparative example in which the formation of the Al film and the heat treatment are not performed.

次に、熱処理して得られたリング状試験片の表層部におけるAl濃度をEPMA(日本電子株式会社製「JXA−8900RL(装置名)」)を用いて測定した。測定は、上記リング状試験片の厚み方向(軸方向)に平行となるように切断して露出させた切断面において、Al皮膜形成面から深さが200μm位置までの領域を、EPMAのビーム直径を1μmとし、1μm間隔で行い、Alを10〜30質量%含有するAl拡散層の厚みを測定した。測定結果を下記表2に示す。なお、リング状試験片の表面に形成したAl皮膜は、熱処理によりリング状試験片内へ拡散していた。また、熱処理して得られたリング状試験片の表層部では最表面のAl量が最も多く、中心部に向かうほどAl量は減少しており、傾斜組成であることが分かった。   Next, the Al concentration in the surface layer portion of the ring-shaped test piece obtained by heat treatment was measured using EPMA (“JXA-8900RL (device name)” manufactured by JEOL Ltd.). In the measurement, the area from the Al film formation surface to a depth of 200 μm on the cut surface exposed by cutting so as to be parallel to the thickness direction (axial direction) of the ring-shaped test piece is the beam diameter of EPMA. The thickness of the Al diffusion layer containing 10 to 30% by mass of Al was measured at an interval of 1 μm. The measurement results are shown in Table 2 below. Note that the Al film formed on the surface of the ring-shaped test piece was diffused into the ring-shaped test piece by heat treatment. In addition, the surface layer portion of the ring-shaped test piece obtained by heat treatment had the largest amount of Al on the outermost surface, and the Al amount decreased toward the center portion, indicating that it had a gradient composition.

次に、熱処理して得られたリング状試験片表面硬さを測定した。   Next, the surface hardness of the ring-shaped test piece obtained by heat treatment was measured.

〈表面硬さの測定〉
表面硬さは、JIS Z2244に規定されるマイクロビッカース硬さ試験に基づき、マイクロビッカース硬度計を用い、試験荷重を0.3N(30gf)としてビッカース硬さ(Hv)を測定した。測定位置は、上記リング状試験片の厚み方向(軸方向)に平行となるように切断して露出させた切断面において、Al皮膜形成面からの深さが15μm位置において測定した。測定箇所は4箇所とし、結果を平均した。また、下記表2に示すNo.1の試験片についても同じ条件でビッカース硬さ(Hv)を測定した。測定結果を下記表2に示す。また、下記表2のNo.1(Al拡散層無し)に対するビッカース硬さの増加量を算出し、結果を下記表2に併せて示す。増加量がHv240以上の場合を高硬度(合格。評価○)、Hv240未満の場合を低硬度(不合格。評価×)として評価した。増加量および評価結果を下記表2に示す。
<Measurement of surface hardness>
The surface hardness was measured on the basis of a micro Vickers hardness test specified in JIS Z2244 using a micro Vickers hardness tester with a test load of 0.3 N (30 gf) and a Vickers hardness (Hv). The measurement position was measured at a position where the depth from the Al film forming surface was 15 μm on the cut surface exposed by cutting so as to be parallel to the thickness direction (axial direction) of the ring-shaped test piece. The measurement place was made into four places, and the result was averaged. In addition, No. shown in Table 2 below. The Vickers hardness (Hv) of the test piece 1 was also measured under the same conditions. The measurement results are shown in Table 2 below. In addition, No. in Table 2 below. The amount of increase in Vickers hardness with respect to 1 (no Al diffusion layer) was calculated, and the results are also shown in Table 2 below. The case where the increase amount was Hv240 or higher was evaluated as high hardness (passed. Evaluation ○), and the case where it was less than Hv240 was evaluated as low hardness (failed. Evaluation x). The amount of increase and the evaluation results are shown in Table 2 below.

図1に、Al拡散層の厚みと表面硬さとの関係を示す。なお、図1には、溶融Alめっき法によりAl皮膜を形成した試験片(No.2〜10)の結果についてプロットした。   FIG. 1 shows the relationship between the thickness of the Al diffusion layer and the surface hardness. In addition, in FIG. 1, it plotted about the result of the test piece (No. 2-10) which formed Al membrane | film | coat by the hot Al plating method.

次に、熱処理して得られたリング状試験片の直流磁気特性を評価した。   Next, the DC magnetic characteristics of the ring-shaped test piece obtained by heat treatment were evaluated.

〈直流磁気特性の評価〉
直流磁気特性は、試験片の磁束密度に基づいて評価した。磁束密度の測定方法は次の通りである。上記リング状試験片に、磁界印加用の1次コイルと磁束検出用の2次コイルを巻線し、自動磁化測定装置[理研電子株式会社製、直流磁化B−H特性自動記録装置(BHS−40)]を用いてB−H曲線を測定し、磁束密度を求めた。また、下記表2に示すNo.1の試験片(上記鋼種αから切り出したリング状の試験片)に、850℃、3時間の磁気焼鈍を行なった後、Al皮膜の形成および熱処理を行なわず、上記と同様に、磁界印加用の1次コイルと磁束検出用の2次コイルを巻線したものを作製し(以下、未処理品ということがある)、このB−H曲線を測定して磁束密度を求めた。測定結果を下記表2に示す。
<Evaluation of DC magnetic characteristics>
The DC magnetic characteristics were evaluated based on the magnetic flux density of the test piece. The method for measuring the magnetic flux density is as follows. A primary coil for magnetic field application and a secondary coil for magnetic flux detection are wound around the ring-shaped test piece, and an automatic magnetization measuring device [manufactured by Riken Denshi Co., Ltd., DC magnetization BH characteristic automatic recording device (BHS- 40)] was used to measure the BH curve to determine the magnetic flux density. In addition, No. shown in Table 2 below. No. 1 test piece (ring-shaped test piece cut out from the above steel type α) was subjected to magnetic annealing at 850 ° C. for 3 hours, and then Al film formation and heat treatment were not performed. 1 and a secondary coil for magnetic flux detection were wound (hereinafter sometimes referred to as an untreated product), and the BH curve was measured to determine the magnetic flux density. The measurement results are shown in Table 2 below.

上記未処理品(表2のNo.1)の磁束密度に対する各リング状試験片の磁束密度の比(リング状試験片/未処理品)を算出し、結果を下記表2に示す。また、磁束密度の比の値に基づいて、下記基準で直流磁気特性を評価し、評価結果を下記表2に併せて示す。   The ratio of the magnetic flux density of each ring-shaped test piece to the magnetic flux density of the untreated product (No. 1 in Table 2) (ring-shaped test piece / untreated product) was calculated, and the results are shown in Table 2 below. Further, based on the value of the magnetic flux density ratio, the DC magnetic characteristics are evaluated according to the following criteria, and the evaluation results are also shown in Table 2 below.

<評価基準>
○(合格) :磁束密度の比が0.94以上
×(不合格):磁束密度の比が0.94未満
また、図2に、Al拡散層の厚みと磁束密度の比との関係を示す。図2には、溶融Alめっき法によりAl皮膜を形成した試験片(No.2〜10)の結果についてプロットした。
<Evaluation criteria>
○ (Pass): Ratio of magnetic flux density is 0.94 or more x (Fail): Ratio of magnetic flux density is less than 0.94 FIG. 2 shows the relationship between the thickness of the Al diffusion layer and the ratio of magnetic flux density. . In FIG. 2, it plotted about the result of the test piece (No. 2-10) which formed Al membrane | film | coat by the hot-dip Al plating method.

下記表2から次のように考察できる。No.1は、Al皮膜の形成および熱処理を行なっていない比較例(未処理品)であり、Al拡散層が形成されていないため、表面硬さはHv80と低かった。No.2と3は、いずれもAl拡散層が薄過ぎる例であり、表面硬さを改善できていなかった。No.10は、Al拡散層が厚過ぎる例であり、磁束密度が小さく、直流磁気特性が劣化していた。   It can be considered as follows from Table 2 below. No. No. 1 is a comparative example (untreated product) in which no Al film was formed and no heat treatment was performed, and since the Al diffusion layer was not formed, the surface hardness was as low as Hv80. No. 2 and 3 are examples in which the Al diffusion layer is too thin, and the surface hardness could not be improved. No. No. 10 is an example in which the Al diffusion layer is too thick, the magnetic flux density is small, and the DC magnetic characteristics are deteriorated.

No.4〜9は、いずれも本発明で規定する要件を満足している例であり、試験片の表層部に適切な厚みのAl拡散層を形成できているため、比較材(表2のNo.1)と比べて直流磁気特性を殆ど劣化させることなく、表面硬さを高めることができている。   No. Nos. 4 to 9 are examples that satisfy the requirements defined in the present invention, and an Al diffusion layer having an appropriate thickness can be formed on the surface layer portion of the test piece. Compared with 1), the surface hardness can be increased without substantially deteriorating the DC magnetic characteristics.

No.11〜13は、粉末塗布法により形成したAl皮膜を熱処理して試験片の内部へ拡散させた比較例である。これらのうちNo.11と12は、Al拡散層が厚過ぎる例であり、磁束密度が小さく、直流磁気特性が劣化している。また、No.11と12は、Alが内部まで拡散浸透し、表層部のAl濃度が低くなっているため、表面硬さも低下している。No.13は、Alを10〜30質量%含有するAl拡散層は形成されておれず、試験片の表層部には、Al濃度が10質量%未満の領域が広範囲に亘って形成されていた。Alが広範囲に亘って拡散した結果、直流磁気特性が劣化した。また、上記Al拡散層が形成されていないため、表面硬さを改善できなかった。   No. 11 to 13 are comparative examples in which an Al film formed by a powder coating method was heat-treated and diffused into the test piece. Of these, No. 11 and 12 are examples in which the Al diffusion layer is too thick, the magnetic flux density is small, and the DC magnetic characteristics are deteriorated. No. In Nos. 11 and 12, since Al diffuses and penetrates to the inside and the Al concentration in the surface layer portion is low, the surface hardness is also reduced. No. In No. 13, an Al diffusion layer containing 10 to 30% by mass of Al was not formed, and a region having an Al concentration of less than 10% by mass was formed over a wide range in the surface layer portion of the test piece. As a result of the diffusion of Al over a wide range, the DC magnetic characteristics deteriorated. Further, since the Al diffusion layer was not formed, the surface hardness could not be improved.

No.2〜7を比較すると、Al皮膜の付着量が同じで、熱処理条件のうち保持時間が同じ(3時間保持)場合には、熱処理温度を高くするほどAl拡散層は厚くなることが分かる。   No. When comparing 2 to 7, it can be seen that the Al diffusion layer becomes thicker as the heat treatment temperature is increased when the adhesion amount of the Al film is the same and the retention time is the same among the heat treatment conditions (holding for 3 hours).

No.7〜10を比較すると、熱処理条件が同じ(900℃で3時間保持)場合にはAl皮膜の付着量が多くなるほどAl拡散層は厚くなることが分かる。   No. Comparing 7 to 10, it can be seen that when the heat treatment conditions are the same (held at 900 ° C. for 3 hours), the Al diffusion layer becomes thicker as the adhesion amount of the Al film increases.

図1および図2から次のように考察できる。図1から明らかなように、Al拡散層の厚みが30μm以上になると表面硬さが急激に大きくなる傾向が読み取れる。しかし図2から明らかなように、Al拡散層が厚くなると磁束密度の比が小さくなり、直流磁気特性が劣化する傾向が読み取れる。   1 and 2 can be considered as follows. As is apparent from FIG. 1, it can be seen that the surface hardness tends to increase rapidly when the thickness of the Al diffusion layer is 30 μm or more. However, as is clear from FIG. 2, it can be seen that when the Al diffusion layer becomes thicker, the ratio of magnetic flux density becomes smaller and the DC magnetic characteristics tend to deteriorate.

[実験例2]
下記表3に示す化学成分を含有する鋼(残部は、鉄および不可避不純物)を真空溶製して150kgの溶製材を作製した。下記表3に、上記式(1)の左辺の値(Z値)を算出して示す。なお、下記表3に示したNo.21の化学成分は、上記表1に示した鋼種αと同じである。
[Experiment 2]
Steel containing chemical components shown in Table 3 below (with the balance being iron and inevitable impurities) was vacuum-melted to prepare 150 kg of melted material. In Table 3 below, the value (Z value) on the left side of the formula (1) is calculated and shown. In addition, No. shown in Table 3 below. The chemical composition of 21 is the same as the steel type α shown in Table 1 above.

得られた溶製材を鍛伸加工して直径40mmの鋼材を製造し、次の手順で冷間鍛造性を評価した。   The obtained molten material was forged to produce a steel material having a diameter of 40 mm, and the cold forgeability was evaluated by the following procedure.

〈冷間鍛造性の評価〉
鋼材の冷間鍛造性は、試験片を50%圧縮加工したときの変形抵抗と、圧縮加工したときの変形能に基づいて評価した。具体的には、変形抵抗(N/mm2)は、上記鋼材から直径16mm×高さ24mmの試験片を切り出し、この試験片の高さが50%となるように圧縮加工して測定した。圧縮加工は、ひずみ速度10/秒で端面拘束圧縮して行った。測定した変形抵抗を下記表3に示す。本発明では、変形抵抗が580N/mm2未満を合格、580N/mm2以上を不合格として評価した。また、上記Z値と、測定した変形抵抗との関係を図3に示す。
<Evaluation of cold forgeability>
The cold forgeability of the steel material was evaluated based on the deformation resistance when the test piece was compressed by 50% and the deformability when compressed. Specifically, the deformation resistance (N / mm 2 ) was measured by cutting a test piece having a diameter of 16 mm and a height of 24 mm from the steel material and compressing the test piece so that the height of the test piece was 50%. The compression process was performed by constraining the end face at a strain rate of 10 / sec. The measured deformation resistance is shown in Table 3 below. In this invention, deformation resistance evaluated less than 580 N / mm < 2 > as pass, and evaluated 580 N / mm < 2 > or more as failure. FIG. 3 shows the relationship between the Z value and the measured deformation resistance.

一方、鋼材の変形能は、上記条件で圧縮加工した後、試験片を目視および光学顕微鏡(観察倍率:40倍)で観察し、割れ発生の有無を調べて評価した。割れ発生の有無を下記表3に示す。割れが発生してない場合を合格、割れが発生している場合を不合格とする。   On the other hand, the deformability of the steel material was evaluated by performing compression processing under the above conditions and then observing the test piece with the naked eye and an optical microscope (observation magnification: 40 times) to check for the presence of cracks. The presence or absence of cracking is shown in Table 3 below. The case where the crack does not occur is passed, and the case where the crack is generated is rejected.

本発明では、上記変形抵抗と変形能の両方が合格の場合を「冷間鍛造性に優れている」と評価し、少なくとも一方が不合格の場合を「冷間鍛造性に劣っている」と評価した。   In the present invention, the case where both the deformation resistance and the deformability are acceptable is evaluated as “excellent in cold forgeability”, and the case where at least one of the cases is unacceptable is “inferior in cold forgeability”. evaluated.

下記表3および図3から次のように考察できる。No.21、22、24、26、30、32、39、40〜42は、鋼材の化学成分組成が本発明で規定する要件を満足する例であり、変形抵抗が580N/mm2未満で、且つ圧縮加工時に割れが発生しておらず、冷間鍛造性に優れている。 The following can be considered from Table 3 and FIG. No. 21, 22, 24, 26, 30, 32, 39, 40 to 42 are examples in which the chemical composition of the steel material satisfies the requirements defined in the present invention, the deformation resistance is less than 580 N / mm 2 , and compression No cracks occur during processing, and it has excellent cold forgeability.

これに対し、No.23、25、27〜29、31、33〜38は、鋼材の化学成分組成が本発明で規定する要件を満足していない例であり、変形抵抗が580N/mm2以上であるか、圧縮加工時に割れが発生したため、冷間鍛造性に劣っている。 In contrast, no. 23, 25, 27 to 29, 31, 33 to 38 are examples in which the chemical composition of the steel material does not satisfy the requirements defined in the present invention, and the deformation resistance is 580 N / mm 2 or more, or compression processing Since cracks sometimes occurred, cold forgeability is poor.

詳細には、No.23、25、27は、夫々、C、Si、Mnが本発明で規定する上限値を超えている例であり、上記Z値が2.8より大きいため、変形抵抗が580N/mm2以上になった。No.28は、Pが本発明で規定する上限値を超えている例であり、Pの粒界偏析量が増加したため、圧縮加工時に割れが発生した。No.29は、Sが本発明で規定する上限値を超えている例である。硫化物が粒界に多く析出したため、圧縮加工時に割れが発生した。No.31は、Crが本発明で規定する上限値を超えている例である。固溶したCrによりフェライト組織の硬度が上昇し過ぎたため、圧縮加工時に割れが発生した。No.33は、Alが本発明で規定する上限値を超えているため、変形抵抗が580N/mm2以上になった。No.34は、Nが本発明で規定する上限値を超えている例である。過剰なNによって時効硬化し、圧縮加工時に割れが発生した。No.35は、O(酸素)が本発明で規定する上限値を超えている例である。過剰なOにより鋼中に酸化物が多く生成したため、圧縮加工時に割れが発生した。 Specifically, no. 23, 25, and 27 are examples in which C, Si, and Mn respectively exceed the upper limit values defined in the present invention. Since the Z value is larger than 2.8, the deformation resistance is 580 N / mm 2 or more. became. No. No. 28 is an example in which P exceeds the upper limit defined in the present invention. Since the grain boundary segregation amount of P increased, cracks occurred during compression processing. No. 29 is an example in which S exceeds the upper limit defined in the present invention. Since a large amount of sulfides precipitated at the grain boundaries, cracks occurred during compression processing. No. 31 is an example in which Cr exceeds the upper limit defined in the present invention. Since the hardness of the ferrite structure was excessively increased by the dissolved Cr, cracking occurred during compression processing. No. In No. 33, Al exceeded the upper limit defined in the present invention, so the deformation resistance was 580 N / mm 2 or more. No. 34 is an example in which N exceeds the upper limit defined in the present invention. Age hardening was caused by excess N, and cracking occurred during compression processing. No. 35 is an example in which O (oxygen) exceeds the upper limit defined in the present invention. Since excessive oxide was generated in the steel due to excessive O, cracking occurred during compression processing.

No.36〜38は、鋼材の化学成分組成は本発明で規定する範囲を満足しているが、上記Z値が2.8を超えているため、変形抵抗が580N/mm2以上になった。 No. In Nos. 36 to 38, the chemical composition of the steel material satisfies the range specified in the present invention, but the Z value exceeds 2.8, so the deformation resistance is 580 N / mm 2 or more.

Claims (3)

母相の化学成分組成が、
C :0.002〜0.20%(質量%の意味。以下同じ。)、
Si:1.2%以下(0%を含まない)、
Mn:0.05〜2.6%、
P :0.050%以下(0%を含まない)、
S :0.05%以下(0%を含まない)、
Cr:4%以下(0%を含まない)、
Al:0.002〜2.2%、
N :0.01%以下(0%を含まない)、
O :0.03%以下(0%を含まない)、
残部:鉄および不可避不純物
である鋼部品であり、
表層部に、Alを10〜30質量%含有するAl拡散層が形成されており、且つ
前記Al拡散層の厚みが10〜80μmであることを特徴とする直流用軟磁性鋼部品。
The chemical composition of the parent phase is
C: 0.002 to 0.20% (meaning mass%, the same shall apply hereinafter),
Si: 1.2% or less (excluding 0%),
Mn: 0.05 to 2.6%,
P: 0.050% or less (excluding 0%),
S: 0.05% or less (excluding 0%),
Cr: 4% or less (excluding 0%),
Al: 0.002 to 2.2%,
N: 0.01% or less (excluding 0%),
O: 0.03% or less (excluding 0%),
The rest: steel parts that are iron and inevitable impurities,
A soft magnetic steel part for direct current, wherein an Al diffusion layer containing 10 to 30% by mass of Al is formed in a surface layer portion, and the thickness of the Al diffusion layer is 10 to 80 μm.
前記化学成分組成が、更に、下記式(1)を満足するものである請求項1に記載の軟磁性鋼部品。
13×[C]+2×[Si]+[Mn]+[Cr]/5+[Al]≦2.8 ・・(1)
[式(1)中、[ ]は、各元素の含有量(質量%)を示している。]
The soft magnetic steel part according to claim 1, wherein the chemical component composition further satisfies the following formula (1).
13 × [C] + 2 × [Si] + [Mn] + [Cr] / 5 + [Al] ≦ 2.8 (1)
[In Formula (1), [] has shown content (mass%) of each element. ]
前記鋼部品は、更に、他の元素として、
Cu:0.5%以下(0%を含まない)、および/または
Ni:0.5%以下(0%を含まない)を含有するものである請求項1または2に記載の軟磁性鋼部品。
The steel part further includes, as other elements,
The soft magnetic steel part according to claim 1 or 2, which contains Cu: 0.5% or less (excluding 0%) and / or Ni: 0.5% or less (excluding 0%). .
JP2011011162A 2011-01-21 2011-01-21 Soft magnetic steel parts for DC Expired - Fee Related JP5615727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011162A JP5615727B2 (en) 2011-01-21 2011-01-21 Soft magnetic steel parts for DC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011162A JP5615727B2 (en) 2011-01-21 2011-01-21 Soft magnetic steel parts for DC

Publications (2)

Publication Number Publication Date
JP2012153911A true JP2012153911A (en) 2012-08-16
JP5615727B2 JP5615727B2 (en) 2014-10-29

Family

ID=46835956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011162A Expired - Fee Related JP5615727B2 (en) 2011-01-21 2011-01-21 Soft magnetic steel parts for DC

Country Status (1)

Country Link
JP (1) JP5615727B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157302A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
WO2014174694A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Electromagnetic relay
WO2014174976A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Magnetic components, and electronic components provided with magnetic components
WO2014174975A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Magnetic component, electronic component using magnetic component, and production method for magnetic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072394A1 (en) * 2007-12-03 2009-06-11 Nippon Steel Corporation Non-oriented electromagnetic steel plate having low high-frequency iron loss and process for producing the non-oriented electromagnetic steel plate
JP2009256758A (en) * 2008-04-21 2009-11-05 Nippon Steel Corp Soft magnetic steel sheet for core, and member for core
JP2011137188A (en) * 2009-12-25 2011-07-14 Kobe Steel Ltd Soft magnetic steel component superior in magnetic property by alternating current, and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072394A1 (en) * 2007-12-03 2009-06-11 Nippon Steel Corporation Non-oriented electromagnetic steel plate having low high-frequency iron loss and process for producing the non-oriented electromagnetic steel plate
JP2009256758A (en) * 2008-04-21 2009-11-05 Nippon Steel Corp Soft magnetic steel sheet for core, and member for core
JP2011137188A (en) * 2009-12-25 2011-07-14 Kobe Steel Ltd Soft magnetic steel component superior in magnetic property by alternating current, and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157302A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
US10593451B2 (en) 2013-03-29 2020-03-17 Kobe Steel, Ltd. Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
WO2014174694A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Electromagnetic relay
WO2014174976A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Magnetic components, and electronic components provided with magnetic components
WO2014174975A1 (en) * 2013-04-22 2014-10-30 オムロン株式会社 Magnetic component, electronic component using magnetic component, and production method for magnetic component
JP2014216354A (en) * 2013-04-22 2014-11-17 オムロン株式会社 Magnetic component, electronic component using the magnetic component, and method for producing the magnetic component
JP2014216064A (en) * 2013-04-22 2014-11-17 オムロン株式会社 Electromagnetic relay
JP2014214319A (en) * 2013-04-22 2014-11-17 オムロン株式会社 Magnetic component, and electronic component including magnetic component
CN105051854A (en) * 2013-04-22 2015-11-11 欧姆龙株式会社 Electromagnetic relay
EP2991093A4 (en) * 2013-04-22 2016-12-28 Omron Tateisi Electronics Co Electromagnetic relay
US9805893B2 (en) 2013-04-22 2017-10-31 Omron Corporation Electromagnetic relay

Also Published As

Publication number Publication date
JP5615727B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
EP3075871B1 (en) Soft magnetic steel and method for manufacturing same, and soft magnetic component obtained from soft magnetic steel
KR101692660B1 (en) Ferritic stainless steel sheet having excellent heat resistance
JP6500980B2 (en) Non-oriented electrical steel sheet
JP6497145B2 (en) Electrical steel sheet with high strength and excellent magnetic properties
EP3339460A1 (en) VIBRATION-DAMPING FERRITIC STAINLESS STEEL MATERIAL HAVING HIGH Al CONTENT, AND PRODUCTION METHOD
JP5427596B2 (en) Soft magnetic steel parts having excellent AC magnetic characteristics and manufacturing method thereof
JP5615727B2 (en) Soft magnetic steel parts for DC
JP5181439B2 (en) Non-oriented electrical steel sheet
JP2009084597A (en) Hydrogen resistant stainless steel spring wire, and hydrogen resistant spring product using the same
JP6801464B2 (en) Non-oriented electrical steel sheet
JP5547590B2 (en) Soft magnetic steel parts having excellent AC magnetic characteristics and manufacturing method thereof
JP2018165383A (en) Nonoriented electromagnetic steel sheet
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
TWI688658B (en) Non-oriented electrical steel sheet
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
JP7239075B1 (en) Electromagnetic soft steel bar
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JP4712839B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP5651002B2 (en) Soft magnetic steel parts having excellent AC magnetic characteristics and manufacturing method thereof
JP4502889B2 (en) Soft magnetic steel material excellent in cold forgeability, cutting workability and AC magnetic characteristics, soft magnetic steel parts excellent in AC magnetic characteristics, and method for producing the same
JP2021161469A (en) Ferritic stainless steel
JP2014074234A (en) Soft-magnetic steel material for nitration and soft-magnetic steel component excellent in wear resistance
JP5530174B2 (en) Soft magnetic steel for nitriding and soft magnetic steel parts with excellent wear resistance
JP4223727B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic properties, soft magnetic steel parts excellent in magnetic properties, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees