[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012003094A - Driving method of plasma display panel and plasma display device - Google Patents

Driving method of plasma display panel and plasma display device Download PDF

Info

Publication number
JP2012003094A
JP2012003094A JP2010138851A JP2010138851A JP2012003094A JP 2012003094 A JP2012003094 A JP 2012003094A JP 2010138851 A JP2010138851 A JP 2010138851A JP 2010138851 A JP2010138851 A JP 2010138851A JP 2012003094 A JP2012003094 A JP 2012003094A
Authority
JP
Japan
Prior art keywords
voltage
discharge
electrode
sustain
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010138851A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshihama
豊 吉濱
Shinichi Inoue
真一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010138851A priority Critical patent/JP2012003094A/en
Publication of JP2012003094A publication Critical patent/JP2012003094A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To extend a setting margin by arranging a setting range of a drive voltage for each discharge cell and stably generate a write operation while omitting a forced initialization operation.SOLUTION: In a driving method of a plasma display panel, one field comprises a plurality of subfields having a write period to generate a write discharge, a sustain period to generate a sustain discharge by alternately applying a sustain pulse corresponding to a luminance weight to a scan electrode and a sustain electrode, and an erase period to generate an erase discharge by applying a predetermined voltage to the scan electrode and the sustain electrode. In the erase period, an erase discharge is selectively generated only in a discharge cell where a write discharge has been generated in the immediately preceding write period. In the sustain period of at least one subfield, a voltage is applied to the data electrode and the timings of finishing the application of voltage at red, green and blue, respectively are independently controlled.

Description

本発明は、交流面放電型のプラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置に関する。   The present invention relates to an AC surface discharge type plasma display panel driving method and a plasma display apparatus.

プラズマディスプレイパネル(以下、「パネル」と略記する)は、走査電極と維持電極とデータ電極とを有する放電セルを複数備え、放電セル内でガス放電により発生させた紫外線で赤色、緑色および青色の各色の蛍光体を励起発光させてカラー表示を行っている。   A plasma display panel (hereinafter abbreviated as “panel”) includes a plurality of discharge cells each having a scan electrode, a sustain electrode, and a data electrode. Red, green, and blue light are generated by ultraviolet rays generated by gas discharge in the discharge cell. Color display is performed by exciting and emitting phosphors of each color.

パネルを駆動する方法としてはサブフィールド法、すなわち初期化期間と書込み期間と維持期間とを有するサブフィールドを複数用いて1つのフィールドを構成し、発光させるサブフィールドの組み合わせによって階調表示を行う方法が一般的である。各サブフィールドの初期化期間には初期化動作、書込み期間には書込み動作、維持期間には維持動作を行う。初期化動作は初期化放電を発生し、続く書込み動作に必要な壁電荷を形成する動作である。初期化動作には、直前のサブフィールドの動作にかかわらず初期化放電を発生させる強制初期化動作と、直前のサブフィールドで書込み放電を行った放電セルで初期化放電を発生させる選択初期化動作とがある。書込み動作は表示する画像に応じて放電セルで選択的に書込み放電を発生し壁電荷を形成する動作であり、維持動作は表示電極対に交互に維持パルスを印加して維持放電を発生させ、対応する放電セルの蛍光体層を発光させる動作である。この維持放電による蛍光体層の発光は階調表示に関係する発光であり、その他の発光は階調表示に関係しない発光である。   As a method for driving the panel, a subfield method, that is, a method in which a single field is formed using a plurality of subfields having an initialization period, an address period, and a sustain period, and gradation display is performed by combining subfields that emit light. Is common. An initialization operation is performed during the initialization period of each subfield, a write operation is performed during the write period, and a maintenance operation is performed during the sustain period. The initialization operation is an operation that generates initialization discharge and forms wall charges necessary for the subsequent address operation. The initializing operation includes a forced initializing operation that generates an initializing discharge regardless of the operation of the immediately preceding subfield, and a selective initializing operation that generates an initializing discharge in a discharge cell that has performed an address discharge in the immediately preceding subfield. There is. The address operation is an operation in which an address discharge is selectively generated in the discharge cells in accordance with an image to be displayed to form wall charges, and the sustain operation is to generate a sustain discharge by alternately applying a sustain pulse to the display electrode pair, This is an operation of causing the phosphor layer of the corresponding discharge cell to emit light. The light emission of the phosphor layer due to the sustain discharge is light emission related to gradation display, and the other light emission is light emission not related to gradation display.

サブフィールド法の中でも最も低い階調である黒を表示する際の輝度(以下、「黒輝度」と略記する)を下げ、階調表示に関係しない発光を極力減らしてコントラストを向上させる駆動方法が検討されている。例えば特許文献1には、強制初期化動作を行う回数を1フィールドに1回とし、緩やかに変化する傾斜波形電圧を用いて強制初期化動作を行う駆動方法が開示されている。   There is a driving method that improves the contrast by lowering the luminance (hereinafter abbreviated as “black luminance”) when displaying black, which is the lowest gradation among the subfield methods, and reducing light emission not related to gradation display as much as possible. It is being considered. For example, Patent Document 1 discloses a driving method in which the forced initialization operation is performed once per field and the forced initialization operation is performed using a slowly changing ramp waveform voltage.

また特許文献2には、表示電極対をn分割し、強制初期化動作を行う回数をnフィールドに1回とし、階調表示に関係しない発光をさらに減らして黒輝度をさらに下げ、コントラストをさらに向上させた駆動方法が開示されている。   Further, in Patent Document 2, the display electrode pair is divided into n, the number of times of forced initialization operation is set to once per n fields, light emission not related to gradation display is further reduced, black luminance is further reduced, and contrast is further increased. An improved driving method is disclosed.

特開2000−242224号公報JP 2000-242224 A 特開2006−091295号公報JP 2006-091295 A

しかしながら、特許文献1および特許文献2に記載の駆動方法であっても強制初期化動作を行うため、階調表示に関係しない発光が発生する。これは黒を表示する放電セルであっても発光が発生することを意味しており、そのためコントラストの向上には限界があった。また、強制初期化動作には、続く書込み期間において書込み放電を発生させるために必要な壁電荷を蓄積する働きがあり、加えて放電遅れ時間を短くして書込み放電を確実に発生させるためのプライミングを発生するという働きも持っている。そのため単純に強制初期化動作を省略すると、書込み放電が発生しない、あるいは書込み放電の放電遅れ時間が長くなりすぎて書込み動作が不安定となり、正常な画像表示ができなくなるという課題があった。加えて、各放電セルの放電特性のばらつきを吸収することができず、駆動電圧の設定マージンが狭くなるという課題もあった。   However, even with the driving methods described in Patent Document 1 and Patent Document 2, since the forced initialization operation is performed, light emission not related to gradation display occurs. This means that even a discharge cell displaying black emits light, and thus there is a limit to improving the contrast. In addition, the forced initialization operation has a function of accumulating wall charges necessary for generating an address discharge in the subsequent address period, and in addition, a priming for surely generating an address discharge by shortening the discharge delay time. It also has the function of generating. Therefore, if the forced initializing operation is simply omitted, there is a problem that the address discharge does not occur, or the address delay becomes too long for the address discharge to become unstable, and normal image display cannot be performed. In addition, there is a problem that variation in discharge characteristics of each discharge cell cannot be absorbed, and a drive voltage setting margin is narrowed.

本発明は、強制初期化動作を使用しなくても、各放電セルに対する駆動電圧の設定範囲をそろえて駆動電圧の設定マージンを広げるとともに、安定した書込み動作を行い、コントラストを向上したパネルの駆動方法およびプラズマディスプレイ装置を提供することを目的とする。   Even if the forced initialization operation is not used, the drive voltage setting margin is widened by aligning the drive voltage setting range for each discharge cell, and a stable address operation is performed to drive a panel with improved contrast. It is an object to provide a method and a plasma display device.

上記目的を達成するために本発明は、走査電極と維持電極とデータ電極とを有し赤、緑、青のいずれかの色に発光する蛍光体が塗布された放電セルを複数備えたパネルを駆動するパネルの駆動方法であって、走査電極に走査パルスを印加するとともにデータ電極に書込みパルスを印加して書込み放電を発生する書込み期間と、走査電極および維持電極に輝度重みに応じた維持パルスを交互に印加して維持放電を発生する維持期間と、走査電極および維持電極に所定の電圧を印加して消去放電を発生する消去期間と、を有するサブフィールドを複数用いて1つのフィールドを構成し、消去期間は、直前の書込み期間で書込み放電を発生した放電セルのみで選択的に消去放電を発生し、少なくとも1つのサブフィールドの維持期間において、データ電極に電圧を印加し、赤、緑、青の蛍光体が塗布された放電セル毎に電圧の印加を終えるタイミングを独立に制御することを特徴とする。この方法により、各放電セルに対する駆動電圧の設定範囲をそろえて駆動電圧の設定マージンを広げるとともに、書込み動作を安定に発生させつつ強制初期化動作を省略して、階調表示に関係しない発光をなくし、コントラストを大幅に向上したパネルの駆動方法を提供することができる。   To achieve the above object, the present invention provides a panel having a plurality of discharge cells each having a scan electrode, a sustain electrode, and a data electrode and coated with a phosphor that emits light in any one of red, green, and blue. A driving method of a panel to be driven, wherein a scanning pulse is applied to a scanning electrode and an addressing pulse is applied to a data electrode to generate an address discharge, and a sustaining pulse corresponding to a luminance weight is applied to the scanning electrode and the sustaining electrode One field is formed by using a plurality of subfields having a sustain period in which a sustain discharge is generated by alternately applying and a predetermined voltage is applied to the scan electrode and the sustain electrode to generate an erase discharge. In the erasing period, an erasing discharge is selectively generated only in the discharge cells in which the address discharge was generated in the immediately preceding address period, and the data in the sustain period of at least one subfield. Electrode a voltage is applied to, wherein the red, green, that blue phosphors to independently control timing to finish the application of the voltage for each applied discharge cells. By this method, the drive voltage setting margin is expanded by aligning the drive voltage setting range for each discharge cell, and the forced initialization operation is omitted while the address operation is stably generated, so that light emission not related to gradation display can be achieved. Therefore, it is possible to provide a panel driving method with significantly improved contrast.

また本発明は、走査電極と維持電極とデータ電極とを有する放電セルを複数備えたパネルを駆動するパネルの駆動方法であって、走査電極に走査パルスを印加するとともにデータ電極に書込みパルスを印加して書込み放電を発生する書込み期間と、走査電極および維持電極に輝度重みに応じた維持パルスを交互に印加して維持放電を発生する維持期間と、走査電極および維持電極に所定の電圧を印加して消去放電を発生する消去期間と、を有するサブフィールドを複数用いて1つのフィールドを構成し、消去期間は、直前の書込み期間で書込み放電を発生した放電セルのみで選択的に消去放電を発生し、最も輝度重みの小さいサブフィールドの維持期間において前記データ電極に印加する電圧の電圧印加終了タイミングは、それ以外のサブフィールドの維持期間において前記データ電極に印加する電圧印加終了タイミングよりも早いことを特徴とする。この方法により、駆動電圧の設定範囲をそろえて駆動電圧の設定マージンを広げるとともに、書込み動作を安定に発生させつつ強制初期化動作を省略して、階調表示に関係しない発光をなくし、コントラストを大幅に向上したパネルの駆動方法を提供することができる。   The present invention also relates to a panel driving method for driving a panel having a plurality of discharge cells each having a scan electrode, a sustain electrode, and a data electrode, wherein a scan pulse is applied to the scan electrode and an address pulse is applied to the data electrode. The address period for generating the address discharge, the sustain period for generating the sustain discharge by alternately applying the sustain pulse corresponding to the luminance weight to the scan electrode and the sustain electrode, and applying a predetermined voltage to the scan electrode and the sustain electrode An erasing period for generating an erasing discharge is used to form one field using a plurality of subfields, and the erasing period is selectively performed only by discharge cells that have generated an address discharge in the immediately preceding address period. The voltage application end timing of the voltage applied to the data electrode in the sustain period of the subfield having the smallest luminance weight is set to the other subframes. Characterized in that earlier than the voltage application end timing to be applied to the data electrodes in the sustain period of Rudo. This method widens the drive voltage setting margin by aligning the drive voltage setting range, eliminates the forced initialization operation while stably generating the write operation, eliminates light emission not related to gradation display, and improves the contrast. A greatly improved panel driving method can be provided.

本発明によれば、強制初期化動作を使用しなくても、各放電セルに対する駆動電圧の設定範囲をそろえて駆動電圧の設定マージンを広げるとともに、安定した書込み動作を行い、コントラストを向上したパネルの駆動方法およびプラズマディスプレイ装置を提供することが可能となる。   According to the present invention, even without using a forced initializing operation, the setting range of the driving voltage for each discharge cell is aligned to widen the setting margin of the driving voltage, and a stable writing operation is performed to improve the contrast. It is possible to provide a driving method and a plasma display device.

本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの分解斜視図The exploded perspective view of the panel used for the plasma display apparatus in Embodiment 1 of this invention 同プラズマディスプレイ装置に用いるパネルの電極配列図Panel arrangement of panels used in the plasma display device 同プラズマディスプレイ装置の各電極に印加する駆動電圧波形図Drive voltage waveform diagram applied to each electrode of the plasma display device 第1の電圧、第2の電圧、第3の電圧の定義を説明するための図The figure for demonstrating the definition of 1st voltage, 2nd voltage, and 3rd voltage データ電極に印加する電圧タイミングを色毎に独立に制御する理由を説明するための図The figure for demonstrating the reason which controls the voltage timing applied to a data electrode independently for every color 放電開始電圧を簡易的に測定する方法の一例を示す図The figure which shows an example of the method of measuring a discharge start voltage simply 本発明の実施の形態1におけるプラズマディスプレイ装置の回路ブロック図Circuit block diagram of plasma display device according to Embodiment 1 of the present invention 同プラズマディスプレイ装置の走査電極駆動回路の回路図Circuit diagram of scan electrode driving circuit of same plasma display device 同プラズマディスプレイ装置の維持電極駆動回路の回路図Circuit diagram of sustain electrode drive circuit of the plasma display device 同プラズマディスプレイ装置のデータ電極駆動回路の回路図Circuit diagram of data electrode drive circuit of the plasma display device 本発明の実施の形態2におけるプラズマディスプレイ装置の各電極に印加する第1のフィールドにおける駆動電圧波形図Drive voltage waveform diagram in the first field applied to each electrode of the plasma display device in the second exemplary embodiment of the present invention 同プラズマディスプレイ装置の各電極に印加する第2のフィールドにおける駆動電圧波形図Drive voltage waveform diagram in the second field applied to each electrode of the plasma display device

以下、本発明の実施の形態におけるプラズマディスプレイ装置について、図面を用いて説明する。   Hereinafter, a plasma display device according to an embodiment of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の分解斜視図である。ガラス製の前面基板21上には、走査電極22と維持電極23とからなる表示電極対24が複数形成されている。そして表示電極対24を覆うように誘電体層25が形成され、その誘電体層25上に保護層26が形成されている。保護層26は、放電を発生しやすくするために、電子放出性能の高い材料である酸化マグネシウムを用いて形成されている。背面基板31上にはデータ電極32が複数形成され、データ電極32を覆うように誘電体層33が形成され、さらにその上に井桁状の隔壁34が形成されている。そして、隔壁34の側面および誘電体層33上には赤色、緑色および青色の各色に発光する蛍光体層35が設けられている。
(Embodiment 1)
FIG. 1 is an exploded perspective view of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention. A plurality of display electrode pairs 24 each including a scanning electrode 22 and a sustaining electrode 23 are formed on a glass front substrate 21. A dielectric layer 25 is formed so as to cover the display electrode pair 24, and a protective layer 26 is formed on the dielectric layer 25. The protective layer 26 is formed using magnesium oxide, which is a material having high electron emission performance, in order to easily generate discharge. A plurality of data electrodes 32 are formed on the back substrate 31, a dielectric layer 33 is formed so as to cover the data electrodes 32, and a grid-like partition wall 34 is formed thereon. A phosphor layer 35 that emits red, green, and blue light is provided on the side surface of the partition wall 34 and on the dielectric layer 33.

これら前面基板21と背面基板31とは、微小な放電空間を挟んで表示電極対24とデータ電極32とが交差するように対向配置され、その外周部をガラスフリット等の封着材によって封着されている。そして放電空間には、放電ガスとして、例えばネオンとキセノンとの混合ガスが封入されている。放電空間は隔壁34によって複数の区画に仕切られており、表示電極対24とデータ電極32とが交差する部分に放電セルが形成されている。そしてこれらの放電セルが放電、発光することにより画像が表示される。   The front substrate 21 and the rear substrate 31 are arranged to face each other so that the display electrode pair 24 and the data electrode 32 intersect each other with a minute discharge space interposed therebetween, and the outer periphery thereof is sealed with a sealing material such as glass frit. Has been. In the discharge space, for example, a mixed gas of neon and xenon is sealed as a discharge gas. The discharge space is partitioned into a plurality of sections by partition walls 34, and discharge cells are formed at the intersections between the display electrode pairs 24 and the data electrodes 32. These discharge cells discharge and emit light to display an image.

なお、パネル10の構造は上述したものに限られるわけではなく、例えばストライプ状の隔壁を備えたものであってもよい。   Note that the structure of the panel 10 is not limited to the above-described structure, and for example, the panel 10 may include a stripe-shaped partition wall.

図2は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の電極配列図である。パネル10には、行方向に長いn本の走査電極SC1〜走査電極SCn(図1の走査電極22)およびn本の維持電極SU1〜維持電極SUn(図1の維持電極23)が配列され、列方向に長いm本のデータ電極D1〜データ電極Dm(図1のデータ電極32)が配列されている。そして、1対の走査電極SCi(i=1〜n)および維持電極SUiと1つのデータ電極Dj(j=1〜m)とが交差した部分に放電セルが形成され、放電セルは放電空間内にm×n個形成されている。   FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention. The panel 10 includes n scan electrodes SC1 to SCn (scan electrodes 22 in FIG. 1) and n sustain electrodes SU1 to SUn (sustain electrodes 23 in FIG. 1) that are long in the row direction. M data electrodes D1 to Dm (data electrodes 32 in FIG. 1) that are long in the column direction are arranged. A discharge cell is formed at a portion where one pair of scan electrode SCi (i = 1 to n) and sustain electrode SUi intersects one data electrode Dj (j = 1 to m), and the discharge cell is in the discharge space. M × n are formed.

次に、パネル10を駆動するための駆動電圧波形とその動作について説明する。   Next, a driving voltage waveform for driving panel 10 and its operation will be described.

プラズマディスプレイ装置は、サブフィールド法、すなわち1フィールドを複数のサブフィールドに分割し、サブフィールド毎に各放電セルの発光・非発光を制御することによって画像を表示する。   The plasma display apparatus displays an image by subfield method, that is, by dividing one field into a plurality of subfields and controlling light emission / non-light emission of each discharge cell for each subfield.

本実施の形態においては、それぞれのサブフィールドは、書込み期間、維持期間および消去期間を有する。本実施の形態においてはそれまでの放電の有無にかかわらず強制的に初期化放電を発生させる強制初期化動作を行わない。   In the present embodiment, each subfield has an address period, a sustain period, and an erase period. In the present embodiment, the forced initializing operation for forcibly generating the initializing discharge is not performed regardless of the presence or absence of the previous discharge.

書込み期間では、発光させるべき放電セルで選択的に書込み放電を発生し壁電荷を形成する書込み動作を行う。維持期間では、サブフィールド毎にあらかじめ決められた輝度重みに応じた数の維持パルスを表示電極対に交互に印加して、書込み放電を発生した放電セルで維持放電を発生させて発光させる維持動作を行う。なお、発光輝度を低く抑えるために維持期間を省略してもよい。消去期間では、直前の書込み期間において書込み放電を発生した放電セルのみで選択的に消去放電を発生し、書込み放電またはそれに続く維持放電で形成された壁電荷の履歴を消去し、続く書込み放電に必要な壁電荷を各電極上に形成する消去動作を行う。   In the address period, an address operation is performed in which address discharge is selectively generated in the discharge cells to emit light to form wall charges. In the sustain period, a sustain operation is performed in which a sustain pulse of the number corresponding to the luminance weight determined in advance for each subfield is alternately applied to the display electrode pair to generate a sustain discharge in the discharge cell that generated the address discharge. I do. Note that the maintenance period may be omitted in order to keep the emission luminance low. In the erasing period, an erasing discharge is selectively generated only in the discharge cells that generated the address discharge in the immediately preceding address period, and the history of wall charges formed by the address discharge or the subsequent sustain discharge is erased, and the subsequent address discharge is performed. An erasing operation is performed to form necessary wall charges on each electrode.

サブフィールド構成としては、例えば、1フィールドを10のサブフィールド(SF1、SF2、・・・、SF10)に分割し、各サブフィールドはそれぞれ、(1、2、3、6、11、18、30、44、60、80)の輝度重みを持つものとする。しかし、本発明は上記のサブフィールド数、輝度重み等のサブフィールド構成に限定されるものではない。   As a subfield configuration, for example, one field is divided into 10 subfields (SF1, SF2,..., SF10), and each subfield is (1, 2, 3, 6, 11, 18, 30). , 44, 60, 80). However, the present invention is not limited to the subfield configuration such as the number of subfields and the luminance weight.

図3は、本発明の実施の形態1におけるプラズマディスプレイ装置の各電極に印加する駆動電圧波形図である。   FIG. 3 is a drive voltage waveform diagram applied to each electrode of the plasma display device in accordance with the first exemplary embodiment of the present invention.

サブフィールドSF1の書込み期間では、データ電極D1〜データ電極Dmに電圧0(V)を、維持電極SU1〜維持電極SUnには電圧Veを印加し、走査電極SC1〜走査電極SCnに電圧Vcを印加する。次に、1行目の走査電極SC1に電圧Vaの走査パルスを印加するとともに発光すべき放電セルに対応するデータ電極Dkに電圧Vdの書込みパルスを印加する。   In the address period of subfield SF1, voltage 0 (V) is applied to data electrode D1 to data electrode Dm, voltage Ve is applied to sustain electrode SU1 to sustain electrode SUn, and voltage Vc is applied to scan electrode SC1 to scan electrode SCn. To do. Next, a scan pulse of voltage Va is applied to scan electrode SC1 in the first row, and an address pulse of voltage Vd is applied to data electrode Dk corresponding to the discharge cell to emit light.

するとデータ電極Dk上と走査電極SC1上との交差部の電圧差は、外部印加電圧の差(Vd−Va)にデータ電極Dk上の正の壁電圧が加算され、放電開始電圧VFdsを超えるためデータ電極Dkと走査電極SC1との間で放電が発生する。そしてデータ電極Dkと走査電極SC1との間で発生した放電が走査電極SC1と維持電極SU1との間に伸展して書込み放電が起こる。そして走査電極SC1上に正の壁電圧が蓄積され、維持電極SU1上に負の壁電圧が蓄積され、データ電極Dk上にも負の壁電圧が蓄積される。ここで電極上の壁電圧とは、電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。   Then, the voltage difference at the intersection between the data electrode Dk and the scan electrode SC1 is because the positive wall voltage on the data electrode Dk is added to the difference (Vd−Va) of the externally applied voltage, and exceeds the discharge start voltage VFds. Discharge occurs between data electrode Dk and scan electrode SC1. Then, the discharge generated between data electrode Dk and scan electrode SC1 extends between scan electrode SC1 and sustain electrode SU1, and an address discharge occurs. A positive wall voltage is accumulated on scan electrode SC1, a negative wall voltage is accumulated on sustain electrode SU1, and a negative wall voltage is also accumulated on data electrode Dk. Here, the wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.

このようにして、1行目に発光させるべき放電セルで書込み放電を起こして各電極上に壁電圧を蓄積する書込み動作が行われる。一方、書込みパルスを印加しなかったデータ電極Dhと走査電極SC1との交差部の電圧は放電開始電圧VFdsを超えないので、書込み放電は発生しない。   In this manner, an address operation is performed in which an address discharge is caused in the discharge cells to be lit in the first row and wall voltage is accumulated on each electrode. On the other hand, the voltage at the intersection of the data electrode Dh to which the address pulse is not applied and the scan electrode SC1 does not exceed the discharge start voltage VFds, so the address discharge does not occur.

次に、2行目の走査電極SC2に走査パルスを印加するとともに、発光すべき放電セルに対応するデータ電極Dkに書込みパルスを印加する。するとデータ電極Dkと走査電極SC2との間および維持電極SU2と走査電極SC2との間で書込み放電が起こり、走査電極SC2上に正の壁電圧が蓄積され、維持電極SU2上に負の壁電圧が蓄積され、データ電極Dk上にも負の壁電圧が蓄積される。このようにして、2行目に発光させるべき放電セルで書込み放電を起こして各電極上に壁電圧を蓄積する書込み動作が行われる。一方、書込みパルスを印加しなかったデータ電極と走査電極SC2との交差部の電圧は放電開始電圧VFdsを超えないので、書込み放電は発生しない。   Next, a scan pulse is applied to scan electrode SC2 in the second row, and an address pulse is applied to data electrode Dk corresponding to the discharge cell to emit light. Then, an address discharge occurs between data electrode Dk and scan electrode SC2 and between sustain electrode SU2 and scan electrode SC2, a positive wall voltage is accumulated on scan electrode SC2, and a negative wall voltage is applied on sustain electrode SU2. And a negative wall voltage is also accumulated on the data electrode Dk. In this manner, an address operation is performed in which an address discharge is caused in the discharge cell to be lit in the second row and wall voltage is accumulated on each electrode. On the other hand, the voltage at the intersection between the data electrode to which the address pulse is not applied and scan electrode SC2 does not exceed the discharge start voltage VFds, so that address discharge does not occur.

以下、n行目の走査電極SCnに至るまで同様の書込み動作を行い、続く維持放電に必要な壁電荷を形成する。   Thereafter, the same address operation is performed until the scan electrode SCn in the n-th row, and wall charges necessary for the subsequent sustain discharge are formed.

ここで、以下の説明のために、第1の電圧V1、第2の電圧V2、第3の電圧V3を、図4に示すように定義する。後述する維持期間において走査電極SCiに印加する維持パルスの低圧側電圧からデータ電極Djに印加する電圧を減じた電圧を第1の電圧V1とし、維持期間において走査電極SCiに印加する維持パルスの高圧側電圧からデータ電極Djに印加する電圧を減じた電圧を第2の電圧V2とし、書込み期間において走査電極SCiに印加する走査パルスの低圧側電圧からデータ電極Djに印加するデータパルスの低圧側電圧を減じた電圧を第3の電圧V3とする。   Here, for the following description, the first voltage V1, the second voltage V2, and the third voltage V3 are defined as shown in FIG. A voltage obtained by subtracting the voltage applied to the data electrode Dj from the low-voltage side voltage of the sustain pulse applied to the scan electrode SCi in the sustain period to be described later is defined as a first voltage V1, and the high voltage of the sustain pulse applied to the scan electrode SCi in the sustain period. The voltage obtained by subtracting the voltage applied to the data electrode Dj from the side voltage is the second voltage V2, and the low voltage side voltage of the data pulse applied to the data electrode Dj from the low voltage side voltage of the scan pulse applied to the scan electrode SCi in the address period The voltage obtained by subtracting is set as the third voltage V3.

さらに、データ電極Djを陽極とし走査電極SCiを陰極とする放電開始電圧を放電開始電圧VFdsとし、データ電極Djを陰極とし走査電極SCiを陽極とする放電開始電圧を放電開始電圧VFsdとする。なお、データ電極Djを陽極とし走査電極SCiを陰極とする放電とは、放電が発生するときの放電セル内の電界が、データ電極Dj側が高電位側、走査電極SCi側が低電位側となる放電である。またデータ電極Djを陰極とし走査電極を陽極とする放電とは、放電が発生するときの放電セル内の電界が、データ電極Dj側が低電位側、走査電極SCi側が高電位側となる放電である。そして走査電極SCi側には電子放出性能の高い酸化マグネシウムの保護層26が形成されているため、放電開始電圧VFdsは放電開始電圧VFsdよりも低くなる。   Further, a discharge start voltage with the data electrode Dj as an anode and the scan electrode SCi as a cathode is a discharge start voltage VFds, and a discharge start voltage with the data electrode Dj as a cathode and the scan electrode SCi as an anode is a discharge start voltage VFsd. The discharge with the data electrode Dj as the anode and the scan electrode SCi as the cathode is a discharge in which the electric field in the discharge cell when the discharge occurs is a high potential side on the data electrode Dj side and a low potential side on the scan electrode SCi side. It is. The discharge with the data electrode Dj as the cathode and the scan electrode as the anode is a discharge in which the electric field in the discharge cell when the discharge occurs is a low potential side on the data electrode Dj side and a high potential side on the scan electrode SCi side. . Since the protective layer 26 of magnesium oxide having high electron emission performance is formed on the scan electrode SCi side, the discharge start voltage VFds is lower than the discharge start voltage VFsd.

このとき走査電極SCiに印加する走査パルスの電圧Vaは、次の2つの条件(条件1)、(条件2)を満たすように設定されている。   At this time, the voltage Va of the scan pulse applied to the scan electrode SCi is set so as to satisfy the following two conditions (condition 1) and (condition 2).

(条件1)全ての放電セルに対して、第1の電圧V1から第3の電圧V3を減じた電圧が、データ電極Djを陽極とし走査電極SCiを陰極とする放電開始電圧VFds以上、すなわち、(V1−V3)≧VFdsを満たす。   (Condition 1) For all discharge cells, the voltage obtained by subtracting the third voltage V3 from the first voltage V1 is equal to or higher than the discharge start voltage VFds with the data electrode Dj as the anode and the scan electrode SCi as the cathode, (V1-V3) ≧ VFds is satisfied.

(条件2)全ての放電セルに対して、第2の電圧V2から第3の電圧V3を減じた電圧が、データ電極Djを陽極とし走査電極SCiを陰極とする放電開始電圧VFdsとデータ電極Djを陰極とし走査電極SCiを陽極とする放電開始電圧VFsdとの和を超えないこと、すなわち、
(V2−V3)≦(VFds+VFsd)を満たす。
(Condition 2) For all the discharge cells, a voltage obtained by subtracting the third voltage V3 from the second voltage V2 is a discharge start voltage VFds and a data electrode Dj with the data electrode Dj as an anode and the scan electrode SCi as a cathode. And the discharge start voltage VFsd with the scan electrode SCi as the anode and not exceeding, that is,
(V2−V3) ≦ (VFds + VFsd) is satisfied.

続くサブフィールドSF1の維持期間では、データ電極D1、D2、・・・、に電圧Vdを印加する。そして維持電極SU1〜維持電極SUnに電圧0(V)を印加するとともに走査電極SC1〜走査電極SCnに電圧Vsの維持パルスを印加する。すると書込み放電を起こした放電セルでは、走査電極SCi上と維持電極SUi上との電圧差が電圧Vsに走査電極SCi上の壁電圧と維持電極SUi上の壁電圧との差を加算したものとなり走査電極SCiと維持電極SUiとの間の放電開始電圧VFssを超える。そして、走査電極SCiと維持電極SUiとの間に維持放電が起こり、このとき発生した紫外線により蛍光体層35が発光する。そして走査電極SCi上に負の壁電圧が蓄積され、維持電極SUi上に正の壁電圧が蓄積される。さらにデータ電極Dk上にも正の壁電圧が蓄積される。一方、書込み放電が起きなかった放電セルでは維持放電は発生せず、初期化動作の終了時における壁電圧が保たれる。   In the subsequent sustain period of subfield SF1, voltage Vd is applied to data electrodes D1, D2,. Then, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn, and a sustain pulse of voltage Vs is applied to scan electrode SC1 through scan electrode SCn. Then, in the discharge cell in which the address discharge has occurred, the voltage difference between scan electrode SCi and sustain electrode SUi is the voltage Vs plus the difference between the wall voltage on scan electrode SCi and the wall voltage on sustain electrode SUi. It exceeds the discharge start voltage VFss between scan electrode SCi and sustain electrode SUi. Then, a sustain discharge occurs between scan electrode SCi and sustain electrode SUi, and phosphor layer 35 emits light by the ultraviolet rays generated at this time. Then, a negative wall voltage is accumulated on scan electrode SCi, and a positive wall voltage is accumulated on sustain electrode SUi. Further, a positive wall voltage is accumulated on the data electrode Dk. On the other hand, the sustain discharge does not occur in the discharge cells in which the address discharge has not occurred, and the wall voltage at the end of the initialization operation is maintained.

続いて、走査電極SC1〜走査電極SCnに電圧0(V)を印加するとともに維持電極SU1〜維持電極SUnに電圧Vsの維持パルスを印加する。すると、維持放電を起こした放電セルでは再び維持放電が起こり、蛍光体層35が発光する。そして維持電極SUi上に負の壁電圧が蓄積され走査電極SCi上に正の壁電圧が蓄積される。以降同様に、走査電極SC1〜走査電極SCnと維持電極SU1〜維持電極SUnとに交互に輝度重みに応じた数の維持パルスを印加し、書込み放電を起こした放電セルで維持放電を継続して発生させる。   Subsequently, voltage 0 (V) is applied to scan electrode SC1 through scan electrode SCn, and a sustain pulse of voltage Vs is applied to sustain electrode SU1 through sustain electrode SUn. Then, the sustain discharge occurs again in the discharge cell in which the sustain discharge has occurred, and the phosphor layer 35 emits light. Then, a negative wall voltage is accumulated on sustain electrode SUi, and a positive wall voltage is accumulated on scan electrode SCi. Thereafter, similarly, sustain pulses of the number corresponding to the luminance weight are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn, and the sustain discharge is continued in the discharge cells that have caused the address discharge. generate.

続くサブフィールドSF1の消去期間では、引き続きデータ電極D1、D2、・・・、に電圧Vdを印加する。そして維持電極SU1〜維持電極SUnに電圧0(V)を印加するとともに走査電極SC1〜走査電極SCnには電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。その後、緑の蛍光体が塗布された放電セルのデータ電極D2、D5、D8、・・・、の印加電圧を0(V)にする。Δt1後、青の蛍光体が塗布された放電セルのデータ電極D3、D6、D9、・・・、の印加電圧を0(V)にする。さらにそのΔt2後、赤の蛍光体が塗布された放電セルのデータ電極D1、D4、D7、・・・、の印加電圧を0(V)にする。なお本実施の形態においては電圧Vrは電圧Vsと同じ電圧に設定されている。すると維持放電を行った放電セル(維持期間が省略されている場合は書込み放電を行った放電セル)では走査電極SCiと維持電極SUiとの間で微弱な消去放電が発生する。そして走査電極SCi上および維持電極SUi上の壁電圧が弱められる。   In the subsequent erasing period of the subfield SF1, the voltage Vd is continuously applied to the data electrodes D1, D2,. Then, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn, and an upward ramp waveform voltage that gradually rises to voltage Vr is applied to scan electrode SC1 through scan electrode SCn. Thereafter, the applied voltage of the data electrodes D2, D5, D8,... Of the discharge cell coated with the green phosphor is set to 0 (V). After Δt1, the applied voltage of the data electrodes D3, D6, D9,... Of the discharge cell coated with the blue phosphor is set to 0 (V). Further, after Δt2, the applied voltage of the data electrodes D1, D4, D7,... Of the discharge cell coated with the red phosphor is set to 0 (V). In the present embodiment, the voltage Vr is set to the same voltage as the voltage Vs. Then, a weak erasing discharge is generated between scan electrode SCi and sustain electrode SUi in the discharge cell in which the sustain discharge has been performed (the discharge cell in which the address discharge has been performed when the sustain period is omitted). Then, the wall voltage on scan electrode SCi and sustain electrode SUi is weakened.

その後、維持電極SU1〜維持電極SUnに電圧Veを印加し、走査電極SC1〜走査電極SCnには電圧0(V)から電圧Viに向かって緩やかに下降する下り傾斜波形電圧を印加する。なお電圧Viは、走査パルスの電圧Vaと等しいか電圧Vaよりわずかに高い電圧に設定されている。   Thereafter, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, and a downward ramp waveform voltage that gently falls from voltage 0 (V) toward voltage Vi is applied to scan electrode SC1 through scan electrode SCn. The voltage Vi is set to be equal to or slightly higher than the voltage Va of the scanning pulse.

すると、微弱な消去放電を発生した放電セルで再び微弱な放電が発生し、走査電極SCi上、維持電極SUi上の壁電圧、およびデータ電極Dk上の壁電圧の過剰な部分が放電され、書込み動作に適した壁電圧に調整される。このようにして消去動作が完了する。   Then, a weak discharge is generated again in the discharge cell in which the weak erasing discharge is generated, and an excessive portion of the wall voltage on scan electrode SCi, sustain electrode SUi, and data electrode Dk is discharged, and writing is performed. It is adjusted to a wall voltage suitable for operation. In this way, the erase operation is completed.

続くサブフィールドSF2〜SF10における動作は、維持パルス数を除きSF1の動作と同様である。   The subsequent operations in subfields SF2 to SF10 are the same as those in SF1 except for the number of sustain pulses.

このように本実施の形態においては、全てのサブフィールドの消去期間で、直前の書込み期間において書込み放電を発生した放電セルのみで消去放電を発生する。そして本実施の形態においては、書込み放電を発生しなかった放電セルで放電が発生することはない。そのため黒を表示する放電セルで発光が発生することはない。   As described above, in the present embodiment, in the erasing period of all subfields, erasing discharge is generated only in the discharge cells that have generated address discharge in the immediately preceding address period. In the present embodiment, no discharge occurs in the discharge cells that did not generate the address discharge. Therefore, no light emission occurs in the discharge cell displaying black.

本実施の形態においては、電圧Viは−260(V)、電圧Vcは−145(V)、電圧Vaは−280(V)、電圧Vsは200(V)、電圧Vrは200(V)、電圧Veは70(V)、電圧Vdは60(V)である。しかしこれらの電圧値は上述した値に限定されるものではなく、パネルの放電特性やプラズマディスプレイ装置の仕様にもとづき最適に設定することが望ましい。   In this embodiment, the voltage Vi is −260 (V), the voltage Vc is −145 (V), the voltage Va is −280 (V), the voltage Vs is 200 (V), the voltage Vr is 200 (V), The voltage Ve is 70 (V), and the voltage Vd is 60 (V). However, these voltage values are not limited to the values described above, and are desirably set optimally based on the discharge characteristics of the panel and the specifications of the plasma display device.

なお、本実施の形態において用いたパネル10の放電開始電圧VFdsや放電開始電圧VFsdは、後述する方法により測定されており、それらの値は以下のとおりである。放電開始電圧は蛍光体によって異なり、赤の蛍光体を塗布した放電セルに対する「データ電極−走査電極」間の放電開始電圧VFdsは200±10(V)、同放電開始電圧VFsdは320±10(V)、緑の蛍光体を塗布した放電セルに対する「データ電極−走査電極」間の放電開始電圧VFdsは220±10(V)、同放電開始電圧VFsdは350±10(V)、青の蛍光体を塗布した放電セルに対する「データ電極−走査電極」間の放電開始電圧VFdsは200±10(V)、同放電開始電圧VFsdは330±10(V)であった。また、「走査電極−維持電極」間の放電開始電圧VFssは、赤および青の蛍光体を塗布した放電セルに対しては250±10(V)、緑の蛍光体を塗布した放電セルでは、280±10(V)であった。   Note that the discharge start voltage VFds and the discharge start voltage VFsd of the panel 10 used in the present embodiment are measured by the methods described later, and their values are as follows. The discharge start voltage varies depending on the phosphor, and the discharge start voltage VFds between the “data electrode-scan electrode” for the discharge cell coated with the red phosphor is 200 ± 10 (V), and the discharge start voltage VFsd is 320 ± 10 ( V), the discharge start voltage VFds between the “data electrode and the scan electrode” for the discharge cell coated with the green phosphor is 220 ± 10 (V), the discharge start voltage VFsd is 350 ± 10 (V), and the blue fluorescence The discharge start voltage VFds between the “data electrode and the scan electrode” for the discharge cell coated with the body was 200 ± 10 (V), and the discharge start voltage VFsd was 330 ± 10 (V). The discharge start voltage VFss between the “scan electrode and sustain electrode” is 250 ± 10 (V) for the discharge cells coated with red and blue phosphors, and for the discharge cells coated with green phosphors, It was 280 ± 10 (V).

本実施の形態においては、維持パルスの低圧側の電圧は電圧0(V)、維持期間においてデータ電極に印加する電圧は電圧0(V)であるため、第1の電圧V1は電圧0(V)である。また、走査パルスの低圧側は電圧Va、データパルスの低圧側電圧は電圧0(V)であるため、第3の電圧V3は電圧Vaである。また、放電開始電圧VFdsの最大値は、ばらつきを考慮すると電圧230(V)である。従って、(電圧V1−電圧V3)=−Va>(VFdsの最大値)、すなわち280(V)>230(V)となり、全ての放電セルで(条件1)を満足していることがわかる。   In the present embodiment, the voltage on the low voltage side of the sustain pulse is voltage 0 (V), and the voltage applied to the data electrode in the sustain period is voltage 0 (V), so the first voltage V1 is voltage 0 (V ). Further, since the low-voltage side of the scan pulse is the voltage Va and the low-voltage side voltage of the data pulse is the voltage 0 (V), the third voltage V3 is the voltage Va. Further, the maximum value of the discharge start voltage VFds is a voltage 230 (V) in consideration of variations. Therefore, (voltage V1−voltage V3) = − Va> (maximum value of VFds), that is, 280 (V)> 230 (V), and it is understood that (condition 1) is satisfied in all the discharge cells.

また維持パルスの高圧側は電圧Vsであり、維持期間においてデータ電極に印加する電圧は電圧0(V)であるため、第2の電圧V2は電圧Vsである。また、放電開始電圧VFsdと放電開始電圧VFdsとの和の最小値は電圧500(V)である。従って、(第2の電圧V2−第3の電圧V3)=Vs−Va<(VFds+VFsd)の最小値、すなわち480(V)<500(V)となり、(条件2)についても全ての放電セルで満足していることがわかる。   Further, since the high voltage side of the sustain pulse is the voltage Vs and the voltage applied to the data electrode in the sustain period is the voltage 0 (V), the second voltage V2 is the voltage Vs. The minimum value of the sum of the discharge start voltage VFsd and the discharge start voltage VFds is a voltage 500 (V). Therefore, the minimum value of (second voltage V2−third voltage V3) = Vs−Va <(VFds + VFsd), that is, 480 (V) <500 (V), and (condition 2) also applies to all discharge cells. You can see that you are satisfied.

また、上記の電圧から明らかなように、走査電極には、走査パルスの低圧側電圧Va以上、維持パルスの高圧側電圧Vs以下の電圧を印加し、走査パルスの低圧側電圧Vaより低い電圧または維持パルスの高圧側電圧Vsを超える電圧を印加することはない。そのため書込み放電を行わなかった放電セルが発光することはない。   Further, as apparent from the above voltage, a voltage lower than the low voltage side voltage Va of the scan pulse is applied to the scan electrode by applying a voltage not lower than the low voltage side voltage Va of the scan pulse and not higher than the high voltage side voltage Vs of the sustain pulse. A voltage exceeding the high voltage Vs of the sustain pulse is not applied. Therefore, a discharge cell that has not performed address discharge does not emit light.

また、上記の電圧から明らかなように、(条件1)を満たすように電圧Vaを低く設定すると、走査パルスの低圧側電圧Vaの絶対値|Va|は、維持パルスの高圧側電圧Vsの絶対値|Vs|よりも大きくなる。   As apparent from the above voltage, when the voltage Va is set low so as to satisfy (Condition 1), the absolute value | Va | of the low-voltage side voltage Va of the scan pulse is the absolute value of the high-voltage side voltage Vs of the sustain pulse. It becomes larger than the value | Vs |.

このように本実施の形態においては、各電極に印加する駆動電圧波形、特に走査パルスの電圧Vaを、(条件1)および(条件2)を満たすように設定している。すなわち、消去期間は、直前の書込み期間で書込み放電を発生した放電セルのみで選択的に消去放電を発生し、かつ、維持期間において走査電極SCiに印加する維持パルスの低圧側電圧からデータ電極Djに印加する電圧を減じた電圧を第1の電圧V1とし、維持期間において走査電極SCiに印加する維持パルスの高圧側電圧からデータ電極Djに印加する電圧を減じた電圧を第2の電圧V2とし、書込み期間において走査電極SCiに印加する走査パルスの低圧側電圧からデータ電極Djに印加するデータパルスの低圧側電圧を減じた電圧を第3の電圧V3とするとき、第1の電圧V1から第3の電圧V3を減じた電圧が、データ電極Djを陽極とし走査電極SCiを陰極とする放電開始電圧VFds以上であり、第2の電圧V2から第3の電圧V3を減じた電圧が、データ電極Djを陽極とし走査電極SCiを陰極とする放電開始電圧VFdsとデータ電極Djを陰極とし走査電極SCiを陽極とする放電開始電圧VFsdとの和を超えない。このように設定することにより、強制初期化動作を使用しなくても、書込み動作を安定に発生させることができる。その理由は以下のように考えられる。   Thus, in the present embodiment, the drive voltage waveform applied to each electrode, in particular, the voltage Va of the scan pulse is set to satisfy (Condition 1) and (Condition 2). That is, in the erasing period, the erasing discharge is selectively generated only in the discharge cells that have generated the address discharge in the immediately preceding address period, and the data electrode Dj is applied from the low-voltage side voltage of the sustain pulse applied to the scan electrode SCi in the sustain period. The voltage obtained by subtracting the voltage applied to the first electrode V1 is defined as the first voltage V1, and the voltage obtained by subtracting the voltage applied to the data electrode Dj from the high-voltage side voltage of the sustain pulse applied to the scan electrode SCi in the sustain period is defined as the second voltage V2. When the voltage obtained by subtracting the low-voltage side voltage of the data pulse applied to the data electrode Dj from the low-voltage side voltage of the scan pulse applied to the scan electrode SCi in the address period is the third voltage V3, the first voltage V1 to the first voltage 3 is equal to or higher than the discharge start voltage VFds having the data electrode Dj as the anode and the scan electrode SCi as the cathode, and the voltage V3 is reduced from the second voltage V2. 3 is less than the sum of the discharge start voltage VFds with the data electrode Dj as the anode and the scan electrode SCi as the cathode and the discharge start voltage VFsd with the data electrode Dj as the cathode and the scan electrode SCi as the anode. Absent. By setting in this way, the write operation can be stably generated without using the forced initialization operation. The reason is considered as follows.

まず、(条件1)について説明する。書込み放電を発生させるためには、データ電極Djと走査電極SCiとの間で放電を開始する必要がある。データ電極Djに比較的低い電圧Vdaを印加して放電を開始するためには、走査電極SCiに走査パルスを印加したときに放電開始電圧VFdsにほぼ等しい電圧がデータ電極Djと走査電極SCiとの間に印加されるように、データ電極Dj上に十分な正の壁電圧を蓄積しておかなければならない。上述したように本実施の形態においては強制初期化動作を行わず、黒を表示する放電セルでは放電を発生させない。そのため壁電圧を能動的に制御することができず、黒を表示する放電セルの壁電圧は不定となる。しかしながらこのような放電セルであっても放電空間内にわずかな荷電粒子が存在すれば、それらが放電空間内部の電界を緩和するように各々の電極に移動して放電セルの壁に付着して壁電圧を蓄積する。   First, (Condition 1) will be described. In order to generate the address discharge, it is necessary to start the discharge between the data electrode Dj and the scan electrode SCi. In order to start a discharge by applying a relatively low voltage Vda to the data electrode Dj, a voltage substantially equal to the discharge start voltage VFds is applied between the data electrode Dj and the scan electrode SCi when a scan pulse is applied to the scan electrode SCi. A sufficient positive wall voltage must be stored on the data electrode Dj to be applied in between. As described above, in this embodiment, the forced initialization operation is not performed, and no discharge is generated in the discharge cells displaying black. Therefore, the wall voltage cannot be actively controlled, and the wall voltage of the discharge cell displaying black is indefinite. However, even in such a discharge cell, if there are a few charged particles in the discharge space, they move to each electrode so as to relax the electric field inside the discharge space and adhere to the wall of the discharge cell. Accumulate wall voltage.

まず、このようにして蓄積される壁電圧について説明する。維持期間では維持放電を発生する放電セルで多量の荷電粒子が発生するので、これらが拡散することにより、維持放電を起こさずに黒を表示する放電セル内部の空間にもわずかながら荷電粒子が供給されていると考えられる。そして黒を表示する放電セルでは、走査電極SCi、維持電極SUiおよびデータ電極Djのそれぞれに印加される電圧により、電極間の電位差を緩和するようにゆっくりと壁電圧が蓄積されていく。このとき壁電圧が漸近する(最終的に落ち着く)電圧を放置壁電圧と定義すると、仮に走査電極SCiおよび維持電極SUiに交互に維持パルスを印加し続けた場合の放置壁電圧は維持パルスの高圧側電圧と低圧側電圧との間の電圧となる。実際には維持パルス以外の駆動電圧波形も印加されるので、各放電セルの放置壁電圧は概ね維持パルスの低圧側電圧に近いと考えてよい。   First, the wall voltage accumulated in this way will be described. During the sustain period, a large amount of charged particles are generated in the discharge cell that generates the sustain discharge, and when these particles diffuse, a small amount of charged particles are supplied to the space inside the discharge cell that displays black without causing the sustain discharge. It is thought that. In the discharge cell displaying black, wall voltages are slowly accumulated so as to alleviate the potential difference between the electrodes by the voltages applied to scan electrode SCi, sustain electrode SUi, and data electrode Dj. If the voltage at which the wall voltage gradually approaches (finally settles) is defined as the neglected wall voltage, the neglected wall voltage when the sustain pulse is continuously applied alternately to the scan electrode SCi and the sustain electrode SUi is the high voltage of the sustain pulse. The voltage is between the side voltage and the low voltage. Actually, since a drive voltage waveform other than the sustain pulse is also applied, it can be considered that the neglected wall voltage of each discharge cell is substantially close to the low voltage of the sustain pulse.

また放置壁電圧は、放電セル内部に塗布されている蛍光体の帯電特性の影響を大きく受ける。本実施の形態においては、蛍光体の帯電特性はそれぞれ赤の蛍光体が+20(μC/g)、緑の蛍光体が−30(μC/g)、青の蛍光体が+10(μC/g)であり、緑の蛍光体のみ負電位に帯電する特性を持つために、赤および青の蛍光体に比べて放置壁電圧は低くなる。   The neglected wall voltage is greatly affected by the charging characteristics of the phosphor applied inside the discharge cell. In this embodiment, the charging characteristics of the phosphor are +20 (μC / g) for the red phosphor, −30 (μC / g) for the green phosphor, and +10 (μC / g) for the blue phosphor, respectively. Since only the green phosphor is charged to a negative potential, the left wall voltage is lower than that of the red and blue phosphors.

次に、書込み期間における放電セル内部の電圧について説明する。黒を表示する放電セルのデータ電極Dj上には概ね維持パルスの低圧側電圧またはそれよりも高い放置壁電圧に向かって徐々に壁電圧が蓄積される。一方、本実施の形態における走査パルスの電圧Vaは、(条件1)を満たす電圧である。そのため、データ電極Dj上には書込み放電を発生させるに十分な正の壁電圧が蓄積され、強制初期化動作を全く行わなくても書込み放電を発生させることができる。   Next, the voltage inside the discharge cell in the address period will be described. On the data electrode Dj of the discharge cell displaying black, the wall voltage is gradually accumulated toward the low voltage of the sustain pulse or the neglected wall voltage higher than that. On the other hand, the voltage Va of the scan pulse in the present embodiment is a voltage that satisfies (Condition 1). Therefore, a positive wall voltage sufficient to generate the address discharge is accumulated on the data electrode Dj, and the address discharge can be generated without performing any forced initialization operation.

また黒を表示する放電セルの壁電圧はゆっくりと放置壁電圧に漸近し、消去期間において「データ電極−走査電極」間の電圧に壁電圧を加算した電圧が放電開始電圧に近づくと暗電流が流れ、データ電極Dj上の壁電圧を低下させる。そしてこのとき流れる暗電流が書込み放電を助けるプライミングの役割を果たすため、黒を表示していた放電セルであっても、大きな放電遅れを生じることなく安定した書込み放電を発生させることができると考えることができる。   In addition, the wall voltage of the discharge cell displaying black slowly approaches the left wall voltage, and when the voltage obtained by adding the wall voltage to the voltage between the “data electrode-scan electrode” approaches the discharge start voltage during the erasing period, the dark current is generated. The wall voltage on the data electrode Dj is lowered. And since the dark current flowing at this time plays a role of priming to assist the address discharge, it is considered that a stable address discharge can be generated without causing a large discharge delay even in a discharge cell displaying black. be able to.

このように、(条件1)を満たすように各電極に印加する駆動電圧、特に(条件1)を満たすように走査パルスの電圧Vaを低く設定することにより、強制初期化動作を行うことなく、書込みに必要な壁電圧を蓄積することができ、かつ書込み放電を安定させるプライミングも発生させることができる。   In this way, by setting the drive voltage applied to each electrode to satisfy (Condition 1), in particular, by setting the scan pulse voltage Va low so as to satisfy (Condition 1), the forced initialization operation is not performed. The wall voltage necessary for addressing can be accumulated, and priming for stabilizing the address discharge can also be generated.

次に、(条件2)について説明する。走査パルスの電圧Vaを低くしすぎると、維持期間において走査電極SCnに維持パルスの電圧Vsを印加した時点で書込み動作の有無に関係なく放電が発生して画像を表示できなくなる。この誤放電を抑制するためには、維持パルスの電圧Vsを印加した時点で「データ電極−走査電極」間の電圧が放電開始電圧VFsd以下となるように設定しなければならない。この条件が(条件2)である。   Next, (Condition 2) will be described. If the voltage Va of the scan pulse is too low, a discharge occurs regardless of whether or not an address operation is performed when the sustain pulse voltage Vs is applied to the scan electrode SCn in the sustain period, and an image cannot be displayed. In order to suppress this erroneous discharge, it is necessary to set the voltage between the “data electrode-scanning electrode” to be equal to or lower than the discharge start voltage VFsd when the sustain pulse voltage Vs is applied. This condition is (Condition 2).

このように本実施の形態においては、全ての放電セルで(条件1)および(条件2)を満たすように駆動電圧波形が設定されている。そのため書込み動作を安定に発生させつつ強制初期化動作を省略して、階調表示に関係しない発光をなくした画像表示が可能となる。   Thus, in the present embodiment, the drive voltage waveform is set so as to satisfy (Condition 1) and (Condition 2) in all the discharge cells. Therefore, it is possible to display an image without light emission not related to gradation display by omitting the forced initialization operation while stably generating the writing operation.

また本実施の形態においては、赤の蛍光体が塗布された放電セルのデータ電極Dr、緑の蛍光体が塗布された放電セルのデータ電極Dg、青の蛍光体が塗布された放電セルのデータ電極Dbに印加する電圧Vdの印加期間を各色毎に独立に制御を行っている。このように設定することで、電圧Vaの設定マージンを広げることができる。以下、その理由について説明する。   In the present embodiment, the data electrode Dr of the discharge cell coated with the red phosphor, the data electrode Dg of the discharge cell coated with the green phosphor, and the data of the discharge cell coated with the blue phosphor. The application period of the voltage Vd applied to the electrode Db is controlled independently for each color. By setting in this way, the setting margin of the voltage Va can be expanded. The reason will be described below.

(条件1)および(条件2)を満たす電圧Vaの設定範囲は、放電開始電圧VFsd、放電開始電圧VFdsに依存する。上述したように赤の蛍光体と比較して、青の蛍光体の放電開始電圧VFsd、VFdsは高くなる傾向がある。さらに、緑の蛍光体の放電開始電圧VFsd、VFdsは赤や青よりも高くなる傾向がある。そのため、青の蛍光体が塗布されている放電セルでは走査パルスの電圧Vaの設定範囲が、赤の蛍光体と比較して高電圧側にシフトする。さらに、緑の蛍光体のVaの設定範囲が、赤や青の蛍光体と比較して高電圧側にシフトする。   The setting range of the voltage Va that satisfies (Condition 1) and (Condition 2) depends on the discharge start voltage VFsd and the discharge start voltage VFds. As described above, the discharge start voltages VFsd and VFds of the blue phosphor tend to be higher than those of the red phosphor. Furthermore, the discharge start voltages VFsd and VFds of the green phosphor tend to be higher than red and blue. Therefore, in the discharge cell to which the blue phosphor is applied, the setting range of the voltage Va of the scan pulse is shifted to the high voltage side as compared with the red phosphor. Further, the setting range of Va of the green phosphor shifts to the high voltage side as compared with the red and blue phosphors.

図5はデータ電極に印加する電圧タイミングを色毎に独立に制御する理由を説明するための図である。図5(a)は消去期間中に印加している電圧Vdを0(V)に落とすタイミングを走査電極SCiに印加している。電圧Vsを降下させるまでの期間Sで表している。   FIG. 5 is a diagram for explaining the reason why the voltage timing applied to the data electrode is controlled independently for each color. In FIG. 5A, the timing for dropping the voltage Vd applied during the erasing period to 0 (V) is applied to the scan electrode SCi. This is represented by a period S until the voltage Vs is lowered.

図5(b)は、期間Sと各色毎の電圧Vaの設定範囲を示している。各色毎のVaの設定範囲は、電圧Va下限〜電圧Va上限までの範囲である。電圧Vaの電圧設定範囲は蛍光体の帯電特性差により、色毎に異なってきている。期間Sを全色同じタイミングにしてしまうと、走査パルスの電圧Vaの実際の電圧設定マージンが狭くなる。言い換えれば、各色の放電セルに対する走査パルスの電圧Vaの設定範囲をそろえることにより、実際の電圧Vaの設定マージンを広げることができる。   FIG. 5B shows the setting range of the voltage Va for each period S and each color. The setting range of Va for each color is a range from the voltage Va lower limit to the voltage Va upper limit. The voltage setting range of the voltage Va is different for each color due to a difference in charging characteristics of the phosphor. If the period S is set to the same timing for all colors, the actual voltage setting margin of the voltage Va of the scan pulse becomes narrow. In other words, the setting margin of the actual voltage Va can be widened by aligning the setting range of the voltage Va of the scanning pulse for the discharge cells of each color.

本実施の形態においては、赤の蛍光体が塗布された放電セルのデータ電極DrにVdを印加するタイミングΔtよりも、青の蛍光体が塗布された放電セルのデータ電極DbにVdを印加するタイミングΔtを長く設定し、さらに、緑の蛍光体が塗布された放電セルのデータ電極DgにVdを印加するタイミングΔtをさらに長く設定することで、各色の放電セルに対する走査パルスの電圧Vaの設定範囲をそろえ、実際の走査パルスの電圧Vaの設定マージンを広げている。   In the present embodiment, Vd is applied to the data electrode Db of the discharge cell coated with the blue phosphor at a timing Δt at which Vd is applied to the data electrode Dr of the discharge cell coated with the red phosphor. By setting the timing Δt to be longer and further setting the timing Δt for applying Vd to the data electrode Dg of the discharge cell coated with the green phosphor to be longer, the setting of the voltage Va of the scanning pulse for the discharge cell of each color is set. The set margin of the voltage Va of the actual scanning pulse is expanded by aligning the range.

次に、放電開始電圧VFsdと放電開始電圧VFds、および壁電圧は例えば、IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.ED−24,NO.7,JULY,1977“Measurement of a Plasma in the AC Plasma Display panel Using RF Capacitance and Microwave Techniques”に記載されている方法により測定できる。あるいは、以下のようにして簡易的に測定してもよい。放電開始電圧を簡易的に測定する方法の一例を図6を用いて説明する。   Next, the discharge start voltage VFsd, the discharge start voltage VFds, and the wall voltage are, for example, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-24, NO. 7, JULY, 1977 "Measurement of a Plasma in the AC Plasma Display panel Using RF Capacitance and Microwave Techniques". Or you may measure simply as follows. An example of a method for simply measuring the discharge start voltage will be described with reference to FIG.

まず壁電荷を消去する動作を行う。具体的には図6の壁電荷消去期間に示したように、予想される放電開始電圧よりも十分高いパルス状の電圧Versを、測定したい電極間、例えばデータ電極と走査電極とに交互に印加する。次に、放電開始を観測する。具体的には図6の測定期間に示したように、予想される放電開始電圧よりも低いパルス状の電圧Vmsrを一方の電極、例えばデータ電極に印加し、そのときの放電にともなう発光をフォトマル等の光検出センサを用いて検出する。放電が観測されない場合には、壁電荷消去期間で壁電荷を消去する動作を行った後、測定期間で電圧の絶対値を少しあげたパルス状の電圧Vmsrを印加して発光を観測する。   First, an operation for erasing wall charges is performed. Specifically, as shown in the wall charge erasing period of FIG. 6, a pulsed voltage Vers sufficiently higher than the expected discharge start voltage is alternately applied between the electrodes to be measured, for example, the data electrode and the scan electrode. To do. Next, the discharge start is observed. Specifically, as shown in the measurement period of FIG. 6, a pulsed voltage Vmsr lower than the expected discharge start voltage is applied to one electrode, for example, the data electrode, and the light emission associated with the discharge at that time is photogenerated. Detection is performed using a light detection sensor such as Maru. When no discharge is observed, after performing an operation of erasing wall charges during the wall charge erasing period, light emission is observed by applying a pulsed voltage Vmsr with a slightly increased absolute value of voltage during the measurement period.

この動作を繰り返し、測定期間において発光が観測される絶対値が最小の電圧Vmsrが放電開始電圧である。このとき測定期間で印加する電圧Vmsrを正の電圧とすると、データ電極を陽極とし走査電極を陰極とする放電開始電圧VFdsを測定することができる。また、測定期間で印加する電圧Vmsrを負の電圧とすると、データ電極を陰極とし走査電極を陽極とする放電開始電圧VFsdを測定することができる。   This operation is repeated, and the voltage Vmsr having the minimum absolute value at which light emission is observed in the measurement period is the discharge start voltage. At this time, if the voltage Vmsr applied in the measurement period is a positive voltage, the discharge start voltage VFds with the data electrode as the anode and the scan electrode as the cathode can be measured. If the voltage Vmsr applied during the measurement period is a negative voltage, the discharge start voltage VFsd with the data electrode as the cathode and the scan electrode as the anode can be measured.

放電開始電圧がわかれば、壁電圧が蓄積している放電セルに対して、放電が開始する電圧を測定し、その電圧値とあらかじめ測定した放電開始電圧との差として壁電圧を知ることができる。   If the discharge start voltage is known, the voltage at which discharge starts is measured for the discharge cell in which the wall voltage is accumulated, and the wall voltage can be known as the difference between the voltage value and the discharge start voltage measured in advance. .

次に、パネル10を駆動するための駆動回路について説明する。図7は、本発明の実施の形態におけるプラズマディスプレイ装置40の回路ブロック図である。プラズマディスプレイ装置40は、パネル10とその駆動回路とを備え、駆動回路は、画像信号処理回路41、データ電極駆動回路42、走査電極駆動回路43、維持電極駆動回路44、タイミング発生回路45および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。   Next, a drive circuit for driving the panel 10 will be described. FIG. 7 is a circuit block diagram of plasma display device 40 in accordance with the exemplary embodiment of the present invention. The plasma display device 40 includes the panel 10 and its drive circuit. The drive circuit includes an image signal processing circuit 41, a data electrode drive circuit 42, a scan electrode drive circuit 43, a sustain electrode drive circuit 44, a timing generation circuit 45, and each of them. A power supply circuit (not shown) for supplying necessary power to the circuit block is provided.

画像信号処理回路41は、入力された画像信号をサブフィールド毎の発光・非発光を示す画像データに変換する。データ電極駆動回路42はサブフィールド毎の画像データを各データ電極D1〜データ電極Dmに対応する書込みパルスに変換し各データ電極D1〜データ電極Dmに印加する。タイミング発生回路45は垂直および水平同期信号をもとにして各回路ブロックの動作を制御する各種のタイミング信号を発生し、それぞれの回路ブロックへ供給する。走査電極駆動回路43は、タイミング信号にもとづいて上述した駆動電圧波形を発生し各走査電極SC1〜走査電極SCnのそれぞれに印加する。維持電極駆動回路44は、タイミング信号にもとづいて上述した駆動電圧波形を発生し維持電極SU1〜維持電極SUnに印加する。   The image signal processing circuit 41 converts the input image signal into image data indicating light emission / non-light emission for each subfield. The data electrode driving circuit 42 converts the image data for each subfield into address pulses corresponding to the data electrodes D1 to Dm and applies them to the data electrodes D1 to Dm. The timing generation circuit 45 generates various timing signals for controlling the operation of each circuit block on the basis of the vertical and horizontal synchronization signals, and supplies them to the respective circuit blocks. Scan electrode drive circuit 43 generates the drive voltage waveform described above based on the timing signal and applies it to each of scan electrodes SC1 to SCn. Sustain electrode drive circuit 44 generates the drive voltage waveform described above based on the timing signal and applies it to sustain electrode SU1 through sustain electrode SUn.

図8は、本発明の実施の形態1におけるプラズマディスプレイ装置40の走査電極駆動回路43の回路図である。走査電極駆動回路43は、維持パルス発生回路50と、傾斜波形電圧発生回路60と、走査パルス発生回路70とを備えている。   FIG. 8 is a circuit diagram of scan electrode drive circuit 43 of plasma display device 40 in accordance with the first exemplary embodiment of the present invention. Scan electrode drive circuit 43 includes sustain pulse generation circuit 50, ramp waveform voltage generation circuit 60, and scan pulse generation circuit 70.

維持パルス発生回路50は、電力回収回路51と、スイッチング素子Q55と、スイッチング素子Q56と、スイッチング素子Q59とを有し、走査電極SC1〜走査電極SCnに印加する維持パルスを発生する。電力回収回路51は走査電極SC1〜走査電極SCnを駆動するときの電力を回収して再利用する。スイッチング素子Q55は走査電極SC1〜走査電極SCnを電圧Vsにクランプし、スイッチング素子Q56は走査電極SC1〜走査電極SCnを電圧0(V)にクランプする。スイッチング素子Q59は分離スイッチであり、走査電極駆動回路43を構成するスイッチング素子の寄生ダイオード等を介して電流が逆流するのを防止するために設けられている。   Sustain pulse generation circuit 50 includes power recovery circuit 51, switching element Q55, switching element Q56, and switching element Q59, and generates sustain pulses to be applied to scan electrode SC1 through scan electrode SCn. The power recovery circuit 51 recovers and reuses power when driving the scan electrodes SC1 to SCn. Switching element Q55 clamps scan electrode SC1 through scan electrode SCn to voltage Vs, and switching element Q56 clamps scan electrode SC1 through scan electrode SCn to voltage 0 (V). The switching element Q59 is a separation switch, and is provided to prevent a current from flowing backward through a parasitic diode or the like of the switching element constituting the scan electrode driving circuit 43.

走査パルス発生回路70は、スイッチング素子Q71H1〜スイッチング素子Q71Hn、スイッチング素子Q71L1〜スイッチング素子Q71Ln、スイッチング素子Q72を有する。そして電圧Vaの電源、および走査パルス発生回路70の基準電位(図8に示した接点Aの電位)に重畳された電圧(Vc−Va)の電源E71をもとにして走査パルスを発生し、走査電極SC1〜走査電極SCnのそれぞれに、図3に示したタイミングで走査パルスを順次印加する。なお、走査パルス発生回路70は、維持動作時には維持パルス発生回路50の出力電圧をそのまま出力する。すなわち、接点Aの電圧を走査電極SC1〜走査電極SCnへ出力する。   Scan pulse generating circuit 70 includes switching element Q71H1 to switching element Q71Hn, switching element Q71L1 to switching element Q71Ln, and switching element Q72. Then, a scan pulse is generated based on the power source of voltage Va and the power source E71 of voltage (Vc−Va) superimposed on the reference potential of the scan pulse generating circuit 70 (the potential of the contact A shown in FIG. 8). Scan pulses are sequentially applied to each of scan electrode SC1 through scan electrode SCn at the timing shown in FIG. Scan pulse generation circuit 70 outputs the output voltage of sustain pulse generation circuit 50 as it is during the sustain operation. That is, the voltage at contact A is output to scan electrode SC1 through scan electrode SCn.

傾斜波形電圧発生回路60は、ミラー積分回路61、ミラー積分回路63を備え、図3に示した傾斜波形電圧を発生させる。ミラー積分回路61は、トランジスタQ61とコンデンサC61と抵抗R61とを有し、入力端子IN61に一定の電圧を印加することにより、電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧を発生する。ミラー積分回路63は、トランジスタQ63とコンデンサC63と抵抗R63とを有し、入力端子IN63に一定の電圧を印加することにより、電圧Viに向かって緩やかに低下する下り傾斜波形電圧を発生する。なおスイッチング素子Q69も分離スイッチであり、走査電極駆動回路43を構成するスイッチング素子の寄生ダイオード等を介して電流が逆流するのを防止するために設けられている。   The ramp waveform voltage generation circuit 60 includes a Miller integration circuit 61 and a Miller integration circuit 63, and generates the ramp waveform voltage shown in FIG. Miller integrating circuit 61 includes transistor Q61, capacitor C61, and resistor R61. By applying a constant voltage to input terminal IN61, Miller integrating circuit 61 generates an upward ramp waveform voltage that gradually increases toward voltage Vr. Miller integrating circuit 63 includes transistor Q63, capacitor C63, and resistor R63, and applies a constant voltage to input terminal IN63 to generate a downward ramp waveform voltage that gradually decreases toward voltage Vi. The switching element Q69 is also a separation switch, and is provided to prevent a current from flowing backward through a parasitic diode or the like of the switching element constituting the scan electrode drive circuit 43.

なお、これらのスイッチング素子およびトランジスタは、MOSFETやIGBT等の一般に知られた素子を用いて構成することができる。またこれらのスイッチング素子およびトランジスタは、タイミング発生回路45で発生したそれぞれのスイッチング素子およびトランジスタに対応するタイミング信号により制御される。   In addition, these switching elements and transistors can be configured using generally known elements such as MOSFETs and IGBTs. These switching elements and transistors are controlled by timing signals corresponding to the switching elements and transistors generated by the timing generation circuit 45.

図9は、本発明の実施の形態1におけるプラズマディスプレイ装置40の維持電極駆動回路44の回路図である。維持電極駆動回路44は、維持パルス発生回路80と、一定電圧発生回路85とを備えている。   FIG. 9 is a circuit diagram of sustain electrode drive circuit 44 of plasma display device 40 in accordance with the first exemplary embodiment of the present invention. Sustain electrode drive circuit 44 includes sustain pulse generation circuit 80 and constant voltage generation circuit 85.

維持パルス発生回路80は、電力回収回路81と、スイッチング素子Q83と、スイッチング素子Q84とを有し、維持電極SU1〜維持電極SUnに印加する維持パルスを発生する。電力回収回路81は維持電極SU1〜維持電極SUnを駆動するときの電力を回収して再利用する。スイッチング素子Q83は維持電極SU1〜維持電極SUnを電圧Vsにクランプし、スイッチング素子Q84は維持電極SU1〜維持電極SUnを電圧0(V)にクランプする。   Sustain pulse generation circuit 80 includes power recovery circuit 81, switching element Q83, and switching element Q84, and generates sustain pulses to be applied to sustain electrode SU1 through sustain electrode SUn. The power recovery circuit 81 recovers and reuses the power when driving the sustain electrodes SU1 to SUn. Switching element Q83 clamps sustain electrode SU1 through sustain electrode SUn to voltage Vs, and switching element Q84 clamps sustain electrode SU1 through sustain electrode SUn to voltage 0 (V).

一定電圧発生回路85は、スイッチング素子Q86、スイッチング素子Q87を有し、維持電極SU1〜維持電極SUnに電圧Veを印加する。   Constant voltage generation circuit 85 includes switching element Q86 and switching element Q87, and applies voltage Ve to sustain electrode SU1 through sustain electrode SUn.

なお、これらのスイッチング素子も、MOSFETやIGBT等の一般に知られた素子を用いて構成することができる。またこれらのスイッチング素子も、タイミング発生回路45で発生したそれぞれのスイッチング素子に対応するタイミング信号により制御される。   In addition, these switching elements can also be comprised using generally known elements, such as MOSFET and IGBT. These switching elements are also controlled by timing signals corresponding to the respective switching elements generated by the timing generation circuit 45.

図10は、本発明の実施の形態1におけるプラズマディスプレイ装置40のデータ電極駆動回路42の回路図である。データ電極駆動回路42は、スイッチング素子Q91H1〜スイッチング素子Q91Hm、スイッチング素子Q91L1〜スイッチング素子Q91Lmを有する。そしてスイッチング素子Q91Ljをオンにすることでデータ電極Djに電圧0(V)を印加し、スイッチング素子Q91Hjをオンにすることでデータ電極Djに電圧Vdを印加する。   FIG. 10 is a circuit diagram of data electrode drive circuit 42 of plasma display device 40 in accordance with the first exemplary embodiment of the present invention. Data electrode drive circuit 42 includes switching element Q91H1 to switching element Q91Hm and switching element Q91L1 to switching element Q91Lm. The voltage 0 (V) is applied to the data electrode Dj by turning on the switching element Q91Lj, and the voltage Vd is applied to the data electrode Dj by turning on the switching element Q91Hj.

したがって、SF1の維持期間においては、赤の蛍光体が塗布された放電セルのデータ電極D1、D4、D7、・・・、Dr、・・・、および青の蛍光体が塗布された放電セルのデータ電極D3、D6、D9、・・・、Db、・・・に電圧Vdを印加するには、スイッチング素子Q91H1、スイッチング素子Q91H4、スイッチング素子Q91H7、・・・、スイッチング素子Q91Hr、・・・、スイッチング素子Q91H3、スイッチング素子Q91H6、スイッチング素子Q91H9、・・・、スイッチング素子Q91Hb、・・・をオンにし、スイッチング素子Q91L1、スイッチング素子Q91L4、スイッチング素子Q91L7、・・・、スイッチング素子Q91Lr、・・・、スイッチング素子Q91L3、スイッチング素子Q91L6、スイッチング素子Q91L9、・・・、スイッチング素子Q91Lb、・・・をオフにすればよい。また緑の蛍光体が塗布された放電セルのデータ電極D2、D5、D8、・・・、Dg、・・・、に電圧Vdを印加するためには、スイッチング素子Q91H2、スイッチング素子Q91H5、スイッチング素子Q91H8、・・・、スイッチング素子Q91Hg、・・・をオンにし、スイッチング素子Q91L2、スイッチング素子Q91L5、スイッチング素子Q91L8、・・・、スイッチング素子Q91Lg、・・・をオフにすればよい。   Therefore, in the sustain period of SF1, the data electrodes D1, D4, D7,..., Dr,... Of the discharge cells coated with the red phosphor and the discharge cells coated with the blue phosphor. In order to apply the voltage Vd to the data electrodes D3, D6, D9, ..., Db, ..., the switching element Q91H1, the switching element Q91H4, the switching element Q91H7, ..., the switching element Q91Hr, ..., The switching element Q91H3, the switching element Q91H6, the switching element Q91H9,..., The switching element Q91Hb,. , Switching element Q91L3, switching Element Q91L6, switching elements Q91L9, ···, switching elements Q91Lb, may be off the .... In order to apply the voltage Vd to the data electrodes D2, D5, D8,..., Dg,... Of the discharge cells coated with green phosphor, the switching element Q91H2, the switching element Q91H5, and the switching element Q91H8,..., Switching element Q91Hg,... May be turned on, and switching element Q91L2, switching element Q91L5, switching element Q91L8,.

このような駆動回路を用いて、図3に示したパネルの駆動電圧波形を発生させることができる。しかし図7〜図10に示した駆動回路は一例であって、本発明がこれらの駆動回路の回路構成に限定されるものではない。   Using such a drive circuit, the drive voltage waveform of the panel shown in FIG. 3 can be generated. However, the drive circuits shown in FIGS. 7 to 10 are examples, and the present invention is not limited to the circuit configurations of these drive circuits.

以上のように本実施の形態のプラズマディスプレイパネルの駆動方法では、上述の条件を満たす走査パルスを走査電極に印加することで、強制初期化動作を使用しなくても、各放電セルに対する駆動電圧の設定範囲をそろえて駆動電圧の設定マージンを広げるとともに、安定した書込み動作を行うことができるとともに、コントラストを向上させたパネルの駆動方法およびプラズマディスプレイ装置を提供することができる。   As described above, in the driving method of the plasma display panel according to the present embodiment, the driving voltage for each discharge cell can be applied without applying the forced initializing operation by applying the scanning pulse satisfying the above-described condition to the scanning electrode. A panel driving method and a plasma display apparatus can be provided in which a setting margin of the driving voltage is widened, a setting margin of the driving voltage is expanded, a stable writing operation can be performed, and contrast is improved.

(実施の形態2)
本発明の他の駆動電圧波形について以下に図面を用いて説明する。図11および図12は、本発明の第2の実施の形態におけるプラズマディスプレイ装置の各電極に印加する駆動電圧波形図であり、図11は第1のフィールドにおける駆動電圧波形を示し、図12は第2のフィールドにおける駆動電圧波形を示している。そして本実施の形態2においては、第1のフィールドと第2のフィールドとを交互に用いてパネルを駆動している。なお本実施の形態においても、実施の形態1と同様のサブフィールド構成を用いて実施の形態1と同様のパネル10を駆動するものとして説明する。
(Embodiment 2)
Other drive voltage waveforms of the present invention will be described below with reference to the drawings. 11 and 12 are drive voltage waveform diagrams applied to each electrode of the plasma display device according to the second embodiment of the present invention. FIG. 11 shows a drive voltage waveform in the first field, and FIG. The drive voltage waveform in the second field is shown. In the second embodiment, the panel is driven by alternately using the first field and the second field. In the present embodiment also, description will be made assuming that panel 10 similar to that in the first embodiment is driven using a subfield configuration similar to that in the first embodiment.

第1のフィールドのSF1の書込み期間では、データ電極D1〜データ電極Dmに電圧0(V)を、維持電極SU1〜維持電極SUnには電圧Veを印加し、走査電極SC1〜走査電極SCnに電圧Vcを印加する。次に、1行目の走査電極SC1に電圧Vaの走査パルスを印加するとともに発光すべき放電セルに対応するデータ電極Dkに電圧Vdの書込みパルスを印加する。ここで電圧Vaは、実施の形態1と同様に(条件1)と(条件2)とを満たすように設定されている。   In the address period of SF1 in the first field, voltage 0 (V) is applied to data electrode D1 through data electrode Dm, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, and voltage is applied to scan electrode SC1 through scan electrode SCn. Vc is applied. Next, a scan pulse of voltage Va is applied to scan electrode SC1 in the first row, and an address pulse of voltage Vd is applied to data electrode Dk corresponding to the discharge cell to emit light. Here, the voltage Va is set so as to satisfy (Condition 1) and (Condition 2) as in the first embodiment.

するとデータ電極Dkと走査電極SC1との間、および走査電極SC1と維持電極SU1との間で書込み放電が起こる。そして走査電極SC1上に正の壁電圧が蓄積され、維持電極SU1上に負の壁電圧が蓄積され、データ電極Dk上にも負の壁電圧が蓄積される。このようにして1行目に発光させるべき放電セルで書込み放電を起こして各電極上に壁電圧を蓄積する書込み動作が行われる。一方、書込みパルスを印加しなかったデータ電極Dhと走査電極SC1との交差部の電圧は放電開始電圧を超えないので、書込み放電は発生しない。   Then, address discharge occurs between data electrode Dk and scan electrode SC1, and between scan electrode SC1 and sustain electrode SU1. A positive wall voltage is accumulated on scan electrode SC1, a negative wall voltage is accumulated on sustain electrode SU1, and a negative wall voltage is also accumulated on data electrode Dk. In this way, an address operation is performed in which an address discharge is caused in the discharge cell to emit light in the first row and wall voltage is accumulated on each electrode. On the other hand, the voltage at the intersection between the data electrode Dh and the scan electrode SC1 to which the address pulse is not applied does not exceed the discharge start voltage, so the address discharge does not occur.

以下、2行目の走査電極SC2、3行目の走査電極SC3、・・・、(n−1)行目の走査電極SCn−1、n行目の走査電極SCnに走査パルスを順次印加する。そして1行目の放電セル、2行目の放電セル、3行目の放電セル、・・・、(n−1)行目の放電セル、n行目の放電セルの順に書込み動作を行い、続く維持放電に必要な壁電荷を形成する。   Hereinafter, scan pulses are sequentially applied to the scan electrode SC2 in the second row, the scan electrode SC3 in the third row,..., The scan electrode SCn-1 in the (n−1) th row, and the scan electrode SCn in the nth row. . Then, the address operation is performed in the order of the discharge cell in the first row, the discharge cell in the second row, the discharge cell in the third row,..., The discharge cell in the (n−1) row, and the discharge cell in the n row. Wall charges necessary for the subsequent sustain discharge are formed.

続くサブフィールドSF1の維持期間では、データ電極に電圧Vdを印加する。そして維持電極SU1〜維持電極SUnに電圧0(V)を印加するとともに走査電極SC1〜走査電極SCnに電圧Vsの維持パルスを印加する。すると書込み放電を起こした放電セルでは、走査電極SCiと維持電極SUiとの間に維持放電が起こり、このとき発生した紫外線により蛍光体層35が発光する。そして走査電極SCi上に負の壁電圧が蓄積され、維持電極SUi上に正の壁電圧が蓄積される。さらにデータ電極Dk上にも正の壁電圧が蓄積される。一方、書込み放電が起きなかった放電セルでは維持放電は発生せず、初期化動作の終了時における壁電圧が保たれる。   In the subsequent sustain period of subfield SF1, voltage Vd is applied to the data electrode. Then, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn, and a sustain pulse of voltage Vs is applied to scan electrode SC1 through scan electrode SCn. Then, in the discharge cell in which the address discharge has occurred, a sustain discharge occurs between scan electrode SCi and sustain electrode SUi, and phosphor layer 35 emits light due to the ultraviolet rays generated at this time. Then, a negative wall voltage is accumulated on scan electrode SCi, and a positive wall voltage is accumulated on sustain electrode SUi. Further, a positive wall voltage is accumulated on the data electrode Dk. On the other hand, the sustain discharge does not occur in the discharge cells in which the address discharge has not occurred, and the wall voltage at the end of the initialization operation is maintained.

続いて、走査電極SC1〜走査電極SCnに電圧0(V)を印加するとともに維持電極SU1〜維持電極SUnに電圧Vsの維持パルスを印加する。すると、維持放電を起こした放電セルでは再び維持放電が起こり、蛍光体層35が発光する。そして維持電極SUi上に負の壁電圧が蓄積され走査電極SCi上に正の壁電圧が蓄積される。以降同様に、走査電極SC1〜走査電極SCnと維持電極SU1〜維持電極SUnとに交互に輝度重みに応じた数の維持パルスを印加し、書込み放電を起こした放電セルで維持放電を継続して発生させる。   Subsequently, voltage 0 (V) is applied to scan electrode SC1 through scan electrode SCn, and a sustain pulse of voltage Vs is applied to sustain electrode SU1 through sustain electrode SUn. Then, the sustain discharge occurs again in the discharge cell in which the sustain discharge has occurred, and the phosphor layer 35 emits light. Then, a negative wall voltage is accumulated on sustain electrode SUi, and a positive wall voltage is accumulated on scan electrode SCi. Thereafter, similarly, sustain pulses of the number corresponding to the luminance weight are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn, and the sustain discharge is continued in the discharge cells that have caused the address discharge. generate.

続くサブフィールドSF1の消去期間では、引き続きデータ電極には電圧Vdを印加する。そして維持電極SU1〜維持電極SUnに電圧0(V)を印加するとともに走査電極SC1〜走査電極SCnには電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。なお実施の形態2においても電圧Vrは電圧Vsと同じ電圧に設定されている。すると維持放電を行った放電セル(維持期間が省略されている場合は書込み放電を行った放電セル)では走査電極SCiを陽極とし維持電極SUiを陰極とする1回目の微弱な消去放電が発生する。そして走査電極SCi上および維持電極SUi上の壁電圧が弱められる。   In the subsequent erasing period of the subfield SF1, the voltage Vd is continuously applied to the data electrode. Then, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn, and an upward ramp waveform voltage that gradually rises to voltage Vr is applied to scan electrode SC1 through scan electrode SCn. In the second embodiment, the voltage Vr is set to the same voltage as the voltage Vs. Then, in a discharge cell that has undergone a sustain discharge (a discharge cell that has undergone an address discharge when the sustain period is omitted), a first weak erase discharge is generated with scan electrode SCi as an anode and sustain electrode SUi as a cathode. . Then, the wall voltage on scan electrode SCi and sustain electrode SUi is weakened.

次に、緑の蛍光体が塗布された放電セルのデータ電極D2、D5、D8、・・・、Dgに電圧0(V)を印加する。そして、さらにΔt1時間経過後、青の蛍光体が塗布された放電セルのデータ電極D3、D6、D9、・・・、Dbに電圧0(V)を印加する。そして青の蛍光体の放電セルに電圧0(V)を印加してからΔt2時間経過後、赤の蛍光体が塗布された放電セルのデータ電極D1、D4、D7、・・・、Drに電圧0(V)を印加する。そして維持電極SU1〜維持電極SUnに電圧0(V)を印加したまま、走査電極SC1〜走査電極SCnには電圧0(V)から電圧Viに向かって緩やかに下降する下り傾斜波形電圧を印加する。すると微弱な消去放電を発生した放電セルで再び微弱な放電が発生する。このときの微弱放電は走査電極を陰極としデータ電極を陽極とする1回目の放電である。   Next, a voltage of 0 (V) is applied to the data electrodes D2, D5, D8,..., Dg of the discharge cells coated with the green phosphor. Further, after a lapse of Δt1, a voltage of 0 (V) is applied to the data electrodes D3, D6, D9,..., Db of the discharge cell coated with the blue phosphor. Then, after Δt2 hours have elapsed since the voltage 0 (V) was applied to the blue phosphor discharge cell, the voltage was applied to the data electrodes D1, D4, D7,..., Dr of the discharge cell coated with the red phosphor. Apply 0 (V). Then, with the voltage 0 (V) applied to sustain electrode SU1 through sustain electrode SUn, a downward ramp waveform voltage that gently falls from voltage 0 (V) toward voltage Vi is applied to scan electrode SC1 through scan electrode SCn. . Then, a weak discharge is generated again in the discharge cell that has generated a weak erasing discharge. The weak discharge at this time is the first discharge with the scanning electrode as the cathode and the data electrode as the anode.

その後、データ電極に電圧Vdを再び印加するとともに、走査電極SC1〜走査電極SCnに電圧Vrの矩形電圧を印加する。すると微弱な消去放電を発生した放電セルで3度目の放電が発生する。このときの放電は走査電極を陽極とし維持電極を陰極とする2回目の放電であり、弱い放電である。   Thereafter, voltage Vd is applied again to the data electrodes, and a rectangular voltage of voltage Vr is applied to scan electrode SC1 through scan electrode SCn. Then, a third discharge is generated in the discharge cell in which the weak erasing discharge is generated. The discharge at this time is a second discharge in which the scan electrode is the anode and the sustain electrode is the cathode, and is a weak discharge.

さらにその後、緑の放電セルのデータ電極D2、D5、D8、・・・、Dgに電圧0(V)を印加する。そして、Δt3時間経過後、青の蛍光体が塗布されたデータ電極D3、D6、D9、・・・、Dbに電圧0(V)を印加する。そして、さらにΔt2時間経過後、赤の蛍光体が塗布されたデータ電極D1、D4、D7、・・・、Drに電圧0(V)を印加する。そして維持電極SU1〜維持電極SUnに電圧Veを印加し、走査電極SC1〜走査電極SCnには電圧0(V)から電圧Viに向かって緩やかに下降する下り傾斜波形電圧を印加する。すると放電を発生した放電セルで4度目の放電が発生する。このときの微弱放電により走査電極SCi上、維持電極SUi上の壁電圧、およびデータ電極Dk上の壁電圧の過剰な部分が放電され、書込み動作に適した壁電圧に調整される。このようにして消去動作が完了する。   Thereafter, a voltage 0 (V) is applied to the data electrodes D2, D5, D8,..., Dg of the green discharge cells. Then, after the lapse of Δt3 time, a voltage of 0 (V) is applied to the data electrodes D3, D6, D9,..., Db coated with the blue phosphor. Further, after a lapse of Δt2, a voltage of 0 (V) is applied to the data electrodes D1, D4, D7,. Then, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, and a downward ramp waveform voltage that gently falls from voltage 0 (V) toward voltage Vi is applied to scan electrode SC1 through scan electrode SCn. Then, a fourth discharge occurs in the discharge cell that generated the discharge. Due to the weak discharge at this time, an excessive portion of the wall voltage on scan electrode SCi, sustain electrode SUi, and data electrode Dk is discharged and adjusted to a wall voltage suitable for the address operation. In this way, the erase operation is completed.

続くサブフィールドSF2の書込み期間の動作は、SF1の書込み期間と同様の動作であるため説明を省略する。   The subsequent operation in the writing period of the subfield SF2 is the same as that in the writing period of SF1, and thus the description thereof is omitted.

続くSF2の維持期間では、赤、緑、青の全ての放電セルのデータ電極D1〜データ電極Dmに電圧Vdを印加する。そして走査電極SC1〜走査電極SCnと維持電極SU1〜維持電極SUnとに交互に輝度重みに応じた数の維持パルスを印加し、書込み放電を起こした放電セルで維持放電を継続して発生させる。   In the subsequent sustain period of SF2, the voltage Vd is applied to the data electrodes D1 to Dm of all the red, green, and blue discharge cells. Then, sustain pulses of the number corresponding to the luminance weight are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn, and sustain discharge is continuously generated in the discharge cells in which address discharge has occurred.

続くSF2の消去期間では、引き続き全ての放電セルのデータ電極D1〜データ電極Dmに電圧Vdを印加する。そして維持電極SU1〜維持電極SUnに電圧0(V)を印加するとともに走査電極SC1〜走査電極SCnには電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加して、維持放電を行った放電セル(維持期間が省略されている場合は書込み放電を行った放電セル)で微弱な消去放電を発生させる。その後、データ電極D1〜データ電極Dmに電圧0(V)を印加し、維持電極SU1〜維持電極SUnに電圧0(V)を印加したまま、走査電極SC1〜走査電極SCnに電圧0(V)から電圧Viに向かって緩やかに下降する下り傾斜波形電圧を印加する。その後、データ電極D1〜データ電極Dmに電圧Vdを印加し、走査電極SC1〜走査電極SCnに電圧Vrの矩形電圧を印加する。さらにその後、データ電極D1〜データ電極Dmに電圧0(V)を印加するとともに維持電極SU1〜維持電極SUnに電圧Veを印加し、走査電極SC1〜走査電極SCnには電圧0(V)から電圧Viに向かって緩やかに下降する下り傾斜波形電圧を印加する。こうして走査電極SCi上、維持電極SUi上の壁電圧、およびデータ電極Dk上の壁電圧の過剰な部分が放電され、書込み動作に適した壁電圧に調整される。   In the subsequent erase period of SF2, the voltage Vd is continuously applied to the data electrodes D1 to Dm of all the discharge cells. A discharge cell in which sustain discharge is performed by applying voltage 0 (V) to sustain electrode SU1 through sustain electrode SUn and applying an upward ramp waveform voltage that gradually rises to voltage Vr to scan electrode SC1 through scan electrode SCn. A weak erasure discharge is generated in (a discharge cell in which an address discharge is performed when the sustain period is omitted). Thereafter, voltage 0 (V) is applied to data electrode D1 through data electrode Dm, and voltage 0 (V) is applied to scan electrode SC1 through scan electrode SCn while voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn. A downward ramp waveform voltage that gradually falls from the voltage V i toward the voltage Vi is applied. Thereafter, voltage Vd is applied to data electrode D1 through data electrode Dm, and a rectangular voltage of voltage Vr is applied to scan electrode SC1 through scan electrode SCn. Thereafter, voltage 0 (V) is applied to data electrode D1 to data electrode Dm, voltage Ve is applied to sustain electrode SU1 to sustain electrode SUn, and voltage from voltage 0 (V) is applied to scan electrode SC1 to scan electrode SCn. A downward ramp waveform voltage that gently falls toward Vi is applied. Thus, excessive portions of the wall voltage on scan electrode SCi, sustain electrode SUi, and data electrode Dk are discharged and adjusted to a wall voltage suitable for the address operation.

続く第1のフィールドのSF3〜SF10における動作は、維持パルス数を除き第1のフィールドのSF2の動作と同様である。   The subsequent operations in SF3 to SF10 in the first field are the same as those in SF2 in the first field except for the number of sustain pulses.

続く第2のフィールドのSF1の書込み期間では、データ電極D1〜データ電極Dmに電圧0(V)を、維持電極SU1〜維持電極SUnには電圧Veを印加し、走査電極SC1〜走査電極SCnに電圧Vcを印加する。次に、n行目の走査電極SCnに電圧Vaの走査パルスを印加するとともに発光すべき放電セルに対応するデータ電極Dkに電圧Vdの書込みパルスを印加する。ここで走査パルスの電圧Vaは、実施の形態1と同様に(条件1)と(条件2)とを満たすように設定されている。   In the subsequent address period of SF1 in the second field, voltage 0 (V) is applied to data electrode D1 through data electrode Dm, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, and scan electrode SC1 through scan electrode SCn are applied. A voltage Vc is applied. Next, a scan pulse of voltage Va is applied to scan electrode SCn in the nth row, and an address pulse of voltage Vd is applied to data electrode Dk corresponding to the discharge cell to emit light. Here, the voltage Va of the scanning pulse is set so as to satisfy (Condition 1) and (Condition 2) as in the first embodiment.

するとデータ電極Dkと走査電極SCnとの間、および走査電極SCnと維持電極SUnとの間で書込み放電が起こり、n行目の発光すべき放電セルの各電極上に壁電圧を蓄積する書込み動作が行われる。   Then, an address discharge occurs between data electrode Dk and scan electrode SCn, and between scan electrode SCn and sustain electrode SUn, and an address operation for accumulating wall voltage on each electrode of the discharge cell to emit light in the nth row. Is done.

次に、(n−1)番目の走査電極SCn−1に電圧Vaの走査パルスを印加するとともに発光すべき放電セルに対応するデータ電極Dkに電圧Vdの書込みパルスを印加して、(n−1)行目の放電セルの各電極上に壁電圧を蓄積する書込み動作を行う。以下、(n−2)行目の走査電極SCn−2、(n−3)行目の走査電極SCn−3、・・・、に走査パルスを順次印加して書込み動作を行い、1行目の走査電極SC1に至るまで同様の書込み動作を行う。   Next, a scan pulse of voltage Va is applied to the (n-1) th scan electrode SCn-1, and an address pulse of voltage Vd is applied to the data electrode Dk corresponding to the discharge cell to emit light, 1) An address operation for accumulating wall voltage on each electrode of the discharge cells in the row is performed. Hereinafter, a scan pulse is sequentially applied to the (n-2) -th scan electrode SCn-2, the (n-3) -th scan electrode SCn-3,. The same write operation is performed until the scan electrode SC1 is reached.

このように第2のフィールドに属するサブフィールドの書込み期間においては、n行目の走査電極SCn、(n−1)行目の走査電極SCn−1、(n−2)行目の走査電極SCn−2、・・・、2行目の走査電極SC2、1行目の走査電極SC1に走査パルスを順次印加する。そして、n行目の放電セル、(n−1)行目の放電セル、(n−2)行目の放電セル、・・・、2行目の放電セル、1行目の放電セルの順に書込み動作を行う。このように第2のフィールドに属するサブフィールドの書込み期間における書込み動作の順番は、第1のフィールドに属するサブフィールドの書込み期間における書込み動作の順番の逆である。   As described above, in the address period of the subfield belonging to the second field, the nth scan electrode SCn, the (n−1) th scan electrode SCn−1, and the (n−2) th scan electrode SCn. -2,... A scan pulse is sequentially applied to the scan electrode SC2 in the second row and the scan electrode SC1 in the first row. The discharge cell in the nth row, the discharge cell in the (n-1) th row, the discharge cell in the (n-2) th row, ..., the discharge cell in the second row, the discharge cell in the first row. Perform a write operation. Thus, the order of the write operations in the write period of the subfield belonging to the second field is the reverse of the order of the write operations in the write period of the subfield belonging to the first field.

続く第2のフィールドのSF1の維持期間、消去期間の動作は、第1のフィールドのSF1の維持期間、消去期間の動作と同様である。また第2のフィールドのSF2〜SF10における動作は、書込み期間における書込み動作の順番が逆であることを除き、第1のフィールドのSF2〜SF10における動作と同様である。   The subsequent operation of the sustain period and erase period of SF1 in the second field is the same as the operation of the sustain period and erase period of SF1 in the first field. The operations in SF2 to SF10 in the second field are the same as those in SF2 to SF10 in the first field except that the order of the write operations in the write period is reversed.

以下同様に、第1のフィールドと第2のフィールドとを交互に用いてパネル10を駆動している。   Similarly, the panel 10 is driven by alternately using the first field and the second field.

このように、本実施の形態においては、書込み期間において、複数配置された走査電極SC1〜走査電極SCnの一方の走査電極SC1から他方の走査電極SCnへ順に走査パルスを印加する第1のフィールドと、他方の走査電極SCnから一方の走査電極SC1へ順に走査パルスを印加する第2のフィールドとを有する。そして第1のフィールドと第2のフィールドとを交互に用いてパネル10を駆動している。このように駆動する理由について以下に説明する。   As described above, in the present embodiment, in the address period, the first field for sequentially applying the scan pulse from one scan electrode SC1 to the other scan electrode SCn of scan electrode SC1 to scan electrode SCn arranged in plurality. And a second field for applying a scan pulse in order from the other scan electrode SCn to one scan electrode SC1. The panel 10 is driven by alternately using the first field and the second field. The reason for driving in this way will be described below.

画像信号が画面全体の黒の表示から画面全体の白の表示に切り換わった場合の動作について考える。   Consider the operation when the image signal is switched from black display on the entire screen to white display on the entire screen.

本実施の形態においては、上述したように黒を表示する放電セルでは放電を発生させない。従って各放電セル内部にはプライミングは少なく、放電遅れの大きい状態となっている。この状態で書込み動作を行うと放電遅れが大きくなり書込み放電に失敗する放電セルが多数発生する可能性がある。しかしある放電セルで書込み放電に成功したとすると、その放電セルで発生したプライミングが隣接する放電セルに供給される。従ってその直後に書込み動作を行う放電セルでは放電遅れが小さくなり書込み放電に成功する確率が格段に高くなる。   In the present embodiment, as described above, no discharge is generated in the discharge cells displaying black. Therefore, there is little priming inside each discharge cell, and the discharge delay is large. If the address operation is performed in this state, the discharge delay becomes large, and there may be many discharge cells that fail in the address discharge. However, if address discharge is successful in a certain discharge cell, the priming generated in that discharge cell is supplied to the adjacent discharge cell. Accordingly, in the discharge cell that performs the address operation immediately after that, the discharge delay is reduced, and the probability of succeeding in the address discharge is remarkably increased.

第1のフィールドのみを用いてパネルを駆動したと仮定すると、書込み期間において、常に表示画面上部の走査電極SC1から表示画面下部の走査電極SCnへ順に走査パルスが印加される。そのため、書込み放電に成功した放電セルの下に位置する放電セルおよび斜め下に位置する放電セルでは次々に書込み放電に成功し、白の表示に切り換えることができる。しかしながら書込み放電に成功した放電セルの上の放電セルはどこからもプライミングが供給されないので、書込み放電に失敗する確率が高いままである。そのため表示画面の上部では白の表示に切り換えるまでに時間がかかり、画像表示品質が低下する。   Assuming that the panel is driven using only the first field, scan pulses are always applied in order from the scan electrode SC1 at the upper part of the display screen to the scan electrode SCn at the lower part of the display screen in the address period. For this reason, the discharge cells located under the discharge cells that have succeeded in the address discharge and the discharge cells located obliquely below can succeed in the address discharge one after another, and can be switched to white display. However, since the priming is not supplied from any discharge cell above the discharge cell that succeeded in the address discharge, the probability that the address discharge fails remains high. Therefore, it takes time to switch to white display at the top of the display screen, and the image display quality is degraded.

また第2のフィールドのみを用いてパネルを駆動したと仮定すると、書込み期間において、常に表示画面下部の走査電極SCnから表示画面上部の走査電極SC1へ順に走査パルスが印加される。そのため、表示画面の下部では白の表示に切り換えるまでに時間がかかり、画像表示品質が低下する。   Assuming that the panel is driven using only the second field, scan pulses are always applied in order from the scan electrode SCn at the lower part of the display screen to the scan electrode SC1 at the upper part of the display screen in the address period. Therefore, it takes time to switch to white display at the bottom of the display screen, and the image display quality is degraded.

しかし本実施の形態においては、第1のフィールドと第2のフィールドとを交互に用いてパネルを駆動するため、全画面にわたって速やかに白の表示に切り換えることができる。   However, in the present embodiment, the panel is driven by alternately using the first field and the second field, so that white display can be quickly switched over the entire screen.

また本実施の形態においては、サブフィールドSF1の消去期間において、赤(R)、緑(G)、青(B)毎にデータ電極の0(V)印加タイミングを違える理由は、図5で説明のように期間Sで電圧Vaマージンを調整し、各色の放電セルに対する電圧Vaの設定範囲をそろえ、実際の電圧Vaの設定マージンを広げるためである。   In the present embodiment, the reason why the 0 (V) application timing of the data electrode is different for each of red (R), green (G), and blue (B) in the erasing period of the subfield SF1 will be described with reference to FIG. As described above, the voltage Va margin is adjusted in the period S, the setting range of the voltage Va for the discharge cells of each color is made uniform, and the setting margin of the actual voltage Va is widened.

また本実施の形態においては、上述したように黒を表示する放電セルでは放電を発生させない。そのため黒以外の階調を表示する放電セルと比較すると、黒を表示する放電セルの放電開始電圧は実質的に高くなる傾向がある。したがって黒を表示する放電セルでは、発光させる放電セルと比較して、(条件1)および(条件2)を満たす電圧Vaの設定範囲が高電圧側にシフトする。そのため、サブフィールドの維持期間において、黒を表示する放電セルのデータ電極Dhに印加する電圧0(V)を、それ以外の放電セルのデータ電極Dkに印加する電圧Vdよりも低く設定することで、放電セルに対する電圧Vaの設定範囲をそろえ、実際の電圧Vaの設定マージンを広げることができる。しかし本実施の形態においてはそのような駆動をせず、そのかわりに、最も輝度重みの小さいサブフィールドSF1の維持期間においてデータ電極Djに印加する電圧0(V)を、それ以外のサブフィールドSF2〜SF10の維持期間においてデータ電極Djに印加する電圧Vdよりも低く設定している。   In the present embodiment, as described above, no discharge is generated in the discharge cells displaying black. Therefore, the discharge start voltage of the discharge cell displaying black tends to be substantially higher than that of the discharge cell displaying gradation other than black. Therefore, in the discharge cell displaying black, the setting range of the voltage Va satisfying (Condition 1) and (Condition 2) is shifted to the high voltage side as compared with the discharge cell emitting light. Therefore, in the sustain period of the subfield, the voltage 0 (V) applied to the data electrode Dh of the discharge cell displaying black is set lower than the voltage Vd applied to the data electrode Dk of other discharge cells. The setting range of the voltage Va for the discharge cells can be aligned, and the setting margin of the actual voltage Va can be widened. However, in the present embodiment, such driving is not performed. Instead, the voltage 0 (V) applied to the data electrode Dj in the sustain period of the subfield SF1 having the smallest luminance weight is applied to the other subfield SF2. Is set lower than the voltage Vd applied to the data electrode Dj in the sustain period of SF10.

本実施の形態においては、階調を表示する場合にできるだけ低い輝度重みのサブフィールドが点灯する組み合わせを選択するようにコーディングが設定されている。これは動画擬似輪郭を抑制するための技術であり、例えば特開2008−197430号公報に詳細に説明されている。その結果、輝度重みの小さいサブフィールドほど発光させる確率が高くなる。特に黒を表示する放電セルでは、引き続き暗い階調を表示する確率が高いため、書込み放電を行う場合、最も低い輝度重みを持つSF1で書込み放電を行う確率が非常に高くなる。そのため最も輝度重みの小さいサブフィールドSF1の維持期間においてデータ電極Djに印加する電圧0(V)を、それ以外のサブフィールドSF2〜SF10の維持期間においてデータ電極Djに印加する電圧Vdよりも低く設定することにより、放電セルに対する電圧Vaの設定範囲をそろえ、実際の電圧Vaの設定マージンを広げることができる。   In the present embodiment, coding is set so as to select a combination in which a subfield having a luminance weight as low as possible is lit when displaying gradation. This is a technique for suppressing the moving image pseudo contour, and is described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-197430. As a result, the probability of light emission increases as the subfield has a lower luminance weight. In particular, in a discharge cell that displays black, there is a high probability that a dark gradation will be continuously displayed. Therefore, when performing address discharge, the probability of performing address discharge with SF1 having the lowest luminance weight becomes very high. Therefore, voltage 0 (V) applied to data electrode Dj in the sustain period of subfield SF1 having the smallest luminance weight is set lower than voltage Vd applied to data electrode Dj in the sustain periods of other subfields SF2 to SF10. As a result, the setting range of the voltage Va for the discharge cells can be made uniform, and the setting margin of the actual voltage Va can be widened.

もちろん、高い階調を表示する放電セルに対しては、SF1における電圧Vaの設定範囲は低電圧側にシフトすることになる。そのため高い輝度で発光する放電セルがSF1において誤放電する確率は高くなるが、SF1の輝度重みは小さいので、仮にこのような放電セルで誤放電が発生しても画像表示品質を低下させるおそれはない。   Of course, for a discharge cell displaying a high gradation, the setting range of the voltage Va in SF1 is shifted to the low voltage side. Therefore, the probability that a discharge cell that emits light with high luminance erroneously discharges in SF1 is high. However, since the luminance weight of SF1 is small, there is a possibility that image display quality may be deteriorated even if such discharge cell is erroneously discharged. Absent.

このように本実施の形態においては、最も輝度重みの小さいサブフィールドであるSF1の維持期間において緑の蛍光体が塗布された放電セルのデータ電極Dgに印加する電圧は、最も輝度重みの小さいサブフィールドの維持期間において赤の蛍光体が塗布された放電セルのデータ電極Drおよび青の蛍光体が塗布された放電セルのデータ電極Dbに印加する電圧よりも低く、かつ最も輝度重みの小さいサブフィールドを除くサブフィールドSF2〜SF10の維持期間においてデータ電極に印加する電圧よりも低く設定している。   Thus, in the present embodiment, the voltage applied to the data electrode Dg of the discharge cell coated with the green phosphor during the sustain period of SF1, which is the subfield with the lowest luminance weight, A subfield having a luminance weight that is lower than the voltage applied to the data electrode Dr of the discharge cell coated with the red phosphor and the data electrode Db of the discharge cell coated with the blue phosphor in the sustain period of the field. Is set lower than the voltage applied to the data electrode in the sustain period of the subfields SF2 to SF10.

また本実施の形態においては、消去期間において、維持電極SUiを陰極とし走査電極SCiを陽極とする1回目の放電を発生させ、その後、走査電極SCiを陰極としデータ電極Djを陽極とする1回目の放電を発生させ、その後、維持電極SUiを陰極とし走査電極SCiを陽極とする2回目の放電を発生させ、その後、走査電極SCiを陰極としデータ電極Djを陽極とする2回目の放電を発生させている。さらにこれらの放電を弱い放電とし、それにともなう発光を抑えるために、維持電極SUiに電圧0(V)を印加するとともに走査電極SCiに上り傾斜波形電圧を印加し、その後、走査電極SCiに下り傾斜波形電圧を印加し、その後、走査電極SCiに正の矩形状電圧を印加し、その後、維持電極SUiに電圧0(V)よりも高い電圧Veを印加するとともに走査電極SCiに下り傾斜波形電圧を印加している。   In the present embodiment, in the erasing period, a first discharge is generated with sustain electrode SUi as a cathode and scan electrode SCi as an anode, and then a first time with scan electrode SCi as a cathode and data electrode Dj as an anode. Then, a second discharge is generated using the sustain electrode SUi as a cathode and the scan electrode SCi as an anode, and then a second discharge using the scan electrode SCi as a cathode and the data electrode Dj as an anode. I am letting. Further, in order to make these discharges weak, and to suppress the light emission associated therewith, a voltage 0 (V) is applied to the sustain electrode SUi and an upward ramp waveform voltage is applied to the scan electrode SCi, and then a downward slope is applied to the scan electrode SCi. A waveform voltage is applied, and then a positive rectangular voltage is applied to scan electrode SCi. Thereafter, voltage Ve higher than voltage 0 (V) is applied to sustain electrode SUi, and a downward ramp waveform voltage is applied to scan electrode SCi. Applied.

このように強い放電を発生させなくても、微弱な放電を複数回繰り返し発生させることにより、各電極上に十分な壁電圧を蓄積することができ、続く書込み放電を安定して発生させることができる。   Even without generating such a strong discharge, it is possible to accumulate a sufficient wall voltage on each electrode by repeatedly generating a weak discharge a plurality of times, and to generate a subsequent address discharge stably. it can.

なお、実施の形態1、実施の形態2において示した具体的な数値等は単に一例を示したに過ぎず、パネルの特性やプラズマディスプレイ装置の仕様等にあわせて最適に設定することが望ましい。   It should be noted that the specific numerical values and the like shown in the first and second embodiments are merely examples, and are desirably set optimally in accordance with the panel characteristics and the specifications of the plasma display device.

本発明は、各放電セルに対する駆動電圧の設定範囲をそろえて駆動電圧の設定マージンを広げるとともに、書込み動作を安定に発生させつつ強制初期化動作を省略して階調表示に関係しない発光をなくし、コントラストを大幅に向上することができるので、パネルの駆動方法およびプラズマディスプレイ装置として有用である。   The present invention expands the drive voltage setting margin by aligning the drive voltage setting range for each discharge cell and eliminates light emission not related to gradation display by eliminating the forced initialization operation while stably generating the write operation. Since the contrast can be greatly improved, it is useful as a panel driving method and a plasma display device.

10 パネル
22 走査電極
23 維持電極
24 表示電極対
32 データ電極
35 蛍光体層
40 プラズマディスプレイ装置
41 画像信号処理回路
42 データ電極駆動回路
43 走査電極駆動回路
44 維持電極駆動回路
45 タイミング発生回路
50,80 維持パルス発生回路
51,81 電力回収回路
60 傾斜波形電圧発生回路
61,63 ミラー積分回路
70 走査パルス発生回路
85 一定電圧発生回路
DESCRIPTION OF SYMBOLS 10 Panel 22 Scan electrode 23 Sustain electrode 24 Display electrode pair 32 Data electrode 35 Phosphor layer 40 Plasma display apparatus 41 Image signal processing circuit 42 Data electrode drive circuit 43 Scan electrode drive circuit 44 Sustain electrode drive circuit 45 Timing generation circuit 50,80 Sustain pulse generation circuit 51, 81 Power recovery circuit 60 Ramp waveform voltage generation circuit 61, 63 Miller integration circuit 70 Scan pulse generation circuit 85 Constant voltage generation circuit

Claims (2)

走査電極と維持電極とデータ電極とを有し赤、緑、青のいずれかの色に発光する蛍光体が塗布された放電セルを複数備えたプラズマディスプレイパネルを駆動するプラズマディスプレイパネルの駆動方法であって、
前記走査電極に走査パルスを印加するとともに前記データ電極に書込みパルスを印加して書込み放電を発生する書込み期間と、前記走査電極および前記維持電極に輝度重みに応じた維持パルスを交互に印加して維持放電を発生する維持期間と、前記走査電極および前記維持電極に所定の電圧を印加して消去放電を発生する消去期間と、を有するサブフィールドを複数用いて1つのフィールドを構成し、
前記消去期間は、直前の書込み期間で書込み放電を発生した放電セルのみで選択的に消去放電を発生し、
少なくとも1つのサブフィールドの維持期間において、前記データ電極に電圧を印加し、赤、緑、青毎に電圧の印加を終えるタイミングを独立に制御する事を特徴とするプラズマディスプレイパネルの駆動方法。
A plasma display panel driving method for driving a plasma display panel having a plurality of discharge cells each having a scan electrode, a sustain electrode, and a data electrode and coated with a phosphor that emits red, green, or blue light. There,
Applying a scan pulse to the scan electrode and applying an address pulse to the data electrode to generate an address discharge, and alternately applying a sustain pulse corresponding to a luminance weight to the scan electrode and the sustain electrode One field is configured by using a plurality of subfields having a sustain period for generating a sustain discharge and an erase period for generating an erase discharge by applying a predetermined voltage to the scan electrode and the sustain electrode,
In the erasing period, an erasing discharge is selectively generated only in discharge cells that have generated an address discharge in the immediately preceding address period,
A driving method of a plasma display panel, wherein a voltage is applied to the data electrode in a sustain period of at least one subfield, and a timing at which the voltage application is finished for each of red, green, and blue is independently controlled.
走査電極と維持電極とデータ電極とを有する放電セルを複数備えたプラズマディスプレイパネルを駆動するプラズマディスプレイパネルの駆動方法であって、
前記走査電極に走査パルスを印加するとともに前記データ電極に書込みパルスを印加して書込み放電を発生する書込み期間と、前記走査電極および前記維持電極に輝度重みに応じた維持パルスを交互に印加して維持放電を発生する維持期間と、前記走査電極および前記維持電極に所定の電圧を印加して消去放電を発生する消去期間と、を有するサブフィールドを複数用いて1つのフィールドを構成し、
前記消去期間は、直前の書込み期間で書込み放電を発生した放電セルのみで選択的に消去放電を発生し、
最も輝度重みの小さいサブフィールドの維持期間において前記データ電極に印加する電圧の電圧印加終了タイミングは、それ以外のサブフィールドの維持期間において前記データ電極に印加する電圧印加終了タイミングよりも早いことを特徴とするプラズマディスプレイパネルの駆動方法。
A plasma display panel driving method for driving a plasma display panel including a plurality of discharge cells having scan electrodes, sustain electrodes, and data electrodes,
Applying a scan pulse to the scan electrode and applying an address pulse to the data electrode to generate an address discharge, and alternately applying a sustain pulse corresponding to a luminance weight to the scan electrode and the sustain electrode One field is configured by using a plurality of subfields having a sustain period for generating a sustain discharge and an erase period for generating an erase discharge by applying a predetermined voltage to the scan electrode and the sustain electrode,
In the erasing period, an erasing discharge is selectively generated only in discharge cells that have generated an address discharge in the immediately preceding address period,
The voltage application end timing of the voltage applied to the data electrode in the sustain period of the subfield having the smallest luminance weight is earlier than the voltage application end timing applied to the data electrode in the sustain period of the other subfield. A method for driving a plasma display panel.
JP2010138851A 2010-06-18 2010-06-18 Driving method of plasma display panel and plasma display device Pending JP2012003094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138851A JP2012003094A (en) 2010-06-18 2010-06-18 Driving method of plasma display panel and plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138851A JP2012003094A (en) 2010-06-18 2010-06-18 Driving method of plasma display panel and plasma display device

Publications (1)

Publication Number Publication Date
JP2012003094A true JP2012003094A (en) 2012-01-05

Family

ID=45535118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138851A Pending JP2012003094A (en) 2010-06-18 2010-06-18 Driving method of plasma display panel and plasma display device

Country Status (1)

Country Link
JP (1) JP2012003094A (en)

Similar Documents

Publication Publication Date Title
KR101168553B1 (en) Plasma display panel driving method
JP5131383B2 (en) Plasma display panel driving method and plasma display device
JP5126439B2 (en) Plasma display panel driving method and plasma display device
WO2010143403A1 (en) Plasma display panel drive method and plasma display device
JP2012003094A (en) Driving method of plasma display panel and plasma display device
WO2012017648A1 (en) Plasma display panel driving method and plasma display apparatus
JP2012003096A (en) Driving method of plasma display panel and plasma display device
JP2012003095A (en) Driving method of plasma display panel and plasma display device
JP2012037589A (en) Driving method of plasma display panel, and plasma display device
JP2011075616A (en) Method of driving plasma display panel, and plasma display device
JP2012113008A (en) Driving method of plasma display panel and plasma display device
JP2010266648A (en) Driving method of plasma display panel, and plasma display device
JP2011158871A (en) Method for driving plasma display panel
WO2012017647A1 (en) Plasma display panel driving method and plasma display apparatus
JP2011248080A (en) Driving method of plasma display panel and plasma display device
JP2012058652A (en) Method for driving plasma display panel and plasma display device
JP2012058654A (en) Method for driving plasma display panel and plasma display device
WO2010137248A1 (en) Plasma display device and plasma display panel driving method
WO2011052219A1 (en) Plasma display panel driving method and plasma display device
WO2011148644A1 (en) Method for driving plasma display panel, and plasma display device
JP2012058653A (en) Method for driving plasma display device and plasma display device
JP2010266649A (en) Method of driving plasma display panel, and plasma display device
JP2012247465A (en) Method of driving plasma display panel, and plasma display panel
JP2012083532A (en) Driving method for plasma display panel and plasma display device
JP2011017951A (en) Driving method for plasma display panel and plasma display device