JP2012097150A - Polyesterimide resin composition, and prepreg impregnated therewith, laminate and semiconductor device - Google Patents
Polyesterimide resin composition, and prepreg impregnated therewith, laminate and semiconductor device Download PDFInfo
- Publication number
- JP2012097150A JP2012097150A JP2010243973A JP2010243973A JP2012097150A JP 2012097150 A JP2012097150 A JP 2012097150A JP 2010243973 A JP2010243973 A JP 2010243973A JP 2010243973 A JP2010243973 A JP 2010243973A JP 2012097150 A JP2012097150 A JP 2012097150A
- Authority
- JP
- Japan
- Prior art keywords
- formula
- resin
- polyesterimide resin
- polyesterimide
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 CC*C1=CC(*)=CCC1 Chemical compound CC*C1=CC(*)=CCC1 0.000 description 4
- XBKFUNILASZNBC-UHFFFAOYSA-N Cc1nc(-c2ccccc2)nc(C)n1 Chemical compound Cc1nc(-c2ccccc2)nc(C)n1 XBKFUNILASZNBC-UHFFFAOYSA-N 0.000 description 1
- WKDNYTOXBCRNPV-UHFFFAOYSA-N O=C(c(c1c2)ccc2-c(cc2)cc(C(O3)=O)c2C3=O)OC1=O Chemical compound O=C(c(c1c2)ccc2-c(cc2)cc(C(O3)=O)c2C3=O)OC1=O WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、ポリエステルイミド樹脂組成物、ならびにそれを含浸させたプリプレグ、積層板および半導体装置に関する。 The present invention relates to a polyesterimide resin composition, a prepreg impregnated with the polyesterimide resin composition, a laminate, and a semiconductor device.
近年、電子機器の高機能化に伴い、電子部品の高密度集積化や高密度実装化が図られており、半導体パッケージなどの小型化や薄型化に対する要求がさらに高まっている。しかしながら、エポキシ樹脂やシアネート樹脂などを用いた従来の半導体パッケージ用基板やプリント配線基板においては、薄肉化によって反りが発生するため、接続不良といった不具合が発生するという問題があった。このような基板の反りは、充填材の添加量を増加させることによって改善されるものの、基板のドリル加工性が低下するという問題があった。 2. Description of the Related Art In recent years, with the enhancement of functionality of electronic devices, electronic components have been densely integrated and mounted with high density, and the demand for miniaturization and thinning of semiconductor packages and the like has further increased. However, a conventional semiconductor package substrate or printed wiring board using an epoxy resin or a cyanate resin has a problem that a defect such as a connection failure occurs due to warpage caused by thinning. Such warpage of the substrate is improved by increasing the amount of filler added, but there is a problem that the drillability of the substrate is lowered.
一方、ポリイミド樹脂は、耐熱性や耐薬品性、電気絶縁性、機械的特性に優れた樹脂であり、基板材料への適用が検討されている。しかしながら、ポリイミド樹脂を用いた場合においても、上記のような基板の反りが発生するという問題があり、さらに、ポリイミド樹脂は一般に溶剤に溶解しにくく、樹脂ワニスを用いた基板成形が困難であるという問題があった。このため、ポリイミド樹脂の溶剤溶解性の向上や熱膨張係数の低減が検討されている。 On the other hand, a polyimide resin is a resin excellent in heat resistance, chemical resistance, electrical insulation, and mechanical properties, and its application to a substrate material is being studied. However, even when a polyimide resin is used, there is a problem that the substrate warps as described above. Furthermore, the polyimide resin is generally difficult to dissolve in a solvent, and it is difficult to mold the substrate using a resin varnish. There was a problem. For this reason, improvement of the solvent solubility of a polyimide resin and reduction of a thermal expansion coefficient are examined.
例えば、特開2009−235311号公報(特許文献1)には、フルオレン骨格を有するジアミン残基と、ビフェニル骨格またはフェニレン骨格を有するジアミン残基とを含有するポリイミド樹脂が開示されている。また、特開2010−53336号公報(特許文献2)には、トリジンスルホン酸骨格を有するジアミン残基を含有するポリイミド樹脂が開示されている。これらのポリイミド樹脂は、溶剤に対して良好な溶解性を示すものの、熱膨張係数は未だ十分に低いものではなかった。 For example, JP 2009-235111 A (Patent Document 1) discloses a polyimide resin containing a diamine residue having a fluorene skeleton and a diamine residue having a biphenyl skeleton or a phenylene skeleton. Japanese Patent Application Laid-Open No. 2010-53336 (Patent Document 2) discloses a polyimide resin containing a diamine residue having a tolidinesulfonic acid skeleton. Although these polyimide resins show good solubility in solvents, their thermal expansion coefficients have not been sufficiently low.
また、特開2009−286854号公報(特許文献3)には、エステル結合を有するポリエステルイミド樹脂およびその前駆体が開示されている。このポリエステルイミド樹脂は低い熱膨張係数を有するものの、溶剤に対する溶解性が低く、樹脂ワニスを用いた基板成形が困難であった。このため、前記ポリエステルイミド樹脂を基板材料として使用する場合には、溶剤溶解性に優れるポリエステルイミド樹脂前駆体であるポリエステルアミド酸を基板材料用樹脂として用いる必要があった。しかしながら、一般に、ポリアミド酸を用いて基板を作製すると、プレス成形時に脱水イミド化反応が起こり、発生する水によってボイド発生や成形不良が引き起こされるという問題があった。 Japanese Unexamined Patent Application Publication No. 2009-286854 (Patent Document 3) discloses a polyesterimide resin having an ester bond and a precursor thereof. Although this polyesterimide resin has a low coefficient of thermal expansion, its solubility in a solvent is low, and it has been difficult to form a substrate using a resin varnish. For this reason, when using the said polyesterimide resin as a board | substrate material, it was necessary to use the polyester amide acid which is a polyesterimide resin precursor excellent in solvent solubility as a resin for board | substrate materials. However, in general, when a substrate is produced using polyamic acid, there is a problem that a dehydrating imidization reaction occurs during press molding, and voids and molding defects are caused by generated water.
このため、ポリイミド樹脂を基板材料として使用するためには、イミド化が完了した状態で溶剤に可溶であり、且つ低い熱膨張係数を有するポリイミド樹脂が必要であった。 For this reason, in order to use a polyimide resin as a substrate material, a polyimide resin that is soluble in a solvent and has a low thermal expansion coefficient after imidization is required.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、溶剤に可溶なポリエステルイミド樹脂を含有し、硬化前には良好な含浸性を示し、硬化後には高いガラス転移温度および低い線熱膨脹係数を有するポリエステルイミド樹脂組成物であって、さらにドリル加工性が良好であり、高温下においても反りが少ない積層板を得ることが可能なポリエステルイミド樹脂組成物、ならびにそれを用いたプリプレグ、積層板および半導体装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, contains a polyesterimide resin soluble in a solvent, exhibits good impregnation properties before curing, and has a high glass transition temperature and a high viscosity after curing. Polyesterimide resin composition having a low coefficient of linear thermal expansion, further having good drillability, and capable of obtaining a laminate with less warpage even at high temperatures, and a polyesterimide resin composition using the same An object is to provide a prepreg, a laminate, and a semiconductor device.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、置換基としてアリール基を備えるビフェニル骨格を含有する酸無水物エステル残基とアミド結合を含有する芳香族ジアミン残基とからなる構成単位を所定の割合で含有するポリエステルイミド樹脂が溶剤に対して良好な溶解性を示し、このようなポリエステルイミド樹脂を用いることによって、前記特性を有するポリエステルイミド樹脂組成物が得られることを見出し、さらに、このポリエステルイミド樹脂組成物を用いると、前記特性を有する積層板が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have obtained an acid anhydride ester residue containing a biphenyl skeleton having an aryl group as a substituent and an aromatic diamine residue containing an amide bond. The polyesterimide resin containing the structural unit at a predetermined ratio exhibits good solubility in a solvent, and by using such a polyesterimide resin, a polyesterimide resin composition having the above characteristics can be obtained. The inventors have found that a laminate having the above-mentioned characteristics can be obtained by using the polyesterimide resin composition, and the present invention has been completed.
すなわち、本発明のポリエステルイミド樹脂組成物は、下記式(1): That is, the polyesterimide resin composition of the present invention has the following formula (1):
(式(1)中、Ar1およびAr2はアリール基を表し、これらは同じものであっても異なるものであってもよく、R1およびR2はそれぞれ独立に水素原子、アルキル基およびアルコキシ基のうちのいずれかを表し、Xは−NH−C(=O)−または−C(=O)−NH−を表し、nは1または2であり、nが2の場合に前記式(1)中に2個存在するXは同じものであっても異なるものであってもよい。)
で表される構成単位Aと、
下記式(2):
(In the formula (1), Ar 1 and Ar 2 represent an aryl group, which may be the same or different, and R 1 and R 2 are each independently a hydrogen atom, an alkyl group and an alkoxy group. Any one of the groups, X represents —NH—C (═O) — or —C (═O) —NH—, n is 1 or 2, and when n is 2, the formula ( 1) The two Xs present in them may be the same or different.)
A structural unit A represented by:
Following formula (2):
(式(2)中、Ar1およびAr2は前記式(1)中のAr1およびAr2と同一のものであり、Ar3は、芳香環または脂肪族環を有する2価の基を表す。)
で表される構成単位Bとを含有し、且つ前記構成単位Aの含有率が50〜95モル%であるポリエステルイミド樹脂、および無機充填材を含有することを特徴とするものである。
(In the formula (2), Ar 1 and Ar 2 are the same as the Ar 1 and Ar 2 in the formula (1), Ar 3 represents a divalent group having an aromatic ring or aliphatic ring .)
And a polyesterimide resin having a content of the structural unit A of 50 to 95 mol%, and an inorganic filler.
本発明のポリエステルイミド樹脂組成物において、前記式(1)および前記式(2)中のAr1およびAr2は、それぞれ独立に、置換もしくは無置換のフェニル基または置換もしくは無置換のナフチル基であることが好ましい。 In the polyesterimide resin composition of the present invention, Ar 1 and Ar 2 in the formula (1) and the formula (2) are each independently a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group. Preferably there is.
また、前記式(2)中のAr3が、下記式(I)〜(VIII): Ar 3 in the formula (2) is represented by the following formulas (I) to (VIII):
(式(I)中のkは0〜5の整数であり、式(III)中のR3およびR4は、それぞれ独立に水素原子、アルキル基、ハロゲン化アルキル基および水酸基のうちのいずれかを表し、式(IV)中のR5およびR6は、それぞれ独立に水素原子またはアルキル基を表し、式(V)中のR7およびR8は、それぞれ独立に水素原子、ハロゲン原子、アルキル基および水酸基のうちのいずれかを表し、式(VIII)中のR9およびR10は、それぞれ独立に水素原子、ハロゲン原子、アルキル基および水酸基のうちのいずれかを表す。)
で表される2価の基のうちのいずれかであることが好ましい。
(K in the formula (I) is an integer of 0 to 5, and R 3 and R 4 in the formula (III) are each independently a hydrogen atom, an alkyl group, a halogenated alkyl group or a hydroxyl group. R 5 and R 6 in formula (IV) each independently represent a hydrogen atom or an alkyl group, and R 7 and R 8 in formula (V) each independently represent a hydrogen atom, a halogen atom or an alkyl group Represents any one of a group and a hydroxyl group, and R 9 and R 10 in formula (VIII) each independently represent any one of a hydrogen atom, a halogen atom, an alkyl group, and a hydroxyl group.)
It is preferable that it is either of the bivalent groups represented by these.
本発明のプリプレグは、本発明のポリエステルイミド樹脂組成物を基材に含浸させてなることを特徴とするものであり、本発明の積層板は、このプリプレグに熱処理を施すことにより形成される層を備えることを特徴とするものである。また、本発明の半導体装置は、本発明の積層板と、該積層板上に配置された半導体素子とを備えることを特徴とするものである。 The prepreg of the present invention is characterized in that the base material is impregnated with the polyesterimide resin composition of the present invention, and the laminate of the present invention is a layer formed by subjecting this prepreg to heat treatment. It is characterized by providing. In addition, a semiconductor device of the present invention includes the laminated plate of the present invention and a semiconductor element disposed on the laminated plate.
なお、前記式(1)で表される構成単位Aおよび前記式(2)で表される構成単位Bを含有するポリエステルイミド樹脂が良好な溶剤溶解性を示し、このポリエステルイミド樹脂を含有する樹脂組成物が硬化前において良好な含浸性を示す理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明にかかるポリエステルイミド樹脂は、ビフェニル骨格に嵩高い側鎖置換基(アリール基)を有するものであるため、分子間相互作用が緩和され、また、アミド結合を有するものであるため、溶媒和効果が発現して、溶剤に対して良好な溶解性を示し、また、基材に対して良好な含浸性を示すと推察される。 In addition, the polyesterimide resin containing the structural unit A represented by the said Formula (1) and the structural unit B represented by the said Formula (2) shows favorable solvent solubility, Resin containing this polyesterimide resin The reason why the composition exhibits good impregnation before curing is not necessarily clear, but the present inventors infer as follows. That is, since the polyesterimide resin according to the present invention has a bulky side chain substituent (aryl group) in the biphenyl skeleton, the intermolecular interaction is relaxed, and it has an amide bond. It is presumed that the solvation effect is manifested, shows good solubility in the solvent, and shows good impregnation in the substrate.
また、本発明のポリエステルイミド樹脂組成物が、硬化後において高いガラス転移温度と低い線熱膨張係数を示す理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明にかかるポリエステルイミド樹脂は、パラ位にエステル基が結合したビフェニル骨格やアミド結合といった剛直な骨格を有するものであるため、高い配向性を示し、また、ビフェニル骨格による平面構造が自己スタッキング性を有するため、密な分子パッキングが形成されると推察される。このような高い配向性や分子パッキング形成により、分子が熱により変形しにくくなり、高いガラス転移温度や低い線熱膨張係数を示すと推察される。 The reason why the polyesterimide resin composition of the present invention exhibits a high glass transition temperature and a low linear thermal expansion coefficient after curing is not necessarily clear, but the present inventors speculate as follows. That is, since the polyesterimide resin according to the present invention has a rigid skeleton such as a biphenyl skeleton or an amide bond in which an ester group is bonded to the para position, the polyesterimide resin exhibits high orientation and has a self-planar structure due to the biphenyl skeleton. It is assumed that a dense molecular packing is formed due to the stacking property. It is surmised that such high orientation and molecular packing formation make it difficult for molecules to be deformed by heat, exhibiting a high glass transition temperature and a low linear thermal expansion coefficient.
本発明によれば、溶剤に可溶なポリエステルイミド樹脂を含有し、硬化前には良好な含浸性を示し、硬化後には高いガラス転移温度および低い線熱膨脹係数を有するポリエステルイミド樹脂組成物であって、さらにドリル加工性が良好であり、高温下においても反りが少ない積層板を得ることが可能なポリエステルイミド樹脂組成物、ならびにそれを用いたプリプレグ、積層板および半導体装置を得ることが可能となる。 According to the present invention, there is provided a polyesterimide resin composition containing a polyesterimide resin soluble in a solvent, exhibiting good impregnation before curing, and having a high glass transition temperature and a low linear thermal expansion coefficient after curing. In addition, it is possible to obtain a polyesterimide resin composition that has a better drill workability and can obtain a laminated board with less warping even at high temperatures, and a prepreg, laminated board, and semiconductor device using the same. Become.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
<ポリエステルイミド樹脂組成物>
先ず、本発明のポリエステルイミド樹脂組成物について説明する。本発明のポリエステルイミド樹脂組成物は、特定のビフェニル骨格を含有する酸無水物エステル残基とアミド結合を含有する特定の芳香族ジアミン残基とからなる構成単位Aを所定の割合で含有するポリエステルイミド樹脂と無機充填材とを含有するものである。
<Polyesterimide resin composition>
First, the polyesterimide resin composition of the present invention will be described. The polyesterimide resin composition of the present invention comprises a polyester containing a structural unit A composed of an acid anhydride ester residue containing a specific biphenyl skeleton and a specific aromatic diamine residue containing an amide bond in a predetermined ratio. It contains an imide resin and an inorganic filler.
(ポリエステルイミド樹脂)
本発明に用いられるポリエステルイミド樹脂は、下記式(1):
(Polyesterimide resin)
The polyesterimide resin used in the present invention has the following formula (1):
で表される構成単位Aと、下記式(2): And a structural unit A represented by the following formula (2):
で表される構成単位Bとを含有するものである。なお、前記構成単位Aと前記構成単位Bは異なる構造を有するものである。 The structural unit B represented by these is contained. The structural unit A and the structural unit B have different structures.
前記式(1)中のAr1およびAr2はアリール基を表し、これらは同じものであっても異なるものであってもよく、前記式(2)中のAr1およびAr2は、前記式(1)中のAr1およびAr2と同一ものものである。前記構成単位AおよびBにおいて、ビフェニル骨格の置換基としてアリール基が存在することによって、ポリエステルイミド樹脂の分子間相互作用が緩和され、溶剤溶解性が向上する。このようなアリール基としては、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基が好ましい。置換フェニル基としては、メチルフェニル基やエチルフェニル基などのアルキルフェニル基が挙げられる。また、置換ナフチル基としては、メチルナフチル基やエチルナフチル基などのアルキルナフチル基が挙げられる。 Ar 1 and Ar 2 in the formula (1) represent an aryl group, which may be the same or different, and Ar 1 and Ar 2 in the formula (2) are It is the same as Ar 1 and Ar 2 in (1). In the structural units A and B, the presence of an aryl group as a substituent of the biphenyl skeleton alleviates the intermolecular interaction of the polyesterimide resin and improves the solvent solubility. Such an aryl group is preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group. Examples of the substituted phenyl group include alkylphenyl groups such as a methylphenyl group and an ethylphenyl group. In addition, examples of the substituted naphthyl group include alkyl naphthyl groups such as a methyl naphthyl group and an ethyl naphthyl group.
前記式(1)中のXは、−NH−C(=O)−または−C(=O)−NH−を表し、nは1または2である。nが2の場合、前記式(1)中に2個存在するXは同じもの(例えば、アミド結合を含有する芳香族ジアミン残基が下記式(a)で表されるもの)であっても、異なるもの(例えば、アミド結合を含有する芳香族ジアミン残基が下記式(b)で表されるもの)であってもよい。 X in the formula (1) represents —NH—C (═O) — or —C (═O) —NH—, and n is 1 or 2. When n is 2, two Xs in the formula (1) may be the same (for example, an aromatic diamine residue containing an amide bond is represented by the following formula (a)). Different ones (for example, an aromatic diamine residue containing an amide bond represented by the following formula (b)) may be used.
(式(a)および(b)中のRはそれぞれ独立に前記式(1)中のR1またはR2である。)
前記構成単位Aにアミド結合が存在することによって、ポリエステルイミド樹脂組成物の硬化後における線熱膨張係数が低下し、寸法安定性が向上する。その結果、このようなポリエステルイミド樹脂組成物を用いることによって、反りの少ない積層板を得ることが可能となる。
(R in the formulas (a) and (b) is each independently R 1 or R 2 in the formula (1).)
By the presence of an amide bond in the structural unit A, the linear thermal expansion coefficient after curing of the polyesterimide resin composition is reduced, and the dimensional stability is improved. As a result, by using such a polyesterimide resin composition, it is possible to obtain a laminated board with less warpage.
前記式(1)中のR1およびR2は、それぞれ独立に水素原子、アルキル基およびアルコキシ基のうちのいずれかを表す。前記アルキル基としては、メチル基、エチル基などが挙げられ、前記アルコキシ基としては、メトキシ基、エトキシ基などが挙げられる。これらのうち、ポリエステルイミド樹脂組成物の硬化後における線熱膨張係数がより低下し、積層板の反りが低減されるという観点から、R1およびR2としては、水素原子、アルキル基が好ましく、水素原子、メチル基がより好ましく、水素原子が特に好ましい。 R 1 and R 2 in the formula (1) each independently represent any of a hydrogen atom, an alkyl group, and an alkoxy group. Examples of the alkyl group include a methyl group and an ethyl group, and examples of the alkoxy group include a methoxy group and an ethoxy group. Among these, from the viewpoint that the linear thermal expansion coefficient after curing of the polyesterimide resin composition is further reduced and the warpage of the laminate is reduced, R 1 and R 2 are preferably a hydrogen atom or an alkyl group, A hydrogen atom and a methyl group are more preferable, and a hydrogen atom is particularly preferable.
前記式(2)中のAr3は、芳香環または脂肪族環を有する2価の基を表す。ただし、下記式(c): Ar 3 in the formula (2) represents a divalent group having an aromatic ring or an aliphatic ring. However, the following formula (c):
(式(c)中のR1、R2、Xおよびnは、前記式(1)中のR1、R2、Xおよびnと同義である。)
で表される2価の基と異なるものである。前記式(2)中のAr3としては、ポリエステルイミド樹脂の分子間相互作用が緩和され、溶剤溶解性が向上するという観点から、下記式(I)〜(VIII):
(R 1, R 2, X and n in the formula (c), the formula (1) the same meanings as R 1, R 2, X and n in.)
It is different from the divalent group represented by As Ar 3 in the formula (2), from the viewpoint that the intermolecular interaction of the polyesterimide resin is relaxed and the solvent solubility is improved, the following formulas (I) to (VIII):
のいずれかで表される2価の基が好ましく、ポリエステルイミド樹脂に柔軟な屈曲構造が部分的に導入され、ポリエステルイミド樹脂の分子間相互作用が適度に緩和され、適度な溶剤溶解性を示すという観点からは、前記式(I)で表されるものがより好ましく、ポリエステルイミド樹脂組成物の硬化後における線熱膨張係数がより低下し、積層板の反りが低減されるという観点からは、前記式(III)、(IV)、(VIII)で表されるものがより好ましい。 A divalent group represented by any of the above is preferable, a flexible bending structure is partially introduced into the polyesterimide resin, the intermolecular interaction of the polyesterimide resin is moderately relaxed, and moderate solvent solubility is exhibited. From the viewpoint that, what is represented by the formula (I) is more preferable, from the viewpoint that the linear thermal expansion coefficient after curing of the polyesterimide resin composition is further reduced, and the warpage of the laminate is reduced. Those represented by the formulas (III), (IV) and (VIII) are more preferred.
前記式(I)中のkは0〜5の整数であり、0〜2の整数であることが好ましい。前記式(III)中のR3およびR4は、それぞれ独立に水素原子、アルキル基、ハロゲン化アルキル基および水酸基のうちのいずれかを表し、中でも、水素原子、メチル基、ハロゲン化メチル基、水酸基であることが好ましい。前記式(IV)中のR5およびR6は、それぞれ独立に水素原子またはアルキル基を表し、中でも、水素原子、メチル基であることが好ましい。前記式(V)中のR7およびR8は、それぞれ独立に水素原子、ハロゲン原子、アルキル基および水酸基のうちのいずれかを表し、中でも、水素原子であることが好ましい。前記式(VIII)中のR9およびR10は、それぞれ独立に水素原子またはアルキル基を表し、中でも、水素原子、メチル基であることが好ましい。 K in the said formula (I) is an integer of 0-5, and it is preferable that it is an integer of 0-2. R 3 and R 4 in the formula (III) each independently represent any one of a hydrogen atom, an alkyl group, a halogenated alkyl group and a hydroxyl group, and among them, a hydrogen atom, a methyl group, a halogenated methyl group, A hydroxyl group is preferred. R 5 and R 6 in the formula (IV) each independently represent a hydrogen atom or an alkyl group, and among them, a hydrogen atom and a methyl group are preferable. R 7 and R 8 in the formula (V) each independently represent any one of a hydrogen atom, a halogen atom, an alkyl group and a hydroxyl group, and among them, a hydrogen atom is preferable. R 9 and R 10 in the formula (VIII) each independently represent a hydrogen atom or an alkyl group, and among them, a hydrogen atom and a methyl group are preferable.
本発明にかかるポリエステルイミド樹脂において、前記式(1)で表される構成単位Aの含有率は、ポリエステルイミド樹脂の構成単位全体(100モル%)に対して、50〜95モル%であり、前記式(2)で表される構成単位Bの含有率は、5〜50モル%である。前記構成単位Aの含有率が50モル%未満になると(あるいは、前記構成単位Bの含有率が50モル%を超えると)、ポリエステルイミド樹脂の硬化物の線熱膨張係数が高くなり、他方、前記構成単位Aの含有率が95モル%を超えると(あるいは、前記構成単位Bの含有率が5モル%未満になると)、ポリエステルイミド樹脂を溶剤に均一に溶解させることが困難となる。また、ポリエステルイミド樹脂の溶剤溶解性がより高くなり、線熱膨張係数がより低くなるという観点から、前記構成単位Aの含有率としては60〜90モル%が好ましく、また、前記構成単位Bの含有率としては10〜40モル%が好ましい。 In the polyesterimide resin according to the present invention, the content of the structural unit A represented by the formula (1) is 50 to 95 mol% with respect to the entire structural unit (100 mol%) of the polyesterimide resin. The content rate of the structural unit B represented by the said Formula (2) is 5-50 mol%. When the content of the structural unit A is less than 50 mol% (or when the content of the structural unit B exceeds 50 mol%), the linear thermal expansion coefficient of the cured product of the polyesterimide resin is increased, If the content of the structural unit A exceeds 95 mol% (or if the content of the structural unit B is less than 5 mol%), it is difficult to uniformly dissolve the polyesterimide resin in the solvent. Further, from the viewpoint that the solvent solubility of the polyesterimide resin becomes higher and the linear thermal expansion coefficient becomes lower, the content of the structural unit A is preferably 60 to 90 mol%, The content is preferably 10 to 40 mol%.
このようなポリエステルイミド樹脂は、溶剤に対して良好な溶解性を示すものである。前記溶剤としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、1,3−ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶媒、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミドなどの含リン系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の含イオウ系溶媒、γ−ブチロラクトン(GBL)、γ−バレロラクトン、γ−カプロラクトン等のラクトン系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶媒、アセトフェノン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒などが挙げられる。また、前記ポリエステルイミド樹脂は熱溶融性も良好である。 Such a polyesterimide resin exhibits good solubility in a solvent. Examples of the solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), 1,3-dimethylimidazolidinone, and tetramethylurea. Amide solvents, phosphorus-containing solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing solvents such as dimethyl sulfoxide (DMSO) and sulfolane, γ-butyrolactone (GBL), γ-valerolactone, γ- Lactone solvents such as caprolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-ki Phenolic solvents such as Renol, 3,5-xylenol, 3-chlorophenol, 4-chlorophenol, ether solvents such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetrahydrofuran, 1,4-dioxane, acetophenone, Examples thereof include ketone solvents such as cyclohexanone and methyl isobutyl ketone. The polyesterimide resin also has good heat meltability.
また、このようなポリエステルイミド樹脂の硬化物は、ガラス転移温度(Tg)が高く、線熱膨張係数(CTE)が低いものである。Tgとしては250℃以上が好ましく、260℃以上がより好ましい。また、CTEとしては20ppm/K以下が好ましく、17ppm/K以下がより好ましい。なお、Tgの上限としては特に制限はないが、通常400℃以下である。また、CTEの下限も特に制限はないが、通常3ppm/K以上である。 Such a cured product of polyesterimide resin has a high glass transition temperature (Tg) and a low coefficient of linear thermal expansion (CTE). Tg is preferably 250 ° C. or higher, and more preferably 260 ° C. or higher. Moreover, as CTE, 20 ppm / K or less is preferable and 17 ppm / K or less is more preferable. In addition, although there is no restriction | limiting in particular as an upper limit of Tg, Usually, it is 400 degrees C or less. The lower limit of CTE is not particularly limited, but is usually 3 ppm / K or more.
(ポリエステルイミド樹脂の製造方法)
本発明にかかるポリエステルイミド樹脂は、例えば、下記式(3):
(Production method of polyesterimide resin)
The polyesterimide resin according to the present invention includes, for example, the following formula (3):
で表される酸無水物エステルと、下記式(4): An acid anhydride ester represented by the following formula (4):
で表されるアミド結合を含有する芳香族ジアミン(以下、「ジアミンA」という)および下記式(5):
H2N−Ar3−NH2 (5)
で表されるその他のジアミン(以下、「ジアミンB」という)と、
を反応させて、下記式(6):
An aromatic diamine containing an amide bond represented by the following (hereinafter referred to as “diamine A”) and the following formula (5):
H 2 N-Ar 3 -NH 2 (5)
Other diamines represented by (hereinafter referred to as “diamine B”),
Is reacted to give the following formula (6):
で表される、溶剤に可溶なポリエステルイミド前駆体(ポリアミド酸)の構成単位を形成させ、このポリエステルイミド前駆体のカルボキシル基とアミド基とを、脱水処理により閉環反応させることによって製造することができる。 It is produced by forming a structural unit of a polyesterimide precursor (polyamic acid) soluble in a solvent represented by the formula, and subjecting the carboxyl group and amide group of this polyesterimide precursor to a ring-closing reaction by dehydration treatment. Can do.
前記式(3)および(6)中のAr1およびAr2は、前記式(1)中のAr1およびAr2と同義であり、前記式(4)中のR1、R2、Xおよびnは前記式(1)中のR1、R2、Xおよびnと同義であり、前記式(5)中のAr3は前記式(2)中のAr3と同義であり、本発明の溶剤に可溶なポリエステルイミド前駆体(ポリアミド酸)の構成単位である前記式(6)中のYは前記ジアミンAの残基(すなわち、前記式(c)であらわされる2価の基)または前記ジアミンBの残基(すなわち、前記式(5)中のAr3)、を表す。 Ar 1 and Ar 2 in the formula (3) and (6) in the above formula (1) have the same meanings as Ar 1 and Ar 2 of, R 1, R 2 in the formula (4), X and n has the same meaning as R 1, R 2, X and n in the formula (1), Ar 3 in the formula (5) has the same meaning as Ar 3 in the formula (2), of the present invention Y in the formula (6) which is a structural unit of a polyesterimide precursor (polyamic acid) soluble in a solvent is a residue of the diamine A (that is, a divalent group represented by the formula (c)) or It represents the residue of the diamine B (that is, Ar 3 in the formula (5)).
前記ジアミンBとしては、ポリエステルイミド樹脂の分子間相互作用が緩和され、溶剤溶解性が向上するという観点から、前記式(5)中のAr3が前記式(I)〜(VIII)のいずれかで表される2価の基であるジアミンが好ましく、ポリエステルイミド樹脂に柔軟な屈曲構造が部分的に導入され、ポリエステルイミド樹脂の分子間相互作用が適度に緩和され、適度な溶剤溶解性を示すという観点からは、前記式(5)中のAr3が前記式(I)で表される2価の基であるジアミンがより好ましく、ポリエステルイミド樹脂組成物の硬化後における線熱膨張係数がより低下し、積層板の反りが低減されるという観点からは、前記式(5)中のAr3が前記式(III)、(IV)、(VIII)で表される2価の基であるジアミンがより好ましい。 As the diamine B, Ar 3 in the formula (5) is any one of the formulas (I) to (VIII) from the viewpoint that the intermolecular interaction of the polyesterimide resin is relaxed and the solvent solubility is improved. A diamine which is a divalent group represented by the formula is preferable, a flexible bending structure is partially introduced into the polyesterimide resin, the intermolecular interaction of the polyesterimide resin is moderately relaxed, and moderate solvent solubility is exhibited. From the viewpoint, diamine in which Ar 3 in the formula (5) is a divalent group represented by the formula (I) is more preferable, and the linear thermal expansion coefficient after curing of the polyesterimide resin composition is more From the viewpoint that the warpage of the laminated sheet is reduced, Ar 3 in the formula (5) is a divalent group represented by the formula (III), (IV), or (VIII). Is more preferable.
前記酸無水物エステルとジアミン成分(前記ジアミンAおよび前記ジアミンB)とを反応させる場合、その反応温度としては特に制限はなく、室温で反応させることが可能である。また、この反応は溶媒中で行うことが好ましい。ここで用いられる溶媒としては特に制限はないが、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、1,3−ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶媒、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の含イオウ系溶媒、γ−ブチロラクトン(GBL)、γ−バレロラクトン、γ−カプロラクトン等のラクトン系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶媒、アセトフェノン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒などが挙げられ、それらの中でも、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)、γ−ブチロラクトン(GBL)などが好ましい。 When the acid anhydride ester and the diamine component (the diamine A and the diamine B) are reacted, the reaction temperature is not particularly limited, and the reaction can be performed at room temperature. This reaction is preferably performed in a solvent. The solvent used here is not particularly limited, but N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), 1,3-dimethylimidazo Amide solvents such as lysinone and tetramethylurea, phosphorus-containing solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing solvents such as dimethyl sulfoxide (DMSO) and sulfolane, γ-butyrolactone (GBL) Lactone solvents such as γ-valerolactone and γ-caprolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4- Xylenol, 2,5-xylenol, 2,6 Phenol solvents such as xylenol, 3,4-xylenol, 3,5-xylenol, 3-chlorophenol, 4-chlorophenol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetrahydrofuran, 1,4-dioxane, etc. Examples include ether solvents, ketone solvents such as acetophenone, cyclohexanone, and methyl isobutyl ketone. Among them, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), γ-butyrolactone ( GBL) and the like are preferable.
前記酸無水物エステルと前記ジアミン成分の混合比は特に制限はなく、例えば、酸無水物エステル成分:ジアミン成分(モル比)=2.0:1.0〜1.0:2.0が好ましく、1.2:1.0〜1.0:1.2がより好ましい。 The mixing ratio of the acid anhydride ester and the diamine component is not particularly limited. For example, the acid anhydride ester component: diamine component (molar ratio) = 2.0: 1.0 to 1.0: 2.0 is preferable. 1.2: 1.0 to 1.0: 1.2 is more preferable.
また、前記酸無水物エステルと前記ジアミン成分との反応において、ジアミンAとジアミンBとの混合モル比(ジアミンA:ジアミンB)は、50:50〜95:5である。これにより、前記式(1)で表される構成単位Aの含有率が50〜95モル%のポリエステルイミド樹脂を製造することができる。さらに、この混合モル比を調整することによって、前記構成単位Aの含有率を調整することができ、例えば、ジアミンA:ジアミンB=60:40〜90:10とすることにより、前記構成単位Aの含有率が60〜90モル%のポリエステルイミド樹脂を製造することができる。 Moreover, in reaction of the said acid anhydride ester and the said diamine component, the mixing molar ratio (diamine A: diamine B) of diamine A and diamine B is 50: 50-95: 5. Thereby, the polyesterimide resin whose content rate of the structural unit A represented by the said Formula (1) is 50-95 mol% can be manufactured. Furthermore, the content ratio of the structural unit A can be adjusted by adjusting the mixing molar ratio. For example, by setting the diamine A: diamine B = 60: 40 to 90:10, the structural unit A A polyesterimide resin having a content of 60 to 90 mol% can be produced.
このようにして得られるポリエステルイミド前駆体に脱水処理を施すことによって、カルボキシル基とアミド基とが閉環反応し、本発明にかかるポリエステルイミド樹脂を得ることができる。前記脱水処理としては、例えば、150〜180℃での加熱脱水処理や、無水酢酸/ピリジンなどの脱水剤を用いた化学的脱水処理などが挙げられる。また、このような閉環反応は溶媒中で行うことが好ましい。ここで用いられる溶媒としては特に制限はないが、前記酸無水物エステルと前記ジアミン成分との反応において使用したものをそのまま使用することができる。これら溶媒にイミド化反応時の副生物である水を共沸留去する目的で、トルエン、キシレンなどを添加することも可能であり、さらにイミド化反応を促進する目的で、ピリジン、トリエチルアミン、γ−ピコリンなどの塩基を添加することもできる。 By subjecting the polyesterimide precursor thus obtained to a dehydration treatment, the carboxyl group and the amide group undergo a ring-closing reaction, and the polyesterimide resin according to the present invention can be obtained. Examples of the dehydration treatment include a heat dehydration treatment at 150 to 180 ° C. and a chemical dehydration treatment using a dehydrating agent such as acetic anhydride / pyridine. Further, such a ring closure reaction is preferably performed in a solvent. Although there is no restriction | limiting in particular as a solvent used here, What was used in reaction of the said acid anhydride ester and the said diamine component can be used as it is. In order to azeotropically distill off water, which is a by-product during the imidation reaction, toluene, xylene, etc. can be added to these solvents, and for the purpose of further promoting the imidization reaction, pyridine, triethylamine, γ -A base such as picoline can also be added.
(無機充填材)
本発明のポリエステルイミド樹脂組成物には無機充填材が含まれている。無機充填材を含有させることによって、ポリエステルイミド樹脂組成物の流動性を制御したり、ポリエステルイミド樹脂組成物の硬化後の線熱膨張係数を低下させたり、難燃性を向上させたりすることが可能となる。
(Inorganic filler)
The polyesterimide resin composition of the present invention contains an inorganic filler. By containing an inorganic filler, the fluidity of the polyesterimide resin composition can be controlled, the linear thermal expansion coefficient after curing of the polyesterimide resin composition can be reduced, or the flame retardancy can be improved. It becomes possible.
このような無機充填材としては特に制限はないが、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩などの公知の無機充填材を用いることができ、中でも、溶融シリカを用いることが好ましい。また、無機充填材の形状としては特に制限はなく、球状、板状、針状、繊維状などが挙げられるが、中でも、球状が好ましい。 Such inorganic fillers are not particularly limited, but include, for example, silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, silica and fused silica, calcium carbonate , Carbonates such as magnesium carbonate and hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite, zinc borate, and metaborate Borates such as barium oxide, aluminum borate, calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate Known inorganic fillers can be used, and among them, it is preferable to use fused silica. Arbitrariness. Moreover, there is no restriction | limiting in particular as a shape of an inorganic filler, Although spherical shape, plate shape, needle shape, fiber shape, etc. are mentioned, Among these, spherical shape is preferable.
前記無機充填材の平均粒子径としては特に制限はないが、0.01〜5.0μmが好ましく、0.1〜2.0μmが特に好ましい。無機充填材の平均粒子径が前記下限未満であると、ワニスが高粘度となり、プリプレグ作製時の作業性に影響を与える場合がある。また、前記上限を超えると、ワニス中で無機充填材が沈降するといった現象が起こる場合がある。 Although there is no restriction | limiting in particular as an average particle diameter of the said inorganic filler, 0.01-5.0 micrometers is preferable and 0.1-2.0 micrometers is especially preferable. When the average particle size of the inorganic filler is less than the lower limit, the varnish has a high viscosity, which may affect the workability during prepreg production. Moreover, when the said upper limit is exceeded, the phenomenon that an inorganic filler settles in a varnish may occur.
本発明のポリエステルイミド樹脂組成物において、無機充填材の含有量としては、ポリエステルイミド樹脂と無機充填材の合計量に対して、30〜80質量%が好ましく、50〜70質量%がより好ましい。無機充填材の含有量が前記下限未満になると、ポリエステルイミド樹脂組成物を用いて作製した積層板の熱膨張係数が高くなる傾向にあり、他方、前記上限を超えると、前記積層板のドリル加工性が低下する傾向にある。 In the polyesterimide resin composition of the present invention, the content of the inorganic filler is preferably 30 to 80% by mass and more preferably 50 to 70% by mass with respect to the total amount of the polyesterimide resin and the inorganic filler. When the content of the inorganic filler is less than the lower limit, the thermal expansion coefficient of the laminate produced using the polyesterimide resin composition tends to increase. On the other hand, when the upper limit is exceeded, drilling of the laminate is performed. Tend to decrease.
(カップリング剤)
本発明のポリエステルイミド樹脂組成物においては、カップリング剤を含有させることが好ましい。前記カップリング剤を含有させることによって、前記ポリエステルイミド樹脂と前記無機充填材との界面の濡れ性を向上させることができ、これにより、繊維基材などに対してポリエステルイミド樹脂および無機充填材を均一に定着させ、耐熱性、特に吸湿後の半田耐熱性を改良することができる。このようなカップリング剤としては特に制限はないが、エポキシシランカップリング剤、アミノシランカップリング剤、メルカプトシランカップリング剤、カチオニックシランカップリング剤などのシラン系カップリング剤、チタネート系カップリング剤、シリコーンオイル型カップリング剤から選ばれる1種以上のカップリング剤を使用することが好ましい。このようなカップリング剤の含有量としては、ポリエステルイミド樹脂と無機充填材の合計量100質量部に対して、0.05〜5質量部が好ましく、0.1〜3質量部がより好ましい。カップリング剤の含有量が前記下限未満になると、無機充填材をポリエステルイミド樹脂中に均一に分散させることが困難となる傾向にあり、他方、前記上限を超えると、ポリエステルイミド樹脂組成物の物性が低下する傾向にある。
(Coupling agent)
In the polyesterimide resin composition of the present invention, a coupling agent is preferably contained. By including the coupling agent, the wettability of the interface between the polyesterimide resin and the inorganic filler can be improved, and thereby the polyesterimide resin and the inorganic filler can be added to the fiber substrate and the like. It is possible to fix uniformly and to improve heat resistance, particularly solder heat resistance after moisture absorption. Such a coupling agent is not particularly limited, but silane coupling agents such as epoxy silane coupling agents, amino silane coupling agents, mercapto silane coupling agents, and cationic silane coupling agents, and titanate coupling agents. It is preferable to use one or more coupling agents selected from silicone oil type coupling agents. As content of such a coupling agent, 0.05-5 mass parts is preferable with respect to 100 mass parts of total amounts of a polyesterimide resin and an inorganic filler, and 0.1-3 mass parts is more preferable. If the content of the coupling agent is less than the lower limit, it tends to be difficult to uniformly disperse the inorganic filler in the polyesterimide resin. On the other hand, if the content exceeds the upper limit, the physical properties of the polyesterimide resin composition. Tend to decrease.
(溶剤)
本発明のポリエステルイミド樹脂組成物は溶剤を含有していてもよい。このような溶剤としては、ポリエステルイミド樹脂が良好な溶解性を示すもの、例えば、前記例示した溶剤が好ましい。溶剤の含有量としては特に制限はないが、ポリエステルイミド樹脂組成物の含浸性が向上するという観点から、樹脂固形分濃度が5〜30質量%(より好ましくは10〜25質量%)となる量が好ましい。
(solvent)
The polyesterimide resin composition of the present invention may contain a solvent. As such a solvent, those in which the polyesterimide resin exhibits good solubility, for example, the solvents exemplified above are preferable. Although there is no restriction | limiting in particular as content of a solvent, From the viewpoint that the impregnation property of a polyesterimide resin composition improves, the quantity from which resin solid content concentration will be 5-30 mass% (more preferably 10-25 mass%) Is preferred.
(ポリエステルイミド樹脂組成物)
本発明のポリエステルイミド樹脂組成物は、前記ポリエステルイミド樹脂と無機充填材と、必要に応じてカップリング剤とを混合することによって製造することができる。また、溶剤を混合することによって樹脂ワニスを得ることができる。このような樹脂ワニスを製造する方法としては、前記ポリエステルイミド樹脂とその合成時に使用した溶媒とを含む反応液と、無機充填材と、必要に応じてカップリング剤、その他半導体パッケージ用基板やプリント配線基板に使用される樹脂組成物において公知の添加剤とを混合して樹脂ワニスを得る方法、あるいは、反応液から前記ポリエステルイミド樹脂を単離した後、得られたポリエステルイミド樹脂と無機充填材と適切な溶剤と、必要に応じてカップリング剤などの前記各成分とを混合して樹脂ワニスを得る方法など、通常適用し得るあらゆる手順、方法を採用できる。また、無機充填材およびカップリング剤の混合方法としては、無機充填材とカップリング剤を乾式混合または湿式混合などにより予め混合して無機充填材をカップリング剤で処理した後、前記ポリエステルイミド樹脂などの残りの樹脂ワニス成分と混合する方法、無機充填材およびカップリング剤を各々別々に残りの樹脂ワニス成分に混合する方法、さらには、予め溶剤に分散したカップリング剤処理または未処理の無機充填材を残りの樹脂ワニス成分と混合する方法、など通常適用し得るあらゆる手順、方法を採用できる。
(Polyesterimide resin composition)
The polyesterimide resin composition of this invention can be manufactured by mixing the said polyesterimide resin, an inorganic filler, and a coupling agent as needed. Moreover, a resin varnish can be obtained by mixing a solvent. As a method for producing such a resin varnish, a reaction liquid containing the polyesterimide resin and a solvent used in the synthesis thereof, an inorganic filler, a coupling agent as required, and other semiconductor package substrates and prints are used. A method for obtaining a resin varnish by mixing a known additive in a resin composition used for a wiring board, or after isolating the polyesterimide resin from a reaction solution, and then obtaining the polyesterimide resin and an inorganic filler Any procedures and methods that can be usually applied, such as a method of obtaining a resin varnish by mixing the above-mentioned components such as a coupling agent, if necessary, with a suitable solvent, can be employed. In addition, as a method for mixing the inorganic filler and the coupling agent, the inorganic filler and the coupling agent are mixed in advance by dry mixing or wet mixing and the inorganic filler is treated with the coupling agent, and then the polyesterimide resin is mixed. The method of mixing with the remaining resin varnish components such as, the method of mixing the inorganic filler and the coupling agent into the remaining resin varnish components separately, and the treatment with the coupling agent dispersed in a solvent in advance or untreated inorganic Any generally applicable procedure and method, such as a method of mixing the filler with the remaining resin varnish components, can be employed.
このようなポリエステルイミド樹脂組成物は、硬化前には良好な含浸性を示し、硬化後には高いガラス転移温度(Tg)および低い線熱膨張係数(CTE)を示すものである。Tgとしては250℃以上が好ましく、260℃以上がより好ましい。また、CTEとしては20ppm/K以下が好ましく、5ppm/K以下がより好ましい。なお、Tgの上限としては特に制限はないが、通常400℃以下である。また、CTEの下限も特に制限はないが、通常0.5ppm/K以上である。 Such a polyesterimide resin composition exhibits good impregnation before curing, and exhibits a high glass transition temperature (Tg) and a low coefficient of linear thermal expansion (CTE) after curing. Tg is preferably 250 ° C. or higher, and more preferably 260 ° C. or higher. Moreover, as CTE, 20 ppm / K or less is preferable and 5 ppm / K or less is more preferable. In addition, although there is no restriction | limiting in particular as an upper limit of Tg, Usually, it is 400 degrees C or less. The lower limit of CTE is not particularly limited, but is usually 0.5 ppm / K or more.
本発明のポリエステルイミド樹脂組成物は、硬化後の線熱膨張係数が低いため、反りが少ない積層板を形成することが可能となる。また、硬化後の線熱膨張係数が低いと無機充填材の含有量を増大させる必要がないため、積層板のドリル加工性が低下することも少なくなる。 Since the polyesterimide resin composition of the present invention has a low coefficient of linear thermal expansion after curing, it becomes possible to form a laminated board with less warpage. Moreover, since it is not necessary to increase content of an inorganic filler when the linear thermal expansion coefficient after hardening is low, the drill workability of a laminated board also decreases.
次に、本発明のプリプレグ、積層板および半導体装置について説明する。 Next, the prepreg, laminate and semiconductor device of the present invention will be described.
<プリプレグ>
本発明のプリプレグは、基材に本発明のポリエステルイミド樹脂組成物を含浸させ、必要に応じて乾燥させることによって得られるものである。本発明のプリプレグに用いられる基材としては、ガラス織布、ガラス不織布、ガラスペーパーなどのガラス繊維基材;紙(パルプ)、アラミド繊維、ポリエステル繊維、芳香族ポリエステル繊維、フッ素樹脂繊維などの有機繊維からなる織布や不織布;金属繊維、カーボン繊維、鉱物繊維などからなる織布、不織布、マット類などが挙げられる。これらの基材は1種を単独で使用しても2種以上を併用してもよい。
<Prepreg>
The prepreg of the present invention is obtained by impregnating a base material with the polyesterimide resin composition of the present invention and drying it as necessary. As the base material used in the prepreg of the present invention, glass fiber base materials such as glass woven fabric, glass nonwoven fabric, and glass paper; organic materials such as paper (pulp), aramid fiber, polyester fiber, aromatic polyester fiber, and fluororesin fiber Examples thereof include woven fabrics and nonwoven fabrics composed of fibers; woven fabrics, nonwoven fabrics, mats and the like composed of metal fibers, carbon fibers, mineral fibers, and the like. These base materials may be used individually by 1 type, or may use 2 or more types together.
このような基材に本発明のポリエステルイミド樹脂組成物を含浸させる方法としては特に制限はないが、例えば、前記溶媒を含むポリエステルイミド樹脂組成物(樹脂ワニス)を調製し、これに基材を浸漬する方法;コーターを用いて基材にポリエステルイミド樹脂組成物または前記樹脂ワニスを塗布または塗工する方法;スプレーによりポリエステルイミド樹脂組成物または前記樹脂ワニスを基材に吹き付ける方法などが挙げられる。これらのうち、より均一にポリエステルイミド樹脂組成物を含浸させることができる点で、樹脂ワニスに基材を浸漬する方法が好ましい。 Although there is no restriction | limiting in particular as a method to impregnate the polyesterimide resin composition of this invention in such a base material, For example, the polyesterimide resin composition (resin varnish) containing the said solvent is prepared, and a base material is prepared for this. Examples include a dipping method; a method in which a polyesterimide resin composition or the resin varnish is applied or applied to a substrate using a coater; and a method in which the polyesterimide resin composition or the resin varnish is sprayed onto the substrate by spraying. Among these, the method of immersing the base material in the resin varnish is preferable in that the polyesterimide resin composition can be more uniformly impregnated.
また、プリプレグを製造する段階で必要に応じて乾燥処理を施すことによって、後述する本発明の積層板を製造する際(熱処理を施す際)に、溶剤などの揮発成分が揮発蒸散することを防ぐことができる。このような乾燥条件としては特に制限はなく、温度、圧力(例えば減圧)などを、適宜選択することができる。 Moreover, when a prepreg is produced, if necessary, a drying treatment is performed to prevent volatile components such as a solvent from volatilely evaporating when producing a laminated board of the present invention described later (when performing a heat treatment). be able to. There is no restriction | limiting in particular as such drying conditions, Temperature, a pressure (for example, pressure reduction), etc. can be selected suitably.
<積層板>
本発明の積層板は、本発明のプリプレグに熱処理を施すことによって形成される層を備えるものである。また、前記プリプレグは1枚であっても2枚以上が積層されていてもよい。このような積層板を製造する場合、後述する他の層を形成(積層)する前に1枚または複数枚を積層したプリプレグに熱処理を施してもよいが、1枚または複数枚を積層したプリプレグ上に他の層を形成(積層)した後、これらにまとめて熱処理を施すことが好ましい。これにより、積層するプリプレグ間の界面の接着性が高くなり、層間剥離に起因する物性低下が起こりにくくなる傾向にある。前記熱処理としては加熱加圧成形などが挙げられる。
<Laminated plate>
The laminated board of this invention is equipped with the layer formed by heat-processing to the prepreg of this invention. The prepreg may be a single sheet or two or more sheets. When manufacturing such a laminated board, heat treatment may be applied to a prepreg in which one or a plurality of layers are laminated before forming (laminating) other layers to be described later. After other layers are formed (laminated) thereon, it is preferable to collectively heat-treat them. Thereby, the adhesiveness of the interface between the laminated prepregs becomes high, and there is a tendency that physical property deterioration due to delamination does not easily occur. Examples of the heat treatment include heating and pressing.
このような熱処理の温度としては特に制限はないが、220〜300℃が好ましい。本発明にかかるポリエステルイミド樹脂が良好な熱溶融性を有するため、このような温度で熱処理を施すことによって、基材中でポリエステルイミド樹脂が溶融して拡散し、ポリエステルイミド樹脂組成物が基材中にさらに均一に存在する層を形成させることが可能となる。また、加圧処理を施す場合、加圧する圧力としては特に制限はないが、1〜4MPaが好ましい。また、本発明の積層板を製造する際に、必要に応じて、当業者に公知の真空プレスなどの装置を使用することは何ら差し支えない。 Although there is no restriction | limiting in particular as temperature of such heat processing, 220-300 degreeC is preferable. Since the polyesterimide resin according to the present invention has a good heat melting property, by performing heat treatment at such a temperature, the polyesterimide resin melts and diffuses in the base material, and the polyesterimide resin composition becomes the base material. It becomes possible to form a layer that exists more uniformly therein. Moreover, when performing a pressurization process, although there is no restriction | limiting in particular as a pressure to pressurize, 1-4 MPa is preferable. Moreover, when manufacturing the laminated board of this invention, it does not interfere at all to use apparatuses, such as a vacuum press well-known to those skilled in the art, as needed.
本発明の積層板中の他の層としては特に制限はないが、例えば、銅箔、銅合金箔、アルミニウム箔、アルミニウム合金箔などの金属箔が挙げられる。このような金属箔を備える積層板は、回路加工を施すことによってプリント配線板として使用することができる。 Although there is no restriction | limiting in particular as another layer in the laminated board of this invention, For example, metal foil, such as copper foil, copper alloy foil, aluminum foil, aluminum alloy foil, is mentioned. A laminated board provided with such a metal foil can be used as a printed wiring board by performing circuit processing.
本発明のポリエステルイミド樹脂組成物が硬化後の線熱膨張係数が低いものであるため、これを用いて形成される本発明の積層板は高温下においても反りが少ないものである。また、樹脂組成物の硬化後の線熱膨張係数が低いと無機充填材の含有量を増大させる必要がないため、本発明の積層板においては、ドリル加工性が低下することも少なくなる。 Since the polyesterimide resin composition of the present invention has a low coefficient of linear thermal expansion after curing, the laminate of the present invention formed using the polyesterimide resin composition is less warped even at high temperatures. Moreover, since it is not necessary to increase content of an inorganic filler when the linear thermal expansion coefficient after hardening of a resin composition is low, in the laminated board of this invention, it is less likely that drill workability falls.
<半導体装置>
本発明の半導体装置は、本発明の積層板と、この積層板上に配置された半導体そしとを備えるものである。前記半導体素子としては特に制限はなく、TEGチップなど公知の半導体素子を使用することができる。このような半導体装置においては、反りが少ない積層体を備えているあるため、接続不良が発生しにくく、接続信頼性が優れている。
<Semiconductor device>
The semiconductor device of the present invention includes the laminate of the present invention and a semiconductor substrate disposed on the laminate. The semiconductor element is not particularly limited, and a known semiconductor element such as a TEG chip can be used. Since such a semiconductor device includes a stacked body with less warping, poor connection hardly occurs and connection reliability is excellent.
以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。ポリイミド樹脂の合成に使用した酸無水物およびジアミンの略号および化学式を以下に示す。
(1)酸無水物
・OPPBP−TME:3,3’−ジフェニル−4,4’−ビフェノール−ビス(トリメリテートアンハイドライト)(本州化学工業(株)製)
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. Abbreviations and chemical formulas of acid anhydrides and diamines used for the synthesis of polyimide resins are shown below.
(1) Acid anhydride / OPPBP-TME: 3,3′-diphenyl-4,4′-biphenol-bis (trimellitate anhydrite) (manufactured by Honshu Chemical Industry Co., Ltd.)
・OTBP−TME:3,3’−ジ(4−トリル)−4,4’−ビフェノール−ビス(トリメリテートアンハイドライト) OTBP-TME: 3,3'-di (4-tolyl) -4,4'-biphenol-bis (trimellitic anhydrite)
・PMDA:ピロメリット酸無水物(和光純薬工業(株)製(試薬)) PMDA: pyromellitic anhydride (Wako Pure Chemical Industries, Ltd. (reagent))
・BPDA:4,4’−ビフタル酸無水物(東京化成工業(株)製(試薬)) BPDA: 4,4'-biphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd. (reagent))
・DSDA:3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(新日本理化(株)製) ・ DSDA: 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride (manufactured by Shin Nippon Rika Co., Ltd.)
・BP−TME:4,4’−ビフェノール−ビス(トリメリテートアンハイドライト)(本州化学工業(株)製) BP-TME: 4,4'-biphenol-bis (trimellitate anhydrite) (Honshu Chemical Industry Co., Ltd.)
(2)ジアミン
・DABAN:4,4’−ジアミノベンズアニリド(日本純良薬品(株)製)
(2) Diamine / DABAN: 4,4′-diaminobenzanilide (manufactured by Nippon Pure Chemicals Co., Ltd.)
・MDABAN:4,4’−ジアミノ−2’−メチルベンズアニリド(日本純良薬品(株)製) MDABAN: 4,4'-diamino-2'-methylbenzanilide (manufactured by Nippon Pure Chemicals Co., Ltd.)
・MODABAN:4,4’−ジアミノ−2’−メトキシベンズアニリド(日本純良薬品(株)製) ・ MODABAN: 4,4'-diamino-2'-methoxybenzanilide (manufactured by Nippon Pure Chemicals Co., Ltd.)
・APTP:N,N’−ビス(4−アミノフェニル)テレフタルアミド(日本純良薬品(株)製) APTP: N, N'-bis (4-aminophenyl) terephthalamide (manufactured by Nippon Pure Chemicals Co., Ltd.)
・ODA:4,4’−ジアミノジフェニルエーテル(東京化成工業(株)製(試薬)) ODA: 4,4'-diaminodiphenyl ether (manufactured by Tokyo Chemical Industry Co., Ltd. (reagent))
・DMB:4,4’−ジアミノ−3,3’−ジメチルビフェニル(東京化成工業(株)製(試薬)) DMB: 4,4'-diamino-3,3'-dimethylbiphenyl (manufactured by Tokyo Chemical Industry Co., Ltd. (reagent))
・DDS:3,3’−ジアミノジフェニルスルホン(東京化成工業(株)製(試薬)) DDS: 3,3'-diaminodiphenylsulfone (manufactured by Tokyo Chemical Industry Co., Ltd. (reagent))
・DADMTSN:3,7−ジアミノ−2,8−ジメチルジベンゾチオフェンスルホン(東京化成工業(株)製(試薬)) -DADMTSN: 3,7-diamino-2,8-dimethyldibenzothiophene sulfone (manufactured by Tokyo Chemical Industry Co., Ltd. (reagent))
・ABP:1,4−ビス(4−アミノベンゾイル)ピペラジン(日本純良薬品(株)製) ABP: 1,4-bis (4-aminobenzoyl) piperazine (manufactured by Nippon Pure Chemicals Co., Ltd.)
・BAFL:9,9−ビス(4−アミノフェニル)フルオレン(JFEケミカル(株)製) ・ BAFL: 9,9-bis (4-aminophenyl) fluorene (manufactured by JFE Chemical Co., Ltd.)
・APB:1,3−ビス(3−アミノフェノキシ)ベンゼン(三井化学ファイン(株)製) APB: 1,3-bis (3-aminophenoxy) benzene (Mitsui Chemical Fine Co., Ltd.)
なお、OTBP−TMEおよびONBP−TMEについては以下の方法により合成し、他の酸無水物およびジアミンについては各製造元より入手した。 In addition, about OTBP-TME and ONBP-TME, it synthesize | combined with the following method, About other acid anhydrides and diamine, it acquired from each manufacturer.
(OTBP−TMEの合成方法)
(1)3,3’−ジ(4−トリル)−4,4’−ビフェノール(OTBP)の合成
温度計、冷却管、攪拌機を備えた1Lの四つ口フラスコに、2−(4−トリル)−4−ブロモフェノール84.20g(0.320モル)、5mol/Lの水酸化ナトリウム水溶液280ml、5%のパラジウム/カーボン触媒0.70g、ジオキサン280mlを仕込み、攪拌しながら90℃付近に昇温した。溶液の温度を90℃付近に保ちながら、水70mlに溶解した硫酸ヒドロキシルアミン26.26g(0.160モル)の水溶液を3時間かけて前記溶液に滴下した。滴下終了後、90℃で1時間加熱しながら反応を継続した。得られた反応液を濾過してパラジウム/カーボン触媒を濾別した。濾液を塩酸でpH4付近まで中和した後、クロロホルム150mlを加えて50℃で抽出してクロロホルム層を分離した。分離したクロロホルム溶液を150mlの純水で2回洗浄した後、脱溶媒し、減圧蒸留してモノフェノール成分を除去した。その後、残留物をイソプロピルエーテル/アセトンを用いて再結晶を行い、真空乾燥して白色結晶性粉末38.90gを得た。収率は66.0%であった。FT−IRおよび1H−NMRにより得られた結晶の分析を行い、目的の構造(OTBP)であることを確認した。
(Synthesis method of OTBP-TME)
(1) Synthesis of 3,3′-di (4-tolyl) -4,4′-biphenol (OTBP) To a 1 L four-necked flask equipped with a thermometer, a condenser, and a stirrer, 2- (4-tolyl) ) -4-Bromophenol 84.20 g (0.320 mol), 5 mol / L sodium hydroxide aqueous solution 280 ml, 5% palladium / carbon catalyst 0.70 g, dioxane 280 ml were charged, and the temperature was raised to about 90 ° C. with stirring. Warm up. While maintaining the temperature of the solution at around 90 ° C., an aqueous solution of 26.26 g (0.160 mol) of hydroxylamine sulfate dissolved in 70 ml of water was added dropwise to the solution over 3 hours. After completion of dropping, the reaction was continued while heating at 90 ° C. for 1 hour. The resulting reaction solution was filtered to separate the palladium / carbon catalyst. The filtrate was neutralized to about pH 4 with hydrochloric acid, 150 ml of chloroform was added, and the mixture was extracted at 50 ° C. to separate the chloroform layer. The separated chloroform solution was washed twice with 150 ml of pure water, then desolvated and distilled under reduced pressure to remove the monophenol component. Thereafter, the residue was recrystallized using isopropyl ether / acetone and vacuum-dried to obtain 38.90 g of white crystalline powder. The yield was 66.0%. The crystals obtained by FT-IR and 1 H-NMR were analyzed, and the target structure (OTBP) was confirmed.
(2)OTBP−TMEの合成
温度計、還流冷却管、滴下ロートを備えた1Lの四つ口フラスコに、無水トリメリット酸クロライド50.54g(0.240モル)、メチルイソブチルケトン180g、アセトン80gを仕込み、0〜5℃に冷却しながら溶解させた。一方、前記(1)で合成したOTBP36.65g(0.100モル)、ピリジン17.42g(0.300モル)、メチルイソブチルケトン30.0gを混合して室温下で溶解させた。この溶液を滴下ロートを用いて前記四つ口フラスコに温度を0〜5℃に保持しながら撹拌下で2時間かけて滴下して反応を行った。滴下終了後、さらに温度0〜5℃で1時間攪拌した後、70℃で6時間撹拌しながら反応させた。反応終了後、塩酸水と水を添加して撹拌した後、水層を分離した。得られた油層に水を添加して撹拌した後、水層を分離する操作(水洗)を4回繰り返して、副生物のピリジン塩酸塩を除去した。この水洗時に目的物が開環してテトラカルボン酸が形成されるため、水洗後の油層に無水酢酸40.84g(0.400モル)を加えて温度80〜90℃で20時間かけて閉環させた。得られた溶液を室温まで冷却し、析出した結晶を濾過して白色結晶51.46gを得た。収率は72.0%であった。FT−IRおよび1H−NMRにより得られた結晶の分析を行い、目的の構造(OTBP−TME)であることを確認した。
(2) Synthesis of OTBP-TME In a 1 L four-necked flask equipped with a thermometer, a reflux condenser, and a dropping funnel, 50.54 g (0.240 mol) of trimellitic anhydride chloride, 180 g of methyl isobutyl ketone, 80 g of acetone Was dissolved while cooling to 0 to 5 ° C. On the other hand, 36.65 g (0.100 mol) of OTBP synthesized in (1), 17.42 g (0.300 mol) of pyridine, and 30.0 g of methyl isobutyl ketone were mixed and dissolved at room temperature. This solution was dropped into the four-necked flask using the dropping funnel over 2 hours with stirring while maintaining the temperature at 0 to 5 ° C. to carry out the reaction. After completion of dropping, the mixture was further stirred at a temperature of 0 to 5 ° C. for 1 hour, and then reacted at 70 ° C. with stirring for 6 hours. After completion of the reaction, aqueous hydrochloric acid and water were added and stirred, and then the aqueous layer was separated. After adding water to the obtained oil layer and stirring, the operation of separating the aqueous layer (washing with water) was repeated four times to remove the by-product pyridine hydrochloride. Since the target product is ring-opened during washing with water to form a tetracarboxylic acid, 40.84 g (0.400 mol) of acetic anhydride is added to the oil layer after washing with water, and the ring is closed at a temperature of 80 to 90 ° C. for 20 hours. It was. The obtained solution was cooled to room temperature, and the precipitated crystals were filtered to obtain 51.46 g of white crystals. The yield was 72.0%. The crystals obtained by FT-IR and 1 H-NMR were analyzed, and the target structure (OTBP-TME) was confirmed.
(ONBP−TMEの合成方法)
(1)3,3’−ジ(1−ナフチル)−4,4’−ビフェノール(ONBP)の合成
2−(4−トリル)−4−ブロモフェノールの代わりに2−(1−ナフチル)−4−ブロモフェノール95.73g(0.320モル)を用いた以外は、前記OTBPの合成方法と同様の方法により白色結晶性粉末50.61gを得た。収率は72.1%であった。FT−IRおよび1H−NMRにより得られた結晶の分析を行い、目的の構造(ONBP)であることを確認した。
(Synthesis method of ONBP-TME)
(1) Synthesis of 3,3′-di (1-naphthyl) -4,4′-biphenol (ONBP) 2- (1-naphthyl) -4 instead of 2- (4-tolyl) -4-bromophenol -White crystalline powder 50.61g was obtained by the method similar to the said OTBP synthesis method except having used 95.73g (0.320 mol) of bromophenol. The yield was 72.1%. The crystals obtained by FT-IR and 1 H-NMR were analyzed and confirmed to have the target structure (ONBP).
(2)ONBP−TMEの合成
OTBPの代わりに前記(1)で合成したONBP43.85g(0.100モル)を用いた以外は、前記OTBP−TMEの合成方法と同様の方法により白色結晶55.31gを得た。収率は70.3%であった。FT−IRおよび1H−NMRにより得られた結晶の分析を行い、目的の構造(ONBP−TME)であることを確認した。
(2) Synthesis of ONBP-TME White crystals 55. were synthesized by the same method as the synthesis method of OTBP-TME except that 43.85 g (0.100 mol) of ONBP synthesized in (1) was used instead of OTBP. 31 g was obtained. The yield was 70.3%. The crystals obtained by FT-IR and 1 H-NMR were analyzed, and the target structure (ONBP-TME) was confirmed.
(合成例1)
温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた四つ口のセパラブルフラスコ中に、ジアミン成分としてDABAN7.95g(0.035モル)およびODA3.01(0.015モル)を仕込み、N−メチル−2−ピロリドン40.0gを加えて60℃で攪拌して溶解させた。ジアミン成分が均一に溶解した後、得られた溶液を室温まで冷却し、酸無水物成分として粉末状のOPPBP−TME34.30g(0.050モル)を数回に分けてフラスコ内に添加し、室温で48時間攪拌して反応させ、ポリエステルイミド前駆体溶液を得た。
(Synthesis Example 1)
In a four-necked separable flask equipped with a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube, 7.95 g (0.035 mol) of DABAN and 3.01 (0.015 mol) of ODA are used as diamine components. Then, 40.0 g of N-methyl-2-pyrrolidone was added and stirred at 60 ° C. to dissolve. After the diamine component was uniformly dissolved, the resulting solution was cooled to room temperature, and 34.30 g (0.050 mol) of powdered OPPBP-TME was added to the flask in several portions as the acid anhydride component. The mixture was reacted at room temperature for 48 hours to obtain a polyesterimide precursor solution.
前記フラスコにディーンスターク管を取り付け、フラスコ内のポリエステルイミド前駆体溶液に共沸溶媒としてトルエン10.2gを添加し、窒素気流下、185℃で還流反応を行い、生成水を系外に除去しながら6時間還流反応を継続した。反応後、反応液を室温まで冷却し、NMPで適当に希釈した後、1Lのメタノール中に滴下して再沈を行い、吸引濾過により樹脂粉末を単離した。得られた樹脂粉末をさらに1Lのメタノールで洗浄した後、濾過・風乾し、さらに120℃で24時間真空乾燥を行い、精製樹脂粉末40.6gを得た。収率は90%であった。 A Dean-Stark tube is attached to the flask, and 10.2 g of toluene is added as an azeotropic solvent to the polyesterimide precursor solution in the flask, and a reflux reaction is performed at 185 ° C. in a nitrogen stream to remove generated water out of the system. The reflux reaction was continued for 6 hours. After the reaction, the reaction solution was cooled to room temperature, diluted appropriately with NMP, dropped into 1 L of methanol to perform reprecipitation, and the resin powder was isolated by suction filtration. The obtained resin powder was further washed with 1 L of methanol, filtered and air dried, and further vacuum dried at 120 ° C. for 24 hours to obtain 40.6 g of purified resin powder. The yield was 90%.
FT−IRおよび1H−NMRにより得られた精製樹脂粉末の分析を行い、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=7:3で含有するもの)であることを確認した。なおこのポリエステルイミド樹脂の赤外線吸収(FT−IR)スペクトルは、フーリエ変換赤外分光光度計((株)島津製作所製「FTIR―8900」)を用い、KBr透過法により測定した。その結果を図1に示す。 The purified resin powder obtained by FT-IR and 1 H-NMR was analyzed, and a polyesterimide resin having the target structure (the molar ratio of the structural unit A to the structural unit B was A: B = 7: 3). It was confirmed that The infrared absorption (FT-IR) spectrum of this polyesterimide resin was measured by a KBr transmission method using a Fourier transform infrared spectrophotometer (“FTIR-8900” manufactured by Shimadzu Corporation). The result is shown in FIG.
(合成例2)
ジアミン成分としてMDABAN9.65g(0.040モル)およびODA2.00g(0.010モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=8:2で含有するもの)40.3gを合成した。収率は88%であった。
(Synthesis Example 2)
A polyesterimide resin having the desired structure (with the structural unit A and the same) as in Synthesis Example 1 except that 9.65 g (0.040 mol) of MDBAN and 2.00 g (0.010 mol) of ODA were used as the diamine component. 40.3 g of the structural unit B was synthesized (containing the molar ratio A: B = 8: 2). The yield was 88%.
(合成例3)
ジアミン成分としてMODABAN11.58g(0.045モル)およびODA1.00g(0.005モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=9:1で含有するもの)40.2gを合成した。収率は86%であった。
(Synthesis Example 3)
A polyesterimide resin having the desired structure (with the structural unit A and the same as in Synthesis Example 1) except that 11.58 g (0.045 mol) of MODABAN and 1.00 g (0.005 mol) of ODA were used as the diamine component. 40.2 g of the above structural unit B was synthesized (containing the molar ratio A: B = 9: 1). The yield was 86%.
(合成例4)
ジアミン成分としてAPTP10.39g(0.030モル)およびODA6.97g(0.020モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=6:4で含有するもの)47.4gを合成した。収率は92%であった。
(Synthesis Example 4)
A polyesterimide resin having the desired structure (with the structural unit A and the above) was used in the same manner as in Synthesis Example 1 except that 10.39 g (0.030 mol) of APTP and 6.97 g (0.020 mol) of ODA were used as the diamine component. 47.4 g) was synthesized (containing the structural unit B in a molar ratio A: B = 6: 4). The yield was 92%.
(合成例5)
ジアミン成分としてDABAN7.95g(0.035モル)およびDMB3.72g(0.015モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=7:3で含有するもの)41.7gを合成した。収率は91%であった。
(Synthesis Example 5)
A polyesterimide resin having the desired structure (with the structural unit A and the above) was used in the same manner as in Synthesis Example 1 except that 7.95 g (0.035 mol) of DABAN and 3.72 g (0.015 mol) of DMB were used as the diamine component. 41.7 g) was synthesized (containing the structural unit B at a molar ratio A: B = 7: 3). The yield was 91%.
(合成例6)
ジアミン成分としてDABAN9.09g(0.040モル)およびDDS2.48g(0.010モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=8:2で含有するもの)41.2gを合成した。収率は90%であった。
(Synthesis Example 6)
A polyesterimide resin having the desired structure (with the structural unit A and the above) was used in the same manner as in Synthesis Example 1 except that 9.09 g (0.040 mol) of DABAN and 2.48 g (0.010 mol) of DDS were used as the diamine component. 41.2 g of the above structural unit B was synthesized (containing the molar ratio A: B = 8: 2). The yield was 90%.
(合成例7)
ジアミン成分としてDABAN6.82g(0.030モル)およびDADMTSN5.49g(0.020モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=6:4で含有するもの)40.0gを合成した。収率は86%であった。
(Synthesis Example 7)
A polyesterimide resin having the desired structure (with the structural unit A and the above) was used in the same manner as in Synthesis Example 1 except that 6.82 g (0.030 mol) of DABAN and 5.49 g (0.020 mol) of DADMTSN were used as the diamine component. 40.0 g of a compound containing the structural unit B in a molar ratio A: B = 6: 4) was synthesized. The yield was 86%.
(合成例8)
ジアミン成分としてAPTP13.86g(0.040モル)およびABP3.24g(0.010モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=8:2で含有するもの)45.2gを合成した。収率は89%であった。
(Synthesis Example 8)
A polyesterimide resin having the desired structure (with the structural unit A and the same) as in Synthesis Example 1 except that 13.86 g (0.040 mol) of APTP and 3.24 g (0.010 mol) of ABP were used as the diamine component. 45.2 g) was synthesized (containing the structural unit B at a molar ratio A: B = 8: 2). The yield was 89%.
(合成例9)
酸無水物成分としてOTBP−TME35.73g(0.050モル)、ジアミン成分としてDABAN10.23g(0.045モル)およびBAFL1.74g(0.005モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=9:1で含有するもの)41.8gを合成した。収率は88%であった。
(Synthesis Example 9)
The same as Synthesis Example 1 except that 35.73 g (0.050 mol) of OTBP-TME was used as the acid anhydride component, and 10.23 g (0.045 mol) of DABAN and 1.74 g (0.005 mol) of BAFL were used as the diamine component. 41.8 g of a polyesterimide resin having a target structure (containing the structural unit A and the structural unit B in a molar ratio A: B = 9: 1) was synthesized. The yield was 88%.
(合成例10)
酸無水物成分としてONBP−TME39.33g(0.050モル)、ジアミン成分としてDABAN10.23g(0.045モル)およびBAFL1.74g(0.005モル)を用いた以外は合成例1と同様にして、目的とする構造を有するポリエステルイミド樹脂(前記構造単位Aと前記構造単位Bとをモル比A:B=9:1で含有するもの)43.5gを合成した。収率は85%であった。
(Synthesis Example 10)
The same as Synthesis Example 1 except that 39.33 g (0.050 mol) of ONBP-TME was used as the acid anhydride component, and 10.23 g (0.045 mol) of DABAN and 1.74 g (0.005 mol) of BAFL were used as the diamine component. Then, 43.5 g of a polyesterimide resin having the target structure (containing the structural unit A and the structural unit B at a molar ratio A: B = 9: 1) was synthesized. The yield was 85%.
(比較合成例1)
酸無水物成分としてPMDA10.91g(0.050モル)を用いた以外は合成例1と同様にしてポリイミド樹脂の合成を行なったところ、185℃での還流反応中に反応物が析出したが、そのまま還流反応を6時間継続した。反応後、反応液と析出物を1Lのメタノール中に投入して再沈殿を行い、吸引濾過により樹脂粉末を単離した。得られた樹脂粉末をさらに1Lのメタノールで洗浄した後、濾過・風乾し、さらに120℃で24時間真空乾燥を行い、精製樹脂(ポリイミド樹脂)粉末19.9gを得た。収率は92%であった。
(Comparative Synthesis Example 1)
A polyimide resin was synthesized in the same manner as in Synthesis Example 1 except that PMDA 10.91 g (0.050 mol) was used as the acid anhydride component, and the reaction product was precipitated during the reflux reaction at 185 ° C. The reflux reaction was continued for 6 hours. After the reaction, the reaction solution and the precipitate were put into 1 L of methanol for reprecipitation, and the resin powder was isolated by suction filtration. The obtained resin powder was further washed with 1 L of methanol, filtered and air-dried, and further vacuum-dried at 120 ° C. for 24 hours to obtain 19.9 g of a purified resin (polyimide resin) powder. The yield was 92%.
(比較合成例2)
酸無水物成分としてBPDA14.71g(0.050モル)を用いた以外は合成例1と同様にしてポリイミド樹脂の合成を行なったところ、185℃での還流反応中に反応物が析出したが、そのまま還流反応を6時間継続した。反応後、比較合成例1と同様にして精製樹脂(ポリイミド樹脂)粉末23.2gを得た。収率は91%であった。
(Comparative Synthesis Example 2)
A polyimide resin was synthesized in the same manner as in Synthesis Example 1 except that 14.71 g (0.050 mol) of BPDA was used as the acid anhydride component, and the reaction product was precipitated during the reflux reaction at 185 ° C. The reflux reaction was continued for 6 hours. After the reaction, 23.2 g of purified resin (polyimide resin) powder was obtained in the same manner as in Comparative Synthesis Example 1. The yield was 91%.
(比較合成例3)
酸無水物成分としてDSDA17.90g(0.050モル)を用いた以外は合成例1と同様にしてポリイミド樹脂の合成を行なったところ、185℃での還流反応中に反応物が析出したが、そのまま還流反応を6時間継続した。反応後、比較合成例1と同様にして精製樹脂(ポリイミド樹脂)粉末23.5gを得た。収率は82%であった。
(Comparative Synthesis Example 3)
A polyimide resin was synthesized in the same manner as in Synthesis Example 1 except that 17.90 g (0.050 mol) of DSDA was used as the acid anhydride component, and the reactant was precipitated during the reflux reaction at 185 ° C. The reflux reaction was continued for 6 hours. After the reaction, 23.5 g of purified resin (polyimide resin) powder was obtained in the same manner as in Comparative Synthesis Example 1. The yield was 82%.
(比較合成例4)
酸無水物成分としてBP−TME26.72g(0.050モル)、ジアミン成分としてDABAN6.70g(0.025モル)およびODA5.01(0.025モル)を用いた以外は合成例1と同様にしてポリイミド樹脂の合成を行なったところ、185℃での還流反応中に反応物が析出したが、そのまま還流反応を6時間継続した。反応後、比較合成例1と同様にして精製樹脂(ポリイミド樹脂)粉末36.0gを得た。収率は94%であった。
(Comparative Synthesis Example 4)
The same as Synthesis Example 1 except that 26.72 g (0.050 mol) of BP-TME was used as the acid anhydride component, and 6.70 g (0.025 mol) of DABAN and 5.01 (0.025 mol) of ODA were used as the diamine component. When the polyimide resin was synthesized, a reaction product precipitated during the reflux reaction at 185 ° C., but the reflux reaction was continued for 6 hours. After the reaction, 36.0 g of purified resin (polyimide resin) powder was obtained in the same manner as in Comparative Synthesis Example 1. The yield was 94%.
(比較合成例5)
酸無水物成分としてBPDA14.71g(0.050モル)、ジアミン成分としてODA10.01(0.050モル)を用いた以外は合成例1と同様にしてポリイミド樹脂の合成を行なったところ、185℃での還流反応中に反応物が析出したが、そのまま還流反応を6時間継続した。反応後、比較合成例1と同様にして精製樹脂(ポリイミド樹脂)粉末21.8gを得た。収率は89%であった。
(Comparative Synthesis Example 5)
A polyimide resin was synthesized in the same manner as in Synthesis Example 1 except that 14.71 g (0.050 mol) of BPDA was used as the acid anhydride component and ODA10.01 (0.050 mol) was used as the diamine component. During the reflux reaction, a reaction product was precipitated, but the reflux reaction was continued for 6 hours. After the reaction, 21.8 g of purified resin (polyimide resin) powder was obtained in the same manner as in Comparative Synthesis Example 1. The yield was 89%.
(比較合成例6)
酸無水物成分としてDSDA17.90g(0.050モル)、ジアミン成分としてAPB14.62(0.050モル)を用いた以外は合成例1と同様にして精製樹脂(ポリイミド樹脂)粉末26.5gを合成した。収率は82%であった。
(Comparative Synthesis Example 6)
26.5 g of purified resin (polyimide resin) powder was obtained in the same manner as in Synthesis Example 1 except that 17.90 g (0.050 mol) of DSDA was used as the acid anhydride component and 14.62 (0.050 mol) of APB was used as the diamine component. Synthesized. The yield was 82%.
(比較合成例7)
酸無水物成分としてBP−TME26.72g(0.050モル)、ジアミン成分としてBAFL17.42(0.050モル)を用いた以外は合成例1と同様にしてポリイミド樹脂の合成を行なったところ、185℃での還流反応中に反応物が析出したが、そのまま還流反応を6時間継続した。反応後、比較合成例1と同様にして精製樹脂(ポリイミド樹脂)粉末38.7gを得た。収率は88%であった。
(Comparative Synthesis Example 7)
A polyimide resin was synthesized in the same manner as in Synthesis Example 1 except that BP-TME26.72 g (0.050 mol) was used as the acid anhydride component and BAFL 17.42 (0.050 mol) was used as the diamine component. While the reaction product was precipitated during the reflux reaction at 185 ° C., the reflux reaction was continued for 6 hours. After the reaction, 38.7 g of purified resin (polyimide resin) powder was obtained in the same manner as in Comparative Synthesis Example 1. The yield was 88%.
(比較合成例8)
ジアミン成分としてDABAN11.36(0.050モル)を用いた以外は合成例1と同様にしてポリイミド樹脂の合成を行なったところ、185℃での還流反応終了後、室温まで冷却中に反応液のゲル化が起こった。ゲル化物を1Lのメタノール中に投入して析出した固形分をミキサーで粉砕し、吸引濾過により樹脂粉末を単離した。得られた樹脂粉末をさらに1Lのメタノールで洗浄した後、濾過・風乾し、さらに120℃で24時間真空乾燥を行い、精製樹脂(ポリイミド樹脂)粉末41.0gを得た。収率は90%であった。
(Comparative Synthesis Example 8)
A polyimide resin was synthesized in the same manner as in Synthesis Example 1 except that DABAN 11.36 (0.050 mol) was used as the diamine component. After completion of the reflux reaction at 185 ° C., the reaction solution was cooled to room temperature. Gelation occurred. The gelled product was put into 1 L of methanol and the precipitated solid was pulverized with a mixer, and the resin powder was isolated by suction filtration. The obtained resin powder was further washed with 1 L of methanol, filtered and air-dried, and further vacuum-dried at 120 ° C. for 24 hours to obtain 41.0 g of purified resin (polyimide resin) powder. The yield was 90%.
(比較合成例9)
ジアミン成分としてDABAN3.41(0.015モル)およびBAFL12.20(0.035モル)を用いた以外は合成例1と同様にして精製樹脂(ポリイミド樹脂)粉末40.8gを合成した。収率は84%であった。
(Comparative Synthesis Example 9)
40.8 g of purified resin (polyimide resin) powder was synthesized in the same manner as in Synthesis Example 1 except that DABAN 3.41 (0.015 mol) and BAFL 12.20 (0.035 mol) were used as the diamine component. The yield was 84%.
(比較合成例10)
ジアミン成分としてBAFL17.42(0.050モル)を用いた以外は合成例1と同様にして精製樹脂(ポリイミド樹脂)粉末42.3gを合成した。収率は82%であった。
(Comparative Synthesis Example 10)
A purified resin (polyimide resin) powder 42.3 g was synthesized in the same manner as in Synthesis Example 1 except that BAFL 17.42 (0.050 mol) was used as the diamine component. The yield was 82%.
得られたポリイミド樹脂の特性評価方法を以下に示す。 The characteristic evaluation method of the obtained polyimide resin is shown below.
(1)溶剤溶解性
樹脂濃度が10質量%となるようにポリイミド樹脂にN−メチル−2−ピロリドン(NMP)を加え、60℃で加熱しながら攪拌により混合して溶液を調製した。この溶液を室温まで冷却し、室温で24時間放置した後の溶液の状態を目視により観察して、樹脂の溶解性を下記の3段階で評価した。その結果を表1に示す。
A:析出物やゲル化物が見られず、均一透明な溶解性に優れるもの。
B:僅かな析出物やゲル化物が見られ、やや溶解性に劣るもの。
C:明確な析出物やゲル化物が見られ、溶解性に劣るもの。
(1) Solvent solubility N-methyl-2-pyrrolidone (NMP) was added to the polyimide resin so that the resin concentration was 10% by mass, and the mixture was mixed by stirring while heating at 60 ° C. to prepare a solution. The solution was cooled to room temperature, and allowed to stand at room temperature for 24 hours. The state of the solution was visually observed, and the solubility of the resin was evaluated in the following three stages. The results are shown in Table 1.
A: Precipitates and gelled products are not seen and excellent in uniform and transparent solubility.
B: Slight deposits and gelled products are seen, and slightly insoluble.
C: A clear precipitate or gelled product is seen and the solubility is poor.
(2)還元粘度
ポリイミド樹脂にNMPを加えて樹脂濃度が0.5質量%の溶液を調製し、この溶液の30℃の還元粘度をウベローデ粘度計を用いて測定した。その結果を表1に示す。
(2) Reduced viscosity NMP was added to the polyimide resin to prepare a solution having a resin concentration of 0.5 mass%, and the reduced viscosity at 30 ° C of this solution was measured using an Ubbelohde viscometer. The results are shown in Table 1.
(3)ガラス転移温度
ポリイミド樹脂にNMPを加えて樹脂濃度が10質量%のワニスを調製した。このワニスをガラス基板上に流延し、空気中、80℃で2時間乾燥し、さらに窒素オーブン中、200℃で2時間乾燥した後、残留応力を除去するために基板からポリイミド膜を剥がして、真空中、250℃で1時間熱処理を行い、膜厚30μmのポリイミド膜を得た。
(3) Glass transition temperature NMP was added to the polyimide resin to prepare a varnish having a resin concentration of 10% by mass. This varnish is cast on a glass substrate, dried in air at 80 ° C. for 2 hours, further dried in a nitrogen oven at 200 ° C. for 2 hours, and then the polyimide film is peeled off from the substrate to remove residual stress. Then, heat treatment was performed in vacuum at 250 ° C. for 1 hour to obtain a polyimide film having a thickness of 30 μm.
このポリイミド膜について、粘弾性スペクトロメータ(エスアイアイ・ナノテクノロジー(株)製「DMS6100」)を用いて、周波数0.1Hz、昇温速度5℃/分の条件で動的粘弾性測定を行い、tanδピークからポリイミド膜(30μm厚)のガラス転移温度(Tg)を求めた。その結果を表1に示す。 For this polyimide film, using a viscoelastic spectrometer (“DMS6100” manufactured by SII Nanotechnology Co., Ltd.), a dynamic viscoelasticity measurement is performed under the conditions of a frequency of 0.1 Hz and a heating rate of 5 ° C./min. The glass transition temperature (Tg) of the polyimide film (30 μm thickness) was determined from the tan δ peak. The results are shown in Table 1.
(4)熱膨張係数
前記(3)と同様にして作製した膜厚30μmのポリイミド膜について、熱・応力・歪測定装置(エスアイアイ・ナノテクノロジー(株)製「TMA/SS6100」)を用いて、荷重0.5g/膜厚1μm、昇温速度10℃/分の条件で熱機械分析を行い、60〜260℃の範囲でのポリイミド膜の面方向(X方向)の伸びの平均値を求め、この値からポリイミド膜(30μm厚)の面方向(X方向)の線熱膨張係数(CTE)を求めた。その結果を表1に示す。
(4) Thermal expansion coefficient About the polyimide film with a film thickness of 30 μm produced in the same manner as in (3) above, using a thermal / stress / strain measuring device (“TMA / SS6100” manufactured by SII Nanotechnology Co., Ltd.). Then, thermomechanical analysis is performed under the conditions of a load of 0.5 g / film thickness of 1 μm and a heating rate of 10 ° C./min, and an average value of the elongation in the plane direction (X direction) of the polyimide film in the range of 60 to 260 ° C. is obtained. From this value, the linear thermal expansion coefficient (CTE) in the surface direction (X direction) of the polyimide film (30 μm thick) was determined. The results are shown in Table 1.
表1に示した結果から明らかなように、本発明にかかる酸無水物単位とジアミンA単位とからなる構成単位Aを所定の割合で含有するポリエステルイミド樹脂(合成例1〜10)はいずれも、室温下、樹脂濃度10質量%においてNMPに可溶なものであり、製膜可能なものであった。また、いずれのポリエステルイミド膜もTgが260℃以上であり、耐熱性の高いものであることがわかった。さらに、CTEは20ppm/K以下であり、寸法変化の小さい材料であることがわかった。 As is clear from the results shown in Table 1, any polyesterimide resin (Synthesis Examples 1 to 10) containing the structural unit A composed of the acid anhydride unit and the diamine A unit according to the present invention in a predetermined ratio is used. At room temperature, the resin concentration was 10% by mass and it was soluble in NMP and could be formed into a film. Moreover, Tg was 260 degreeC or more also in any polyesterimide film | membrane, and it turned out that it is a thing with high heat resistance. Furthermore, CTE was 20 ppm / K or less, and it was found that the material had a small dimensional change.
一方、本発明にかかる酸無水物単位を含まないポリイミド樹脂(比較合成例1〜7)、ジアミン単位として本発明にかかるジアミンA単位のみを含むポリイミド樹脂(比較合成例8)はNMPには不溶であった。特に、比較合成例6で得られたポリイミド樹脂はNMP溶液中で膨潤するもののNMPには不溶であった。このように、比較合成例1〜8で得られたポリイミド樹脂はNMPに均一に溶解しなかったため、溶液の還元粘度測定は困難であり、また、ワニスの調製が困難であったため、ポリイミド膜が作製できず、ガラス転移温度および熱膨張係数は測定できなかった。 On the other hand, a polyimide resin not containing an acid anhydride unit according to the present invention (Comparative Synthesis Examples 1 to 7) and a polyimide resin containing only the diamine A unit according to the present invention as a diamine unit (Comparative Synthesis Example 8) are insoluble in NMP. Met. In particular, the polyimide resin obtained in Comparative Synthesis Example 6 swelled in the NMP solution, but was insoluble in NMP. Thus, since the polyimide resins obtained in Comparative Synthesis Examples 1 to 8 were not uniformly dissolved in NMP, it was difficult to measure the reduced viscosity of the solution, and it was difficult to prepare the varnish. The glass transition temperature and the thermal expansion coefficient could not be measured.
他方、本発明にかかるジアミンA単位の含有率が50モル%未満のポリイミド樹脂(比較合成例9〜10)は、室温下、樹脂濃度10質量%においてNMPに可溶なものであり、製膜可能なものであった。また、ポリイミド膜はTgが286〜298℃であり、耐熱性の高いものであった。しかしながら、CTEが54〜65ppm/Kであり、本発明にかかるポリエステルイミド樹脂に比べて寸法安定性に劣るものであった。 On the other hand, the polyimide resin (Comparative Synthesis Examples 9 to 10) having a diamine A unit content of less than 50 mol% according to the present invention is soluble in NMP at a resin concentration of 10% by mass at room temperature. It was possible. The polyimide film had a Tg of 286 to 298 ° C. and high heat resistance. However, the CTE was 54 to 65 ppm / K, which was inferior in dimensional stability compared to the polyesterimide resin according to the present invention.
(実施例1)
(1)樹脂ワニスの調製
合成例1で得られたポリエステルイミド樹脂35.0質量部、無機充填材として球状溶融シリカ((株)アドマテックス製「SO−25R」、平均粒径0.5μm)65.0質量部、シランカップリング剤(日本ユニカー(株)製「A187」)0.3質量部を混合し、この混合物に固形分濃度が50質量%となるようにNMPを加え、高速攪拌装置を用いて30分間攪拌して樹脂ワニスを得た。
Example 1
(1) Preparation of resin varnish 35.0 parts by mass of the polyesterimide resin obtained in Synthesis Example 1, spherical fused silica as an inorganic filler (“SO-25R” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) 65.0 parts by mass and 0.3 part by mass of a silane coupling agent (“A187” manufactured by Nihon Unicar Co., Ltd.) are mixed, NMP is added to the mixture so that the solid content concentration becomes 50% by mass, and high-speed stirring is performed. The apparatus was stirred for 30 minutes to obtain a resin varnish.
(2)プリプレグの作製
前記(1)で得られた樹脂ワニスを、厚さ90μmのガラス織布(ユニチカ(株)製「E10Tクロス」)および厚さ27μmのガラス織布(ユニチカ(株)製「E03Eクロス」)にそれぞれ含浸させ、150℃の加熱炉で2分間乾燥して、厚さ100μmのプリプレグと厚さ40μmのプリプレグを作製した。
(2) Preparation of prepreg The resin varnish obtained in the above (1) was prepared by using a glass woven fabric having a thickness of 90 μm (“E10T cloth” manufactured by Unitika Ltd.) and a glass woven fabric having a thickness of 27 μm (manufactured by Unitika Ltd.). “E03E cloth”) was impregnated and dried in a heating furnace at 150 ° C. for 2 minutes to prepare a prepreg having a thickness of 100 μm and a prepreg having a thickness of 40 μm.
(3)銅張積層板の作製
前記(2)で得られた厚さ100μmのプリプレグの両面に、厚さ12μmの銅箔(三井金属鉱業(株)製「3EC−M3−VLP」)を重ね、圧力3MPa、温度260℃で2時間加熱加圧成形して両面銅箔を有する銅張積層板(厚さ0.1mm)を作製した。
(3) Preparation of copper clad laminate A 12 μm thick copper foil (“3EC-M3-VLP” manufactured by Mitsui Mining & Smelting Co., Ltd.) is laminated on both sides of the 100 μm thick prepreg obtained in (2) above. A copper-clad laminate (thickness: 0.1 mm) having a double-sided copper foil was prepared by heating and pressure molding at a pressure of 3 MPa and a temperature of 260 ° C. for 2 hours.
(4)多層プリント配線板の作製
前記(3)で得られた銅張積層板に、0.1mmのドリルビットを用いてスルーホール加工を行った後、メッキによりスルーホールを充填した。次いで、銅張積層板の両面にエッチングを施して回路を形成し、内層回路基板を作製した。この内層回路基板の表裏に、前記(2)で得られた厚さ40μmのプリプレグを重ね合わせ、これを、真空プレスを用いて温度260℃、圧力3MPaで2時間真空加熱成形して多層プリント配線板を作製した。
(4) Production of multilayer printed wiring board The copper-clad laminate obtained in (3) was subjected to through-hole processing using a 0.1 mm drill bit, and then filled with through-holes by plating. Next, etching was performed on both sides of the copper clad laminate to form a circuit, and an inner layer circuit board was produced. The prepreg with a thickness of 40 μm obtained in (2) above is superimposed on the front and back of the inner layer circuit board, and this is vacuum-heated for 2 hours at a temperature of 260 ° C. and a pressure of 3 MPa using a vacuum press. A plate was made.
(5)半導体装置の作製
前記(4)で得られた多層プリント配線板の絶縁層(厚さ40μmのプリプレグ部分)に炭酸レーザー装置を用いて開口部を設け、電解銅めっきにより絶縁層表面に外層回路を形成し、外層回路と内層回路との導通を図った。なお、外層回路には、半導体素子を実装するための接続用電極部を設けた。次に、最外層としてソルダーレジスト(太陽インキ社製、PSR4000/AUS308)を形成し、半導体素子が実装できるように露光・現像により接続用電極部を露出させ、ニッケル金メッキ処理を施した後、多層プリント配線板を50mm×50mmの大きさに切断した。
(5) Fabrication of semiconductor device An opening is provided in the insulating layer (prepreg part having a thickness of 40 μm) of the multilayer printed wiring board obtained in (4) above using a carbonic acid laser device, and the surface of the insulating layer is formed by electrolytic copper plating. An outer layer circuit was formed to achieve conduction between the outer layer circuit and the inner layer circuit. The outer layer circuit was provided with a connecting electrode portion for mounting a semiconductor element. Next, a solder resist (manufactured by Taiyo Ink, PSR4000 / AUS308) is formed as the outermost layer, and the connection electrode portion is exposed by exposure and development so that a semiconductor element can be mounted, and after the nickel gold plating treatment is performed, the multilayer The printed wiring board was cut into a size of 50 mm × 50 mm.
次に、半導体装置の組み立てを行なった。半導体素子としては、半田バンプがSn/Pb組成の共晶で形成され、回路保護膜がポジ型感光性樹脂(住友ベークライト(株)製「CRC−8300」)で形成されたTEGチップ(サイズ15mm×15mm、厚み0.8mm)を使用した。先ず、半田バンプにフラックス材を転写法により均一に塗布し、フリップチップボンダー装置を用いて前期多層プリント配線板上に加熱圧着により半導体素子を搭載した。次に、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト(株)製「CRP−4152S」)を充填し、液状封止樹脂を温度150℃、120分の条件下で硬化させることにより半導体装置を作製した。なお、半導体素子と多層プリント配線板とは、300個の半田バンプを介して接続され、得られた半導体装置は、デイジーチェーンを有し、これにより接続部の導通を確認することができる。 Next, the semiconductor device was assembled. As a semiconductor element, a TEG chip (size: 15 mm) in which solder bumps are formed of a eutectic of Sn / Pb composition and a circuit protective film is formed of a positive photosensitive resin (“CRC-8300” manufactured by Sumitomo Bakelite Co., Ltd.) × 15 mm, thickness 0.8 mm) was used. First, a flux material was uniformly applied to the solder bumps by a transfer method, and a semiconductor element was mounted on the multilayer printed wiring board using a flip chip bonder device by thermocompression bonding. Next, after melt-bonding the solder bumps in an IR reflow furnace, a liquid sealing resin (“CRP-4152S” manufactured by Sumitomo Bakelite Co., Ltd.) is filled, and the liquid sealing resin is heated at 150 ° C. for 120 minutes. The semiconductor device was produced by curing with Note that the semiconductor element and the multilayer printed wiring board are connected via 300 solder bumps, and the obtained semiconductor device has a daisy chain, whereby the continuity of the connection portion can be confirmed.
(実施例2〜10)
合成例1で得られたポリエステルイミド樹脂の代わりに、それぞれ合成例2〜10で得られたポリエステルイミド樹脂35.0質量部を用いた以外は実施例1と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Examples 2 to 10)
A resin varnish was prepared in the same manner as in Example 1 except that 35.0 parts by mass of the polyesterimide resin obtained in Synthesis Examples 2 to 10 were used instead of the polyesterimide resin obtained in Synthesis Example 1, respectively. A prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device were produced.
(比較例1)
合成例1で得られたポリエステルイミド樹脂の代わりに、比較合成例10で得られたポリイミド樹脂35.0質量部を用いた以外は実施例1と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 1)
A resin varnish was prepared in the same manner as in Example 1 except that 35.0 parts by mass of the polyimide resin obtained in Comparative Synthesis Example 10 was used instead of the polyesterimide resin obtained in Synthesis Example 1, and a prepreg, copper A tension laminate, a multilayer printed wiring board, and a semiconductor device were produced.
(比較例2)
ポリエステルイミド樹脂35.0質量部の代わりに、ビスマレイミド樹脂として2,2’−ビス(4−(4−マレイミドフェノキシフェニル)プロパン(ケイ・アイ化成(株)製「BMI−80」)25.7質量部、その硬化剤として4,4’−ジアミノジフェニルスルホン(三井化学ファイン(株)製「4,4’−DAS」)9.3質量部を用いた以外は実施例1と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 2)
In place of 35.0 parts by mass of the polyesterimide resin, 2,2′-bis (4- (4-maleimidophenoxyphenyl) propane (“BMI-80” manufactured by Kay Chemical Co., Ltd.) as a bismaleimide resin25. 7 parts by mass, the same as in Example 1 except that 9.3 parts by mass of 4,4′-diaminodiphenylsulfone (“4,4′-DAS” manufactured by Mitsui Chemicals Fine Co., Ltd.) was used as the curing agent. A resin varnish was prepared, and a prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device were produced.
(比較例3)
ポリエステルイミド樹脂35.0質量部の代わりに、エポキシ樹脂としてビフェニルアラルキルノボラックエポキシ樹脂(日本化薬(株)製「NC−3000」)20.0質量部、シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン(株)製「プリマセットPT−30」)15.0質量部、これらの硬化剤として2−フェニルー4−メチルイミダゾール(四国化成工業(株)製「キュアゾール2P4MZ」)0.15質量部を用いた以外は実施例1と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 3)
Instead of 35.0 parts by mass of the polyesterimide resin, 20.0 parts by mass of biphenylaralkyl novolac epoxy resin (“NC-3000” manufactured by Nippon Kayaku Co., Ltd.) as an epoxy resin, and novolak type cyanate resin (Lonza Japan) as a cyanate resin 15.0 parts by mass of “Primaset PT-30” manufactured by Co., Ltd., and 0.15 parts by mass of 2-phenyl-4-methylimidazole (“Curesol 2P4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.) are used as these curing agents. A resin varnish was prepared in the same manner as in Example 1 except that a prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device were produced.
(比較例4)
比較合成例10で得られたポリイミド樹脂の含有量を30.0質量部に、球状溶融シリカの含有量を70.0質量部に変更した以外は比較例1と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 4)
A resin varnish was prepared in the same manner as in Comparative Example 1 except that the content of the polyimide resin obtained in Comparative Synthesis Example 10 was changed to 30.0 parts by mass and the content of spherical fused silica was changed to 70.0 parts by mass. A prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device were produced.
(比較例5)
ビスマレイミド樹脂の含有量を22.0質量部に、その硬化剤の含有量を8.0質量部に、球状溶融シリカの含有量を70.0質量部に変更した以外は比較例2と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 5)
The same as Comparative Example 2 except that the content of the bismaleimide resin was changed to 22.0 parts by mass, the content of the curing agent was changed to 8.0 parts by mass, and the content of the spherical fused silica was changed to 70.0 parts by mass. A resin varnish was prepared to prepare a prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device.
(比較例6)
エポキシ樹脂の含有量を17.1質量部に、シアネート樹脂の含有量を12.9質量部に、硬化剤の含有量を0.12質量部に、球状溶融シリカの含有量を70.0質量部に変更した以外は比較例3と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 6)
The epoxy resin content is 17.1 parts by mass, the cyanate resin content is 12.9 parts by mass, the curing agent content is 0.12 parts by mass, and the spherical fused silica content is 70.0 parts by mass. A resin varnish was prepared in the same manner as in Comparative Example 3 except that the prepreg was changed, and a prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device were produced.
(比較例7)
比較合成例10で得られたポリイミド樹脂の含有量を25.0質量部に、球状溶融シリカの含有量を75.0質量部に変更した以外は比較例1と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 7)
A resin varnish was prepared in the same manner as in Comparative Example 1 except that the content of the polyimide resin obtained in Comparative Synthesis Example 10 was changed to 25.0 parts by mass and the content of spherical fused silica was changed to 75.0 parts by mass. A prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device were produced.
(比較例8)
ビスマレイミド樹脂の含有量を18.4質量部に、その硬化剤の含有量を6.6質量部に、球状溶融シリカの含有量を75.0質量部に変更した以外は比較例2と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 8)
The same as Comparative Example 2 except that the content of the bismaleimide resin was changed to 18.4 parts by mass, the content of the curing agent was changed to 6.6 parts by mass, and the content of the spherical fused silica was changed to 75.0 parts by mass. A resin varnish was prepared to prepare a prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device.
(比較例9)
エポキシ樹脂の含有量を14.3質量部に、シアネート樹脂の含有量を10.7質量部に、硬化剤の含有量を0.10質量部に、球状溶融シリカの含有量を75.0質量部に変更した以外は比較例3と同様にして樹脂ワニスを調製し、プリプレグ、銅張積層板、多層プリント配線板および半導体装置を作製した。
(Comparative Example 9)
The epoxy resin content is 14.3 parts by mass, the cyanate resin content is 10.7 parts by mass, the curing agent content is 0.10 parts by mass, and the spherical fused silica content is 75.0 parts by mass. A resin varnish was prepared in the same manner as in Comparative Example 3 except that the prepreg was changed, and a prepreg, a copper clad laminate, a multilayer printed wiring board, and a semiconductor device were produced.
得られた樹脂ワニス、プリプレグ、銅張積層板、多層プリント配線板および半導体装置の特性評価方法を以下に示す。 The characteristic evaluation methods of the obtained resin varnish, prepreg, copper-clad laminate, multilayer printed wiring board and semiconductor device are shown below.
(1)含浸性
銅張積層板(厚さ0.1mm)の断面を走査電子顕微鏡(日本電子(株)製「JCM−5700」)を用いて観察した。この断面観察において観察されたボイドの面積の割合に基づいて、樹脂ワニスの含浸性を下記の3段階で評価した。その結果を表2〜3に示す。
A:ボイドの面積が断面の全面積の10%未満であった場合。
B:ボイドの面積が断面の全面積の10〜30%であった場合。
C:ボイドの面積が断面の全面積の30%を超えた場合。
(1) Impregnation The cross section of the copper clad laminate (thickness 0.1 mm) was observed using a scanning electron microscope (“JCM-5700” manufactured by JEOL Ltd.). Based on the void area ratio observed in the cross-sectional observation, the impregnation property of the resin varnish was evaluated in the following three stages. The results are shown in Tables 2-3.
A: When the area of the void is less than 10% of the total area of the cross section.
B: When the area of the void is 10 to 30% of the total area of the cross section.
C: When the void area exceeds 30% of the total cross-sectional area.
(2)ガラス転移温度
銅張積層板(厚さ0.1mm)の銅箔を全面エッチングにより除去し、得られた積層板から6mm×25mmの試験片を切り出し、この積層板について、粘弾性スペクトロメータ(エスアイアイ・ナノテクノロジー(株)製「DMS6100」)を用いて、周波数0.1Hz、昇温速度5℃/分の条件で動的粘弾性測定を行い、tanδピークから積層体のガラス転移温度(Tg)を算出した。その結果を表2〜3に示す。
(2) Glass transition temperature The copper foil of the copper clad laminate (thickness 0.1 mm) was removed by whole surface etching, and a 6 mm × 25 mm test piece was cut out from the obtained laminate, and the laminate was subjected to viscoelastic spectroscopy. Using a meter (“DMS6100” manufactured by SII NanoTechnology Co., Ltd.), dynamic viscoelasticity measurement was performed under the conditions of a frequency of 0.1 Hz and a temperature increase rate of 5 ° C./min, and the glass transition of the laminate from the tan δ peak. The temperature (Tg) was calculated. The results are shown in Tables 2-3.
(3)熱膨張係数
銅張積層板(厚さ0.1mm)の銅箔を全面エッチングにより除去し、得られた積層板から5mm×20mmの試験片を切り出し、熱・応力・歪測定装置(エスアイアイ・ナノテクノロジー(株)製「TMA/SS6100」)を用いて、荷重0.5g/膜厚1μm、昇温速度5℃/分の条件で熱機械分析を行い、60〜260℃の範囲での積層体の面方向(X方向)の伸びの平均値を求め、この値から積層板の面方向(X方向)の線熱膨張係数(CTE)を求めた。その結果を表2〜3に示す。
(3) Coefficient of thermal expansion The copper foil of the copper clad laminate (thickness: 0.1 mm) is removed by whole surface etching, and a 5 mm × 20 mm test piece is cut out from the obtained laminate, and a thermal / stress / strain measuring device ( Thermomechanical analysis is performed under the conditions of a load of 0.5 g / film thickness of 1 μm and a temperature increase rate of 5 ° C./min using SII Nano Technology Co., Ltd. “TMA / SS6100”, and a range of 60 to 260 ° C. The average value of the elongation in the plane direction (X direction) of the laminate was obtained, and the linear thermal expansion coefficient (CTE) in the plane direction (X direction) of the laminate was obtained from this value. The results are shown in Tables 2-3.
(4)ドリル加工性
銅張積層板(厚さ0.1mm)に、直径0.1mmのドリル刃を用い、30万回転/個で2000個の穴を開けた後のドリル刃の刃先の状態を下記の2段階で判定し、ドリル加工性を評価した。その結果を表2〜3に示す。
A:刃先が十分残っており、再研磨によるドリル刃の再生が可能。
B:刃先が丸まってしまい、ドリル刃の再生が困難。
(4) Drill workability The state of the cutting edge of the drill blade after drilling 2000 holes at 300,000 revolutions / piece using a 0.1 mm diameter drill blade on a copper clad laminate (thickness 0.1 mm) Was evaluated in the following two stages, and drill workability was evaluated. The results are shown in Tables 2-3.
A: The cutting edge remains, and the drill blade can be regenerated by regrinding.
B: The cutting edge is rounded and it is difficult to regenerate the drill blade.
(5)多層プリント配線板の反り量
多層プリント配線板について、温度可変レーザー三次元測定機((株)日立テクノロジーアンドサービス製「LS220−MT100MT50」)を用い、測定温度25℃または260℃において高さ方向の変位を測定し、変位差の最も大きい部分の値を多層プリント配線板の反り量とした。その結果を表2〜3に示す。
(5) Warpage amount of multilayer printed wiring board The multilayer printed wiring board is high at a measurement temperature of 25 ° C. or 260 ° C. using a temperature variable laser three-dimensional measuring machine (“LS220-MT100MT50” manufactured by Hitachi Technology & Service Co., Ltd.). The displacement in the vertical direction was measured, and the value of the portion with the largest displacement difference was taken as the amount of warpage of the multilayer printed wiring board. The results are shown in Tables 2-3.
(6)接続信頼性
10個の半導体装置について、デイジーチェーンにより接続部の導通を確認し、接続信頼性を導通不良個数で評価した。その結果を表2〜3に示す。
(6) Connection reliability For ten semiconductor devices, the continuity of the connection portion was confirmed by a daisy chain, and the connection reliability was evaluated by the number of defective connections. The results are shown in Tables 2-3.
表2に示した結果から明らかなように、本発明にかかる酸無水物単位とジアミン単位とからなる構成単位Aを所定の割合で含有するポリエステルイミド樹脂を用いた場合(実施例1〜10)には、樹脂ワニスは含浸性に優れており、積層板はCTEが4ppm/K以下と低く、寸法変化が小さく、ドリル加工性も良好であり、多層プリント配線板は反りが小さく、半導体装置は接続信頼性に優れていた。 As is apparent from the results shown in Table 2, when a polyesterimide resin containing the structural unit A composed of the acid anhydride unit and the diamine unit according to the present invention in a predetermined ratio is used (Examples 1 to 10). The resin varnish is excellent in impregnation, the laminated board has a low CTE of 4 ppm / K or less, the dimensional change is small, the drilling workability is good, the multilayer printed wiring board is small in warpage, and the semiconductor device is Connection reliability was excellent.
一方、表3に示した結果から明らかなように、本発明にかかるジアミンA単位を含まないポリイミド樹脂を用いた場合(比較例1)、ビスマレイミド樹脂を用いた場合(比較例2)、ならびにエポキシ樹脂とシアネート樹脂を併用した場合(比較例3)には、樹脂ワニスは含浸性に優れ、積層板のドリル加工性は良好であるものの、積層板はCTEが8ppm/K以上と高く、寸法変化が大きく、多層プリント配線板は反りが大きく、半導体装置においては接続不良が発生したものがあった。 On the other hand, as is clear from the results shown in Table 3, when the polyimide resin not containing the diamine A unit according to the present invention is used (Comparative Example 1), the bismaleimide resin is used (Comparative Example 2), and When an epoxy resin and a cyanate resin are used in combination (Comparative Example 3), the resin varnish is excellent in impregnation property and the drilling property of the laminate plate is good, but the laminate plate has a high CTE of 8 ppm / K or more. The change was large, the multilayer printed wiring board was warped, and some semiconductor devices had poor connection.
また、比較例1〜3で得られた樹脂ワニスに対して、それぞれ無機充填材の含有率を増大させた場合(比較例4〜6)には、積層板のCTEは低下するものの、十分に低いものではなく、多層プリント配線板の反りや半導体装置の接続信頼性も十分に改善されなかった。また、本発明にかかるジアミンA単位を含まないポリイミド樹脂を用いた場合(比較例4)ならびにビスマレイミド樹脂を用いた場合(比較例5)には、樹脂ワニスの含浸性が低下し、さらに、ビスマレイミド樹脂を用いた場合(比較例5)ならびにエポキシ樹脂とシアネート樹脂を併用した場合(比較例6)には、積層板のドリル加工性が低下した。 Moreover, when the content rate of an inorganic filler is increased with respect to the resin varnishes obtained in Comparative Examples 1 to 3, respectively (Comparative Examples 4 to 6), the CTE of the laminate is reduced, but it is sufficiently The warp of the multilayer printed wiring board and the connection reliability of the semiconductor device were not sufficiently improved. Moreover, when the polyimide resin not containing the diamine A unit according to the present invention is used (Comparative Example 4) and when the bismaleimide resin is used (Comparative Example 5), the impregnation property of the resin varnish is reduced. When the bismaleimide resin was used (Comparative Example 5) and when the epoxy resin and the cyanate resin were used together (Comparative Example 6), the drillability of the laminate decreased.
無機充填材の含有率をさらに増大させると、本発明にかかるジアミンA単位を含まないポリイミド樹脂を用いた場合(比較例7)には、樹脂ワニスの含浸性が著しく低下し、評価試験に使用可能なプリプレグが作製できなかった。一方、ビスマレイミド樹脂を用いた場合(比較例8)ならびにエポキシ樹脂とシアネート樹脂を併用した場合(比較例9)には、積層板のCTEはさらに低下して4ppm/K以下となったが、樹脂ワニスの含浸性や積層板のドリル加工性がさらに低下し、半導体装置の接続信頼性も十分には改善されなかった。また、多層プリント配線板の反りは改善され、25℃においては十分なものであったが、260℃においては十分なものではなかった。 When the content of the inorganic filler is further increased, when the polyimide resin not containing the diamine A unit according to the present invention is used (Comparative Example 7), the impregnation property of the resin varnish is remarkably lowered and used for the evaluation test. A possible prepreg could not be produced. On the other hand, when the bismaleimide resin was used (Comparative Example 8) and when the epoxy resin and the cyanate resin were used together (Comparative Example 9), the CTE of the laminate was further reduced to 4 ppm / K or less. The impregnation property of the resin varnish and the drilling property of the laminate were further lowered, and the connection reliability of the semiconductor device was not sufficiently improved. Further, the warpage of the multilayer printed wiring board was improved and was sufficient at 25 ° C., but not sufficient at 260 ° C.
以上説明したように、本発明によれば、溶剤に可溶なポリエステルイミド樹脂を含有し、硬化前には良好な含浸性を示し、硬化後には高いガラス転移温度および低い線熱膨脹係数を有するポリエステルイミド樹脂組成物を得ることが可能となる。このようなポリエステルイミド樹脂組成物を用いると、耐熱性に優れ、高温下においても反りが少なく、ドリル加工性も良好な本発明の積層板を得ることができる。 As explained above, according to the present invention, a polyesterimide resin that is soluble in a solvent, exhibits good impregnation before curing, and has a high glass transition temperature and a low linear thermal expansion coefficient after curing. An imide resin composition can be obtained. When such a polyesterimide resin composition is used, the laminate of the present invention having excellent heat resistance, little warping even at high temperatures, and good drilling workability can be obtained.
したがって、このような積層板は、半導体の実装温度領域においても線熱膨張係数が増大しにくく、実装時の基板の反りを低減させることができるため、薄型のシステム・イン・パッケージ基板や半導体パッケージ用基板として特に有用である。 Therefore, since such a laminated plate does not easily increase the coefficient of linear thermal expansion even in the semiconductor mounting temperature region and can reduce the warpage of the substrate during mounting, a thin system-in-package substrate or semiconductor package It is particularly useful as a substrate for an automobile.
Claims (6)
で表される構成単位Aと、
下記式(2):
で表される構成単位Bとを含有し、且つ前記構成単位Aの含有率が50〜95モル%であるポリエステルイミド樹脂、および無機充填材を含有することを特徴とするポリエステルイミド樹脂組成物。 Following formula (1):
A structural unit A represented by:
Following formula (2):
A polyesterimide resin composition comprising: a polyesterimide resin containing a structural unit B represented by the formula B; and a content of the structural unit A of 50 to 95 mol%, and an inorganic filler.
で表される2価の基のうちのいずれかであることを特徴とする請求項1または2に記載のポリエステルイミド樹脂組成物。 Ar 3 in the formula (2) is represented by the following formulas (I) to (VIII):
The polyesterimide resin composition according to claim 1, wherein the polyesterimide resin composition is any one of divalent groups represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010243973A JP5648904B2 (en) | 2010-10-29 | 2010-10-29 | Polyesterimide resin composition and prepreg, laminate and semiconductor device impregnated with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010243973A JP5648904B2 (en) | 2010-10-29 | 2010-10-29 | Polyesterimide resin composition and prepreg, laminate and semiconductor device impregnated with the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012097150A true JP2012097150A (en) | 2012-05-24 |
JP5648904B2 JP5648904B2 (en) | 2015-01-07 |
Family
ID=46389433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010243973A Expired - Fee Related JP5648904B2 (en) | 2010-10-29 | 2010-10-29 | Polyesterimide resin composition and prepreg, laminate and semiconductor device impregnated with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5648904B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013133168A1 (en) * | 2012-03-05 | 2013-09-12 | 日産化学工業株式会社 | Polyamic acid and polyimide |
JP2015093988A (en) * | 2013-11-13 | 2015-05-18 | 財團法人工業技術研究院Industrial Technology Research Institute | Polyamic acid, polyimide and method for manufacturing graphite sheet |
KR20160033905A (en) | 2014-09-19 | 2016-03-29 | 도요보 가부시키가이샤 | Polyesterimide resin film, and resin and resin composition used in the same |
CN107089956A (en) * | 2016-02-18 | 2017-08-25 | Jnc株式会社 | Diamines, polyamic acid or derivatives thereof, aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010047674A (en) * | 2008-08-20 | 2010-03-04 | Asahi Kasei E-Materials Corp | Polyester imide precursor and polyester imide |
WO2010093021A1 (en) * | 2009-02-12 | 2010-08-19 | 本州化学工業株式会社 | Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same |
JP2010228190A (en) * | 2009-03-26 | 2010-10-14 | Asahi Kasei E-Materials Corp | Polyimide-metal laminated plate |
-
2010
- 2010-10-29 JP JP2010243973A patent/JP5648904B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010047674A (en) * | 2008-08-20 | 2010-03-04 | Asahi Kasei E-Materials Corp | Polyester imide precursor and polyester imide |
WO2010093021A1 (en) * | 2009-02-12 | 2010-08-19 | 本州化学工業株式会社 | Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same |
JP2010228190A (en) * | 2009-03-26 | 2010-10-14 | Asahi Kasei E-Materials Corp | Polyimide-metal laminated plate |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013133168A1 (en) * | 2012-03-05 | 2013-09-12 | 日産化学工業株式会社 | Polyamic acid and polyimide |
JP2015093988A (en) * | 2013-11-13 | 2015-05-18 | 財團法人工業技術研究院Industrial Technology Research Institute | Polyamic acid, polyimide and method for manufacturing graphite sheet |
US9593207B2 (en) | 2013-11-13 | 2017-03-14 | Industrial Technology Research Institute | Polyamic acid, polyimide, and method for manufacturing graphite sheet |
KR20160033905A (en) | 2014-09-19 | 2016-03-29 | 도요보 가부시키가이샤 | Polyesterimide resin film, and resin and resin composition used in the same |
KR102237221B1 (en) | 2014-09-19 | 2021-04-07 | 도요보 가부시키가이샤 | Polyesterimide resin film, and resin and resin composition used in the same |
CN107089956A (en) * | 2016-02-18 | 2017-08-25 | Jnc株式会社 | Diamines, polyamic acid or derivatives thereof, aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells |
Also Published As
Publication number | Publication date |
---|---|
JP5648904B2 (en) | 2015-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI743345B (en) | Polyimide, adhesive, film-like adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper clad laminate, printed circuit board, and multilayer circuit board and manufacturing method thereof | |
TWI716524B (en) | Copper clad laminate and printed circuit board | |
US8124223B2 (en) | Aramid filled polyimides having advantageous thermal expansion properties, and methods relating thereto | |
WO2012002434A1 (en) | Prepreg, wiring board, and semiconductor device | |
US20120292086A1 (en) | Interposer films useful in semiconductor packaging applications, and methods relating thereto | |
CN108690194B (en) | Polyimide, adhesive material, adhesive layer, adhesive sheet, copper foil, copper-clad laminate, wiring board, and method for producing same | |
TWI745627B (en) | Thermal-curable resin composition, and pre-preg, metal-clad laminate and printed circuit board manufactured using the same | |
WO2004094499A1 (en) | Thermosetting resin composition, multilayer body using same, and circuit board | |
WO2009139086A1 (en) | Polyester-imide precursor and polyester-imide | |
JP2008265069A (en) | Insulating adhesion sheet, laminate, and printed wiring board | |
JP2007091799A (en) | Thermosetting resin composition and its application | |
TWI429692B (en) | Pre-paste, paste metal foil laminates and use these printed circuit boards | |
JP5648904B2 (en) | Polyesterimide resin composition and prepreg, laminate and semiconductor device impregnated with the same | |
JP4202509B2 (en) | Laminate for circuit | |
JP5547874B2 (en) | Polyimide resin | |
JP2015159177A (en) | Resin substrate, metal clad laminated board, printed wiring board, and semiconductor device | |
JP2006335843A (en) | Thermosetting resin composition and application thereof | |
JP2009275183A (en) | Polyamic acid varnish composition and metal polyimide complex using the same | |
JP5570793B2 (en) | Phosphorus-containing tetracarboxylic dianhydride and flame retardant polyimide | |
JP2007106836A (en) | Silane-modified polyamic acid resin composition | |
TW202319481A (en) | Resin composition, varnish, laminated plate, printed wiring board, and molded product | |
JP2005060694A (en) | Thermosetting resin composition and use of the same | |
JP2001007464A (en) | Multilayer material for circuit | |
JP2021025008A (en) | Method of manufacturing polyimide film and method of manufacturing a metal-clad laminate | |
JP2000143982A (en) | Laminated material for circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131009 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141030 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5648904 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |