[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5547874B2 - Polyimide resin - Google Patents

Polyimide resin Download PDF

Info

Publication number
JP5547874B2
JP5547874B2 JP2008132517A JP2008132517A JP5547874B2 JP 5547874 B2 JP5547874 B2 JP 5547874B2 JP 2008132517 A JP2008132517 A JP 2008132517A JP 2008132517 A JP2008132517 A JP 2008132517A JP 5547874 B2 JP5547874 B2 JP 5547874B2
Authority
JP
Japan
Prior art keywords
group
polyamic acid
represented
alkyl group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008132517A
Other languages
Japanese (ja)
Other versions
JP2009280660A (en
Inventor
明宏 加藤
徹 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2008132517A priority Critical patent/JP5547874B2/en
Publication of JP2009280660A publication Critical patent/JP2009280660A/en
Application granted granted Critical
Publication of JP5547874B2 publication Critical patent/JP5547874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、高接着のフレキシブルプリント基板用金属−ポリイミド複合体、ポリイミド樹脂およびそのためのポリアミド酸ワニス組成物に関する。   The present invention relates to a highly adhesive metal-polyimide composite for a flexible printed circuit board, a polyimide resin, and a polyamic acid varnish composition therefor.

近年、FPC(Flexible Printed Circuits)基板としてのポリイミド樹脂の需要が飛躍的に増加している。FPCの原反である銅張積層板、FCCL(Flexible Copper Clad Laminate)の構成は主に3つの様式に分類される。即ち、1)ポリイミド樹脂層(ポリイミドフィルム)と銅箔とをエポキシ系接着剤等を用いて貼り付ける3層タイプ、2)銅箔にポリイミドワニスの塗付後乾燥又は、ポリイミド前駆体(ポリアミド酸)ワニスを塗布後、乾燥・イミド化するか、あるいは蒸着・スパッタ等によりポリイミドフィルム上に銅箔層を形成する無接着剤2層タイプ、3)接着剤として熱可塑性ポリイミドを用いる擬似2層タイプが知られている。ポリイミドフィルムに高度な寸法安定性が要求される用途では接着剤を使用しない2層FCCLが有利である。   In recent years, the demand for polyimide resins as FPC (Flexible Printed Circuits) substrates has increased dramatically. The structure of a copper clad laminate, FCCL (Flexible Copper Clad Laminate), which is the original fabric of FPC, is mainly classified into three types. That is, 1) A three-layer type in which a polyimide resin layer (polyimide film) and a copper foil are attached using an epoxy adhesive or the like. ) After applying varnish, dry or imidize, or form a copper foil layer on the polyimide film by vapor deposition or sputtering, etc. 2) Adhesive 2 layer type 3) Pseudo 2 layer type using thermoplastic polyimide as adhesive It has been known. In applications where a high degree of dimensional stability is required for the polyimide film, a two-layer FCCL that does not use an adhesive is advantageous.

FPC基板としてのポリイミド樹脂は実装工程における様々な熱サイクルに曝されて寸法変化が起こる。これをできるだけ抑えるためには、ポリイミド樹脂のガラス転移温度(Tg)が工程温度よりも高いことに加えて、ガラス転移温度以下での線熱膨張率ができるだけ低いことが望ましい。後述するようにポリイミド樹脂層の線熱膨張率の制御は2層FCCL製造工程中に発生する残留応力の低減の観点からも極めて重要である。
多くのポリイミド樹脂は有機溶媒に不溶で、ガラス転移温度以上でも溶融しないため、ポリイミド樹脂そのものを成型加工することは通常容易ではない。そのためポリイミド樹脂は一般に、無水ピロメリット酸(PMDA)等の芳香族テトラカルボン酸二無水物と4,4’−オキシジアニリン(ODA)等の芳香族ジアミンとをジメチルアセトアミド(DMAc)等の非プロトン性極性有機溶媒中で等モル反応させて、先ず高重合度のポリアミド酸ワニスを重合し、このポリアミド酸ワニスを銅箔上に塗付し、250〜400℃で加熱脱水閉環(イミド化)して製膜される。
The polyimide resin as the FPC board is exposed to various thermal cycles in the mounting process and undergoes dimensional changes. In order to suppress this as much as possible, in addition to the glass transition temperature (Tg) of the polyimide resin being higher than the process temperature, it is desirable that the linear thermal expansion coefficient below the glass transition temperature is as low as possible. As will be described later, the control of the linear thermal expansion coefficient of the polyimide resin layer is extremely important from the viewpoint of reducing the residual stress generated during the two-layer FCCL manufacturing process.
Many polyimide resins are insoluble in organic solvents and do not melt above the glass transition temperature, so it is usually not easy to mold the polyimide resin itself. For this reason, polyimide resins generally include an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride (PMDA) and an aromatic diamine such as 4,4′-oxydianiline (ODA) and a non-dimethylacetamide (DMAc) or the like. First, a polyamic acid varnish with a high degree of polymerization is polymerized in an equimolar reaction in a protic polar organic solvent, and this polyamic acid varnish is applied onto a copper foil and heated and dehydrated (imidation) at 250 to 400 ° C. To form a film.

残留応力は、高温でのイミド化反応後に金属−ポリイミド複合体を室温へ冷却する過程で発生し、FCCLのカーリング、剥離、膜の割れ等、深刻な問題がしばしば起こる。
熱応力低減の方策として、絶縁膜であるポリイミド樹脂層自身を低線熱膨張化することが有効である。殆どのポリイミド樹脂では線熱膨張率が40〜100ppm/℃の範囲にあり、金属箔、例えば銅箔の線熱膨張率17ppm/℃よりもはるかに大きいため、銅箔の値に近い、およそ20ppm/℃以下を示す低線熱膨張率のポリイミド樹脂の研究開発が行われている。
現在実用的な低線熱膨張率のポリイミド樹脂の材料としては3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンから形成されるポリイミド樹脂が最もよく知られている。このポリイミド樹脂層は、膜厚や作製条件にもよるが、5〜10ppm/℃と非常に低い線熱膨張率を示すことが知られているが、低吸湿膨張率は示さない(非特許文献1参照)。
Residual stress is generated in the process of cooling the metal-polyimide composite to room temperature after the imidization reaction at high temperature, and serious problems such as FCCL curling, peeling, and film cracking often occur.
As a measure for reducing thermal stress, it is effective to reduce the linear thermal expansion of the polyimide resin layer itself that is an insulating film. Most polyimide resins have a coefficient of linear thermal expansion in the range of 40-100 ppm / ° C., which is much greater than the linear thermal expansion coefficient of 17 ppm / ° C. of metal foils, such as copper foil, and is close to the value of copper foil, approximately 20 ppm. Research and development of a low linear thermal expansion polyimide resin exhibiting a temperature below / ° C. is being conducted.
Currently, a polyimide resin formed from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine is best known as a material for a polyimide resin having a low coefficient of linear thermal expansion that is practically used. . This polyimide resin layer is known to exhibit a very low linear thermal expansion coefficient of 5 to 10 ppm / ° C., although it depends on the film thickness and production conditions, but does not exhibit a low hygroscopic expansion coefficient (Non-Patent Document). 1).

ポリイミド樹脂層の寸法安定性は、熱サイクルだけでなく吸湿に対しても要求される。従来のポリイミド樹脂層では2〜3質量%も吸湿する。ポリイミド樹脂層の吸湿による寸法変化に伴う回路の位置ずれは高密度配線や多層配線にとって深刻な問題である。ポリイミド樹脂層/導体界面でのコロージョン、イオンマイグレーション、絶縁破壊等、電気特性の低下によって更に深刻な問題を引き起こす恐れがある。そのため絶縁膜としてのポリイミド樹脂層はできるだけ吸湿膨張率が低いことが求められている。
低吸湿膨張率を実現するための分子設計として、例えば式(19)で表されるエステル構造を有する酸無水物を使用してポリイミド骨格への芳香族エステル結合を導入することが有効であると報告されている(特許文献1参照)。
The dimensional stability of the polyimide resin layer is required not only for thermal cycling but also for moisture absorption. The conventional polyimide resin layer absorbs 2 to 3% by mass. Circuit misalignment due to dimensional changes due to moisture absorption of the polyimide resin layer is a serious problem for high-density wiring and multilayer wiring. A serious problem may be caused by deterioration of electrical characteristics such as corrosion, ion migration, and dielectric breakdown at the polyimide resin layer / conductor interface. Therefore, the polyimide resin layer as an insulating film is required to have as low a hygroscopic expansion coefficient as possible.
As a molecular design for realizing a low hygroscopic expansion coefficient, for example, it is effective to introduce an aromatic ester bond to a polyimide skeleton using an acid anhydride having an ester structure represented by the formula (19) It has been reported (see Patent Document 1).

Figure 0005547874
Figure 0005547874

しかしながら、銅箔との密着性が低いため接着性を発現するために、新たにビスフェノールA型エポキシ樹脂などを用いた接着層を必要とし、構成される絶縁膜(ポリイミド樹脂層+接着層)としては、難燃性、吸湿膨張率、ポリイミド樹脂の特長である耐熱性の悪化が懸念される。
接着層を別途設けずにイミダゾール化合物等の添加剤をポリアミド酸ワニス中に使用することにより得られるポリイミド樹脂層と金属箔との密着性を向上させる検討もなされている(特許文献2参照)。同様にしてイミダゾール化合物等の添加剤をエステル構造含有するポリアミド酸ワニス中に使用すると、ポリイミド樹脂層と金属箔との密着性の低下、吸湿膨張率の低下、得られるポリイミドフィルムの機械強度の低下をもたらすという不具合があった。
However, since the adhesiveness with copper foil is low, an adhesive layer using a bisphenol A type epoxy resin or the like is newly required to develop adhesiveness, and as an insulating film (polyimide resin layer + adhesive layer) configured Are concerned about flame retardancy, hygroscopic expansion coefficient, and deterioration of heat resistance, which is a characteristic of polyimide resin.
Studies have also been made to improve the adhesion between a polyimide resin layer and a metal foil obtained by using an additive such as an imidazole compound in a polyamic acid varnish without separately providing an adhesive layer (see Patent Document 2). Similarly, when an additive such as an imidazole compound is used in a polyamic acid varnish containing an ester structure, the adhesion between the polyimide resin layer and the metal foil is lowered, the hygroscopic expansion coefficient is lowered, and the mechanical strength of the resulting polyimide film is lowered. There was a bug that brought

ガラス転移温度や吸湿膨張係数の低下をもたらすことなく、金属箔との密着性を向上させるエステル構造を有するポリイミド樹脂を得るための添加剤が強く望まれている。
Macromolecules,29,7897(1996) 特開平10−126019号公報 特開平4-85363号公報
There is a strong demand for an additive for obtaining a polyimide resin having an ester structure that improves adhesion to a metal foil without causing a decrease in glass transition temperature and hygroscopic expansion coefficient.
Macromolecules, 29, 7897 (1996). Japanese Patent Laid-Open No. 10-126091 JP-A-4-85363

本発明は、上記のような状況を鑑みてなされたもので、金属箔上のポリイミド樹脂層は、接着層を介することなく金属箔との密着性に優れ、線熱膨張率が金属箔の線熱膨張率と同等となるポリイミド樹脂層を形成できるポリアミド酸ワニス組成物、それを用いたフレキシブルプリント基板用金属−ポリイミド複合体を提供することを目的とする。   The present invention has been made in view of the above situation, and the polyimide resin layer on the metal foil has excellent adhesion to the metal foil without an adhesive layer, and the linear thermal expansion coefficient is the wire of the metal foil. It aims at providing the polyamic-acid varnish composition which can form the polyimide resin layer equivalent to a thermal expansion coefficient, and the metal-polyimide composite for flexible printed circuit boards using the same.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、上述の目的を達成できることを見出し、本発明をなすに至った。
1.芳香族テトラカルボン酸二無水物と芳香族ジアミンとの付加重合により得られるポリアミド酸、含窒素芳香族化合物および溶媒を含有するポリアミド酸ワニス組成物であって、該芳香族テトラカルボン酸二無水物が式(1)で表されるエステル構造を有する、及び/または該芳香族ジアミンが式(2)で表されるエステル構造を有し、かつ該含窒素芳香族化合物が式(3)〜(12)で表されるオキサゾール化合物、アミド化合物、ニトリル化合物、およびベンゾフラザン誘導体からなる群より選ばれるものであり、該含窒素芳香族化合物が、前記ポリアミド酸100質量部に対して0.01〜20質量部であることを特徴とするポリアミド酸ワニス組成物。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the above-mentioned object can be achieved, and has made the present invention.
1. A polyamic acid varnish composition comprising a polyamic acid obtained by addition polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine, a nitrogen-containing aromatic compound, and a solvent, the aromatic tetracarboxylic dianhydride Has an ester structure represented by the formula (1), and / or the aromatic diamine has an ester structure represented by the formula (2), and the nitrogen-containing aromatic compound is represented by the formulas (3) to (3): oxazole compounds represented by 12), amide compounds, nitrile compounds, and benzofurazan all SANYO that chosen from the group consisting of derivatives, nitrogen-containing aromatic compound, 0.01 to the 100 parts by mass of the polyamic acid A polyamic acid varnish composition characterized by being 20 parts by mass .

Figure 0005547874
(Mは、式(1)で表される2価の芳香族基より選択され、R 〜R は、炭素数1〜4のアルキル基、メトキシ基、または水素原子を表す。)
Figure 0005547874
(M is selected from a divalent aromatic group represented by the formula (1), and R 1 to R 3 represent an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a hydrogen atom.)

(Mは、式(1)で表される2価の芳香族基より選択され、R 〜R は、炭素数1〜4のアルキル基、メトキシ基、または水素原子を表す。) (M is selected from a divalent aromatic group represented by the formula (1), and R 1 to R 3 represent an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a hydrogen atom.)

Figure 0005547874
Figure 0005547874

(m=0もしくは1であり、R 〜R は、炭素数1〜4のアルキル基、メトキシ基、または水素原子を表す。) (M = 0 or 1 and R 4 to R 6 represent an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a hydrogen atom.)

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

(X 、X は式(3)、(4)、(7)、(8)で表される4価の芳香族基であり、X 、X は式(5)、(9)で表される2価の芳香族基である。式中、Y 〜Y は、エーテル、−S−、炭素数1〜4の飽和、不飽和アルキレン基、カルボニル基、または、スルホニル基である。R 〜R 14 、R 16 〜R 29 、R 31 〜R 33 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO H、−OPh、−SCH 、または−SPhであり、n=1、2である。R 15 、R 30 、R 34 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。)
2.前記含窒素芳香族化合物が、式(13)〜(15)のいずれか一種類以上で示される
オキサゾール化合物であることを特徴とする1記載のポリアミド酸ワニス組成物。
(X 1 and X 3 are tetravalent aromatic groups represented by the formulas (3), (4), (7) and (8), and X 2 and X 4 are the formulas (5) and (9). In the formula, Y 1 to Y 5 are ether, —S—, a saturated, unsaturated alkylene group having 1 to 4 carbon atoms , a carbonyl group, or a sulfonyl group. R 7 to R 14 , R 16 to R 29 , and R 31 to R 33 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, A hydroxyl group, —SO 2 H, —OPh, —SCH 3 , or —SPh, where n = 1 and 2. R 15 , R 30 , and R 34 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group group, halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, -SO 2 H, -OP , -SCH 3, is -SPh or a phenyl group.)
2. 2. The polyamic acid varnish composition according to 1, wherein the nitrogen-containing aromatic compound is an oxazole compound represented by any one or more of formulas (13) to (15).

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

(X は、式(13)で表される4価の芳香族基であり、X は、式(14)で表される2価の芳香族基である。R 35 〜R 38 、R 40 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO H、−OPh、−SCH 、または−SPhである。R 39 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。)
3.前記含窒素芳香族化合物が、式(16)〜(18)のいずれか一種類以上で示されるアミド化合物であることを特徴とする1記載のポリアミド酸ワニス組成物。
(X 5 is a tetravalent aromatic group represented by the formula (13), and X 6 is a divalent aromatic group represented by the formula (14). R 35 to R 38 , R 40 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , or —SPh. R 39 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , —SPh. Or a phenyl group.)
3. 2. The polyamic acid varnish composition according to 1, wherein the nitrogen-containing aromatic compound is an amide compound represented by any one or more of formulas (16) to (18).

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

(X は、式(16)で表される4価の芳香族基であり、X は、式(17)で表される2価の芳香族基である。R 41 〜R 44 、R 46 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO H、−OPh、−SCH 、または−SPhである。R 45 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。)
4.前記含窒素芳香族化合物が、式(16)で示されるアミド化合物であることを特徴とする1記載のポリアミド酸ワニス組成物。
(X 7 is a tetravalent aromatic group represented by the formula (16), and X 8 is a divalent aromatic group represented by the formula (17). R 41 to R 44 , R 46 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , or —SPh. R 45 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , —SPh. Or a phenyl group.)
4). 2. The polyamic acid varnish composition according to 1, wherein the nitrogen-containing aromatic compound is an amide compound represented by the formula (16).

Figure 0005547874
Figure 0005547874

(X は、式(16)で表される4価の芳香族基であり。R 41 、R 42 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SOH、−OPh、−SCH、または−SPhである。)
.1記載の前記ポリアミド酸ワニス組成物をイミド化して得られたポリイミド樹脂。
.1記載のポリアミド酸ワニス組成物をイミド化して得られるポリイミド樹脂と、金属箔とから構成される金属−ポリイミド複合体。
(X 7 is a tetravalent aromatic group represented by the formula (16). R 41 and R 42 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen atom. Group, nitro group, cyano group, hydroxyl group, —SO 2 H, —OPh, —SCH 3 , or —SPh.)
5 . A polyimide resin obtained by imidizing the polyamic acid varnish composition according to 1.
6 . A metal-polyimide composite comprising a polyimide resin obtained by imidizing the polyamic acid varnish composition according to 1, and a metal foil.

本発明のポリアミド酸ワニス組成物は、金属上に塗布乾燥加熱イミド化することにより金属−ポリイミド複合体を作製できる。そうして得られた金属−ポリイミド複合体は、金属箔との密着性に優れ、かつ線熱膨張率が金属箔の線熱膨張率と同等となるという効果を有する。   The polyamic acid varnish composition of the present invention can produce a metal-polyimide composite by coating, drying and heating imidization on a metal. The metal-polyimide composite thus obtained has excellent adhesion to the metal foil and has an effect that the linear thermal expansion coefficient is equivalent to the linear thermal expansion coefficient of the metal foil.

以下、本発明について具体的に説明する。
添加剤として用いる含窒素芳香族化合物は、一般式(3)〜一般式(12)のオキサゾール化合物、アミド化合物、ニトリル化合物および、ベンゾフラザンからなる群より選ばれるものである。式中のX 、X は一般式(3)、(4)、(7)、(8)で表される4価の芳香族基であり、X 、X は一般式(5)、(9)で表される2価の芳香族基である。式中、Y 〜Y は、エーテル、−S−、炭素数1〜4の飽和、不飽和アルキレン基、カルボニル基、または、スルホニル基である。R 〜R 14 、R 16 〜R 29 、R 31 〜R 33 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、または−SPhであり、n=1、2である。R 15 、R 30 、R 34 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。
Hereinafter, the present invention will be specifically described.
The nitrogen-containing aromatic compound used as an additive is selected from the group consisting of oxazole compounds, amide compounds, nitrile compounds and benzofurazan of general formulas (3) to (12). X 1 and X 3 in the formula are tetravalent aromatic groups represented by the general formulas (3), (4), (7) and (8), and X 2 and X 4 are the general formula (5). , (9) is a divalent aromatic group. Wherein, Y 1 to Y 5 are ethers, -S-, saturated having 1 to 4 carbon atoms, unsaturated alkylene group, a carbonyl group or a sulfonyl group. R 7 to R 14 , R 16 to R 29 , R 31 to R 33 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, -SO 2 H, -OPh, -SCH 3 , or a -SPh, a n = 1, 2. R 15 , R 30 and R 34 are hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, alkoxy groups, halogenated alkyl groups, halogen groups, nitro groups, cyano groups, hydroxyl groups, —SO 2 H, —OPh, —SCH. 3 , -SPh, or a phenyl group.

ここで入手性、もしくは、製造コストの観点から、前記含窒素芳香族化合物は、一般式(13)〜一般式(15)で表されるオキサゾール化合物であることが好ましい。式中のX は、一般式(13)で表される4価の芳香族基であり、X は、一般式(14)で表される2価の芳香族基である。R 35 〜R 38 、R 40 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、または−SPhである。R 39 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。 Here, from the viewpoint of availability or production cost, the nitrogen-containing aromatic compound is preferably an oxazole compound represented by General Formula (13) to General Formula (15). X 5 in the formula is a tetravalent aromatic group represented by the general formula (13), and X 6 is a divalent aromatic group represented by the general formula (14). R 35 to R 38 and R 40 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, — SCH 3, or -SPh. R 39 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , —SPh, or It is a phenyl group.

また入手性、もしくは、製造コストの観点から、前記含窒素芳香族化合物が、一般式(16)〜一般式(18)で表されるアミド化合物であることが好ましく、一般式(16)がさらに好ましい。式中のX は、一般式(16)で表される4価の芳香族基であり、X は、一般式(17)で表される2価の芳香族基である。R 41 〜R 44 、R 46 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、または−SPhである。R 45 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。 From the viewpoint of availability or production cost, the nitrogen-containing aromatic compound is preferably an amide compound represented by the general formula (16) to the general formula (18), and the general formula (16) is further preferable. X 7 in the formula is a tetravalent aromatic group represented by the general formula (16), and X 8 is a divalent aromatic group represented by the general formula (17). R 41 to R 44 and R 46 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, — SCH 3, or -SPh. R 45 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , —SPh, or It is a phenyl group.

前記含窒素芳香族化合物のエステル構造含有ポリアミド酸ワニス組成物中への配合量は、固形成分であるポリアミド酸100質量部に対し、接着強度及び耐熱性の観点から、0.01〜20質量部が好ましく、より好ましくは0.1〜10質量部である。
本発明のエステル構造を有するポリアミド酸ワニス組成物は、ポリアミド酸の原料となる芳香族テトラカルボン酸二無水物と芳香族ジアミンのうち、少なくともどちらか一方がエステル構造を有することが必要である。
The blending amount of the nitrogen-containing aromatic compound in the ester structure-containing polyamic acid varnish composition is 0.01 to 20 parts by mass with respect to 100 parts by mass of the polyamic acid which is a solid component, from the viewpoint of adhesive strength and heat resistance. Is more preferable, and 0.1 to 10 parts by mass is more preferable.
The polyamic acid varnish composition having an ester structure of the present invention requires that at least one of aromatic tetracarboxylic dianhydride and aromatic diamine, which are raw materials for polyamic acid, has an ester structure.

エステル構造を有する芳香族テトラカルボン酸二無水物としては、一般式(1)で表される反復単位を有する芳香族テトラカルボン酸二無水物が挙げられる。式中のMは、一般式(1)で表される芳香族基より選択され、R 〜R は、炭素数1〜4のアルキル基、メトキシ基、または水素原子を表す。具体的には、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、p−メチルフェニレンビス(トリメリット酸モノエステル酸無水物)、p−ビフェニレンビス(トリメリット酸モノエステル酸無水物)等のエステル構造含有芳香族テトラカルボン酸二無水物を使用することが好ましい。また、各々のエステル構造含有芳香族テトラカルボン酸二無水物を単独で用いても、併用して用いてもよい。 Examples of the aromatic tetracarboxylic dianhydride having an ester structure include an aromatic tetracarboxylic dianhydride having a repeating unit represented by the general formula (1). M in the formula is selected from an aromatic group represented by the general formula (1), and R 1 to R 3 represent an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a hydrogen atom. Specifically, p-phenylenebis (trimellitic acid monoester acid anhydride), p-methylphenylenebis (trimellitic acid monoester acid anhydride), p-biphenylenebis (trimellitic acid monoester acid anhydride) It is preferable to use an aromatic tetracarboxylic dianhydride containing an ester structure such as Each ester structure-containing aromatic tetracarboxylic dianhydride may be used alone or in combination.

エステル構造を有する芳香族ジアミンとしては、一般式(2)で表される芳香族ジアミンが挙げられる。式中のm=0もしくは1であり、R 〜R は、炭素数1〜4のアルキル基、メトキシ基、または水素原子を表す。具体的には、4−アミノフェニル−4’−アミノベンゾエート、4−アミノフェニル−3’−アミノベンゾエート、3−アミノフェニル−4’−アミノベンゾエート、2−メチル−4−アミノフェニル−4’−アミノベンゾエート、4−アミノフェニル−3’−アミノベンゾエート、2−メチル−4−アミノフェニル−3’−アミノベンゾエートなどのエステル芳香族ジアミン、ビス(4−アミノフェニル)テレフタレート、ビス(3−メチル−4−アミノフェニル)テレフタレート、ビス(4−アミノフェニル)イソフタレート、ビス(3−メチル−4−アミノフェニル)イソフタレート、p−フェニレンビス(4−アミノベンゾエート)、m−フェニレンビス(4−アミノベンゾエート)、p−メチルフェニレンビス(4−アミノベンゾエート)、p−フェニレンビス(3−アミノベンゾエート)、p−メチルフェニレン−フェニレンビス(3−アミノベンゾエート)のジエステル芳香族ジアミン等のエステル構造含有芳香族ジアミンを使用することが好ましい。また、各々のエステル構造含有芳香族ジアミンを単独で用いても、併用して用いてもよい。 Examples of the aromatic diamine having an ester structure include aromatic diamines represented by the general formula (2). In the formula, m = 0 or 1, and R 4 to R 6 represent an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a hydrogen atom. Specifically, 4-aminophenyl-4′-aminobenzoate, 4-aminophenyl-3′-aminobenzoate, 3-aminophenyl-4′-aminobenzoate, 2-methyl-4-aminophenyl-4′- Ester aromatic diamines such as aminobenzoate, 4-aminophenyl-3′-aminobenzoate, 2-methyl-4-aminophenyl-3′-aminobenzoate, bis (4-aminophenyl) terephthalate, bis (3-methyl- 4-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-methyl-4-aminophenyl) isophthalate, p-phenylenebis (4-aminobenzoate), m-phenylenebis (4-amino) Benzoate), p-methylphenylenebis (4-aminobenzoate) p- phenylene bis (3-aminobenzoate), p- methyl-phenylene - it is preferable to use a phenylene bis ester structure-containing aromatic diamines such as diester aromatic diamine (3-aminobenzoate). Each ester structure-containing aromatic diamine may be used alone or in combination.

エステル構造を有する芳香族ジアミンを利用する場合は、本発明の効果を損なわない範囲で従来公知のテトラカルボン酸二無水物を使用することができる。
例えば、3,4,3’,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、オキシジフタル酸、ジフェニルスルホンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸等の二無水物があげられる。線熱膨張率やガラス転移温度等の耐熱性を向上する観点から、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物を使用することが好ましい。また、非芳香族テトラカルボン酸二無水物、シクロブタンテトラカルボン酸、シクロヘキサンテトラカルボン酸等の二無水物を、本発明の効果を損なわない範囲で用いてもよい。
When utilizing aromatic diamine which has ester structure, a conventionally well-known tetracarboxylic dianhydride can be used in the range which does not impair the effect of this invention.
For example, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, pyromellitic acid, benzophenonetetracarboxylic acid, oxydiphthalic acid, diphenylsulfonetetracarboxylic acid, And dianhydrides such as 2,3,6,7-naphthalenetetracarboxylic acid. From the viewpoint of improving heat resistance such as linear thermal expansion coefficient and glass transition temperature, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride It is preferable to use a product. Moreover, you may use dianhydrides, such as a non-aromatic tetracarboxylic dianhydride, cyclobutane tetracarboxylic acid, and cyclohexane tetracarboxylic acid, in the range which does not impair the effect of this invention.

また、エステル構造を有するテトラカルボン酸芳香族酸二無水物を利用する場合は、本発明の効果を損なわない範囲で従来公知の芳香族ジアミンを使用することができる。
例えば、パラフェニレンジアミン、メタフェニレンジアミン、 4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンズアニリド、2,2−ジメチル−4,4−ジアミノビフェニル、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、ビス(4−(3−アミノフェノキシ)フェニル)スルホンがあげられる。線熱膨張率やガラス転移温度などの耐熱性を向上する観点から、パラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’−ビス(4−アミノフェノキシ)ビフェニルを使用することが好ましい。
Moreover, when utilizing the tetracarboxylic-acid aromatic dianhydride which has ester structure, a conventionally well-known aromatic diamine can be used in the range which does not impair the effect of this invention.
For example, paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminobenzanilide, 2,2-dimethyl-4,4-diaminobiphenyl, 1, 3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis (4-aminophenoxyphenyl) propane, 4,4′-bis (4-aminophenoxy) Biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis (4- (4-aminophenoxy) phenyl) sulfone, and bis (4- (3-aminophenoxy) phenyl) sulfone are exemplified. From the viewpoint of improving heat resistance such as linear thermal expansion coefficient and glass transition temperature, paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-bis (4 -Aminophenoxy) biphenyl is preferably used.

本発明におけるポリアミド酸は、前記のテトラカルボン酸二無水物成分とジアミン酸成分を反応させて得られる。ポリアミド酸を構成する繰り返し単位の規則性は、ブロック構造が含有されていても、あるいはランダム構造であってもよい。本発明のポリイミド 樹脂は、50〜200℃における線熱膨張率が、8〜25ppm/℃であるポリイミド樹脂である。また、銅箔との線熱膨張率の整合の点から15〜22ppm/℃であることがより好ましい。   The polyamic acid in this invention is obtained by making the said tetracarboxylic dianhydride component and a diamine acid component react. The regularity of the repeating unit constituting the polyamic acid may include a block structure or a random structure. The polyimide resin of this invention is a polyimide resin whose linear thermal expansion coefficient in 50-200 degreeC is 8-25 ppm / degreeC. Moreover, it is more preferable that it is 15-22 ppm / degreeC from the point of matching of a linear thermal expansion coefficient with copper foil.

本発明のポリイミド樹脂は、本発明のポリアミド酸ワニス組成物をイミド化することにより得られる。通常、製造にあたったテトラカルボン酸二無水物とジアミン化合物の仕込み比を調節することによって、生成するポリイミド樹脂の分子量や末端構造を調節することができる。好ましい全テトラカルボン酸二無水物と全ジアミンのモル比は、0.90〜1.10である。   The polyimide resin of the present invention can be obtained by imidizing the polyamic acid varnish composition of the present invention. Usually, the molecular weight and terminal structure of the polyimide resin to be produced can be adjusted by adjusting the charging ratio of the tetracarboxylic dianhydride and the diamine compound used in the production. The preferred molar ratio of total tetracarboxylic dianhydride to total diamine is 0.90 to 1.10.

得られるポリイミドの末端構造は、製造時における全テトラカルボン酸二無水物と全ジアミンのモル仕込み比によって、アミンもしくは酸無水物構造となる。末端構造がアミンの場合は、カルボン酸無水物にて末端封止してもよい。これらの例としては、無水フタル酸、4-フェニルフタル酸無水物、4−フェノキシフタル酸無水物、4−フェニルカルボニルフタル酸無水物、4−フェニルスルホニルフタル酸無水物等があげられるが。これに限るものではない。これらのカルボン酸無水物を単独もしくは2種以上を混合して用いてもよい。
また、末端構造が酸無水物の場合は、モノアミン類にて末端封止してもよい。具体的には、アニリン、トルイジン、アミノフェノール、アミノビフェニル、アミノベンゾフェノン、ナフチルアミン等があげられる。これらのモノアミンを単独もしくは2種以上を混合して用いてもよい。
The terminal structure of the resulting polyimide becomes an amine or acid anhydride structure depending on the molar charge ratio of all tetracarboxylic dianhydrides and all diamines at the time of production. When the terminal structure is an amine, it may be end-capped with a carboxylic acid anhydride. Examples of these include phthalic anhydride, 4-phenylphthalic anhydride, 4-phenoxyphthalic anhydride, 4-phenylcarbonylphthalic anhydride, 4-phenylsulfonylphthalic anhydride, and the like. This is not a limitation. You may use these carboxylic anhydrides individually or in mixture of 2 or more types.
In addition, when the terminal structure is an acid anhydride, the terminal structure may be capped with a monoamine. Specific examples include aniline, toluidine, aminophenol, aminobiphenyl, aminobenzophenone, naphthylamine and the like. You may use these monoamines individually or in mixture of 2 or more types.

本発明のポリアミド酸ワニス組成物における溶媒としては、前記のポリアミド酸と混合するものであればよく、例として、γ−ブチロラクトン、γ−バレロラクトン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、1,3−ジオキサン、1,4−ジオキサン、シクロペンタノン、シクロヘキサノン、ジエチレングリコールジメチルエーテル、テトラメチル尿素等が挙げられる。本発明に使用する好ましい溶媒は、γ−ブチロラクトン、N,N−ジメチルアセトアミドおよびN−メチル−2−ピロリドンである。これらは単独、または2種以上を混合して用いることができる。
また、物性を損なわない範囲において、添加剤として、シリカ等のフィラー、及びシランカップリング剤やチタネートカップリング剤等の表面改質剤等を加えても良い。
これらの溶媒の使用量には、特に制限はなく、ポリアミド酸ワニス組成物の粘度等に応じて利用することができる。
As a solvent in the polyamic acid varnish composition of the present invention, any solvent can be used as long as it is mixed with the above polyamic acid. Examples thereof include γ-butyrolactone, γ-valerolactone, N-methyl-2-pyrrolidone, N, N- Examples include dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dioxane, 1,4-dioxane, cyclopentanone, cyclohexanone, diethylene glycol dimethyl ether, and tetramethylurea. Preferred solvents for use in the present invention are γ-butyrolactone, N, N-dimethylacetamide and N-methyl-2-pyrrolidone. These can be used alone or in admixture of two or more.
Moreover, as long as the physical properties are not impaired, fillers such as silica and surface modifiers such as silane coupling agents and titanate coupling agents may be added as additives.
There is no restriction | limiting in particular in the usage-amount of these solvents, According to the viscosity etc. of a polyamic-acid varnish composition, it can utilize.

本発明のポリアミド酸ワニス組成物は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを溶媒中で付加重合させることによって得られるポリアミド酸ワニスとオキサゾール化合物、アミド化合物、ニトリル化合物およびベンゾフラザンから選ばれる含窒素芳香族化合物を混合溶解することにより得られる。なお、ここで含窒素芳香族化合物をポリアミド酸の付加重合が進行している系内にいつ添加するかについては、ポリアミド酸の重合前であっても重合後であってもどちらでも良い。
溶媒中での固形分濃度に特に制限はない。固形分濃度とは、溶媒を含めた全芳香族テトラカルボン酸二無水物と芳香族ジアミンの総質量に対する全芳香族テトラカルボン酸二無水物と芳香族ジアミンの質量の百分率である。好ましい固形分濃度は、5〜35質量%であり、より好ましくは10〜25質量%である。
The polyamic acid varnish composition of the present invention is selected from polyamic acid varnish obtained by addition polymerization of aromatic tetracarboxylic dianhydride and aromatic diamine in a solvent, an oxazole compound, an amide compound, a nitrile compound, and benzofurazan. It is obtained by mixing and dissolving the nitrogen-containing aromatic compound. Here, the nitrogen-containing aromatic compound may be added to the system in which the addition polymerization of the polyamic acid is proceeding, either before or after the polyamic acid polymerization.
There is no restriction | limiting in particular in solid content concentration in a solvent. The solid content concentration is a percentage of the mass of the wholly aromatic tetracarboxylic dianhydride and the aromatic diamine with respect to the total mass of the wholly aromatic tetracarboxylic dianhydride and the aromatic diamine including the solvent. A preferable solid content concentration is 5-35 mass%, More preferably, it is 10-25 mass%.

付加重合条件については、従来行われているポリアミド酸の付加重合条件に準じて行うことができる。具体的には、まず、窒素、ヘリウム、アルゴン等の不活性雰囲気下、大気圧中で芳香族ジアミン類を溶剤に0℃〜80℃にて溶解させ、40〜100℃にてテトラカルボン酸二無水物を、すみやかに加えながら、4〜8時間付加重合させる。これによりポリアミド酸ワニスが得られる。得られるポリアミド酸ワニスの粘度については、1poiseから2500poiseとなるように、固形分濃度を調節することが好ましい。
また、ポリイミドフィルムの靭性およびポリアミド酸ワニスのハンドリングの観点から、ポリアミド酸ワニスの固有粘度は好ましくは0.1〜25.0dL/gの範囲であり、好ましくは0.3〜20dL/gさらに好ましくは0.5〜15.0dL/gの範囲であることがより好ましい。
About addition polymerization conditions, it can carry out according to the addition polymerization conditions of the polyamic acid currently performed conventionally. Specifically, first, an aromatic diamine is dissolved in a solvent at 0 ° C. to 80 ° C. under an inert atmosphere such as nitrogen, helium, or argon at atmospheric pressure. The addition polymerization is carried out for 4 to 8 hours while the anhydride is rapidly added. Thereby, a polyamic acid varnish is obtained. About the viscosity of the polyamic acid varnish obtained, it is preferable to adjust the solid content concentration so as to be 1 poise to 2500 poise.
Further, from the viewpoint of the toughness of the polyimide film and the handling of the polyamic acid varnish, the intrinsic viscosity of the polyamic acid varnish is preferably in the range of 0.1 to 25.0 dL / g, preferably 0.3 to 20 dL / g. Is more preferably in the range of 0.5 to 15.0 dL / g.

本発明の金属−ポリイミド複合体とは、金属箔上にポリイミド樹脂層が設けられているものである。金属箔上にて本発明のポリアミド酸ワニス組成物をイミド化して得られたポリイミド樹脂層との複合体または、金属箔上にて本発明のポリアミド酸ワニス組成物を高温乾燥して得られるポリイミド樹脂層との複合体である。ポリイミド樹脂層の厚みは、特に限定されないが、好ましくは50μm以下、より好ましくは1〜25μmである。   The metal-polyimide composite of the present invention is one in which a polyimide resin layer is provided on a metal foil. A composite with a polyimide resin layer obtained by imidizing the polyamic acid varnish composition of the present invention on a metal foil, or a polyimide obtained by drying the polyamic acid varnish composition of the present invention on a metal foil at a high temperature It is a composite with a resin layer. Although the thickness of a polyimide resin layer is not specifically limited, Preferably it is 50 micrometers or less, More preferably, it is 1-25 micrometers.

金属箔としては、種々の金属箔を使用することができるが、フレキシブルプリント基板用としては、アルミニウム箔、銅箔、ステンレス箔等が好適に用いられる。これらの金属箔は、マット処理、メッキ処理、クロメート処理、アルミニウムアルコラート処理、アルミニウムキレート処理、シランカップリング剤処理等の表面処理を行ってもよい。
金属箔の厚みは、特に限定されないが、好ましくは35μm以下、より好ましくは18μm以下である。
Various metal foils can be used as the metal foil, but aluminum foil, copper foil, stainless steel foil and the like are preferably used for the flexible printed circuit board. These metal foils may be subjected to surface treatment such as mat treatment, plating treatment, chromate treatment, aluminum alcoholate treatment, aluminum chelate treatment, silane coupling agent treatment, and the like.
Although the thickness of metal foil is not specifically limited, Preferably it is 35 micrometers or less, More preferably, it is 18 micrometers or less.

本発明のポリアミド酸ワニス組成物から得られる金属−ポリイミド複合体は、以下の様にして製造することができる。まず、本発明のポリアミド酸ワニス組成物を金属箔上にブレードコーターや、リップコーター、グラビアコーター等を用い塗工を行い、その後乾燥させてポリイミド前駆体層としてのポリアミド酸ワニス組成物層(ポリアミド酸フィルム)を形成する。塗工厚は、ポリアミド酸ワニス組成物の固形分濃度に影響される。ポリアミド酸ワニス組成物層を、窒素、ヘリウム、アルゴン等の不活性雰囲気下にて、200〜400℃にて熱イミド化させることによりポリイミド樹脂層を形成することができる。   The metal-polyimide composite obtained from the polyamic acid varnish composition of the present invention can be produced as follows. First, the polyamic acid varnish composition of the present invention is coated on a metal foil using a blade coater, a lip coater, a gravure coater, etc., and then dried to form a polyamic acid varnish composition layer (polyamide) as a polyimide precursor layer. Acid film). The coating thickness is affected by the solid content concentration of the polyamic acid varnish composition. A polyimide resin layer can be formed by thermally imidizing the polyamic acid varnish composition layer at 200 to 400 ° C. in an inert atmosphere such as nitrogen, helium, and argon.

上記のポリイミドフィルムを用いた本発明の金属−ポリイミド積層体は、該ポリイミドフィルムの片側または両側に金属箔を重ね、公知の加熱および/または加圧を伴った方法により、該ポリイミドフィルムと金属箔とを積層することで得ることができる。積層方法は単板プレスによるバッチ処理、熱ロールラミネートあるいはダブルベルトプレス(DBP)による連続処理等公知の方法を用いることができる。   The metal-polyimide laminate of the present invention using the polyimide film described above is obtained by stacking a metal foil on one side or both sides of the polyimide film, and the polyimide film and the metal foil by a known method involving heating and / or pressurization. Can be obtained by laminating As a lamination method, a known method such as batch processing by a single plate press, hot roll lamination, or continuous processing by a double belt press (DBP) can be used.

上記積層方法における加熱方式は特に限定されるものではなく、例えば、熱循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱し得る従来公知の方式を採用した加熱手段を用いることができる。同様に、上記積層方法における加圧方式も特に限定されるものではなく、例えば、油圧方式、空気圧方式、ギャップ間圧力方式等、所定の圧力を加えることができる従来公知の方式を採用した加圧手段を用いることができる。
このようにして得られる金属−ポリイミド複合体は、金属箔、特に銅箔とポリイミド樹脂層との密着性が良好である。
The heating method in the laminating method is not particularly limited, and for example, a heating means employing a conventionally known method capable of heating at a predetermined temperature such as a heat circulation method, a hot air heating method, an induction heating method, or the like is used. it can. Similarly, the pressurization method in the laminating method is not particularly limited, and for example, a pressurization employing a conventionally known method that can apply a predetermined pressure, such as a hydraulic method, a pneumatic method, a gap pressure method, or the like. Means can be used.
The metal-polyimide composite thus obtained has good adhesion between a metal foil, particularly a copper foil and a polyimide resin layer.

以下実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。
尚、以下の実施例において、ポリアミド酸ワニス組成物の特性や、イミド化後のポリイミド樹脂および銅−ポリイミド複合体の物性測定は、次のようにして行った。
(1)固有粘度(η)
0.5質量%のポリアミド酸ワニス組成物を、オストワルド粘度計を用いて30℃で測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In the following Examples, the properties of the polyamic acid varnish composition and the physical properties of the polyimide resin and copper-polyimide composite after imidization were measured as follows.
(1) Intrinsic viscosity (η)
A 0.5 mass% polyamic acid varnish composition was measured at 30 ° C. using an Ostwald viscometer.

(2)ガラス転移温度(Tg)および線熱膨張率(CTE)
得られた銅−ポリイミド複合体を長さ50mm、幅3mm、厚み25μmに切出し、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅箔層をエッチング処理し水洗を行った。得られたポリイミドフィルムを105℃にて熱風乾燥機にて乾燥させた後、熱分析装置(TMA-50、株式会社島津製作所製)を用いて引っ張りモード、5g荷重、試料長15mm、昇温速度10℃/min、N雰囲気下にて測定を行い、接線の交点からTgを求め、また50℃〜200℃の線熱膨張率を算出した。
(2) Glass transition temperature (Tg) and coefficient of linear thermal expansion (CTE)
The obtained copper-polyimide composite was cut into a length of 50 mm, a width of 3 mm, and a thickness of 25 μm, immersed in a ferric chloride aqueous solution (manufactured by Tsurumi Soda), and the copper foil layer was etched and washed with water. After drying the obtained polyimide film at 105 ° C. with a hot air dryer, using a thermal analyzer (TMA-50, manufactured by Shimadzu Corporation), a tensile mode, a 5 g load, a sample length of 15 mm, and a heating rate. Measurement was performed at 10 ° C./min in an N 2 atmosphere, Tg was determined from the intersection of tangents, and the linear thermal expansion coefficient from 50 ° C. to 200 ° C. was calculated.

(3)接着強度
上記と同様にして銅−ポリイミド複合体を長さ150mm、幅10mm、厚み25μmに切出し、幅10mmの中央部の幅1.5mmをビニールテープにてマスキングし、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅箔をエッチング処理し水洗を行った。その後、ビニールテープを除去し、得られたフレキシブル基板を105℃にて熱風乾燥機にて乾燥させた後、幅3mmの銅箔をポリイミド樹脂から剥離し、その応力を測定した。剥離角度を90°、剥離速度を50mm/minとした。
(3) Adhesive strength In the same manner as described above, a copper-polyimide composite was cut into a length of 150 mm, a width of 10 mm, and a thickness of 25 μm. It was immersed in an aqueous solution (manufactured by Tsurumi Soda), and the copper foil was etched and washed with water. Then, after removing the vinyl tape and drying the obtained flexible substrate with a hot air dryer at 105 ° C., a 3 mm wide copper foil was peeled off from the polyimide resin, and the stress was measured. The peeling angle was 90 ° and the peeling speed was 50 mm / min.

(4)ハンダ耐熱性
縦3cm×横6cmの銅−ポリイミド複合体を切り出し、中央部の2.5cm×2.5cmをビニールテープにてマスキングし、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅箔をエッチング処理し水洗を行った。その後、ビニールテープを除去し、得られた銅−ポリイミド複合体を105℃にて熱風乾燥機にて乾燥させた後、300℃に設定したハンダ浴中に試料を銅箔光沢面側をハンダ浴に接触するように1min静置した際の外観変化による評価を行った。
(4) Solder heat resistance A 3 cm long x 6 cm wide copper-polyimide composite was cut out, and 2.5 cm x 2.5 cm in the center was masked with vinyl tape and immersed in a ferric chloride aqueous solution (manufactured by Tsurumi Soda). Then, the copper foil was etched and washed with water. Thereafter, the vinyl tape was removed, and the obtained copper-polyimide composite was dried at 105 ° C. with a hot air dryer, and then the sample was placed in the solder bath set at 300 ° C. with the copper foil glossy side facing the solder bath. Evaluation was performed by changing the appearance when left for 1 min so as to come into contact with.

(5)煮沸ハンダ耐熱性
上記と同様にして縦3cm×横6cmの銅−ポリイミド複合体を切り出し、中央部の2.5cm×2.5cmをビニールテープにてマスキングし、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅箔をエッチング処理し水洗を行った。その後、ビニールテープを除去し、得られた試料を煮沸水中にて2時間浸漬し、その後室温にて水中に浸漬し取出し、表面に付着する水をふき取り、すみやかに、280℃で1min静置した際の外観変化による評価を行った。
(5) Boiling solder heat resistance In the same manner as described above, a copper-polyimide composite having a length of 3 cm and a width of 6 cm was cut out, and a central portion of 2.5 cm × 2.5 cm was masked with a vinyl tape, and a ferric chloride aqueous solution ( It was immersed in Tsurumi Soda) and the copper foil was etched and washed with water. Thereafter, the vinyl tape was removed, and the obtained sample was immersed in boiling water for 2 hours, then immersed in water at room temperature, taken out, wiped off water adhering to the surface, and immediately left at 280 ° C. for 1 min. Evaluation was performed by changing the appearance.

(6)吸湿膨張率:CHE
アルバック理工株式会社製熱機械分析装置(TM−9400)及び湿度雰囲気調整装置(HC−1)を用いて、幅3mm、長さ20mm(チャック間長さ15mm)、厚み20〜25μm、のフィルムを23℃、荷重5gにて湿度30%RHから70%RHに変化させた際の試験片の伸びから30%RH〜70%RHにおける平均値としてポリイミドフィルムの吸湿膨張率を求めた。
(6) Hygroscopic expansion coefficient: CHE
A film having a width of 3 mm, a length of 20 mm (length between chucks of 15 mm), and a thickness of 20 to 25 μm was formed using a thermal mechanical analyzer (TM-9400) and a humidity atmosphere adjustment device (HC-1) manufactured by ULVAC-RIKO Inc. The hygroscopic expansion coefficient of the polyimide film was determined as an average value in 30% RH to 70% RH from the elongation of the test piece when the humidity was changed from 30% RH to 70% RH at 23 ° C. and a load of 5 g.

(7)弾性率、破断伸び
(合成例1)含窒素芳香族化合物の合成1
2Lセパラフラスコ中に、ポリリン酸1000g、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル200mmol(和歌山精化工業株式会社製)を入れ、窒素雰囲気下にて150℃で2時間攪拌を行った。その後安息香酸400mmol(和光純薬工業社製)を加え、200℃にて5時間反応させた。反応液を室温まで放令後、精製水中に滴下し、得られた黄緑色析出物をろ過により分取した後、125℃で真空乾燥させ、粗結晶を得た。その後、粗結晶をN−メチルピロリドンに100℃付近で溶解させ、室温まで放冷した溶液をろ過し、不溶成分を除去した後、得られたろ液に3質量%の炭酸ナトリウム水溶液を滴下し、固体を析出させた。析出した固体を、ろ過により分取し、精製水で2〜3回洗浄した後、125℃にて真空乾燥させ、下記式(20)で表されるオキサゾール構造含有する含窒素芳香族化合物(以下、OXANと称する)を得た。
(7) Elastic modulus, elongation at break (Synthesis Example 1) Synthesis 1 of a nitrogen-containing aromatic compound
In a 2 L Separa flask, 1000 g of polyphosphoric acid and 200 mmol of 3,3′-dihydroxy-4,4′-diaminobiphenyl (manufactured by Wakayama Seika Kogyo Co., Ltd.) are placed and stirred at 150 ° C. for 2 hours in a nitrogen atmosphere. It was. Thereafter, 400 mmol of benzoic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 200 ° C. for 5 hours. The reaction solution was allowed to reach room temperature, then dropped into purified water, and the resulting yellow-green precipitate was collected by filtration and then vacuum dried at 125 ° C. to obtain crude crystals. Thereafter, the crude crystals were dissolved in N-methylpyrrolidone at around 100 ° C., the solution allowed to cool to room temperature was filtered, insoluble components were removed, and then 3% by mass of sodium carbonate aqueous solution was dropped into the obtained filtrate. A solid was precipitated. The precipitated solid was collected by filtration, washed 2 to 3 times with purified water, then vacuum dried at 125 ° C., and a nitrogen-containing aromatic compound containing an oxazole structure represented by the following formula (20) (below) , Referred to as OXAN).

Figure 0005547874
Figure 0005547874

(合成例2)含窒素芳香族化合物の合成2
2Lセパラフラスコ中に、N,N’−ジメチルホルムアミド溶液1200ml、3,3’−ジヒドロキシビフェニル200mmol(和歌山精化工業株式会社製)とトリエチルアミン400mmolを溶解し、窒素雰囲気下にて0℃に冷却した。その後、N,N’−ジメチルホルムアミド溶液100mlにp−ニトロ塩化ベンゾイル400mmolを溶かした溶液を、10℃以下になるように2時間かけて滴下し、その後、6時間攪拌を行った。
次いで、析出物をろ過し、N,N’−ジメチルホルムアミドで洗浄し、更に水で洗浄した後、乾燥して、式(21)で表される3,3’−ジヒドロキシ−4,4’−ジニトロビフェニルアニリドの黄白色結晶を得た。
Synthesis Example 2 Synthesis of nitrogen-containing aromatic compound 2
In a 2 L Separa flask, 1200 ml of N, N′-dimethylformamide solution, 200 mmol of 3,3′-dihydroxybiphenyl (manufactured by Wakayama Seika Kogyo Co., Ltd.) and 400 mmol of triethylamine were dissolved and cooled to 0 ° C. in a nitrogen atmosphere. . Thereafter, a solution obtained by dissolving 400 mmol of p-nitrobenzoyl chloride in 100 ml of an N, N′-dimethylformamide solution was added dropwise over 2 hours so as to be 10 ° C. or less, and then stirred for 6 hours.
Next, the precipitate is filtered, washed with N, N′-dimethylformamide, further washed with water, dried, and 3,3′-dihydroxy-4,4′- represented by the formula (21). Yellowish white crystals of dinitrobiphenylanilide were obtained.

Figure 0005547874
Figure 0005547874

[実施例1]
<ポリアミド酸ワニス組成物、イミド化およびポリイミドフィルム特性の評価>
よく乾燥した攪拌機付密閉反応容器中にモノマー骨格中にエステル基を含有する4−アミノフェニル−4’−アミノベンゾエート(以下APABと称する)40mmol、4、4’−ジアミノジフェニルエーテル以下ODAと称する)10mmol、N−メチル−2−ピロリドン191mL(脱水)(和光純薬工業株式会社製)(以下NMPと称する)に溶解した後、この溶液にモノマー骨格中にエステル基を含有するp−ビフェニレンビス(トリメリット酸モノエステル酸無水物)(以下TABPと称する)の粉末50mmolを徐々に加えた。30分後、溶液粘度が急激に増加した。更に80℃で4時間撹拌し透明、均一で粘稠なエステル基を有するポリアミド酸ワニスを得た。このポリアミド酸ワニス中に、合成例1で得た含窒素芳香族化合物(OXAN)を樹脂固形分に対して6質量部となるように添加し、溶解させポリアミド酸ワニス組成物を得た。得られたポリアミド酸ワニス組成物は室温および−20℃で一ヶ月間放置しても沈澱、ゲル化は全く起こらず、高い溶液貯蔵安定を示した。NMP中、30℃、0.5質量%の濃度でオストワルド粘度計にて測定したポリアミド酸ワニス組成物の固有粘度は、0.72dL/gであった。このポリアミド酸ワニス組成物を、金属製の塗工台に12μm厚の銅箔(古川サーキットフォイル株式会社 F2-WS箔)マット面側を表面になるように静置する。塗工台の表面温度を90℃に設定し、ポリアミド酸ワニス組成物を用いてドクターブレードにて銅箔マット面に塗布する。その後、塗工台で30分静置、さらに乾燥器中で100℃で30min静置の後、タック性のないポリアミド酸フィルム(厚み45μm)を得た。その後、SUS製金属板にポリアミド酸フィルムをはりつけ、窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/minにて、150℃で30min、200℃で1h、400℃で1hにてイミド化を行った。カールのない25μm厚みの銅箔付きポリイミドフィルムが得られた。
[Example 1]
<Evaluation of polyamic acid varnish composition, imidization and polyimide film characteristics>
10 mmol of 4-aminophenyl-4′-aminobenzoate (hereinafter referred to as APAB) containing an ester group in the monomer skeleton in a well-closed sealed reaction vessel equipped with a stirrer, 10 mmol, 4,4′-diaminodiphenyl ether (hereinafter referred to as ODA) , N-methyl-2-pyrrolidone 191 mL (dehydrated) (manufactured by Wako Pure Chemical Industries, Ltd.) (hereinafter referred to as NMP), p-biphenylenebis (tri) containing an ester group in the monomer skeleton was added to this solution. 50 mmol of merit acid monoester anhydride (hereinafter referred to as TABP) powder was gradually added. After 30 minutes, the solution viscosity increased rapidly. Furthermore, it stirred at 80 degreeC for 4 hours, and obtained the polyamic-acid varnish which has a transparent, uniform and viscous ester group. In this polyamic-acid varnish, the nitrogen-containing aromatic compound (OXAN) obtained by the synthesis example 1 was added so that it might become 6 mass parts with respect to resin solid content, and it was made to melt | dissolve, and the polyamic-acid varnish composition was obtained. The obtained polyamic acid varnish composition did not precipitate or gel at all even when allowed to stand at room temperature and −20 ° C. for one month, and showed high solution storage stability. The intrinsic viscosity of the polyamic acid varnish composition measured with an Ostwald viscometer in NMP at a concentration of 0.5% by mass at 30 ° C. was 0.72 dL / g. This polyamic acid varnish composition is allowed to stand on a metal coating table with a 12 μm thick copper foil (F2-WS foil, F2-WS foil) mat surface side as the surface. The surface temperature of the coating table is set to 90 ° C., and the polyamic acid varnish composition is applied to the copper foil mat surface with a doctor blade. Then, after leaving still on a coating stand for 30 minutes, and also leaving still at 100 degreeC for 30 minutes in a dryer, the polyamic-acid film (45 micrometers in thickness) without tackiness was obtained. Then, a polyamic acid film is attached to a metal plate made of SUS, and heated in a hot air drier in a nitrogen atmosphere at a heating rate of 5 ° C./min, 150 ° C. for 30 min, 200 ° C. for 1 h, and 400 ° C. for 1 h. Imidization was performed. A polyimide film with a copper foil having a thickness of 25 μm and no curling was obtained.

この銅箔付きポリイミドフィルムを塩化第2鉄溶液にて銅箔をエッチングすることにより膜厚25μmの薄茶色のポリイミドフィルムを得た。このポリイミドフィルムは180°折曲げ試験によっても破断せず、可撓性を示した。また有機溶媒に対しても全く溶解性を示さなかった。このポリイミドフィルムは、TMA測定により線熱膨張率(50℃から200℃の間の平均値)は18ppm/℃と銅箔と同等の低い線熱膨張率を示した。また、吸湿膨張率を測定したところ5.5ppm/%RH(30%RHから70%RHの間の平均値)と、極めて低い吸湿膨張率を示した。また、90°銅箔接着強度を測定したところ1.1kg/cmと高い接着強度を示した。   This polyimide film with copper foil was etched with a ferric chloride solution to obtain a light brown polyimide film with a thickness of 25 μm. This polyimide film did not break even in the 180 ° bending test and showed flexibility. Moreover, it did not show any solubility in organic solvents. This polyimide film showed a linear thermal expansion coefficient (average value between 50 ° C. and 200 ° C.) of 18 ppm / ° C. as low as that of the copper foil by TMA measurement. Further, when the hygroscopic expansion coefficient was measured, it was 5.5 ppm /% RH (an average value between 30% RH and 70% RH) and an extremely low hygroscopic expansion coefficient. Further, when the 90 ° copper foil adhesive strength was measured, it showed a high adhesive strength of 1.1 kg / cm.

また同様にして、このポリアミド酸ワニス組成物を6インチのシリコンウエハ上に、スピンコーター(MS−250 ミカサ株式会社製)にてスピンコートし、乾燥器中で100℃で30min静置の後、タック性のないポリアミド酸フィルム(厚み17μm)を得た。その後、シリコンウエハを窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/minにて、150℃で30min、200℃で1h、400℃で1hにてイミド化を行った。その後、フッ酸にてシリコンウエハから剥離して10μm厚みのポリイミドフィルムが得られた。
得られたポリイミドフィルムを引っ張り試験により弾性率6.9GPa及び破断伸び53%が得られた。
Similarly, this polyamic acid varnish composition was spin-coated on a 6-inch silicon wafer with a spin coater (manufactured by MS-250 Mikasa Co., Ltd.) and allowed to stand at 100 ° C. for 30 minutes in a dryer. A polyamic acid film (thickness 17 μm) having no tackiness was obtained. Thereafter, the silicon wafer was imidized in a hot air drier in a nitrogen atmosphere at a rate of temperature increase of 5 ° C./min at 150 ° C. for 30 min, 200 ° C. for 1 h, and 400 ° C. for 1 h. Thereafter, it was peeled from the silicon wafer with hydrofluoric acid to obtain a polyimide film having a thickness of 10 μm.
The obtained polyimide film was subjected to a tensile test to obtain an elastic modulus of 6.9 GPa and an elongation at break of 53%.

[実施例2]〜[実施例7]
OXANの代わりに一般式(21)、および下記式(22)〜下記式(26)で示されるいずれかの含窒素芳香族化合物を樹脂固形分に対して3もしくは6質量部となるように添加し、実施例1と同様の操作を繰り返すことにより、ポリアミド酸ワニス組成物、ポリイミド樹脂および銅−ポリイミド複合体を得た。
なお、実施例2に使用した、合成例2の合成で得られた一般式(21)をのぞく含窒素芳香族化合物下記式(22)〜下記式(26)(順に実施例3〜7に使用)は、東京化成工業株式会社製を使用した。
[Example 2] to [Example 7]
Instead of OXAN, the nitrogen-containing aromatic compound represented by the general formula (21) and any of the following formulas (22) to (26) is added so as to be 3 or 6 parts by mass with respect to the solid content of the resin. Then, the same operation as in Example 1 was repeated to obtain a polyamic acid varnish composition, a polyimide resin, and a copper-polyimide composite.
In addition, the nitrogen-containing aromatic compound used in Example 2 except for the general formula (21) obtained in the synthesis of Synthesis Example 2, the following formula (22) to the following formula (26) (used in Examples 3 to 7 in order) ) Was made by Tokyo Chemical Industry Co., Ltd.

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

Figure 0005547874
Figure 0005547874

[実施例8]
よく乾燥した攪拌機付密閉反応容器中にモノマー骨格中にエステル基を含有する4−アミノフェニル−4’−アミノベンゾエート(以下APABと称する)45mmol、4、4’−ジアミノジフェニルエーテル(以下ODAと称する)5mmol、N−メチル−2−ピロリドン191mL(脱水)(和光純薬工業株式会社製)(以下NMPと称する)に溶解した後、この溶液にモノマー骨格中にエステル基を含有するp−メチルフェニレンビス(トリメリット酸モノエステル酸無水物(以下MTAHQと称する)の粉末50mmolを徐々に加えた。30分後、溶液粘度が急激に増加した。更に80℃で4時間撹拌し透明、均一で粘稠なエステル基を有するポリアミド酸ワニスを得た。このポリアミド酸ワニス中に、含窒素芳香族化合物(OXAN)を樹脂固形分に対して6質量部となるように添加し、溶解させポリアミド酸ワニス組成物を得た。得られたポリアミド酸ワニス組成物は室温および−20℃で一ヶ月間放置しても沈澱、ゲル化は全く起こらず、高い溶液貯蔵安定を示した。NMP中、30℃、0.5質量%の濃度でオストワルド粘度計にて測定したポリアミド酸ワニス組成物の固有粘度は、0.82dL/gであった。このポリアミド酸ワニス組成物を、金属製の塗工台に12μm厚の銅箔(古川サーキットフォイル株式会社 F2−WS箔)マット面側を表面になるように静置する。塗工台の表面温度を90℃に設定し、ポリアミド酸ワニス組成物を用いてドクターブレードにて銅箔マット面に塗布する。その後、塗工台で30分静置、さらに乾燥器中で100℃で30min静置の後、タック性のないポリアミド酸フィルム(厚み45μm)を得た。その後、SUS製金属板にポリアミド酸フィルムをはりつけ、窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/minにて、150℃で30min、200℃で1h、400℃で1hにてイミド化を行った。カールのない25μm厚みの銅箔付きポリイミドフィルムが得られた。
[Example 8]
4-aminophenyl-4′-aminobenzoate (hereinafter referred to as APAB) 45 mmol, 4,4′-diaminodiphenyl ether (hereinafter referred to as ODA) containing an ester group in the monomer skeleton in a well-dried sealed reaction vessel with a stirrer After being dissolved in 5 mmol, 191 mL of N-methyl-2-pyrrolidone (dehydrated) (manufactured by Wako Pure Chemical Industries, Ltd.) (hereinafter referred to as NMP), this solution contains p-methylphenylenebis containing an ester group in the monomer skeleton. (Trimellitic acid monoester anhydride (hereinafter referred to as MTAHQ) powder 50 mmol was gradually added. After 30 minutes, the viscosity of the solution increased rapidly. Further, the mixture was stirred at 80 ° C. for 4 hours to be transparent, uniform and viscous. A polyamic acid varnish having an ester group was obtained, and a nitrogen-containing aromatic compound (O AN) was added to the resin solid content so as to be 6 parts by mass and dissolved to obtain a polyamic acid varnish composition, which was allowed to stand at room temperature and −20 ° C. for one month. However, precipitation and gelation did not occur at all, and high solution storage stability was exhibited.Intrinsic viscosity of the polyamic acid varnish composition measured with an Ostwald viscometer in NMP at a concentration of 0.5% by mass was 30 ° C. The polyamic acid varnish composition was statically placed on a metal coating table with a 12 μm thick copper foil (F2-WS foil, Furukawa Circuit Foil Co., Ltd.) matte side. Set the surface temperature of the coating table to 90 ° C., and apply it to the copper foil mat surface with a doctor blade using the polyamic acid varnish composition. 3 at 100 ° C in After standing for 0 min, a polyamic acid film (thickness: 45 μm) having no tackiness was obtained, and then the polyamic acid film was attached to a metal plate made of SUS, and the heating rate was 5 ° C. in a hot air drier in a nitrogen atmosphere. / Min, imidization was performed at 150 ° C. for 30 min, 200 ° C. for 1 h, and 400 ° C. for 1 h, and a 25 μm thick polyimide film with a copper foil without curling was obtained.

この銅箔付きポリイミドフィルムを塩化第2鉄溶液にて銅箔をエッチングすることにより膜厚25μmの薄茶色のポリイミドフィルムを得た。このポリイミドフィルムは180°折曲げ試験によっても破断せず、可撓性を示した。また有機溶媒に対しても全く溶解性を示さなかった。このポリイミドフィルムは、TMA測定により線熱膨張率(50℃から200℃の間の平均値)は20ppm/℃と銅箔と同等の低い線熱膨張率を示した。また、吸湿膨張率を測定したところ4.7ppm/%RH(30%RHから70%RHの間の平均値)と、極めて低い吸湿膨張率を示した。また、90°銅箔接着強度を測定したところ1.0kg/cmと高い接着強度を示した。   This polyimide film with copper foil was etched with a ferric chloride solution to obtain a light brown polyimide film with a thickness of 25 μm. This polyimide film did not break even in the 180 ° bending test and showed flexibility. Moreover, it did not show any solubility in organic solvents. This polyimide film exhibited a linear thermal expansion coefficient (average value between 50 ° C. and 200 ° C.) of 20 ppm / ° C. as low as that of the copper foil by TMA measurement. Further, when the hygroscopic expansion coefficient was measured, it was 4.7 ppm /% RH (an average value between 30% RH and 70% RH) and an extremely low hygroscopic expansion coefficient. Further, when the 90 ° copper foil adhesive strength was measured, it showed a high adhesive strength of 1.0 kg / cm.

また同様にして、このポリアミド酸ワニス組成物を6インチのシリコンウエハ上に、スピンコーター(MS−250 ミカサ株式会社製)にてスピンコートし、乾燥器中で100℃で30min静置の後、タック性のないポリアミド酸フィルム(厚み17μm)を得た。その後、シリコンウエハを窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/minにて、150℃で30min、200℃で1h、400℃で1hにてイミド化を行った。その後、フッ酸にてシリコンウエハから剥離して10μm厚みのポリイミドフィルムが得られた。
実施例1と同様の操作を繰り返すことにより、ポリイミド樹脂ならびに銅−ポリイミド複合体を得た。
Similarly, this polyamic acid varnish composition was spin-coated on a 6-inch silicon wafer with a spin coater (manufactured by MS-250 Mikasa Co., Ltd.) and allowed to stand at 100 ° C. for 30 minutes in a dryer. A polyamic acid film (thickness 17 μm) having no tackiness was obtained. Thereafter, the silicon wafer was imidized in a hot air drier in a nitrogen atmosphere at a rate of temperature increase of 5 ° C./min at 150 ° C. for 30 min, 200 ° C. for 1 h, and 400 ° C. for 1 h. Thereafter, it was peeled from the silicon wafer with hydrofluoric acid to obtain a polyimide film having a thickness of 10 μm.
By repeating the same operation as in Example 1, a polyimide resin and a copper-polyimide composite were obtained.

[実施例9]
合成例2で合成した一般式(21)で示される含窒素芳香族化合物を樹脂固形分に対して6質量部となるように添加し、実施例8と同様の操作を繰り返すことにより、ポリアミド酸ワニス、ポリイミド樹脂および銅−ポリイミド複合体を得た。
[Example 9]
By adding the nitrogen-containing aromatic compound represented by the general formula (21) synthesized in Synthesis Example 2 so as to be 6 parts by mass with respect to the solid content of the resin, the same operation as in Example 8 is repeated to obtain polyamic acid. A varnish, a polyimide resin and a copper-polyimide composite were obtained.

[比較例1]
よく乾燥した攪拌機付密閉反応容器中にモノマー骨格中にエステル基を含有するAPAB40mmol、ODA10mmol、NMP191mL(脱水)に溶解した後、この溶液にモノマー骨格中にエステル基を含有するTABPの粉末50mmolを徐々に加えた。30分後、溶液粘度が急激に増加した。更に80℃で4時間撹拌し透明、均一で粘稠なエステル基を有するポリアミド酸ワニスを得た。得られたポリアミド酸ワニスは室温および−20℃で一ヶ月間放置しても沈澱、ゲル化は全く起こらず、高い溶液貯蔵安定を示した。NMP中、30℃、0.5質量%の濃度でオストワルド粘度計にて測定したポリアミド酸の固有粘度は、0.72dL/gであった。 実施例1と同様にして、このポリアミド酸ワニスを、金属製の塗工台に12μm厚の銅箔(古川サーキットフォイル株式会社 F2−WS箔)マット面側を表面になるように静置する。塗工台の表面温度を90℃に設定し、ポリアミド酸ワニスを用いてドクターブレードにて銅箔マット面に塗布する。その後、塗工台で30分静置、さらに乾燥器中で100℃で30min静置の後、タック性のないポリアミド酸フィルム(厚み45μm)を得た。その後、SUS製金属板にポリアミド酸フィルムをはりつけ、窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/minにて、150℃で30min、200℃で1h、400℃で1hにてイミド化を行った。カールのない25μm厚みの銅箔付きポリイミドフィルムが得られた。
[Comparative Example 1]
In a well-dried sealed reaction vessel equipped with a stirrer, 40 mmol of APAB containing ester groups in the monomer skeleton, 10 mmol of ODA, and 191 mL of NMP (dehydrated) were dissolved, and 50 mmol of TABP powder containing ester groups in the monomer skeleton was gradually added to this solution. Added to. After 30 minutes, the solution viscosity increased rapidly. Furthermore, it stirred at 80 degreeC for 4 hours, and obtained the polyamic-acid varnish which has a transparent, uniform and viscous ester group. The obtained polyamic acid varnish did not precipitate or gel at all even when it was allowed to stand at room temperature and −20 ° C. for one month, and showed high solution storage stability. The intrinsic viscosity of the polyamic acid measured with an Ostwald viscometer at a concentration of 0.5% by mass in NMP at 30 ° C. was 0.72 dL / g. In the same manner as in Example 1, this polyamic acid varnish is allowed to stand on a metal coating stand so that the mat surface side of the 12 μm-thick copper foil (F2-WS foil, F2-WS foil) is the surface. The surface temperature of the coating table is set to 90 ° C., and it is applied to the copper foil mat surface with a doctor blade using a polyamic acid varnish. Then, after leaving still on a coating stand for 30 minutes, and also leaving still at 100 degreeC for 30 minutes in a dryer, the polyamic-acid film (45 micrometers in thickness) without tackiness was obtained. Then, a polyamic acid film is attached to a metal plate made of SUS, and heated in a hot air drier in a nitrogen atmosphere at a heating rate of 5 ° C./min, 150 ° C. for 30 min, 200 ° C. for 1 h, and 400 ° C. for 1 h. Imidization was performed. A polyimide film with a copper foil having a thickness of 25 μm and no curling was obtained.

この銅箔付きポリイミドフィルムを塩化第2鉄溶液にて銅箔をエッチングすることにより膜厚25μmの薄茶色のポリイミドフィルムを得た。このポリイミドフィルムは180°折曲げ試験によっても破断せず、可撓性を示した。また有機溶媒に対しても全く溶解性を示さなかった。
また同様にして、このポリアミド酸ワニスを6インチのシリコンウエハ上に、スピンコーター(MS−250 ミカサ株式会社製)にてスピンコートし、乾燥器中で100℃で30min静置の後、タック性のないポリアミド酸フィルム(厚み17μm)を得た。その後、シリコンウエハを窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/minにて、150℃で30min、200℃で1h、400℃で1hにてイミド化を行った。その後、フッ酸にてシリコンウエハから剥離して10μm厚みのポリイミドフィルムが得られた。
This polyimide film with copper foil was etched with a ferric chloride solution to obtain a light brown polyimide film with a thickness of 25 μm. This polyimide film did not break even in the 180 ° bending test and showed flexibility. Moreover, it did not show any solubility in organic solvents.
Similarly, this polyamic acid varnish is spin-coated on a 6-inch silicon wafer with a spin coater (MS-250 Mikasa Co., Ltd.), left standing at 100 ° C. for 30 minutes in a dryer, and then tacky. A polyamic acid film (thickness: 17 μm) with no film was obtained. Thereafter, the silicon wafer was imidized in a hot air drier in a nitrogen atmosphere at a rate of temperature increase of 5 ° C./min at 150 ° C. for 30 min, 200 ° C. for 1 h, and 400 ° C. for 1 h. Thereafter, it was peeled from the silicon wafer with hydrofluoric acid to obtain a polyimide film having a thickness of 10 μm.

得られたポリイミド樹脂のガラス転移温度(Tg)および線熱膨張率(CTE)、吸湿膨張率(CHE)、弾性率、破断伸び、銅−ポリイミド複合体の接着強度ならびにハンダ耐熱性および吸湿ハンダ耐熱性の結果を表1に示す。   Glass transition temperature (Tg) and linear thermal expansion coefficient (CTE), hygroscopic expansion coefficient (CHE), elastic modulus, elongation at break, adhesive strength of copper-polyimide composite, solder heat resistance and moisture absorption solder heat resistance of the obtained polyimide resin The sex results are shown in Table 1.

[比較例2]
比較例1で得られたポリアミド酸ワニスに、2−エチル−4−メチル−イミダゾール(四国化成株式会社製 製品名2E4MZ)を樹脂固形分に対して6質量部になるように添加したポリアミド酸ワニス組成物を得た。比較例1と同様の操作を繰り返すことによりポリイミド樹脂ならびに銅−ポリイミド複合体を得た。
得られたポリイミド樹脂のガラス転移温度(Tg)および線熱膨張率(CTE)、吸湿膨張率(CHE)、弾性率、破断伸び、銅−ポリイミド複合体の接着強度ならびにハンダ耐熱性および吸湿ハンダ耐熱性の結果を表1に示す。
[Comparative Example 2]
Polyamic acid varnish obtained by adding 2-ethyl-4-methyl-imidazole (product name 2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) to the polyamic acid varnish obtained in Comparative Example 1 so as to be 6 parts by mass with respect to the resin solid content. A composition was obtained. By repeating the same operation as in Comparative Example 1, a polyimide resin and a copper-polyimide composite were obtained.
Glass transition temperature (Tg) and linear thermal expansion coefficient (CTE), hygroscopic expansion coefficient (CHE), elastic modulus, elongation at break, adhesive strength of copper-polyimide composite, solder heat resistance and moisture absorption solder heat resistance of the obtained polyimide resin The sex results are shown in Table 1.

[比較例3]
よく乾燥した攪拌機付密閉反応容器中にモノマー骨格中にエステル基を含有する4−アミノフェニル−4’−アミノベンゾエート(以下APABと称する)45mmol、4、4’−ジアミノジフェニルエーテル(以下ODAと称する)5mmol、N−メチル−2−ピロリドン191mL(脱水)(和光純薬工業株式会社製)(以下NMPと称する)に溶解した後、この溶液にモノマー骨格中にエステル基を含有するp−メチルフェニレンビス(トリメリット酸モノエステル酸無水物(以下MTAHQと称する)の粉末50mmolを徐々に加えた。30分後、溶液粘度が急激に増加した。更に80℃で4時間撹拌し透明、均一で粘稠なエステル基を有するポリアミド酸ワニスを得た。得られたポリアミド酸ワニスは室温および−20℃で一ヶ月間放置しても沈澱、ゲル化は全く起こらず、高い溶液貯蔵安定を示した。NMP中、30℃、0.5質量%の濃度でオストワルド粘度計にて測定したポリアミド酸の固有粘度は、0.82dL/gであった。このポリアミド酸ワニスを、金属製の塗工台に12μm厚の銅箔(古川サーキットフォイル株式会社 F2−WS箔)マット面側を表面になるように静置する。塗工台の表面温度を90℃に設定し、ポリアミド酸ワニスを用いてドクターブレードにて銅箔マット面に塗布する。その後、塗工台で30分静置、さらに乾燥器中で100℃で30min静置の後、タック性のないポリアミド酸フィルム(厚み45μm)を得た。その後、SUS製金属板にポリアミド酸フィルムをはりつけ、窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/minにて、150℃で30min、200℃で1h、400℃で1hにてイミド化を行った。カールのない25μm厚みの銅箔付きポリイミドフィルムが得られた。
[Comparative Example 3]
4-aminophenyl-4′-aminobenzoate (hereinafter referred to as APAB) 45 mmol, 4,4′-diaminodiphenyl ether (hereinafter referred to as ODA) containing an ester group in the monomer skeleton in a well-dried sealed reaction vessel with a stirrer After being dissolved in 5 mmol, 191 mL of N-methyl-2-pyrrolidone (dehydrated) (manufactured by Wako Pure Chemical Industries, Ltd.) (hereinafter referred to as NMP), this solution contains p-methylphenylenebis containing an ester group in the monomer skeleton. (Trimellitic acid monoester anhydride (hereinafter referred to as MTAHQ) powder 50 mmol was gradually added. After 30 minutes, the viscosity of the solution increased rapidly. Further, the mixture was stirred at 80 ° C. for 4 hours to be transparent, uniform and viscous. A polyamic acid varnish having an ester group was obtained, which was obtained at room temperature and at -20 ° C. No precipitation or gelation occurred even after standing for a month, showing high solution storage stability.Intrinsic viscosity of the polyamic acid measured with an Ostwald viscometer in NMP at a concentration of 0.5% by mass was 30 ° C. The polyamic acid varnish was placed on a metal coating table so that the mat surface side of the copper foil (F2-WS foil, Furukawa Circuit Foil Co., Ltd.) having a thickness of 12 μm was the surface. The surface temperature of the coating table is set to 90 ° C., and it is applied to the copper foil mat surface with a doctor blade using a polyamic acid varnish, then left still for 30 minutes on the coating table, and further 100 ° C. in a dryer. After standing for 30 min, a polyamic acid film (thickness: 45 μm) having no tackiness was obtained, and then the polyamic acid film was attached to a SUS metal plate, and the heating rate was 5 in a hot air drier in a nitrogen atmosphere. ℃ min at, 30min, 200 ° C. in 1h, was imidized at 1h at 400 ° C.. copper foil polyimide film curl without 25μm thickness was obtained at 0.99 ° C..

この銅箔付きポリイミドフィルムを塩化第2鉄溶液にて銅箔をエッチングすることにより膜厚25μmの薄茶色のポリイミドフィルムを得た。このポリイミドフィルムは180°折曲げ試験によっても破断せず、可撓性を示した。また有機溶媒に対しても全く溶解性を示さなかった。
また同様にして、このポリアミド酸ワニスを6インチのシリコンウエハ上に、スピンコーター(MS−250 ミカサ株式会社製)にてスピンコートし、乾燥器中で100℃で30min静置の後、タック性のないポリアミド酸フィルム(厚み17μm)を得た。その後、シリコンウエハを窒素雰囲気下、熱風乾燥器中にて、昇温速度5℃/minにて、150℃で30min、200℃で1h、400℃で1hにてイミド化を行った。その後、フッ酸にてシリコンウエハから剥離して10μm厚みのポリイミドフィルムが得られた。
得られたポリイミド樹脂のガラス転移温度(Tg)および線熱膨張率(CTE)、吸湿膨張率(CHE)、弾性率、破断伸び、銅−ポリイミド複合体の接着強度ならびにハンダ耐熱性および吸湿ハンダ耐熱性の結果を表1に示す。
This polyimide film with copper foil was etched with a ferric chloride solution to obtain a light brown polyimide film with a thickness of 25 μm. This polyimide film did not break even in the 180 ° bending test and showed flexibility. Moreover, it did not show any solubility in organic solvents.
Similarly, this polyamic acid varnish is spin-coated on a 6-inch silicon wafer with a spin coater (MS-250 Mikasa Co., Ltd.), left standing at 100 ° C. for 30 minutes in a dryer, and then tacky. A polyamic acid film (thickness: 17 μm) with no film was obtained. Thereafter, the silicon wafer was imidized in a hot air drier in a nitrogen atmosphere at a rate of temperature increase of 5 ° C./min at 150 ° C. for 30 min, 200 ° C. for 1 h, and 400 ° C. for 1 h. Thereafter, it was peeled from the silicon wafer with hydrofluoric acid to obtain a polyimide film having a thickness of 10 μm.
Glass transition temperature (Tg) and linear thermal expansion coefficient (CTE), hygroscopic expansion coefficient (CHE), elastic modulus, elongation at break, adhesive strength of copper-polyimide composite, solder heat resistance and moisture absorption solder heat resistance of the obtained polyimide resin The sex results are shown in Table 1.

[比較例4]
比較例3で得られたポリアミド酸ワニスに、2−エチル−4−メチル−イミダゾール(四国化成株式会社製 製品名2E4MZ)を樹脂固形分に対して6質量部になるように添加したポリアミド酸ワニス組成物を得た。比較例1と同様の操作を繰り返すことによりポリイミド樹脂ならびに銅−ポリイミド複合体を得た。
得られたポリイミド樹脂のガラス転移温度(Tg)および線熱膨張率(CTE)、吸湿膨張率(CHE)、弾性率、破断伸び、銅−ポリイミド複合体の接着強度ならびにハンダ耐熱性および吸湿ハンダ耐熱性の結果を表1に示す。
[Comparative Example 4]
Polyamic acid varnish obtained by adding 2-ethyl-4-methyl-imidazole (product name 2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) to the polyamic acid varnish obtained in Comparative Example 3 so as to be 6 parts by mass with respect to the resin solid content. A composition was obtained. By repeating the same operation as in Comparative Example 1, a polyimide resin and a copper-polyimide composite were obtained.
Glass transition temperature (Tg) and linear thermal expansion coefficient (CTE), hygroscopic expansion coefficient (CHE), elastic modulus, elongation at break, adhesive strength of copper-polyimide composite, solder heat resistance and moisture absorption solder heat resistance of the obtained polyimide resin The sex results are shown in Table 1.

Figure 0005547874
Figure 0005547874

本発明のポリアミド酸ワニス組成物は、高密度配線や高信頼性を必要とするフレキシブルプリント基板やICパッケージ基板等の配線基材に好適に利用できる。   The polyamic acid varnish composition of the present invention can be suitably used for wiring substrates such as flexible printed boards and IC package boards that require high-density wiring and high reliability.

Claims (6)

芳香族テトラカルボン酸二無水物と芳香族ジアミンとの付加重合により得られるポリアミド酸、含窒素芳香族化合物および溶媒を含有するポリアミド酸ワニス組成物であって、該芳香族テトラカルボン酸二無水物が式(1)で表されるエステル構造を有する、及び/または該芳香族ジアミンが式(2)で表されるエステル構造を有し、かつ該含窒素芳香族化合物が式(3)〜(12)で表されるオキサゾール化合物、アミド化合物、ニトリル化合物、およびベンゾフラザン誘導体からなる群より選ばれるものであり、該含窒素芳香族化合物が、前記ポリアミド酸100質量部に対して0.01〜20質量部であることを特徴とするポリアミド酸ワニス組成物。
Figure 0005547874
(Mは、式(1)で表される2価の芳香族基より選択され、R 〜R は、炭素数1〜4のアルキル基、メトキシ基、または水素原子を表す。)
Figure 0005547874
(m=0もしくは1であり、R 〜R は、炭素数1〜4のアルキル基、メトキシ基、または水素原子を表す。)
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
(X 、X は式(3)、(4)、(7)、(8)で表される4価の芳香族基であり、X 、X は式(5)、(9)で表される2価の芳香族基である。式中、Y 〜Y は、エーテル、−S−、炭素数1〜4の飽和、不飽和アルキレン基、カルボニル基、または、スルホニル基である。R 〜R 14 、R 16 〜R 29 、R 31 〜R 33 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、または−SPhであり、n=1、2である。R 15 、R 30 、R 34 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。)
A polyamic acid varnish composition comprising a polyamic acid obtained by addition polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine, a nitrogen-containing aromatic compound, and a solvent, the aromatic tetracarboxylic dianhydride Has an ester structure represented by the formula (1), and / or the aromatic diamine has an ester structure represented by the formula (2), and the nitrogen-containing aromatic compound is represented by the formulas (3) to (3): 12) selected from the group consisting of an oxazole compound, an amide compound, a nitrile compound, and a benzofurazan derivative, wherein the nitrogen-containing aromatic compound is 0.01 to 20 with respect to 100 parts by mass of the polyamic acid. A polyamic acid varnish composition characterized by being part by mass.
Figure 0005547874
(M is selected from a divalent aromatic group represented by the formula (1), and R 1 to R 3 represent an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a hydrogen atom.)
Figure 0005547874
(M = 0 or 1 and R 4 to R 6 represent an alkyl group having 1 to 4 carbon atoms, a methoxy group, or a hydrogen atom.)
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
Figure 0005547874
(X 1 and X 3 are tetravalent aromatic groups represented by the formulas (3), (4), (7) and (8), and X 2 and X 4 are the formulas (5) and (9). In the formula, Y 1 to Y 5 are ether, —S—, a saturated, unsaturated alkylene group having 1 to 4 carbon atoms , a carbonyl group, or a sulfonyl group. R 7 to R 14 , R 16 to R 29 , and R 31 to R 33 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, A hydroxyl group, —SO 2 H, —OPh, —SCH 3 , or —SPh, where n = 1 and 2. R 15 , R 30 , and R 34 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group group, halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, -SO 2 H, -OPh, -SCH 3, it is -SPh or a phenyl group.)
前記含窒素芳香族化合物が、式(13)〜(15)のいずれか一種類以上で示されるオキサゾール化合物であることを特徴とする請求項1記載のポリアミド酸ワニス組成物。
Figure 0005547874
Figure 0005547874
Figure 0005547874
(X は、式(13)で表される4価の芳香族基であり、X は、式(14)で表される2価の芳香族基である。R 35 〜R 38 、R 40 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、または−SPhである。R 39 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。)
The polyamic acid varnish composition according to claim 1, wherein the nitrogen-containing aromatic compound is an oxazole compound represented by any one or more of formulas (13) to (15).
Figure 0005547874
Figure 0005547874
Figure 0005547874
(X 5 is a tetravalent aromatic group represented by the formula (13), and X 6 is a divalent aromatic group represented by the formula (14). R 35 to R 38 , R 40 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, -SO 2 H, -OPh, -SCH 3, or -SPh R 39 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , —SPh. Or a phenyl group.)
前記含窒素芳香族化合物が、式(16)〜(18)のいずれか一種類以上で示されるアミド化合物であることを特徴とする請求項1記載のポリアミド酸ワニス組成物。
Figure 0005547874
Figure 0005547874
Figure 0005547874
(X は、式(16)で表される4価の芳香族基であり、X は、式(17)で表される2価の芳香族基である。R 41 〜R 44 、R 46 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、または−SPhである。R 45 は水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、−SPh、またはフェニル基である。)
The polyamic acid varnish composition according to claim 1, wherein the nitrogen-containing aromatic compound is an amide compound represented by any one or more of formulas (16) to (18).
Figure 0005547874
Figure 0005547874
Figure 0005547874
(X 7 is a tetravalent aromatic group represented by the formula (16), and X 8 is a divalent aromatic group represented by the formula (17). R 41 to R 44 , R 46 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , or —SPh. R 45 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen group, a nitro group, a cyano group, a hydroxyl group, —SO 2 H, —OPh, —SCH 3 , —SPh. Or a phenyl group.)
前記含窒素芳香族化合物が、式(16)で示されるアミド化合物であることを特徴とする請求項1記載のポリアミド酸ワニス組成物。
Figure 0005547874
(X は、式(16)で表される4価の芳香族基であり。R 41 、R 42 は、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン基、ニトロ基、シアノ基、水酸基、−SO2H、−OPh、−SCH3、または−SPhである。)
The polyamic acid varnish composition according to claim 1, wherein the nitrogen-containing aromatic compound is an amide compound represented by the formula (16).
Figure 0005547874
(X 7 is a tetravalent aromatic group represented by the formula (16). R 41 and R 42 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a halogenated alkyl group, a halogen atom. Group, nitro group, cyano group, hydroxyl group, —SO 2 H, —OPh, —SCH 3 , or —SPh.)
請求項1記載の前記ポリアミド酸ワニス組成物をイミド化して得られたポリイミド樹脂。   A polyimide resin obtained by imidizing the polyamic acid varnish composition according to claim 1. 請求項1記載のポリアミド酸ワニス組成物をイミド化して得られるポリイミド樹脂と、金属箔とから構成される金属−ポリイミド複合体。   A metal-polyimide composite comprising a polyimide resin obtained by imidizing the polyamic acid varnish composition according to claim 1 and a metal foil.
JP2008132517A 2008-05-20 2008-05-20 Polyimide resin Active JP5547874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132517A JP5547874B2 (en) 2008-05-20 2008-05-20 Polyimide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132517A JP5547874B2 (en) 2008-05-20 2008-05-20 Polyimide resin

Publications (2)

Publication Number Publication Date
JP2009280660A JP2009280660A (en) 2009-12-03
JP5547874B2 true JP5547874B2 (en) 2014-07-16

Family

ID=41451458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132517A Active JP5547874B2 (en) 2008-05-20 2008-05-20 Polyimide resin

Country Status (1)

Country Link
JP (1) JP5547874B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155483A (en) * 2012-05-29 2015-08-27 日産化学工業株式会社 resin composition
JP6848491B2 (en) * 2017-02-03 2021-03-24 東レ株式会社 Diamine compound, heat-resistant resin and resin composition using it
CN110218315B (en) * 2018-03-01 2021-03-12 中天电子材料有限公司 Preparation method of polyimide film and substrate
JP7437997B2 (en) * 2020-03-31 2024-02-26 東京応化工業株式会社 Varnish composition, polyimide resin manufacturing method, and additives

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287348B2 (en) * 1999-12-17 2002-06-04 ソニーケミカル株式会社 Polyamic acid varnish composition and flexible printed circuit board
JP2007169392A (en) * 2005-12-20 2007-07-05 Asahi Kasei Corp Polyamic acid varnish composition and metal polyimide composite
JP2008101187A (en) * 2006-09-19 2008-05-01 Asahi Kasei Corp Polyesterimide and method for producing the same

Also Published As

Publication number Publication date
JP2009280660A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
TWI716524B (en) Copper clad laminate and printed circuit board
KR100963376B1 (en) Method for preparing polyimide and polyimide prepared by the same method
JP7301495B2 (en) Metal-clad laminates and circuit boards
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JP6559027B2 (en) Polyamide acid, polyimide, resin film and metal-clad laminate
WO2009139086A1 (en) Polyester-imide precursor and polyester-imide
JP2006336011A (en) Polyimide resin and method for producing the same
JP3712164B2 (en) Polyimide composition, TAB tape comprising the same, and flexible printed circuit board
KR20210122142A (en) Resin film, metal-clad laminate and circuit board
JP5129107B2 (en) Polyamic acid varnish composition, polyimide resin and metal-polyimide composite
JP5547874B2 (en) Polyimide resin
JP5009670B2 (en) Polyesterimide precursor and polyesterimide
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
JP5129108B2 (en) Polyamic acid varnish composition, polyimide resin, and metal-polyimide composite
JP7378908B2 (en) multilayer circuit board
TW202237705A (en) Polyimide, metal-clad laminate plate and circuit board
JPS63239998A (en) Manufacture of wiring material
JP2023024470A (en) Method for manufacturing circuit board with adhesive layer and multilayer circuit board
JP6767751B2 (en) Polyamic acid, polyimide, resin film and metal-clad laminate
KR100590720B1 (en) Board for flexible printed circuit, and preparation method thereof
JP4942338B2 (en) Polyamic acid varnish composition and metal polyimide composite
JP2023088880A (en) Polyimide film and method for producing the same, resin composition, metal-clad laminate and method for manufacturing the same, and flexible printed board
JP2023079202A (en) Polyimide-based resin precursor
JP6558755B2 (en) Polyamide acid, polyimide, resin film and metal-clad laminate
CN118063769A (en) Polyimide resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140516

R150 Certificate of patent or registration of utility model

Ref document number: 5547874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350