[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012093091A - Heat exchanger and refrigeration air conditioning device - Google Patents

Heat exchanger and refrigeration air conditioning device Download PDF

Info

Publication number
JP2012093091A
JP2012093091A JP2012032997A JP2012032997A JP2012093091A JP 2012093091 A JP2012093091 A JP 2012093091A JP 2012032997 A JP2012032997 A JP 2012032997A JP 2012032997 A JP2012032997 A JP 2012032997A JP 2012093091 A JP2012093091 A JP 2012093091A
Authority
JP
Japan
Prior art keywords
flat tube
flat
header
heat exchanger
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012032997A
Other languages
Japanese (ja)
Inventor
Susumu Yoshimura
寿守務 吉村
Shinichi Wakamoto
慎一 若本
Hajime Yoshiyasu
一 吉安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012032997A priority Critical patent/JP2012093091A/en
Publication of JP2012093091A publication Critical patent/JP2012093091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance heat exchanger that is compact and reduced in pressure loss of fluid, along with a refrigeration air conditioning device.SOLUTION: A first flat tube and a second flat tube are laminated and arranged to contact with each other on a flat surface and so that a flow direction of low-temperature fluid and a flow direction of high temperature fluid are parallel to each other. In addition, at least one of the flat tubes between the first flat tube and the second flat tube is constituted of a plurality of flat tubes aligning in a laminating direction, and both ends of the plurality of flat tubes are bent in a direction perpendicular to both respective flow directions and the laminating direction and along the flat surface so that both ends of the first flat tube and both ends of the second flat tube do not cross with each other.

Description

本発明は、低温流体と高温流体とを熱交換させて高温流体から低温流体に熱を伝える熱
交換器に関するものである。また、この熱交換器を用いた冷凍空調装置に関するものであ
る。
The present invention relates to a heat exchanger for transferring heat from a high temperature fluid to a low temperature fluid by exchanging heat between the low temperature fluid and the high temperature fluid. The present invention also relates to a refrigeration air conditioner using this heat exchanger.

従来の熱交換器は、低温流体が流れる複数の貫通穴を有する扁平状の第1扁平管と、高
温流体が流れる複数の貫通穴を有する扁平状の第2扁平管と、第1扁平管の両端に接続さ
れた第1ヘッダーと、第2扁平管の両端に接続された第2ヘッダーとを備え、第1の扁平
管と第2の扁平管とを長手方向(流体の流れ方向)が並行になるようにして、それぞれの
扁平な面同士を接触積層させることにより、高い熱交換性能を得ている(例えば、特許文
献1参照。)。
A conventional heat exchanger includes a flat first flat tube having a plurality of through holes through which a low temperature fluid flows, a flat second flat tube having a plurality of through holes through which a high temperature fluid flows, and a first flat tube. A first header connected to both ends and a second header connected to both ends of the second flat tube are provided, and the first flat tube and the second flat tube are parallel in the longitudinal direction (fluid flow direction). Thus, high heat exchange performance is obtained by making the flat surfaces contact and laminate each other (see, for example, Patent Document 1).

特開2002−340485号公報(第4〜5頁、図1)JP 2002-340485 (pages 4-5, FIG. 1)

上記のような従来の熱交換器を用いた冷凍空調装置は、圧縮機、放熱器、流量制御手段
、蒸発器を冷媒配管で接続しHFC(ハイドロフルオロカーボン)系冷媒が循環するよう
に構成されているが、最近、HFC冷媒が地球温暖化の原因になることから、地球温暖化
係数の小さい二酸化炭素などの冷媒が代わりに用いられている。しかしながら、二酸化炭
素を冷媒として用いた場合、従来に比べて熱交換性能がきわめて小さいという問題点があ
る。
A conventional refrigeration air conditioner using a conventional heat exchanger as described above is configured such that an HFC (hydrofluorocarbon) refrigerant circulates by connecting a compressor, a radiator, a flow rate control means, and an evaporator with refrigerant piping. However, recently, since HFC refrigerants cause global warming, refrigerants such as carbon dioxide having a low global warming potential have been used instead. However, when carbon dioxide is used as a refrigerant, there is a problem that heat exchange performance is extremely small as compared with the conventional case.

このような熱交換器にあって高い熱交換性能を得るには、第1扁平管及び第2扁平管の
長さ(流体の流れ方向の長さ)あるいは幅を大きくして接触面積を増加させる必要があり
、このため熱交換器が二次元的に大型化する。また、低温流体及び高温流体の流量を増加
させて熱交換性能を上げる場合、管内の流速増加に伴う圧力損失の上昇を抑える必要があ
るが、それには第1扁平管及び第2扁平管の幅を大きくするなど幅方向にしか調整できな
いため、長さ方向の調整も行うと圧力損失を十分抑制しきれず、このため流体を熱交換器
に送り循環させるための駆動装置の動力増加を招くという問題があった。
In such a heat exchanger, in order to obtain high heat exchange performance, the contact area is increased by increasing the length (length in the fluid flow direction) or width of the first flat tube and the second flat tube. Therefore, the heat exchanger is two-dimensionally enlarged. Further, when the heat exchange performance is improved by increasing the flow rates of the low-temperature fluid and the high-temperature fluid, it is necessary to suppress an increase in pressure loss due to an increase in the flow velocity in the pipe, which includes the width of the first flat tube and the second flat tube. Since it can only be adjusted in the width direction, such as by increasing the pressure, the pressure loss cannot be sufficiently suppressed if the adjustment in the length direction is also performed, and this causes an increase in the power of the drive device for sending and circulating the fluid to the heat exchanger. was there.

また、幅方向に大きくした場合のように並列流路数が増えると、第1ヘッダー及び第2
ヘッダーで各流路に流体を分配する際に流路抵抗差に起因する流量の偏りが発生しやすく
、特に流体が気相と液相の混在した気液二相流状態の場合、気液比率にも偏りが発生する
という問題が生じる。その結果、有効に熱交換できる流体の流量に過不足が生じ、著しく
温度効率が低下するとともに、圧力損失も増大し、熱交換性能が低下するという問題があ
った。
Further, when the number of parallel flow paths increases as in the case of increasing in the width direction, the first header and the second header
When fluid is distributed to each flow path with the header, flow rate deviation due to flow resistance difference is likely to occur, especially when the fluid is a gas-liquid two-phase flow state where the gas phase and liquid phase are mixed. Also, there arises a problem that bias occurs. As a result, there has been a problem that the flow rate of the fluid that can effectively exchange heat is excessive and insufficient, the temperature efficiency is remarkably lowered, the pressure loss is increased, and the heat exchange performance is lowered.

さらに、上記特許文献に記載された従来の熱交換器において、第1扁平管と第2扁平管
とを積層方向に多層重ねて接触面積を大きくすることは、第1ヘッダーと第2ヘッダーと
が干渉するため困難であるという問題があった。
Furthermore, in the conventional heat exchanger described in the above-mentioned patent document, increasing the contact area by stacking the first flat tube and the second flat tube in the stacking direction is the difference between the first header and the second header. There was a problem that it was difficult because of interference.

この発明は、上記のような問題点を解決するためになされたものであり、コンパクトで
、かつ流体の圧力損失が小さい高性能な熱交換器を得ることを目的としている。
また、高性能でコンパクトな冷凍空調装置を得ることを目的としている。
The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a high-performance heat exchanger that is compact and has a small fluid pressure loss.
Moreover, it aims at obtaining a high-performance and compact refrigeration air conditioner.

この発明に係る熱交換器は、低温流体が流れる貫通穴を有する扁平状の第1扁平管と、
高温流体が流れる貫通穴を有する扁平状の第2扁平管と、上記第1扁平管の両端にそれぞ
れ接続された第1入口ヘッダー及び第1出口ヘッダーと、上記第2扁平管の両端にそれぞ
れ接続された第2入口ヘッダー及び第2出口ヘッダーとを備えた熱交換器であって、上記
第1扁平管と上記第2扁平管とは、扁平な面で互いに接触するように、かつ上記低流体の
流れ方向と上記高温流体の流れ方向とが並行となるようにして積層配置されると共に、上
記第1扁平管と上記第2扁平管との少なくとも一方の扁平管は、積層方向に並んだ複数の
扁平管で構成され、上記第1扁平管の両端と上記第2扁平管の両端とが互いに交差しない
ように、上記複数の扁平管の両端を、上記各流体の流れ方向と上記積層方向とのいずれに
も直交する方向に曲げて構成し、上記複数の扁平管と、上記複数の扁平管の両端にそれぞ
れ設けた入口ヘッダー及び出口ヘッダーとにより並列流路を構成したものである。
The heat exchanger according to the present invention includes a flat first flat tube having a through hole through which a low-temperature fluid flows;
A flat second flat tube having a through-hole through which a high-temperature fluid flows, a first inlet header and a first outlet header connected to both ends of the first flat tube, and both ends of the second flat tube, respectively. A heat exchanger having a second inlet header and a second outlet header, wherein the first flat tube and the second flat tube are in contact with each other on a flat surface, and the low fluid The flow direction of the high-temperature fluid and the flow direction of the high-temperature fluid are stacked so as to be parallel to each other, and at least one flat tube of the first flat tube and the second flat tube is a plurality arranged in the stacking direction. The both ends of the plurality of flat tubes are connected to the fluid flow direction and the stacking direction so that the both ends of the first flat tube and the both ends of the second flat tube do not intersect each other. Bending in a direction perpendicular to any of Is obtained by a parallel flow path above a plurality of flat tubes, the inlet header and outlet header respectively provided at both ends of the plurality of flat tubes.

この発明に係る熱交換器は、上記複数の扁平管の両端を、第1扁平管の両端と第2扁平
管の両端とが互いに交差しないように、各流体の流れ方向と積層方向とのいずれにも直交
する方向に曲げて構成するので、第1扁平管と第2扁平管とを、流れ方向が並行となるよ
うに交互に積層しても、各扁平管の両端に接続されるヘッダーが干渉することがない。
In the heat exchanger according to the present invention, both ends of the plurality of flat tubes are arranged in either the flow direction or the stacking direction of each fluid so that the both ends of the first flat tube and the both ends of the second flat tube do not intersect each other. Since the first flat tube and the second flat tube are alternately laminated so that the flow directions are parallel to each other, headers connected to both ends of each flat tube are provided. There is no interference.

本発明の実施の形態1による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器を利用した冷凍空調装置を示す系統図である。It is a systematic diagram which shows the refrigerating air conditioner using the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1の熱交換器の動作を説明するための二酸化炭素の圧力−エンタルピー線図である。It is a pressure-enthalpy diagram of carbon dioxide for explaining operation of the heat exchanger of Embodiment 1 of the present invention. 本発明の実施の形態1による熱交換器を利用した別の冷凍空調装置を示す系統図である。It is a systematic diagram which shows another refrigeration air conditioning apparatus using the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器を利用したさらに別の冷凍空調装置を示す系統図である。It is a systematic diagram which shows another refrigeration air conditioning apparatus using the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態2による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 2 of this invention. 本発明の実施の形態2に係わる別の管状ヘッダーを示す断面図である。It is sectional drawing which shows another tubular header concerning Embodiment 2 of this invention. 本発明の実施の形態2に係わるさらに別の管状ヘッダーを示す図である。It is a figure which shows another tubular header concerning Embodiment 2 of this invention. 本発明の実施の形態2に係わる更に別の管状ヘッダーを示す断面図である。It is sectional drawing which shows another tubular header concerning Embodiment 2 of this invention. 本発明の実施の形態3による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態4による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 4 of this invention. 本発明の実施の形態5による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 5 of this invention. 本発明の実施の形態6による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 6 of this invention. 本発明の実施の形態7による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 7 of this invention. 本発明の実施の形態8による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 8 of this invention. 本発明の実施の形態9による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 9 of this invention. 本発明の実施の形態10による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 10 of this invention.

実施の形態1.
図1は本発明の実施の形態1による熱交換器10を示す図であり、図1(a)は正面図
、図1(b)は図1(a)の矢印b方向の側面図、図1(c)は図1(a)のc−c線で
の断面図、図1(d)は図1(b)のd−d線での断面図である。
図において、第1扁平管1及び第2扁平管2はそれぞれ低温流体及び高温流体が流れる
複数の貫通穴を有しており、扁平な面で互いに接触するように、かつそれぞれの長手方向
(第1扁平管と第2扁平管とが接触する面における各流体の流れ方向:L方向)が並行に
なるように、交互に積層され、ロウ付け等で接合されている。
第1扁平管1は積層方向(S方向)に並んだ3本の第1扁平管1a,1b,1c、第2
扁平管2は積層方向(S方向)に並んだ2本の第2扁平管2a,2bからなり、第1扁平
管1a,1b,1cの両端と第2扁平管2a,2bの両端とが積層方向から見て重ならな
いように、第1扁平管1a,1b,1cと第2扁平管2a,2bとは、両端部が扁平な面
に沿ってそれぞれ所定角度曲がっている。即ち、第1扁平管1a,1b,1cの両端部と
第2扁平管2a,2bの両端部とを、それぞれ長手方向(L方向)と積層方向(S方向)
とのいずれにも直交する方向(W方向)に、かつ第1扁平管1の両端と第2扁平管2の両
端とが互いに交差しないように曲げて構成されている。
また、第1扁平管1a,1b,1cは両端部でそれぞれ第1入口ヘッダー3と第1出口
ヘッダー4とに接続され、並列流路を構成する。
また、2本の第2扁平管2a,2bは両端部でそれぞれ第2入口ヘッダー5と第2出口
ヘッダー6とに接続され、並列流路を構成する。
さらに、第1扁平管1の貫通穴の流路断面積(流体の流れ方向と垂直な断面積)または
数を第2扁平管2より大きく構成し、第1扁平管1の全流路面積は第2扁平管より大きく
してある。
Embodiment 1 FIG.
1 is a view showing a heat exchanger 10 according to Embodiment 1 of the present invention, in which FIG. 1 (a) is a front view, FIG. 1 (b) is a side view in the direction of arrow b in FIG. 1 (c) is a cross-sectional view taken along line cc in FIG. 1 (a), and FIG. 1 (d) is a cross-sectional view taken along line dd in FIG. 1 (b).
In the figure, each of the first flat tube 1 and the second flat tube 2 has a plurality of through-holes through which a low-temperature fluid and a high-temperature fluid flow. The fluid flows in the plane where the first flat tube and the second flat tube are in contact with each other in the direction of flow (L direction).
The first flat tube 1 includes three first flat tubes 1a, 1b, 1c, and second arranged in the stacking direction (S direction).
The flat tube 2 is composed of two second flat tubes 2a and 2b arranged in the stacking direction (S direction), and both ends of the first flat tubes 1a, 1b and 1c and both ends of the second flat tubes 2a and 2b are stacked. The first flat tubes 1a, 1b, 1c and the second flat tubes 2a, 2b are bent at predetermined angles along the flat surfaces so that they do not overlap when viewed from the direction. That is, both the end portions of the first flat tubes 1a, 1b, 1c and the both end portions of the second flat tubes 2a, 2b are respectively in the longitudinal direction (L direction) and the stacking direction (S direction).
And both ends of the first flat tube 1 and the both ends of the second flat tube 2 are bent so as not to cross each other.
The first flat tubes 1a, 1b, and 1c are connected to the first inlet header 3 and the first outlet header 4 at both ends, respectively, and constitute a parallel flow path.
Further, the two second flat tubes 2a and 2b are connected to the second inlet header 5 and the second outlet header 6 at both ends, respectively, to constitute a parallel flow path.
Furthermore, the flow passage cross-sectional area (cross-sectional area perpendicular to the fluid flow direction) or number of the through hole of the first flat tube 1 is configured to be larger than that of the second flat tube 2, and the total flow area of the first flat tube 1 is It is larger than the second flat tube.

また、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5、第2出口ヘッ
ダー6の少なくともいずれか1つは、それぞれ両端が開口した管形状の管状ヘッダーであ
り(図1では全てのヘッダーが管状ヘッダー)、図1(c)、図1(d)に示すように、
並列流路を構成する複数の扁平管1a,1b,1c(または2a,2b)を束ねて、管状
ヘッダーの開口端に、管状ヘッダーの管軸方向Aと並列流路を構成する複数の扁平管内の
流体の流れ方向とが同一方向となるように接続されている。
また、本実施の形態では、図1(d)に示すように、複数の扁平管1a,1b,1cの
端部を積層方向に曲げて、扁平管の厚み方向に重ねて、管状ヘッダーの開口端に接続して
いる。
また、本実施の形態において、第1入口ヘッダー3は管軸方向Aが鉛直方向になるよう
に設置されている。
Further, at least one of the first inlet header 3, the first outlet header 4, the second inlet header 5, and the second outlet header 6 is a tube-shaped tubular header that is open at both ends (in FIG. The header is a tubular header), as shown in FIG. 1 (c) and FIG. 1 (d),
A plurality of flat tubes 1a, 1b, 1c (or 2a, 2b) constituting a parallel flow path are bundled, and a plurality of flat tubes constituting a parallel flow path with the tube axis direction A of the tubular header are formed at the opening end of the tubular header. The flow direction of the fluid is connected so as to be the same direction.
Moreover, in this Embodiment, as shown in FIG.1 (d), the edge part of several flat tube 1a, 1b, 1c is bent in the lamination direction, and it piles up in the thickness direction of a flat tube, and opens the tubular header. Connected to the end.
Moreover, in this Embodiment, the 1st inlet header 3 is installed so that the pipe-axis direction A may become a perpendicular direction.

また、第1扁平管1及び第2扁平管2の材質は、A1050やA1070など1000
番台や、A3003などの3000番台、及び6000番台などのアルミニウム合金、各
ヘッダーの材質は、ステンレス鋼や炭素鋼などの鉄鋼で、それぞれロウ付け等により接合
されている。
The material of the first flat tube 1 and the second flat tube 2 is 1000 such as A1050 and A1070.
The material of the base, aluminum alloys such as 3000 series such as A3003, and 6000 series, and steels such as stainless steel and carbon steel are joined by brazing or the like.

なお、図1(c)では扁平管1a,1b,1cの管端は管状ヘッダー内部から見て内壁
と面一で接続されているが、突き出したり引っ込めて接続されていても良い。
In FIG. 1C, the tube ends of the flat tubes 1a, 1b, and 1c are connected flush with the inner wall when viewed from the inside of the tubular header, but may be connected by protruding or retracting.

また、本実施の形態の構成によれば、第1扁平管の両端と第2扁平管の両端とを扁平な
面に沿って曲げた構成としたが、いずれか一方の扁平管の端部を扁平な面に沿って曲げて
、第1扁平管の両端と第2扁平管の両端とが積層方向から見て重ならないようにしても良
い。
In addition, according to the configuration of the present embodiment, both ends of the first flat tube and both ends of the second flat tube are bent along a flat surface. You may bend along a flat surface so that the both ends of a 1st flat tube and the both ends of a 2nd flat tube may not overlap seeing from a lamination direction.

また、本実施の形態では、第1扁平管1と第2扁平管2とが3本と2本の例で示したが
、一方が複数であれば、この数に限ることはなく、第1扁平管1と第2扁平管2とを3以
上の積層数で積層配置すればよい。
また、ここでは、第1扁平管1及び第2扁平管2の貫通穴が一列になっている場合を示
したが、貫通穴は一列である必要はなく、複数の列をなしていてよい。
また、貫通穴の形状は矩形であるが、円形でもよく、また、内面に突起物を形成するこ
とにより伝熱面積を大きくして、熱交換特性をさらに向上させることもできる。
Moreover, in this Embodiment, although the 1st flat tube 1 and the 2nd flat tube 2 showed in the example of three and two, if one side is plurality, it will not restrict to this number, 1st The flat tube 1 and the second flat tube 2 may be laminated and arranged in a number of three or more.
Moreover, although the case where the through-holes of the first flat tube 1 and the second flat tube 2 are arranged in a row is shown here, the through-holes need not be in a row, and may be in a plurality of rows.
Moreover, although the shape of the through hole is rectangular, it may be circular, and the heat transfer area can be increased by forming protrusions on the inner surface to further improve the heat exchange characteristics.

なお、扁平管の代わりに、貫通穴を有する細管を並べて用いても本実施の形態と同様な
熱交換器を構成できることは言うまでもない。
Needless to say, a heat exchanger similar to that of the present embodiment can be configured even if thin tubes having through holes are used side by side instead of a flat tube.

図1において、FCは低温流体の流れ、FHは高温流体の流れを示す。低温流体は第1
入口ヘッダー3、第1扁平管1、第1出口ヘッダー4の順に、高温流体は第2入口ヘッダ
ー5、第2扁平管2、第2出口ヘッダー6の順に流れ、第1扁平管1と第2扁平管2との
接触面を介して両流体が熱交換される。
In FIG. 1, FC indicates a low-temperature fluid flow, and FH indicates a high-temperature fluid flow. Cryogenic fluid is first
In the order of the inlet header 3, the first flat tube 1, and the first outlet header 4, the high-temperature fluid flows in the order of the second inlet header 5, the second flat tube 2, and the second outlet header 6. Both fluids exchange heat through the contact surface with the flat tube 2.

本実施の形態の構成によれば、第1扁平管の両端と第2扁平管の両端とが積層方向から
見て重ならないように、第1扁平管の両端または第2扁平管の両端を、扁平な面に沿って
曲げて構成しているので、第1扁平管と第2扁平管とを、流れ方向が並行となるように交
互に積層しても、第1扁平管に接続される第1ヘッダーと第2扁平管に接続される第2ヘ
ッダーとが干渉することがないため、複数の扁平管を積層方向にも多層積層して接触面積
を増加させることができる。その結果、熱交換性能を上げることができると共に、熱交換
器が二次元的に大型化することなくコンパクトとなる。
According to the configuration of the present embodiment, both ends of the first flat tube or both ends of the second flat tube are arranged so that both ends of the first flat tube and both ends of the second flat tube do not overlap when viewed from the stacking direction. Since the first flat tube and the second flat tube are alternately laminated so that the flow directions thereof are parallel, the first flat tube connected to the first flat tube is configured by bending along a flat surface. Since the first header and the second header connected to the second flat tube do not interfere with each other, a plurality of flat tubes can be stacked in the stacking direction to increase the contact area. As a result, the heat exchange performance can be improved, and the heat exchanger becomes compact without being two-dimensionally enlarged.

また、第1ヘッダーと第2ヘッダーとが干渉することがないため、積層方向に並んだ複
数の第1扁平管及び複数の第2扁平管が、それぞれ並列流路となるように構成できるので
、圧力損失を増大させること無く、流体流量を増加させて熱交換特性を増大させることが
できる。また、熱交換器に流体を送り循環させるための駆動装置の動力増加を招くことが
ない。
In addition, since the first header and the second header do not interfere with each other, the plurality of first flat tubes and the plurality of second flat tubes arranged in the stacking direction can be configured to be parallel flow paths, respectively. The heat exchange characteristics can be increased by increasing the fluid flow rate without increasing the pressure loss. Further, there is no increase in power of the driving device for sending and circulating the fluid to the heat exchanger.

さらに、並列流路を構成する扁平管に接続されるヘッダーは管状ヘッダーであり、管状
ヘッダーの開口端(扁平管と管状ヘッダーとの接続部)における各扁平管の貫通穴は、管
状ヘッダーの他方の開口端から流入または流出する流体に対し、ほぼ均等に配置されるた
め、各貫通穴に対する流路抵抗差は小さくなり、流体が均等に分配または混合される。こ
のため、流体の温度効率を最大化、圧力損失を最小化することができ、熱交換の性能を増
加させることができる。
Furthermore, the header connected to the flat tubes constituting the parallel flow path is a tubular header, and the through hole of each flat tube at the open end of the tubular header (the connection portion between the flat tube and the tubular header) is the other side of the tubular header. Therefore, the flow resistance difference with respect to each through hole is small, and the fluid is evenly distributed or mixed. For this reason, the temperature efficiency of the fluid can be maximized, the pressure loss can be minimized, and the heat exchange performance can be increased.

また、第1扁平管の両端と第2扁平管の両端とが積層方向から見て重ならないように、
第1扁平管または第2扁平管の両端は扁平な面に沿って曲げられており、複数の第1扁平
管の両端と複数の第2扁平管の両端とはそれぞれ、その端部同士が比較的近接しているの
で、管状ヘッダーに接続する際、各扁平管の端部を積層方向に曲げることにより、扁平管
の端部を一箇所に束ねるための配管の取り回しが容易となり、熱交換器全体をコンパクト
に構成することができる。
また、封入する使用冷媒量の増加も抑制できるため、コンパクトで環境性の高い熱交換
器を提供することができる。
Also, so that both ends of the first flat tube and both ends of the second flat tube do not overlap when viewed from the stacking direction,
Both ends of the first flat tube or the second flat tube are bent along a flat surface, and both ends of the plurality of first flat tubes and the both ends of the plurality of second flat tubes are compared with each other. When connecting to a tubular header, the ends of each flat tube are bent in the stacking direction, making it easy to route the pipes for bundling the ends of the flat tubes in one place. The whole can be configured compactly.
In addition, since an increase in the amount of refrigerant used can be suppressed, a compact and highly environmental heat exchanger can be provided.

また、本実施の形態の構成によれば、低温流体と高温流体の流れの向きを対向させるこ
とができるため、温度効率が増加し、熱交換性能を増加させることができる。
Moreover, according to the structure of this Embodiment, since the direction of the flow of a low temperature fluid and a high temperature fluid can be made to oppose, temperature efficiency can increase and heat exchange performance can be increased.

また、図1に示す本実施の形態では、第1扁平管及び第2扁平管の両端を曲げる方向は
、第1扁平管と第2扁平管とでW方向に対して逆向きとしたので、第1扁平管と第2扁平
管とで両端が同じ曲げ角度の同じ扁平管を用い、上下反転させて積層して構成することが
できるため、製造工程、管理を簡素化することができる。
Further, in the present embodiment shown in FIG. 1, the direction of bending both ends of the first flat tube and the second flat tube is opposite to the W direction between the first flat tube and the second flat tube, Since the first flat tube and the second flat tube can be configured by using the same flat tube whose both ends have the same bending angle and being vertically inverted, the manufacturing process and management can be simplified.

さらに、流量を増加させて熱交換性能を大きくする場合、圧力損失を抑制するために、
適正流速になるようにヘッダーの内径を拡大する必要があり、それに伴い耐圧性を維持す
るためには肉厚が増し、外径が著しく増大するが、ヘッダーを高強度の鉄鋼で構成したた
め、外径の増大を抑えることができ、熱交換器全体の小型化に効を奏する
Furthermore, to increase the heat exchange performance by increasing the flow rate, in order to suppress the pressure loss,
It is necessary to enlarge the inner diameter of the header so as to achieve an appropriate flow rate, and in order to maintain pressure resistance, the wall thickness increases and the outer diameter increases remarkably, but the header is made of high-strength steel, so the outer The increase in diameter can be suppressed, and it is effective for downsizing the entire heat exchanger

また、ヘッダーを構成するステンレス鋼や炭素鋼などの鉄鋼は、アルミニウム合金や銅
及び銅合金とは、強度の弱い脆弱な化合物層を生成させずにロウ付け接合が可能であるた
め、熱交換器10を家庭用エアコンや業務用空調機などで一般的に使用されている銅配管
にロウ付け等により比較的容易に取り付けることができる。
In addition, steel such as stainless steel and carbon steel that make up the header can be brazed and joined to aluminum alloys, copper, and copper alloys without generating weakly fragile compound layers. 10 can be attached to copper pipes generally used in home air conditioners and commercial air conditioners by brazing or the like.

さらに、扁平管をアルミニウム合金で構成しているので、ヘッダーにロウ付け等により
比較的容易に取り付けることができると共に、上記アルミニウム合金は、比較的低コスト
な押出成型により製造できるため、製造コストを抑制することができる。
また、3000番台や6000番台の比較的高強度のアルミニウム合金では肉厚をさら
に薄くできるため、より小型、低コスト化を図ることができる。
Furthermore, since the flat tube is made of an aluminum alloy, it can be attached to the header relatively easily by brazing or the like, and the aluminum alloy can be manufactured by extrusion molding at a relatively low cost. Can be suppressed.
In addition, the relatively high-strength aluminum alloys in the 3000s and 6000s can be made thinner, so that the size and cost can be reduced.

図2は本実施の形態1の熱交換器を利用した冷凍空調装置を示す図であり、図2(a)
は系統図、図2(b)及び(c)は、各々、内部構造の斜視図及び上面図である。
図2(a)において、本冷凍空調装置の冷媒回路は、二酸化炭素を冷媒として用い、圧
縮機20、放熱器21、減圧装置22、冷却器23が順に接続された冷媒回路であって、
熱交換器10の第1入口ヘッダー3と冷却器23、第1出口ヘッダー4と圧縮機20、第
2入口ヘッダー5と放熱器21、及び第2出口ヘッダー6と減圧装置22とがそれぞれ接
続されている。また、第1入口ヘッダー3を管状ヘッダーで構成し、第1出口ヘッダー4
、第2入口ヘッダー5、及び第2出口ヘッダー6のそれぞれを、管状ヘッダー、または、
管軸が、並列流路を構成する複数の扁平管の扁平な面に直交する枝分岐ヘッダーで構成す
る。枝分岐ヘッダーの場合はヘッダー側面に、上記複数の扁平管が接続される。
FIG. 2 is a diagram showing a refrigeration air conditioner using the heat exchanger of the first embodiment, and FIG.
Is a system diagram, and FIGS. 2B and 2C are a perspective view and a top view of the internal structure, respectively.
In FIG. 2 (a), the refrigerant circuit of the present refrigeration air conditioner is a refrigerant circuit in which carbon dioxide is used as a refrigerant, and a compressor 20, a radiator 21, a decompressor 22, and a cooler 23 are connected in order.
The first inlet header 3 and the cooler 23 of the heat exchanger 10, the first outlet header 4 and the compressor 20, the second inlet header 5 and the radiator 21, and the second outlet header 6 and the decompressor 22 are connected to each other. ing. Further, the first inlet header 3 is constituted by a tubular header, and the first outlet header 4
Each of the second inlet header 5 and the second outlet header 6 is a tubular header, or
A pipe axis is comprised by the branch branch header orthogonal to the flat surface of the some flat tube which comprises a parallel flow path. In the case of a branch and branch header, the plurality of flat tubes are connected to the side of the header.

圧縮機20の冷媒配管内の低温低圧の蒸気の冷媒は圧縮機20によって圧縮され、高温
高圧の超臨界流体となって吐出される。この冷媒は放熱器21に送られ、そこで空気など
と熱交換して温度が低下し、高圧の超臨界流体になる。この冷媒は熱交換器10によって
冷却されて温度が低下し、減圧装置22に流入して減圧され、低温低圧の気液二相流状態
に変化し冷却器23に送られる。冷却器23では空気などと熱交換して蒸発し、低温低圧
の冷媒蒸気となり、熱交換器10でさらに加熱され圧縮機20に戻る。
The low-temperature and low-pressure vapor refrigerant in the refrigerant piping of the compressor 20 is compressed by the compressor 20 and discharged as a high-temperature and high-pressure supercritical fluid. This refrigerant is sent to the radiator 21 where heat is exchanged with air or the like to lower the temperature and become a high-pressure supercritical fluid. This refrigerant is cooled by the heat exchanger 10 to lower its temperature, flows into the decompression device 22, is decompressed, changes to a low-temperature low-pressure gas-liquid two-phase flow state, and is sent to the cooler 23. The cooler 23 evaporates by exchanging heat with air or the like, becomes low-temperature and low-pressure refrigerant vapor, is further heated by the heat exchanger 10, and returns to the compressor 20.

図2(b)(c)において、本冷凍空調装置は、室外に設置され圧縮機20、放熱器2
1、及び熱交換器10が収納された室外ユニットと、室内に設置される減圧装置22、及
び冷却器23とが配管で接続されている。室外ユニットのファン24の通風により放熱器
21から放熱が行われる。
ここで、熱交換器10は、上記実施の形態1の熱交換器を用いており、各扁平管を、ア
ルミニウム合金、銅及び銅合金のような比較的延性の大きな材質、または肉薄の可とう性
部材で構成すれば、第1扁平管1及び第2扁平管2は共に、長手方向(L方向)を揃えて
並行に、扁平な面で接合されており、またヘッダーは両端に接続されているので、長手方
向を比較的剛性が小さい積層方向に自在に曲げることができるため、室外ユニット内に実
装する場合、図に示すように、圧縮機20などの容器類のシェル周りに沿わせて配置した
り、または、容器や配管との間の隙間スペースを有効利用することができ、装置への実装
効率が上がり、装置全体の小型化に寄与する。
2 (b) and 2 (c), the refrigeration air conditioner is installed outside the compressor 20, the radiator 2 and the like.
1 and the outdoor unit in which the heat exchanger 10 is housed, the decompression device 22 installed in the room, and the cooler 23 are connected by a pipe. Heat is radiated from the radiator 21 by the ventilation of the fan 24 of the outdoor unit.
Here, the heat exchanger 10 uses the heat exchanger of the first embodiment, and each flat tube is made of a material having a relatively large ductility such as an aluminum alloy, copper and a copper alloy, or a thin flexible tube. The first flat tube 1 and the second flat tube 2 are both joined with a flat surface in parallel with the longitudinal direction (L direction) aligned, and the header is connected to both ends. Since the longitudinal direction can be freely bent in the laminating direction with relatively low rigidity, when mounted in an outdoor unit, as shown in the figure, it is placed around the shell of containers such as the compressor 20. It can be arranged, or the space between the container and the pipe can be used effectively, so that the mounting efficiency to the apparatus is improved and the entire apparatus is reduced in size.

図3は、二酸化炭素の圧力−エンタルピー線図である。図中A点は放熱器入口の冷媒の
状態、B点は放熱器出口の冷媒の状態、C点は減圧装置入口の冷媒の状態を示す。二酸化
炭素を冷凍空調装置の冷媒として用い、臨界点以上で放熱するには、臨界点近傍の比熱の
極めて大きい領域(図中太線Dで囲まれた領域)で熱交換させることにより大幅に効率を
向上できるが、外気温度が高い場合、放熱器21の出口温度を十分に下げることができな
い。しかし、熱交換器10で、冷却器出口23の冷媒液を含んだ低温の冷媒が効率良く放
熱器21出口から減圧装置22入口へと流れる冷媒を冷却するため、減圧装置22入口の
冷媒温度を十分下げることができる。
FIG. 3 is a pressure-enthalpy diagram of carbon dioxide. In the figure, point A represents the state of the refrigerant at the radiator inlet, point B represents the state of the refrigerant at the radiator outlet, and point C represents the state of the refrigerant at the inlet of the decompression device. In order to dissipate heat above the critical point using carbon dioxide as a refrigerant in a refrigeration air conditioner, the efficiency is greatly improved by heat exchange in a region where the specific heat near the critical point is extremely large (the region surrounded by the thick line D in the figure). Although the temperature can be improved, when the outside air temperature is high, the outlet temperature of the radiator 21 cannot be lowered sufficiently. However, in the heat exchanger 10, the low-temperature refrigerant including the refrigerant liquid at the cooler outlet 23 efficiently cools the refrigerant flowing from the radiator 21 outlet to the decompressor 22 inlet. It can be lowered sufficiently.

熱交換器10において、冷媒液を含んだ低温の気液二相状態の冷媒が第1扁平管1を流
れる際の圧力損失は、高温高圧の超臨界状態の冷媒が第2扁平管2を流れる際の圧力損失
よりも大きくなるが、第1扁平管1の貫通穴の流路断面積または数を第2扁平管2より大
きくしてあるので、第1扁平管内の流速を抑制できるため適正な圧力損失を保つことがで
きる。また、長さ方向に大きくして接触面積を増やす構成ではないので圧力損失を適正に
保つことができる。
In the heat exchanger 10, the pressure loss when the low-temperature gas-liquid two-phase refrigerant containing the refrigerant liquid flows through the first flat tube 1 is that the high-temperature and high-pressure supercritical refrigerant flows through the second flat tube 2. However, since the flow passage cross-sectional area or number of the through hole of the first flat tube 1 is larger than that of the second flat tube 2, the flow rate in the first flat tube can be suppressed, so that the flow rate is appropriate. Pressure loss can be maintained. Moreover, since it is not the structure which enlarges in a length direction and increases a contact area, a pressure loss can be kept appropriate.

また、第1入口ヘッダー3を管状ヘッダーで構成し、この第1入口ヘッダー3に気液二
相冷媒が流入するように構成しているので、各貫通穴への流路抵抗差が小さいため冷媒が
適正に分配されやすいことに加えて、ヘッダー内部での気液のミキシングにより、各貫通
穴へ流れる流体の気液比率も均等にすることができる。
さらに、管状ヘッダーで構成される第1入口ヘッダー3は、管軸方向が鉛直方向になる
ように配置されているので、各貫通穴へ流れる流体に働く重力に差が生じないため、気液
比率に及ぼす影響を抑制することができる。このため、流体の温度効率を最大化、圧力損
失が最小化することができ、熱交換の性能を増加させることができる。
なお、第2入口ヘッダー5を管状ヘッダーで構成し、この第2入口ヘッダー5に気液二
相冷媒が流入する場合は、第2入口ヘッダー5において同様な効果を奏する。
In addition, since the first inlet header 3 is constituted by a tubular header and the gas-liquid two-phase refrigerant flows into the first inlet header 3, the refrigerant has a small flow path resistance difference to each through hole. In addition to being easily distributed appropriately, the gas-liquid ratio of the fluid flowing into each through hole can be made uniform by mixing the gas-liquid inside the header.
Furthermore, since the first inlet header 3 constituted by the tubular header is arranged so that the tube axis direction is the vertical direction, there is no difference in the gravity acting on the fluid flowing to each through hole, so the gas-liquid ratio The influence which it has on can be suppressed. For this reason, the temperature efficiency of the fluid can be maximized, the pressure loss can be minimized, and the heat exchange performance can be increased.
In addition, when the 2nd inlet header 5 is comprised with a tubular header and a gas-liquid two-phase refrigerant | coolant flows in into this 2nd inlet header 5, there exists the same effect in the 2nd inlet header 5. FIG.

図4は本実施の形態1の熱交換器を利用した別の冷凍空調装置の系統図である。圧縮機
20、放熱器21、減圧装置22、冷却器23が順に接続された冷媒回路と、一端が放熱
器21と減圧装置22の間に接続され、他端が圧縮機20における冷媒の圧縮工程の途中
に設けられたインジェクションポート33に接続されたバイパス配管32とを備え、バイ
パス配管32の途中に第2減圧装置31を備えており、熱交換器10の第1入口ヘッダー
3(管状ヘッダー)と第2減圧装置31、第1出口ヘッダー4とインジェクションポート
33、第2入口ヘッダー5と放熱器21、及び第2出口ヘッダー6と減圧装置22とがそ
れぞれ接続されている。
FIG. 4 is a system diagram of another refrigerating and air-conditioning apparatus using the heat exchanger according to the first embodiment. A refrigerant circuit in which the compressor 20, the radiator 21, the decompressor 22, and the cooler 23 are connected in order, one end is connected between the radiator 21 and the decompressor 22, and the other end is a refrigerant compression process in the compressor 20. A bypass pipe 32 connected to an injection port 33 provided in the middle of the heat exchanger 10, and a second pressure reducing device 31 provided in the middle of the bypass pipe 32, and a first inlet header 3 (tubular header) of the heat exchanger 10. And the second decompressor 31, the first outlet header 4 and the injection port 33, the second inlet header 5 and the radiator 21, and the second outlet header 6 and the decompressor 22 are respectively connected.

第2減圧装置31で減圧された冷媒は低温の気液二相流状態に変化し、熱交換器10を
通り、圧縮機20のインジェクションポート33に送られる。熱交換器10では、第2減
圧装置31の出口からの冷媒液を含んだ低温の冷媒が、放熱器21の出口から減圧装置2
2の入口へと流れる冷媒を効率良く冷却するため、図2に示した冷凍空調装置と同様、減
圧装置22入口の冷媒温度を十分下げることができる。
The refrigerant decompressed by the second decompression device 31 changes to a low-temperature gas-liquid two-phase flow state, passes through the heat exchanger 10, and is sent to the injection port 33 of the compressor 20. In the heat exchanger 10, the low-temperature refrigerant containing the refrigerant liquid from the outlet of the second pressure reducing device 31 is supplied from the outlet of the radiator 21 to the pressure reducing device 2.
In order to efficiently cool the refrigerant flowing to the inlet 2, the refrigerant temperature at the inlet of the decompression device 22 can be sufficiently lowered as in the refrigeration air conditioner shown in FIG. 2.

図5は本実施の形態1の熱交換器を利用したさらに別の冷凍空調装置を示す図であり、
図5(a)は系統図、図5(b)及び(c)は、各々、内部構造の斜視図及び上面図であ
る。
図5(a)において、本冷凍空調装置の冷媒回路は、圧縮機20、放熱器21、減圧装
置22、冷却器23が順に接続された冷媒回路であって、熱交換器10の第2入口ヘッダ
ー5(管状ヘッダー)と放熱器21、第2出口ヘッダー6と減圧装置22とが接続されて
いる。また、第1出口ヘッダー4、補助圧縮機40、補助凝縮器41、補助減圧装置42
、第1入口ヘッダー3が順に接続された第2冷媒回路を有している。第2冷媒回路は、H
FC系冷媒、HC系冷媒またはアンモニアを用いた蒸気圧縮式冷凍サイクルで動作するよ
うに構成されている。
FIG. 5 is a diagram showing still another refrigerating and air-conditioning apparatus using the heat exchanger according to the first embodiment.
5A is a system diagram, and FIGS. 5B and 5C are a perspective view and a top view of the internal structure, respectively.
In FIG. 5A, the refrigerant circuit of the refrigeration air-conditioning apparatus is a refrigerant circuit in which a compressor 20, a radiator 21, a decompressor 22, and a cooler 23 are connected in order, and the second inlet of the heat exchanger 10. The header 5 (tubular header), the radiator 21, the second outlet header 6, and the pressure reducing device 22 are connected. The first outlet header 4, the auxiliary compressor 40, the auxiliary condenser 41, and the auxiliary pressure reducing device 42
The first inlet header 3 has a second refrigerant circuit connected in order. The second refrigerant circuit is H
It is configured to operate in a vapor compression refrigeration cycle using FC refrigerant, HC refrigerant or ammonia.

補助減圧装置42で減圧された冷媒は低温の気液二相流状態に変化し、熱交換器10を
通り、補助圧縮機40に戻る。熱交換器10では、補助減圧装置42の出口からの冷媒液
を含んだ低温の冷媒が、放熱器21の出口から減圧装置22の入口へと流れる冷媒を効率
良く冷却するため、図2及び図3に示した冷凍空調装置と同様、減圧装置22入口の冷媒
温度を十分下げることができる。
The refrigerant decompressed by the auxiliary decompression device 42 changes to a low-temperature gas-liquid two-phase flow state, passes through the heat exchanger 10, and returns to the auxiliary compressor 40. In the heat exchanger 10, the low-temperature refrigerant containing the refrigerant liquid from the outlet of the auxiliary decompression device 42 efficiently cools the refrigerant flowing from the outlet of the radiator 21 to the inlet of the decompression device 22. Similarly to the refrigeration air conditioner shown in FIG.

図5(b)(c)において、本冷凍空調装置は、室外に設置され圧縮機20、放熱器2
1、補助圧縮機40、補助凝縮器41、補助減圧装置42、及び熱交換器10が収納され
た室外ユニットと、室内に設置される減圧装置22、及び冷却器23とが配管で接続され
ている。室外ユニットのファン24の通風により放熱器21から放熱が行われる。
ここで、熱交換器10は、上記実施の形態1の熱交換器を用いており、各扁平管を、ア
ルミニウム合金、銅及び銅合金のような比較的延性の大きな材質、または肉薄の可とう性
部材で構成すれば、第1扁平管1及び第2扁平管2は共に、長手方向(L方向)を揃えて
並行に、扁平な面で接合されており、またヘッダーは両端に接続されているので、長手方
向を比較的剛性が小さい積層方向に自在に曲げることができるため、ユニット内に実装す
る場合、図2(b)、(c)と同様、圧縮機などの容器類のシェル周りに沿わせて配置し
たり、または、容器や配管との間の隙間スペースを有効利用することができ、装置への実
装効率が上がり、装置全体の小型化に寄与する。
なお、図5(b)、(c)では、圧縮機20、補助圧縮機40の他に、冷媒回路内の冷
媒量を適正量に調整する液溜め容器43が追加されたユニットの場合において、熱交換器
10を液だめ容器43の周りに設置した例であり、容器類が多くなるほど、設置スペース
の自由度が増え、実装効率向上に寄与する。
5 (b) and 5 (c), the refrigeration air conditioner is installed outside the compressor 20, the radiator 2 and the like.
1, an outdoor unit in which an auxiliary compressor 40, an auxiliary condenser 41, an auxiliary pressure reducing device 42, and a heat exchanger 10 are housed, a pressure reducing device 22 installed in a room, and a cooler 23 are connected by piping. Yes. Heat is radiated from the radiator 21 by the ventilation of the fan 24 of the outdoor unit.
Here, the heat exchanger 10 uses the heat exchanger of the first embodiment, and each flat tube is made of a material having a relatively large ductility such as an aluminum alloy, copper and a copper alloy, or a thin flexible tube. The first flat tube 1 and the second flat tube 2 are both joined with a flat surface in parallel with the longitudinal direction (L direction) aligned, and the header is connected to both ends. Since the longitudinal direction can be freely bent in the laminating direction with relatively low rigidity, when mounted in a unit, as in FIGS. 2 (b) and 2 (c), around the shell of containers such as a compressor It is possible to arrange them in line with each other, or to effectively use the space between the container and the piping, which increases the mounting efficiency of the apparatus and contributes to the downsizing of the entire apparatus.
5B and 5C, in addition to the compressor 20 and the auxiliary compressor 40, in the case of a unit in which a liquid reservoir container 43 that adjusts the amount of refrigerant in the refrigerant circuit to an appropriate amount is added. This is an example in which the heat exchanger 10 is installed around the liquid reservoir container 43. As the number of containers increases, the degree of freedom of installation space increases, which contributes to improved mounting efficiency.

また、図5において、放熱器21を省略し、圧縮機20から吐出された高温高圧のガス
を全て熱交換器10で冷却する、いわゆる二次ループ形冷凍空調装置にも適用でき、この
場合、熱交換器10においては、必要熱交換量が大きくなり冷凍空調装置全体に占める容
積割合が比較的大きくなるため、熱交換器10がコンパクトとなる効果が一層高まる。
なお、図2、図4、及び図5に示す冷凍空調装置は、例えば、ルームエアコンやパッケ
ージエアコン、給湯器、及び冷凍機のような定置式冷凍空調装置に適用できる。
Further, in FIG. 5, the radiator 21 can be omitted, and it can be applied to a so-called secondary loop refrigeration air conditioner that cools all the high-temperature and high-pressure gas discharged from the compressor 20 with the heat exchanger 10. In the heat exchanger 10, the required heat exchange amount is increased, and the volume ratio of the entire refrigeration air conditioner is relatively increased. Therefore, the effect of making the heat exchanger 10 compact is further enhanced.
Note that the refrigeration air conditioners shown in FIGS. 2, 4 and 5 can be applied to stationary refrigeration air conditioners such as room air conditioners, packaged air conditioners, water heaters, and refrigerators.

以上のように、本実施の形態の熱交換器を用いた冷凍空調機器においては、熱交換器の
第1扁平管及び第2扁平管をそれぞれ流れる低温流体及び高温流体の少なくとも一方が気
液二相状態の流体であり、気液二相状態の流体が流れる第1入口ヘッダーまたは第2入口
ヘッダーを管状ヘッダーで構成すると共に、該管状ヘッダーの出口端では積層した扁平管
を一箇所に束ねて接続しているので、各貫通穴への流路抵抗差が小さいため、適正に分配
されやすい。また、管状ヘッダー内部での気液のミキシングにより各貫通穴へ流れる流体
の気液比率も均等にすることができる。
また、この管状ヘッダーは管軸方向が鉛直方向となるように配置されているため、各貫
通穴に流れる流体に働く重力に差が生じないため、流体を扁平管の各貫通穴へ適正に流す
ことができ、流体の温度効率を最大化、さらには圧力損失を最小化することができ、熱交
換器の性能を増加させることができる。
As described above, in the refrigerating and air-conditioning apparatus using the heat exchanger according to the present embodiment, at least one of the low-temperature fluid and the high-temperature fluid flowing through the first flat tube and the second flat tube of the heat exchanger is gas-liquid. The first inlet header or the second inlet header through which the fluid in the gas-liquid two-phase state flows is configured by a tubular header, and the laminated flat tubes are bundled at one place at the outlet end of the tubular header. Since they are connected, the difference in flow path resistance to each through hole is small, so that proper distribution is easy. Moreover, the gas-liquid ratio of the fluid flowing into each through hole can be made uniform by the gas-liquid mixing inside the tubular header.
In addition, since this tubular header is arranged so that the tube axis direction is the vertical direction, there is no difference in the gravity acting on the fluid flowing through each through hole, so that the fluid flows properly to each through hole of the flat tube. It is possible to maximize the temperature efficiency of the fluid, to minimize the pressure loss, and to increase the performance of the heat exchanger.

また、二酸化炭素を冷媒とした冷凍空調機器に対して、熱交換器の第2扁平管を流れる
高温流体が高温高圧の超臨界流体、第1扁平管を流れる低温流体が気液二相流体となるよ
うにしたので、温度や流量条件などの熱交換器条件に合わせて熱交換器を最適構成でき、
熱交換器の性能の最大化、ひいては機器の性能向上を図ることができる。
また、熱交換器がコンパクトに構成できるとともに、封入する使用冷媒量の増加も抑制
できるため、コンパクトで環境性の高い冷凍空調装置を提供することができる。
In addition, for a refrigeration air conditioner using carbon dioxide as a refrigerant, the high-temperature fluid flowing through the second flat tube of the heat exchanger is a high-temperature and high-pressure supercritical fluid, and the low-temperature fluid flowing through the first flat tube is a gas-liquid two-phase fluid. So that the heat exchanger can be optimally configured according to the heat exchanger conditions such as temperature and flow rate conditions,
It is possible to maximize the performance of the heat exchanger and thus improve the performance of the equipment.
In addition, since the heat exchanger can be configured in a compact manner and an increase in the amount of refrigerant used can be suppressed, a refrigeration air conditioner that is compact and highly environmentally friendly can be provided.

また、低温流体と高温流体の種類に応じて、各扁平管の積層数(各扁平管による並列流
路数)を変えることができるため、各扁平管を流れる流体の温度効率を最大化、さらには
圧力損失を最小化することができ、熱交換性能を増加させることができる。また、流体を
熱交換器に送り循環させるための駆動装置の動力増加を抑制できる。
In addition, the number of stacked flat tubes (the number of parallel channels by each flat tube) can be changed according to the type of low-temperature fluid and high-temperature fluid, maximizing the temperature efficiency of the fluid flowing through each flat tube, Can minimize pressure loss and increase heat exchange performance. Further, it is possible to suppress an increase in power of the driving device for sending and circulating the fluid to the heat exchanger.

また、第1扁平管及び第2扁平管において、それぞれの貫通穴の数、流路断面積、配列
ピッチPの少なくとも一つを変化させることにより、それぞれの貫通穴を流れる流体の温
度効率を最大化、さらには圧力損失を最小化することができ、熱交換性能を増加させるこ
とができる。また、流体を熱交換器に送り循環させるための駆動装置の動力増加を抑制で
きる。
Further, in the first flat tube and the second flat tube, the temperature efficiency of the fluid flowing through each through hole is maximized by changing at least one of the number of through holes, the flow path cross-sectional area, and the arrangement pitch P. And pressure loss can be minimized, and heat exchange performance can be increased. Further, it is possible to suppress an increase in power of the driving device for sending and circulating the fluid to the heat exchanger.

実施の形態2.
図6(a)は本発明の実施の形態2による熱交換器10を示す図であり、図6(a)は
図1(b)と同様の方向からみた側面図、図6(b)は図6(a)のb−b線での断面図
である。
図において、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5(図示を
省略)、第2出口ヘッダー6(図示を省略)の少なくともいずれか1つは、それぞれ両端
が開口した管形状の管状ヘッダーであり(図6では全てのヘッダーが管状ヘッダー)、図
6(b)に示すように、複数の扁平管1a,1b,1cの端部を円弧状に湾曲させるとと
もに、環状に並べて管状ヘッダーの開口端に接続し、この開口端の中央部には内壁50が
形成されている。
なお、扁平管の管端は管状ヘッダー内部から見て内壁と面一でも、突き出したり引っ込
めて接続されていても良い。
また、第1入口ヘッダー3の両開口端の間、即ち、第1入口ヘッダー3の内部には、流
路断面積が前後の流路断面積より小さいオリフィス51が設けられている。その他の構成
は、実施の形態1と同様のため説明を省略する。
Embodiment 2. FIG.
6 (a) is a view showing a heat exchanger 10 according to Embodiment 2 of the present invention, FIG. 6 (a) is a side view seen from the same direction as FIG. 1 (b), and FIG. It is sectional drawing in the bb line of Fig.6 (a).
In the figure, at least one of the first inlet header 3, the first outlet header 4, the second inlet header 5 (not shown), and the second outlet header 6 (not shown) is a pipe having both ends opened. A tubular header having a shape (in FIG. 6, all headers are tubular headers). As shown in FIG. 6 (b), the ends of the plurality of flat tubes 1a, 1b, 1c are curved in an arc shape, and are annularly formed. The inner wall 50 is formed at the center of the open end.
The tube end of the flat tube may be flush with the inner wall as viewed from the inside of the tubular header, or may be connected by protruding or retracting.
In addition, an orifice 51 having a channel cross-sectional area smaller than the front and rear channel cross-sectional areas is provided between both open ends of the first inlet header 3, that is, inside the first inlet header 3. Other configurations are the same as those in the first embodiment, and thus description thereof is omitted.

このような構成によれば、各扁平管の貫通穴への流路抵抗の均一化が図れるほかに、オ
リフィス51の流路抵抗により各貫通穴への流路抵抗差が相対的に小さくなり、冷媒が一
層均等分配されやすくなる。このため、流体の温度効率を最大化、圧力損失を最小化する
ことができ、熱交換の性能を一層増加させることができる。
なお、オリフィス51は第1入口ヘッダー3のみならず、その他のヘッダーに設けても
同様の効果が得られる。
According to such a configuration, in addition to achieving uniform flow resistance to the through hole of each flat tube, the flow resistance difference to each through hole is relatively small due to the flow resistance of the orifice 51, The refrigerant is more easily distributed evenly. Therefore, the temperature efficiency of the fluid can be maximized, the pressure loss can be minimized, and the heat exchange performance can be further increased.
The same effect can be obtained if the orifice 51 is provided not only in the first inlet header 3 but also in other headers.

また、管状ヘッダー出口と接続された湾曲した扁平管の端部は、環状に一列でなくとも
、図7に示すように、一部分が互いに重なるように、オーバーラップして構成しても良く
、この場合、管状ヘッダーの小径化が図れ、よりコンパクトとなる。
なお、図7では第1扁平管1a,1bを2本で構成したが、本数は1本のものでも3本
以上のものでも良い。
Further, the ends of the curved flat tubes connected to the tubular header outlet may be configured so as to overlap each other so as to partially overlap each other as shown in FIG. In this case, the diameter of the tubular header can be reduced and the size becomes more compact.
In FIG. 7, the first flat tubes 1a and 1b are composed of two, but the number may be one or three or more.

また、図8は管状ヘッダーを直管から絞り加工やプレス加工により成型したものであり
、図8(a)は第1入口ヘッダー3を出口側から見た斜視図、図8(b)は図8(a)矢
印b方向からみた背面図、図8(c)は図8(b)のc−c線での断面図、図8(d)は
図8(a)矢印d方向からみた正面図である。
図8に示す管状ヘッダーは、一端において、管外周を径方向に変形させて、扁平管が接
続される開口部52a,52b,52cを設けるとともに、中央部を接合して内壁50を
形成している。
管状ヘッダーをこのように構成することにより、ヘッダー構造が簡素化でき、より一層
コンパクトになるとともに、製造過程においても大幅な簡素化を図ることができる。
FIG. 8 shows a tubular header formed by drawing or pressing from a straight pipe. FIG. 8A is a perspective view of the first inlet header 3 viewed from the outlet side, and FIG. 8 (a) is a rear view as viewed from the direction of arrow b, FIG. 8 (c) is a cross-sectional view taken along the line cc of FIG. 8 (b), and FIG. 8 (d) is a front view as viewed from the direction of arrow d in FIG. FIG.
The tubular header shown in FIG. 8 has, at one end, the outer periphery of the tube is deformed in the radial direction to provide openings 52a, 52b, 52c to which the flat tube is connected, and the inner wall 50 is formed by joining the central portions. Yes.
By configuring the tubular header in this way, the header structure can be simplified, and the header structure can be further compacted, and the manufacturing process can be greatly simplified.

図9は、管状ヘッダーの内部に設けるオリフィス51を一体成型したものであり、低コ
ストで、各扁平管の貫通穴への流体の分配特性をさらに向上させることができる。
なお、図9においては、左側の開口端に扁平管が接続される。
FIG. 9 shows an integral molding of the orifice 51 provided inside the tubular header, and can further improve the fluid distribution characteristics to the through-holes of each flat tube at low cost.
In FIG. 9, a flat tube is connected to the left open end.

第2入口ヘッダー5に気液二相冷媒が流入する場合は、第2入口ヘッダー5においても
同様な効果を奏する。
When the gas-liquid two-phase refrigerant flows into the second inlet header 5, the same effect can be obtained in the second inlet header 5.

本実施の形態2の熱交換器は、、図2、図4、図5で示した全ての冷凍空調装置に利用
できる。第1入口ヘッダー3に気液二相状態の低温流体が流入する場合、図6(b)に示
すように、第1入口ヘッダー3に流入した流体はヘッダーの出口端の中央部の内壁50に
衝突して気液のミキシングが促進され、径方向に拡がって環状に配置された貫通穴に流入
するので、運転条件や姿勢によらず各貫通穴へ流れる流体の気液比率を一層均等分配させ
ることできる。
また、オリフィス51により流体を増速させて中心部に衝突させることができるため、
増速及び衝突の際に、気液の混合がさらに促進され、各貫通穴への均等分配性を高めるこ
とができ、流体の温度効率を最大化、さらには圧力損失を最小化することができ、熱交換
器の性能を増加させることができる。
The heat exchanger according to the second embodiment can be used for all the refrigeration air conditioners shown in FIG. 2, FIG. 4, and FIG. When a low-temperature fluid in a gas-liquid two-phase state flows into the first inlet header 3, as shown in FIG. 6B, the fluid that has flowed into the first inlet header 3 enters the inner wall 50 at the center of the outlet end of the header. Mixing of gas and liquid is promoted by collision, and it spreads in the radial direction and flows into the annularly arranged through holes, so that the gas-liquid ratio of the fluid flowing to each through hole is more evenly distributed regardless of the operating conditions and posture I can.
Moreover, since the fluid can be accelerated by the orifice 51 and collided with the center portion,
During acceleration and collision, mixing of gas and liquid is further promoted, and even distribution to each through-hole can be increased, so that the temperature efficiency of the fluid can be maximized and the pressure loss can be minimized. The performance of the heat exchanger can be increased.

実施の形態3.
図10は本発明の実施の形態3による熱交換器10を示す図であり、図10(a)は正
面図、図10(b)は図10(a)のb−b線での断面図、図10(c)は図10(a)
のc−c線での断面図である。
図において、第1扁平管1及び第2扁平管2はそれぞれ低温流体及び高温流体が流れる
複数の貫通穴を有しており、扁平な面で互いに接触するように、かつそれぞれの長手方向
(第1扁平管と第2扁平管とが接触する面における各流体の流れ方向:L1方向とL2方
向)が直交するように、交互に積層され、ロウ付け等で接合されている。
第1扁平管1は6本の扁平管1a,1b,1c,1d,1e,1fからなり、扁平管1
a,1b,1c、及び扁平管1d,1e,1fは、それぞれ扁平な面に沿って、扁平管1
の幅方向(流れ方向に直交する方向:W1方向)に並んでいる。また、扁平管1a,1b
,1cと扁平管1d,1e,1fとは積層方向(S方向)に並んで配置されている。また
、各扁平管1a,1b,1c,1d,1e,1fの上下端同士は第1入口ヘッダー管3及
び第1出口ヘッダー4に接続され、並列流路を構成する。
第2扁平管2は長手方向(L2方向)で折返して3段に積層され、両端はそれぞれ第2
入口ヘッダー5及び第2出口ヘッダー6と接続されている。
Embodiment 3 FIG.
10 is a view showing a heat exchanger 10 according to Embodiment 3 of the present invention, FIG. 10 (a) is a front view, and FIG. 10 (b) is a sectional view taken along line bb of FIG. 10 (a). FIG. 10 (c) shows FIG. 10 (a).
It is sectional drawing in the cc line.
In the figure, each of the first flat tube 1 and the second flat tube 2 has a plurality of through-holes through which a low-temperature fluid and a high-temperature fluid flow. The fluid flow directions (L1 direction and L2 direction) on the surface where the first flat tube and the second flat tube are in contact with each other are alternately stacked and joined by brazing or the like.
The first flat tube 1 is composed of six flat tubes 1a, 1b, 1c, 1d, 1e, and 1f.
a, 1b, 1c and the flat tubes 1d, 1e, 1f are respectively flat tubes 1 along flat surfaces.
In the width direction (direction perpendicular to the flow direction: W1 direction). Also, the flat tubes 1a and 1b
, 1c and the flat tubes 1d, 1e, 1f are arranged side by side in the stacking direction (S direction). Moreover, the upper and lower ends of each flat tube 1a, 1b, 1c, 1d, 1e, 1f are connected to the 1st inlet header pipe | tube 3 and the 1st outlet header 4, and comprise a parallel flow path.
The second flat tube 2 is folded in the longitudinal direction (L2 direction) and laminated in three stages, and both ends are second
The inlet header 5 and the second outlet header 6 are connected.

また、第1扁平管1の全流路面積は第2扁平管2の全流路面積より大きくしてある。
また、第1扁平管の長手方向(L1方向)の長さは第2扁平管の長手方向(L2方向)
の長さより短くしている。
また、図10では、6本の第1扁平管のそれぞれの貫通穴の流路断面積または数は全て
同じであるが、第2扁平管2の出口側と接触する扁平管ほど、貫通穴の流路断面積または
数を大きくしてもよい。
同様に、第2扁平管2の貫通穴の流路断面積または数は、第1扁平管1の入口側と接触
する側ほど大きくしてもよい。
The total flow area of the first flat tube 1 is larger than the total flow area of the second flat tube 2.
The length of the first flat tube in the longitudinal direction (L1 direction) is the same as the length of the second flat tube (L2 direction).
The length is shorter than.
In FIG. 10, the flow passage cross-sectional areas or the numbers of the through holes of the six first flat tubes are all the same, but the flat tubes in contact with the outlet side of the second flat tubes 2 The channel cross-sectional area or number may be increased.
Similarly, the cross-sectional area or number of the through holes of the second flat tube 2 may be increased toward the side in contact with the inlet side of the first flat tube 1.

さらに、図10(c)に示すように、第1入口ヘッダー3は、実施の形態1または実施
の形態2に示した管状ヘッダーとなっている。第1出口ヘッダー4、第2入口ヘッダー5
、第2出口ヘッダー6は、管軸方向と扁平管の扁平な面とが並行になるようにして、各扁
平管をヘッダー側面に接続するヘッダーである。
さらに、各ヘッダー3〜6はそれぞれ接続配管3a、4a、5a、6aと接続されてい
る。
Further, as shown in FIG. 10C, the first inlet header 3 is the tubular header shown in the first embodiment or the second embodiment. First outlet header 4, second inlet header 5
The second outlet header 6 is a header that connects each flat tube to the header side surface so that the tube axis direction and the flat surface of the flat tube are parallel to each other.
Furthermore, each header 3-6 is connected with connection piping 3a, 4a, 5a, 6a, respectively.

また、第1扁平管1及び第2扁平管2の材質は、A1050やA1070など1000
番台や、A3003などの3000番台、及び6000番台などのアルミニウム合金、各
ヘッダー3〜6の材質は、ステンレス鋼や炭素鋼などの鉄鋼、接続配管3a〜6aの材質
は、銅及び銅合金製で、それぞれロウ付け等により接合されている。
The material of the first flat tube 1 and the second flat tube 2 is 1000 such as A1050 and A1070.
Aluminum alloy such as the number stand, 3000 series such as A3003, and 6000 series, the material of each header 3-6 is steel such as stainless steel and carbon steel, and the material of the connecting pipes 3a-6a is made of copper and copper alloy These are joined by brazing or the like.

また、本実施の形態において、第1入口ヘッダー3は管軸方向Aが鉛直方向になるよう
に設置されている。
Moreover, in this Embodiment, the 1st inlet header 3 is installed so that the pipe-axis direction A may become a perpendicular direction.

図10において、FCは低温流体の流れ、FHは高温流体の流れを示す。低温流体は第
1入口ヘッダー3、第1扁平管1、第1出口ヘッダー4の順に、高温流体は第2入口ヘッ
ダー5、第2扁平管2、第2出口ヘッダー6の順に流れ、第1扁平管1と第2扁平管2と
の接触面を介して両流体が熱交換される。
In FIG. 10, FC indicates the flow of the low temperature fluid, and FH indicates the flow of the high temperature fluid. The low-temperature fluid flows in the order of the first inlet header 3, the first flat tube 1, and the first outlet header 4, and the high-temperature fluid flows in the order of the second inlet header 5, the second flat tube 2, and the second outlet header 6. Both fluids exchange heat through the contact surface between the tube 1 and the second flat tube 2.

熱交換性能を大きくするには接触面積を増加させる必要があるが、本実施の形態では、
第1扁平管と第2扁平管とを、各流体の流れ方向が直交するように積層配置したので、熱
交換器が二次元的に大型化することなく第1扁平管と第2扁平管との接触面積を増加させ
ることができる。また、各流体の流れ方向が直交するように構成しているので、各扁平管
に接続されるそれぞれのヘッダー同士が干渉することがないため、コンパクトな構成とな
り、かつ製造時、ロウ付け等により扁平管やヘッダーを接合する際の加工の簡素化を図る
ことができる。
In order to increase the heat exchange performance, it is necessary to increase the contact area.
Since the first flat tube and the second flat tube are stacked and arranged so that the flow directions of the respective fluids are orthogonal to each other, the first flat tube and the second flat tube are not increased in size two-dimensionally. The contact area can be increased. In addition, since the flow directions of the fluids are configured to be orthogonal, the headers connected to the flat tubes do not interfere with each other. Simplification of processing when joining flat tubes and headers can be achieved.

また、本実施の形態では、第1扁平管と第2扁平管とを、各流体の流れ方向が直交する
ように積層配置したので、第1扁平管に接続される第1ヘッダーと第2扁平管に接続され
る第2ヘッダーとが干渉することがないため、複数の扁平管を積層方向にも多層積層して
接触面積を増加させることができる。その結果、熱交換性能を上げることができると共に
、熱交換器が二次元的に大型化することなくコンパクトとなる。
また、第1扁平管の幅または長さと、第2扁平管の幅または長さとを異なる構成にする
ことができるので、低温流体と高温流体の種類に応じて扁平管の長さ及び幅を変え、それ
ぞれの流体の温度効率を最大化、さらには圧力損失を最小化することができ、熱交換性能
の増加、また流体を熱交換器に送り循環させるための駆動装置の動力増加を抑制できる。
In the present embodiment, the first flat tube and the second flat tube are stacked and arranged so that the flow directions of the respective fluids are orthogonal to each other. Therefore, the first header and the second flat tube connected to the first flat tube are arranged. Since there is no interference with the second header connected to the tube, a plurality of flat tubes can be laminated in the laminating direction to increase the contact area. As a result, the heat exchange performance can be improved, and the heat exchanger becomes compact without being two-dimensionally enlarged.
In addition, since the width or length of the first flat tube and the width or length of the second flat tube can be made different, the length and width of the flat tube are changed according to the types of the low temperature fluid and the high temperature fluid. The temperature efficiency of each fluid can be maximized, and the pressure loss can be minimized, the heat exchange performance can be increased, and the increase in power of the drive device for sending and circulating the fluid to the heat exchanger can be suppressed.

さらに、第1扁平管または第2の扁平管を複数の扁平管で構成し(図10では第1扁平
管のみ)、並列流路を構成するようにしているので、圧力損失を増大させること無く、流
体流量を増加させて熱交換特性を増大させることができる。また、熱交換器に流体を送り
循環させるための駆動装置の動力増加を招くことがない。
Furthermore, since the first flat tube or the second flat tube is composed of a plurality of flat tubes (only the first flat tube in FIG. 10) and a parallel flow path is formed, without increasing the pressure loss. The heat exchange characteristic can be increased by increasing the fluid flow rate. Further, there is no increase in power of the driving device for sending and circulating the fluid to the heat exchanger.

また、並列流路を構成する扁平管に接続される入口ヘッダーまたは出口ヘッダーのいず
れかは管状ヘッダーであり(図10では第1入口ヘッダーのみ)、並列流路を構成する複
数の扁平管を束ねて、管状ヘッダーの開口端に、管状ヘッダーの管軸方向と並列流路を構
成する複数の扁平管内の流体の流れ方向とが同一方向となるようにして接続するので、上
記開口端における各扁平管の貫通穴は、管状ヘッダーの他方の開口端から流入または流出
する流体に対し、ほぼ均等に配置されるため、各貫通穴に対する流路抵抗差は小さくなり
、流体が均等に分配または混合されるので、各扁平管における流量が均一化でき、熱交換
性能が向上する。
Further, either the inlet header or the outlet header connected to the flat tubes constituting the parallel flow path is a tubular header (only the first inlet header in FIG. 10), and a plurality of flat tubes constituting the parallel flow path are bundled. In addition, since the pipe axis direction of the tubular header and the flow direction of the fluid in the plurality of flat pipes constituting the parallel flow path are connected to the opening end of the tubular header, Since the through holes of the pipe are arranged almost evenly with respect to the fluid flowing in or out from the other open end of the tubular header, the flow resistance difference with respect to each through hole is small, and the fluid is evenly distributed or mixed. Therefore, the flow rate in each flat tube can be made uniform, and the heat exchange performance is improved.

さらに、扁平な面に沿って並んだ複数の扁平管は扁平管同士、及びその端部同士が比較
的近接しているので、管状ヘッダーに接続する際、扁平管の端部を扁平な面に沿って曲げ
ると共に、積層方向にも曲げることにより、扁平管の端部を一箇所に束ねるための配管の
取り回しが容易にでき、熱交換器全体をコンパクトに構成することができる。
また、積層方向に並んだ複数の扁平管もその端部同士が比較的近接しているので、管状
ヘッダーに接続する際、各扁平管の端部を積層方向に曲げることにより、扁平管の端部を
一箇所に束ねるための配管の取り回しが容易となり、熱交換器全体をコンパクトに構成す
ることができる。
Furthermore, since a plurality of flat tubes arranged along a flat surface are relatively close to each other and their ends, when connecting to a tubular header, the ends of the flat tubes are made flat. In addition to bending along the stacking direction, the pipes for bundling the ends of the flat tubes in one place can be easily routed, and the entire heat exchanger can be made compact.
In addition, since the ends of the plurality of flat tubes arranged in the stacking direction are relatively close to each other, when connecting to the tubular header, the ends of the flat tubes are bent by bending the ends of the flat tubes in the stacking direction. The piping for bundling the parts in one place becomes easy, and the entire heat exchanger can be configured compactly.

また、銅及び銅合金製の接続配管3a〜6aを設けることにより、外部の銅配管との取
り付けがさらに容易となる。
Further, by providing the connection pipes 3a to 6a made of copper and copper alloy, the attachment with the external copper pipe is further facilitated.

なお、本実施の形態では、第1入口ヘッダー3に管状ヘッダーを適用したが、第1出口
ヘッダー4に管状ヘッダーを適用しても良い。
また、本実施の形態では、6本の第1扁平管1と、折返して構成された1本の第2扁平
管2により積層方向に5層積層された熱交換器を示したが、積層方向に並ぶ第1扁平管の
数、及び扁平な面に沿って並ぶ第1扁平管の数は本実施の形態の数に限ることはない。
また、積層方向にのみ並ぶ複数の第1扁平管により並列流路を構成してもよいし、扁平
な面に沿って並ぶ複数の第1扁平管のみで並列流路を構成し、扁平な面に沿って並ぶ該複
数の第1扁平管を積層方向に折返す構成としても良い。
さらに、第2扁平管2に対しても、第1扁平管と同様の構成とし、第1扁平管と第2扁
平管の両方が、扁平な面に沿って並んだ、あるいは積層方向に並んだ並列流路としてもよ
い。
第2扁平管2を並列流路とした場合には、第1扁平管1と同様、第2入口ヘッダー5ま
たは第2出口ヘッダー6を管状ヘッダーとするとよい。
Although a tubular header is applied to the first inlet header 3 in the present embodiment, a tubular header may be applied to the first outlet header 4.
Moreover, in this Embodiment, although the heat exchanger by which five layers were laminated | stacked in the lamination direction by the six 1st flat tubes 1 and the 1st 2nd flat tube 2 folded and comprised was shown, the lamination direction The number of the first flat tubes arranged in line and the number of the first flat tubes arranged along the flat surface are not limited to those in the present embodiment.
Moreover, a parallel flow path may be constituted by a plurality of first flat tubes arranged only in the laminating direction, or a parallel flow path is constituted only by a plurality of first flat tubes arranged along a flat surface. The plurality of first flat tubes arranged along the line may be folded back in the stacking direction.
Further, the second flat tube 2 has the same configuration as the first flat tube, and both the first flat tube and the second flat tube are arranged along a flat surface or arranged in the stacking direction. It is good also as a parallel flow path.
When the 2nd flat tube 2 is used as a parallel flow path, it is good to make the 2nd inlet header 5 or the 2nd outlet header 6 into a tubular header like the 1st flat tube 1. FIG.

また、ここでは、第1扁平管1及び第2扁平管2の貫通穴が一列になっている場合を示
したが、貫通穴は一列である必要はなく、複数の列をなしていてよい。
また、貫通穴の形状は矩形であるが、円形でもよく、また、内面に突起物を形成するこ
とにより伝熱面積を大きくして、熱交換特性をさらに向上させることもできる。
Moreover, although the case where the through-holes of the first flat tube 1 and the second flat tube 2 are arranged in a row is shown here, the through-holes need not be in a row, and may be in a plurality of rows.
Moreover, although the shape of the through hole is rectangular, it may be circular, and the heat transfer area can be increased by forming protrusions on the inner surface to further improve the heat exchange characteristics.

また、本実施の形態では第1入口ヘッダーに実施の形態1と同様の管状ヘッダーを適用
したが、実施の形態2と同様、並列流路を構成する複数の扁平管の端部を円弧状に湾曲さ
せて環状、または互いにオーバーラップするように並べ、管状ヘッダーの開口端に接続し
てもよい。
In the present embodiment, the same tubular header as that of the first embodiment is applied to the first inlet header. However, as in the second embodiment, the ends of a plurality of flat tubes constituting the parallel flow path are formed in an arc shape. It may be curved and arranged in an annular manner or overlapping each other and connected to the open end of the tubular header.

本実施の形態3の熱交換器は、、図2、図4、図5で示した全ての冷凍空調装置に利用
できる。熱交換器10において、第1扁平管と第2扁平管とが同じ形状であれば、冷媒液
を含んだ低温の気液二相状態の冷媒が第1扁平管を流れる際の圧力損失は、高温高圧の超
臨界状態の冷媒が第2扁平管を流れる際の圧力損失よりも大きくなるが、本実施の形態で
は、並列流路構成の第1扁平管は第2扁平管より全流路断面積が大きくなっているので、
管内の流速を抑制できるため適正な圧力損失を保つことができる。また、第1扁平管の長
手方向(L1方向)の長さは第2扁平管の長手方向(L2方向)の長さより短いため、第
1扁平管の圧力損失を適正に保つことができる。
The heat exchanger according to the third embodiment can be used for all the refrigeration air conditioners shown in FIG. 2, FIG. 4, and FIG. In the heat exchanger 10, if the first flat tube and the second flat tube have the same shape, the pressure loss when the low-temperature gas-liquid two-phase refrigerant containing the refrigerant flows through the first flat tube is In the present embodiment, the first flat tube having the parallel flow path configuration is disconnected from the second flat tube by the entire flow path, although the pressure loss when the high-temperature and high-pressure supercritical refrigerant flows through the second flat tube is larger. As the area is getting bigger,
An appropriate pressure loss can be maintained because the flow velocity in the tube can be suppressed. Moreover, since the length of the 1st flat tube in the longitudinal direction (L1 direction) is shorter than the length of the 2nd flat tube in the longitudinal direction (L2 direction), the pressure loss of the 1st flat tube can be maintained appropriately.

さらに、図3に示すように、第2扁平管における高温冷媒の温度は出口側ほど低く、か
つ温度変化も小さいため、第1扁平管を流れる低温冷媒との温度差が小さい領域が増えて
熱交換性能が低下するが、本実施の形態の熱交換器を用いれば、扁平な面に沿って並んだ
第1扁平管1a,1b,1c、及び第1扁平管1d,1e,1fの各貫通穴の流路断面積
または数を、第2扁平管2の出口側と接触する扁平管ほど大きくして、第2扁平管2の出
口側と接触する扁平管ほど低温冷媒が多く流れるように構成することができるので、上記
の熱交換特性低下を防ぐことができる。
また、本実施の形態の熱交換器を用いれば、第2扁平管2の貫通穴の流路断面積または
数を、第1扁平管1の入口側と接触する扁平管ほど大きくして、第1扁平管1の入口側と
接触する扁平管ほど高温冷媒が多く流れるように構成することができるので、第2扁平管
2を流れる高温冷媒の多くの流量を、冷却性能が高い第1扁平管1の入口側を流れる低温
冷媒と熱交換させることができるため、熱交換性能を上げることができる。
Furthermore, as shown in FIG. 3, since the temperature of the high-temperature refrigerant in the second flat tube is lower on the outlet side and the temperature change is small, the region where the temperature difference with the low-temperature refrigerant flowing through the first flat tube is small increases and heat is increased. Although the exchange performance is reduced, if the heat exchanger of the present embodiment is used, each of the first flat tubes 1a, 1b, 1c and the first flat tubes 1d, 1e, 1f arranged along the flat surface are penetrated. The channel cross-sectional area or number of the holes is increased as the flat tube in contact with the outlet side of the second flat tube 2, and the flat tube in contact with the outlet side of the second flat tube 2 is configured to flow more low-temperature refrigerant. Therefore, it is possible to prevent the above-described deterioration in heat exchange characteristics.
Moreover, if the heat exchanger of this Embodiment is used, the flow-path cross-sectional area or number of the through-hole of the 2nd flat tube 2 will be enlarged, and the flat tube which contacts the inlet side of the 1st flat tube 1 will increase. Since the flat tube that contacts the inlet side of the one flat tube 1 can be configured such that a higher amount of high-temperature refrigerant flows, the first flat tube having a higher cooling performance can be used for a larger flow rate of the high-temperature refrigerant flowing through the second flat tube 2. Since heat can be exchanged with the low-temperature refrigerant flowing on the inlet side of 1, the heat exchange performance can be improved.

このように、高温流体と低温流体との間に、比熱、密度などの熱物性値や流量条件など
に差があっても、管内の流速増加に伴う圧力損失の上昇を招くことなく熱交換性能を上げ
ることができる。
In this way, even if there is a difference in the thermal properties such as specific heat and density and flow rate conditions between the high-temperature fluid and the low-temperature fluid, the heat exchange performance without causing an increase in pressure loss due to an increase in the flow velocity in the pipe Can be raised.

実施の形態4.
図11は本発明の実施の形態4による熱交換器10を示す図であり、図11(a)は斜
視図、図11(b)は図11(a)のb−b線での断面図である。
図において、第1扁平管1及び第2扁平管2はそれぞれ低温流体及び高温流体が流れる
複数の貫通穴を有しており、扁平な面で互いに接触するように、かつそれぞれの長手方向
(第1扁平管と第2扁平管とが接触する面における各流体の流れ方向:L方向)が並行に
なるように、ロウ付け等で接合されている。
また、各扁平管を、アルミニウム合金、銅及び銅合金のような比較的延性の大きな材質
、または肉薄の可とう性部材で構成すれば、第1扁平管1及び第2扁平管2は共に、長手
方向(L方向)を揃えて並行に、扁平な面で接合されており、またヘッダーは両端に接続
されているので、長手方向(L方向)に直交する方向に対し自在に折返せる構成となって
いる。図11では、第1扁平管と第2扁平管とを3段に折返すことにより第1扁平管と第
2扁平管とを積層した構成であり(積層方向:S方向)、第1扁平管1の両端はそれぞれ
第1入口ヘッダー3及び第1出口ヘッダー4に、第2扁平管2の両端はそれぞれ第2入口
ヘッダー5及び第2出口ヘッダー6に接続されている。
また、第1扁平管1は扁平面に沿って並んだ3本の扁平管1a,1b,1cからなり、
並列流路を構成する。
また、第1入口ヘッダー3は、実施の形態1及び実施の形態2に示した管状ヘッダーと
なっている。第1出口ヘッダー4、第2入口ヘッダー5、及び第2出口ヘッダー6は、管
軸方向と扁平管の扁平な面とが並行になるようにして、各扁平管をヘッダー側面に接続す
るヘッダーである。
その他の構成は、実施の形態3と同様のため、説明を省略する。
Embodiment 4 FIG.
11 is a view showing a heat exchanger 10 according to Embodiment 4 of the present invention, FIG. 11 (a) is a perspective view, and FIG. 11 (b) is a cross-sectional view taken along the line bb of FIG. 11 (a). It is.
In the figure, each of the first flat tube 1 and the second flat tube 2 has a plurality of through-holes through which a low-temperature fluid and a high-temperature fluid flow. It joins by brazing etc. so that the flow direction (L direction) of each fluid in the surface which a 1 flat tube and a 2nd flat tube contact may become parallel.
Further, if each flat tube is made of a relatively ductile material such as aluminum alloy, copper and copper alloy, or a thin flexible member, the first flat tube 1 and the second flat tube 2 are both A structure in which the longitudinal direction (L direction) is aligned and is joined in parallel with a flat surface, and the header is connected to both ends, so that it can be folded freely with respect to the direction orthogonal to the longitudinal direction (L direction). It has become. In FIG. 11, it is the structure which laminated | stacked the 1st flat tube and the 2nd flat tube by folding the 1st flat tube and the 2nd flat tube in three steps (stacking direction: S direction), and the 1st flat tube Both ends of 1 are connected to the first inlet header 3 and the first outlet header 4, respectively, and both ends of the second flat tube 2 are connected to the second inlet header 5 and the second outlet header 6, respectively.
The first flat tube 1 is composed of three flat tubes 1a, 1b, 1c arranged along the flat surface,
Configure parallel flow paths.
The first inlet header 3 is the tubular header shown in the first and second embodiments. The first outlet header 4, the second inlet header 5, and the second outlet header 6 are headers that connect each flat tube to the side of the header so that the tube axis direction and the flat surface of the flat tube are parallel to each other. is there.
Other configurations are the same as those in the third embodiment, and thus description thereof is omitted.

熱交換性能を大きくするには接触面積を増加させる必要があるが、本実施の形態では、
第1扁平管と第2扁平管とを、各流体の流れ方向が並行となるように配置すると共に、各
扁平管を折返して積層したので、熱交換器が二次元的に大型化することなく第1扁平管と
第2扁平管との接触面積を増加させることができる。
また、第1扁平管に接続される第1ヘッダーと第2扁平管に接続される第2ヘッダーと
は、共に各扁平管の両端部にのみ設ければよいので、ヘッダー同士が干渉することがない

また、低温流体と高温流体の流れの向きを対向させることができるため、温度効率が増
加し、熱交換性能を増加させることができる。
また、第1扁平管及び第2扁平管の少なくともいずれか一方(図11では第1扁平管の
み)は、扁平面に沿って並んだ複数の扁平管により並列流路を構成しているので、圧力損
失を増大させること無く、流体流量を増加させて熱交換特性を増大させることができる。
また、熱交換器に流体を送り循環させるための駆動装置の動力増加を招くことがない。
また、並列流路を構成する扁平管に接続される入口ヘッダーまたは出口ヘッダーのいず
れかは管状ヘッダーであるので(図11では第1入口ヘッダーのみ)、実施の形態3と同
様の効果を奏する。
In order to increase the heat exchange performance, it is necessary to increase the contact area.
Since the first flat tube and the second flat tube are arranged so that the flow directions of the fluids are parallel to each other, and the flat tubes are folded and stacked, the heat exchanger does not increase in size two-dimensionally. The contact area between the first flat tube and the second flat tube can be increased.
Moreover, since the 1st header connected to a 1st flat tube and the 2nd header connected to a 2nd flat tube should just be provided only in the both ends of each flat tube, headers may interfere. Absent.
Moreover, since the flow directions of the low-temperature fluid and the high-temperature fluid can be opposed to each other, the temperature efficiency is increased and the heat exchange performance can be increased.
In addition, since at least one of the first flat tube and the second flat tube (only the first flat tube in FIG. 11) constitutes a parallel flow path by a plurality of flat tubes arranged along the flat surface, The heat exchange characteristics can be increased by increasing the fluid flow rate without increasing the pressure loss.
Further, there is no increase in power of the driving device for sending and circulating the fluid to the heat exchanger.
In addition, since either the inlet header or the outlet header connected to the flat tubes constituting the parallel flow path is a tubular header (only the first inlet header in FIG. 11), the same effect as in the third embodiment is obtained.

なお、扁平管を折返す段数は3段に限ることはなく、折返さない1段構成から、それ以
上のいくらでも良く、装置の実装スペースに応じて自在に構成できる。
Note that the number of stages in which the flat tube is folded back is not limited to three, and may be any number beyond the one-stage structure in which the flat pipe is not folded back, and can be freely configured according to the mounting space of the apparatus.

本実施の形態4の熱交換器は、図2、図4、図5で示した全ての冷凍空調装置に利用で
きる。
本実施の形態の熱交換器は、例えば長手方向を比較的剛性が小さい積層方向に自在に曲
げることができるため、冷凍空調装置の室外ユニット内に実装する場合、圧縮機などの容
器類のシェル周りに沿わせて配置したり、容器や配管との間の隙間スペースに配置するこ
とができ、装置への実装効率が上がり、装置全体の小型化に寄与する。
The heat exchanger according to the fourth embodiment can be used for all the refrigeration air conditioners shown in FIG. 2, FIG. 4, and FIG.
The heat exchanger according to the present embodiment can be bent freely in the laminating direction with a relatively small rigidity, for example, so that when mounted in an outdoor unit of a refrigeration air conditioner, a shell of containers such as a compressor It can be arranged along the circumference, or can be arranged in a gap space between the container and the pipe, so that the mounting efficiency to the apparatus is improved and the entire apparatus is reduced in size.

実施の形態5.
図12は本発明の実施の形態5による熱交換器10を示す図であり、図12(a)は正
面図、図12(b)は図12(a)のb−b線での断面図、図12(c)は図12(a)
のc−c線での断面図である。
図において、第1扁平管1及び第2扁平管2はそれぞれ低温流体及び高温流体が流れる
複数の貫通穴を有しており、扁平な面で互いに接触するように、かつそれぞれの管内を流
れる流体の流れ方向(L1方向、L2方向)が直交するように、3以上の複数の積層数(
図12では6)で交互に積層され、ロウ付け等で接合されている。
第1扁平管1は3本の扁平管1a,1b,1cからなり、扁平管1a,1b,1cは積
層方向(S方向)に並んで配置され、各扁平管の上下端同士は第1入口ヘッダー管3及び
第1出口ヘッダー4に接続され、並列流路を構成する。
第2扁平管2は長手方向(L2方向)で折返して3段に積層され、両端はそれぞれ第2
入口ヘッダー5及び第2出口ヘッダー6と接続されている。
Embodiment 5 FIG.
12 is a view showing a heat exchanger 10 according to Embodiment 5 of the present invention. FIG. 12 (a) is a front view, and FIG. 12 (b) is a cross-sectional view taken along line bb of FIG. 12 (a). FIG. 12 (c) shows FIG. 12 (a).
It is sectional drawing in the cc line.
In the figure, a first flat tube 1 and a second flat tube 2 each have a plurality of through holes through which a low-temperature fluid and a high-temperature fluid flow, and fluids that flow through each tube so as to contact each other on a flat surface. A plurality of stacks of 3 or more (L1 direction, L2 direction)
In FIG. 12, the layers are alternately laminated in 6) and joined by brazing or the like.
The first flat tube 1 includes three flat tubes 1a, 1b, and 1c. The flat tubes 1a, 1b, and 1c are arranged side by side in the stacking direction (S direction), and the upper and lower ends of each flat tube are first inlets. Connected to the header pipe 3 and the first outlet header 4 to form a parallel flow path.
The second flat tube 2 is folded in the longitudinal direction (L2 direction) and laminated in three stages, and both ends are second
The inlet header 5 and the second outlet header 6 are connected.

さらに、図12(c)に示すように、第1入口ヘッダー3、及び第1出口ヘッダー4は
、管軸方向と扁平管の扁平な面とが並行になるようにして、複数の第1扁平管1a,1b
,1cをヘッダー側面に接続するヘッダーである。第2入口ヘッダー5、及び第2出口ヘ
ッダー6は、管軸方向と扁平管の扁平な面とが並行になるようにして、第2扁平管2をヘ
ッダー側面に接続するヘッダーである。
また、各ヘッダーはそれぞれ接続配管3a、4a、5a、6aと接続されている。
Furthermore, as shown in FIG. 12 (c), the first inlet header 3 and the first outlet header 4 have a plurality of first flats such that the tube axis direction and the flat surface of the flat tube are parallel to each other. Tube 1a, 1b
, 1c is a header connecting the header side surface. The second inlet header 5 and the second outlet header 6 are headers that connect the second flat tube 2 to the header side surface so that the tube axis direction and the flat surface of the flat tube are parallel to each other.
Each header is connected to connection piping 3a, 4a, 5a, 6a, respectively.

また、第1扁平管の長手方向(L1方向)の長さは第2扁平管の長手方向(L2方向)
の長さより短くしており、第1扁平管1の幅方向(流れ方向に直交する方向:W1方向)
の長さは、第2扁平管の幅方向(流れ方向に直交する方向:W2方向)の長さより大きい

また、図12では、3本の第1扁平管の貫通穴の流路断面積または数は全て同じである
が、第2扁平管2の出口側と接触する扁平管ほど、貫通穴の流路断面積または数を大きく
してもよい。
同様に、第2扁平管2の貫通穴の流路断面積または数は、第1扁平管1の入口側と接触
する側ほど大きくしてもよい。
The length of the first flat tube in the longitudinal direction (L1 direction) is the same as the length of the second flat tube (L2 direction).
The width direction of the first flat tube 1 (direction perpendicular to the flow direction: W1 direction)
Is longer than the length of the second flat tube in the width direction (direction perpendicular to the flow direction: W2 direction).
In FIG. 12, the flow passage cross-sectional areas or the numbers of the through holes of the three first flat tubes are all the same, but the flat tube in contact with the outlet side of the second flat tube 2 is the flow passage of the through holes. The cross-sectional area or number may be increased.
Similarly, the cross-sectional area or number of the through holes of the second flat tube 2 may be increased toward the side in contact with the inlet side of the first flat tube 1.

また、ここでは、第1扁平管1及び第2扁平管2の貫通穴が一列になっている場合を示
したが、貫通穴は一列である必要はなく、複数の列をなしていてよい。
また、貫通穴の形状は矩形であるが、円形でもよく、また、内面に突起物を形成するこ
とにより伝熱面積を大きくして、熱交換特性をさらに向上させることもできる。
Moreover, although the case where the through-holes of the first flat tube 1 and the second flat tube 2 are arranged in a row is shown here, the through-holes need not be in a row, and may be in a plurality of rows.
Moreover, although the shape of the through hole is rectangular, it may be circular, and the heat transfer area can be increased by forming protrusions on the inner surface to further improve the heat exchange characteristics.

また、第1扁平管1及び第2扁平管2の材質は、A1050やA1070など1000
番台や、A3003などの3000番台、及び6000番台などのアルミニウム合金、各
ヘッダー3〜6の材質は、ステンレス鋼や炭素鋼などの鉄鋼、接続配管3a〜6aの材質
は、銅及び銅合金製で、それぞれロウ付け等により接合されている。
The material of the first flat tube 1 and the second flat tube 2 is 1000 such as A1050 and A1070.
Aluminum alloy such as the number stand, 3000 series such as A3003, and 6000 series, the material of each header 3-6 is steel such as stainless steel and carbon steel, and the material of the connecting pipes 3a-6a is made of copper and copper alloy These are joined by brazing or the like.

なお、本実施の形態では、S方向に積層する3本の第1扁平管1と、折返して積層構成
された1本の第2扁平管2により構成されるものを示したが、各扁平管の数は本実施の形
態の数に限らない。また、扁平面に沿って並んだ複数の扁平管で、並列流路を構成するよ
うにしてもよい。また、扁平面に沿って並んだ複数の扁平管を折り返して積層してもよい
In addition, in this Embodiment, although what was comprised by the three 1st flat tubes 1 laminated | stacked on the S direction and the 1st 2nd flat tube 2 folded and laminated, each flat tube was shown. The number of is not limited to the number of the present embodiment. Moreover, you may make it comprise a parallel flow path with the some flat tube arranged along the flat surface. Also, a plurality of flat tubes arranged along the flat surface may be folded back and stacked.

図中、FCは低温流体の流れ、FHは高温流体の流れを示す。低温流体は第1入口ヘッ
ダー3、第1扁平管1、第1出口ヘッダー4の順に、高温流体は第2入口ヘッダー5、第
2扁平管2、第2出口ヘッダー6の順に流れ、第1扁平管と第2扁平管との接触部を介し
て両流体が熱交換される。
In the figure, FC indicates the flow of the low temperature fluid, and FH indicates the flow of the high temperature fluid. The low-temperature fluid flows in the order of the first inlet header 3, the first flat tube 1, and the first outlet header 4, and the high-temperature fluid flows in the order of the second inlet header 5, the second flat tube 2, and the second outlet header 6. Both fluids exchange heat through the contact portion between the tube and the second flat tube.

熱交換性能を大きくするには接触面積を増加させる必要があるが、本実施の形態では、
第1扁平管と第2扁平管とを、各流体の流れ方向が直交するように交互に6層積層配置し
たので、熱交換器が二次元的に大型化することなく第1扁平管と第2扁平管との接触面積
を増加させることができる。また、各流体の流れ方向が直交するように構成しているので
、各扁平管に接続されるそれぞれのヘッダー同士が干渉することがないため、コンパクト
な構成となり、かつ製造時、ロウ付け等により扁平管やヘッダーを接合する際の加工の簡
素化を図ることができる。
In order to increase the heat exchange performance, it is necessary to increase the contact area.
Since the first flat tube and the second flat tube are alternately arranged in six layers so that the flow directions of the respective fluids are orthogonal to each other, the first flat tube and the second flat tube are not increased in size two-dimensionally. 2 The contact area with the flat tube can be increased. In addition, since the flow directions of the fluids are configured to be orthogonal, the headers connected to the flat tubes do not interfere with each other. Simplification of processing when joining flat tubes and headers can be achieved.

また、本実施の形態では、第1扁平管と第2扁平管とを、各流体の流れ方向が直交する
ように積層配置したので、第1扁平管の幅または長さと、第2扁平管の幅または長さとを
異なる構成にすることができるため、低温流体と高温流体の種類に応じて扁平管の長さ及
び幅を変え、それぞれの流体の温度効率を最大化、さらには圧力損失を最小化することが
でき、熱交換性能の増加、また流体を熱交換器に送り循環させるための駆動装置の動力増
加を抑制できる。
In the present embodiment, the first flat tube and the second flat tube are stacked so that the flow directions of the respective fluids are orthogonal to each other. Therefore, the width or length of the first flat tube and the second flat tube Since the width or length can be configured differently, the length and width of the flat tube can be changed according to the type of low temperature fluid and high temperature fluid to maximize the temperature efficiency of each fluid and to minimize the pressure loss It is possible to suppress the increase in the heat exchange performance and the increase in the power of the drive device for sending and circulating the fluid to the heat exchanger.

さらに、第1扁平管または第2の扁平管を複数の扁平管で構成し(図12では第1扁平
管のみ)、並列流路を構成するようにしているので、圧力損失を増大させること無く、流
体流量を増加させて熱交換特性を増大させることができる。また、熱交換器に流体を送り
循環させるための駆動装置の動力増加を招くことがない。
Furthermore, since the first flat tube or the second flat tube is composed of a plurality of flat tubes (only the first flat tube in FIG. 12) and the parallel flow path is formed, without increasing the pressure loss. The heat exchange characteristic can be increased by increasing the fluid flow rate. Further, there is no increase in power of the driving device for sending and circulating the fluid to the heat exchanger.

さらに、流量を増加させて熱交換性能を大きくする場合、圧力損失を抑制するために、
適正流速になるようにヘッダーの内径を拡大する必要があり、それに伴い耐圧性を維持す
るためには肉厚が増し、外径が著しく増大するが、ヘッダーを高強度の鉄鋼で構成したた
め、外径の増大を抑えることができ、熱交換器全体の小型化に効を奏する
Furthermore, to increase the heat exchange performance by increasing the flow rate, in order to suppress the pressure loss,
It is necessary to enlarge the inner diameter of the header so as to achieve an appropriate flow rate, and in order to maintain pressure resistance, the wall thickness increases and the outer diameter increases remarkably, but the header is made of high-strength steel, so the outer The increase in diameter can be suppressed, and it is effective for downsizing the entire heat exchanger

また、ヘッダーを構成するステンレス鋼や炭素鋼などの鉄鋼は、アルミニウム合金や銅
及び銅合金とは、強度の弱い脆弱な化合物層を生成させずにロウ付け接合が可能であるた
め、熱交換器10を家庭用エアコンや業務用空調機などで一般的に使用されている銅配管
にロウ付け等により比較的容易に取り付けることができる。
また、銅及び銅合金製の接続配管3a〜6aを設けることにより、外部の銅配管との取
り付けがさらに容易となる。
In addition, steel such as stainless steel and carbon steel that make up the header can be brazed and joined to aluminum alloys, copper, and copper alloys without generating weakly fragile compound layers. 10 can be attached to copper pipes generally used in home air conditioners and commercial air conditioners by brazing or the like.
Further, by providing the connection pipes 3a to 6a made of copper and copper alloy, the attachment with the external copper pipe is further facilitated.

さらに、扁平管をアルミニウム合金で構成しているので、ヘッダーにロウ付け等により
比較的容易に取り付けることができると共に、上記アルミニウム合金は、比較的低コスト
な押出成型により製造できるため、製造コストを抑制することができる。
また、3000番台や6000番台の比較的高強度のアルミニウム合金では肉厚をさら
に薄くできるため、より小型、低コスト化を図ることができる。
Furthermore, since the flat tube is made of an aluminum alloy, it can be attached to the header relatively easily by brazing or the like, and the aluminum alloy can be manufactured by extrusion molding at a relatively low cost. Can be suppressed.
In addition, the relatively high-strength aluminum alloys in the 3000s and 6000s can be made thinner, so that the size and cost can be reduced.

本実施の形態5の熱交換器は、図2、図4、図5で示した全ての冷凍空調装置に利用で
きる。二酸化炭素を冷媒とした冷凍空調機器に対して、熱交換器の第2扁平管を流れる高
温流体を高温高圧の超臨界流体、第1扁平管を流れる低温流体を気液二相流体とした場合
、第1扁平管と第2扁平管とが同じ形状であれば、冷媒液を含んだ低温の気液二相状態の
冷媒が第1扁平管を流れる際の圧力損失は、高温高圧の超臨界状態の冷媒が第2扁平管を
流れる際の圧力損失よりも大きくなるが、本実施の形態では、第1扁平管は第2扁平管よ
り幅が大きく並列流路となっているため管内の流速を抑制でき、また長さも短いため適正
な圧力損失を保つことができる。
The heat exchanger according to the fifth embodiment can be used for all the refrigeration air conditioners shown in FIGS. For refrigeration and air conditioning equipment using carbon dioxide as a refrigerant, when the high-temperature fluid flowing through the second flat tube of the heat exchanger is a high-temperature and high-pressure supercritical fluid and the low-temperature fluid flowing through the first flat tube is a gas-liquid two-phase fluid If the first flat tube and the second flat tube have the same shape, the pressure loss when the low-temperature gas-liquid two-phase refrigerant containing the refrigerant flows through the first flat tube is high temperature and high pressure supercritical. However, in this embodiment, the first flat tube has a larger width than the second flat tube and forms a parallel flow path, so that the flow velocity in the tube is larger than the pressure loss when the refrigerant in the state flows through the second flat tube. In addition, since the length is short, an appropriate pressure loss can be maintained.

また、図12(c)に示すように、第1扁平管1a,1b,1cが垂直配置され、上部
に第1入口ヘッダー3が設けられているため、第1入口ヘッダー3に気液二相冷媒が流入
する場合でも、重力分離によりヘッダー内に液面が形成されやすく、ヘッダー内の底面(
扁平管への入口)は全面液相となり、このため流体を3本の第1扁平管1a,1b,1c
の各貫通穴へ均等に流すことができ、流体の温度効率を最大化、さらには圧力損失を最小
化することができ、熱交換器の性能を増加させることができる。
Further, as shown in FIG. 12 (c), the first flat tubes 1a, 1b, 1c are vertically arranged, and the first inlet header 3 is provided on the upper portion. Even when refrigerant flows in, a liquid surface is easily formed in the header by gravity separation, and the bottom surface in the header (
The entrance to the flat tube is in the entire liquid phase, so that the fluid flows into the three first flat tubes 1a, 1b, 1c.
The temperature efficiency of the fluid can be maximized, the pressure loss can be minimized, and the performance of the heat exchanger can be increased.

さらに、図3に示すように、第2扁平管における高温冷媒の温度は出口側ほど低く、か
つ温度変化も小さいため、第1扁平管を流れる低温冷媒との温度差が小さい領域が増えて
熱交換性能が低下するが、本実施の形態の熱交換器を用いれば、積層方向に並んだ第1扁
平管1a,1b,1cの各貫通穴の流路断面積または数を、第2扁平管2の出口側と接触
する扁平管ほど大きくして(図12では、扁平管1a>扁平管1b>扁平管1c)、第2
扁平管2の出口側と接触する扁平管ほど低温冷媒が多く流れるように構成することができ
るので、上記の熱交換特性低下を防ぐことができる。
また、本実施の形態の熱交換器を用いれば、第2扁平管2の貫通穴の流路断面積または
数を、第1扁平管1の入口側と接触する貫通穴ほど大きくして、第1扁平管1の入口側と
接触する貫通穴ほど高温冷媒が多く流れるように構成することができるので、第2扁平管
2を流れる高温冷媒の多くの流量を、冷却性能が高い第1扁平管1の入口側を流れる低温
冷媒と熱交換させることができるため、熱交換性能を上げることができる。
Furthermore, as shown in FIG. 3, since the temperature of the high-temperature refrigerant in the second flat tube is lower on the outlet side and the temperature change is small, the region where the temperature difference with the low-temperature refrigerant flowing through the first flat tube is small increases and heat is increased. Although the exchange performance deteriorates, if the heat exchanger of the present embodiment is used, the cross-sectional area or number of the through holes of the first flat tubes 1a, 1b, and 1c arranged in the stacking direction is determined as the second flat tube. The flat tube in contact with the 2 outlet side is enlarged (in FIG. 12, the flat tube 1a> the flat tube 1b> the flat tube 1c).
Since the flat tube that contacts the outlet side of the flat tube 2 can be configured such that more low-temperature refrigerant flows, it is possible to prevent the above-described deterioration in heat exchange characteristics.
Moreover, if the heat exchanger of this Embodiment is used, the flow-path cross-sectional area or number of the through-hole of the 2nd flat tube 2 will be enlarged, and the 1st flat tube 1 will contact the inlet side, and the 1 Since it can be constituted so that the high-temperature refrigerant flows more in the through hole that comes into contact with the inlet side of the 1 flat tube 1, the first flat tube having a high cooling performance is used for the flow rate of the high-temperature refrigerant flowing through the second flat tube 2. Since heat can be exchanged with the low-temperature refrigerant flowing on the inlet side of 1, the heat exchange performance can be improved.

このように、両流体の間で比熱、密度などの熱物性値や流動条件などの動作条件に差が
発生しても、管内の流速増加に伴う圧力損失の上昇を招くことなく、扁平管の幅、長さ、
積層する段数、及び貫通穴の流路断面積、数などを調整して熱交換器を最適構成できるた
め、熱交換器の性能の最大化、ひいては機器の性能向上を図ることができる。
また、熱交換器がコンパクトに構成できるとともに、封入する使用冷媒量の増加も抑制
できるため、コンパクトで環境性の高い冷凍空調装置を提供することができる。
In this way, even if there is a difference in the thermophysical values such as specific heat and density and operating conditions such as flow conditions between the two fluids, there is no increase in pressure loss due to an increase in the flow velocity in the pipe, Width Length,
Since the heat exchanger can be optimally configured by adjusting the number of stacked layers and the cross-sectional area and the number of through holes, it is possible to maximize the performance of the heat exchanger and thus improve the performance of the equipment.
In addition, since the heat exchanger can be configured in a compact manner and an increase in the amount of refrigerant used can be suppressed, a refrigeration air conditioner that is compact and highly environmentally friendly can be provided.

実施の形態6.
図13は本発明の実施の形態6による熱交換器を示す図であり、図13(a)は斜視図
、図13(b)は図13(a)のb−b線での断面図である。
図において、第1扁平管1及び第2扁平管2はそれぞれ低温流体及び高温流体が流れる
複数の貫通穴を有しており、扁平な面で互いに接触するように、かつそれぞれの長手方向
(第1扁平管と第2扁平管とが接触する面における各流体の流れ方向:L方向)が並行に
なるように、ロウ付け等で接合されている。
また、各扁平管を、アルミニウム合金、銅及び銅合金のような比較的延性の大きな材質
、または肉薄の可とう性部材で構成すれば、第1扁平管1及び第2扁平管2は共に、長手
方向(L方向)を揃えて並行に、扁平な面で接合されており、またヘッダーは両端に接続
されているので、長手方向(L方向)に直交する方向に対し自在に折返せる構成となって
いる。図13では、第1扁平管と第2扁平管とを3段に折返すことにより第1扁平管と第
2扁平管とを積層方向に6層積層した構成であり(積層方向:S方向)、第1扁平管1の
両端はそれぞれ第1入口ヘッダー3及び第1出口ヘッダー4に、第2扁平管2の両端はそ
れぞれ第2入口ヘッダー5及び第2出口ヘッダー6に接続されている。
また、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5、及び第2出口
ヘッダー6は、管軸方向と扁平管の扁平な面とが並行になるようにして、各扁平管をヘッ
ダー側面に接続するヘッダーである。
Embodiment 6 FIG.
13 is a view showing a heat exchanger according to Embodiment 6 of the present invention. FIG. 13 (a) is a perspective view, and FIG. 13 (b) is a cross-sectional view taken along line bb in FIG. 13 (a). is there.
In the figure, each of the first flat tube 1 and the second flat tube 2 has a plurality of through-holes through which a low-temperature fluid and a high-temperature fluid flow. It joins by brazing etc. so that the flow direction (L direction) of each fluid in the surface which a 1 flat tube and a 2nd flat tube contact may become parallel.
Further, if each flat tube is made of a relatively ductile material such as aluminum alloy, copper and copper alloy, or a thin flexible member, the first flat tube 1 and the second flat tube 2 are both A structure in which the longitudinal direction (L direction) is aligned and is joined in parallel with a flat surface, and the header is connected to both ends, so that it can be folded freely with respect to the direction orthogonal to the longitudinal direction (L direction). It has become. FIG. 13 shows a configuration in which six layers of the first flat tube and the second flat tube are stacked in the stacking direction by folding the first flat tube and the second flat tube in three stages (stacking direction: S direction). Both ends of the first flat tube 1 are connected to the first inlet header 3 and the first outlet header 4, respectively, and both ends of the second flat tube 2 are connected to the second inlet header 5 and the second outlet header 6, respectively.
The first inlet header 3, the first outlet header 4, the second inlet header 5, and the second outlet header 6 are arranged so that the tube axis direction and the flat surface of the flat tube are parallel to each other. Is a header that connects to the side of the header.

熱交換性能を大きくするには接触面積を増加させる必要があるが、本実施の形態では、
第1扁平管と第2扁平管とを、各流体の流れ方向が並行となるように配置すると共に、各
扁平管を折返して積層したので、熱交換器が二次元的に大型化することなく第1扁平管と
第2扁平管との接触面積を増加させることができる。
また、第1扁平管に接続される第1ヘッダーと第2扁平管に接続される第2ヘッダーと
は、共に各扁平管の両端部にのみ設ければよいので、ヘッダー同士が干渉することがない

また、低温流体と高温流体の流れの向きを対向させることができるため、温度効率が増
加し、熱交換性能を増加させることができる。
In order to increase the heat exchange performance, it is necessary to increase the contact area.
Since the first flat tube and the second flat tube are arranged so that the flow directions of the fluids are parallel to each other, and the flat tubes are folded and stacked, the heat exchanger does not increase in size two-dimensionally. The contact area between the first flat tube and the second flat tube can be increased.
Moreover, since the 1st header connected to a 1st flat tube and the 2nd header connected to a 2nd flat tube should just be provided only in the both ends of each flat tube, headers may interfere. Absent.
Moreover, since the flow directions of the low-temperature fluid and the high-temperature fluid can be opposed to each other, the temperature efficiency is increased and the heat exchange performance can be increased.

なお、扁平管の代わりに、貫通穴を有する細管を並べて構成しても同様の作用、効果が
あることは言うまでもない。
In addition, it cannot be overemphasized that it is the same effect | action and effect even if it arranges and arranges the thin tube which has a through hole instead of a flat tube.

なお、本実施の形態6の熱交換器は、図2、図4、図5で示した全ての冷凍空調装置に
利用できる。
第1ヘッダー入口3に気液二相状態の低温流体が流入する場合は、第1扁平管内の流れ
が鉛直下向きになるように配置する方が望ましく、この場合、重力分離により第1入口ヘ
ッダー内に液面が形成されやすく、第1扁平管の貫通穴のそれぞれに冷媒が均等分配され
やすくなる。
In addition, the heat exchanger of this Embodiment 6 can be utilized for all the refrigeration air conditioners shown in FIG.2, FIG.4, FIG.5.
When a low-temperature fluid in a gas-liquid two-phase state flows into the first header inlet 3, it is desirable to arrange the flow in the first flat tube so as to be vertically downward. In this case, in the first inlet header by gravity separation The liquid level is easily formed on the first flat tube, and the refrigerant is easily distributed equally to each of the through holes of the first flat tube.

また、本実施の形態の熱交換器は、例えば長手方向を比較的剛性が小さい積層方向に自
在に曲げることができるため、冷凍空調装置の室外ユニットに実装する場合、構成機器(
例えば圧縮機や液だめ容器など)に沿わせて配置したり、容器や配管との間の隙間スペー
スに配置することができ、装置への実装効率が上がり、装置全体の小型化に寄与する。
Moreover, since the heat exchanger of this Embodiment can be freely bent to the lamination direction where the longitudinal direction is comparatively small, for example, when mounted on the outdoor unit of the refrigeration air conditioner,
For example, it can be disposed along a compressor, a reservoir, or the like, or in a gap space between the container and the piping, so that the mounting efficiency to the apparatus is improved and the entire apparatus is reduced in size.

なお、扁平管を折返す段数は3段に限ることはなく、折返さない1段構成から、それ以
上のいくらでも良く、装置の実装スペースに応じて自在に構成できる。
Note that the number of stages in which the flat tube is folded back is not limited to three, and may be any number beyond the one-stage structure in which the flat pipe is not folded back, and can be freely configured according to the mounting space of the apparatus.

実施の形態7.
図14は本発明の実施の形態7による熱交換器を示す図であり、図14(a)は斜視図
、図14(b)はxz面での断面図、図14(c)はxy面での断面図である。
図において、第1扁平管1及び第2扁平管2はそれぞれ低温流体及び高温流体が流れる
複数の貫通穴を有しており、長手方向(第1扁平管と第2扁平管とが接触する面における
各流体の流れ方向:L方向)が並行になるように一体成形されている。一体成形された第
1扁平管1及び第2扁平管2は、アルミニウム合金、銅及び銅合金のような比較的延性の
大きな材質、または肉薄の可とう性部材で構成されており、長手方向途中で折り曲げて3
段で構成されている。また、一体成形された第1扁平管1及び第2扁平管2の両端には、
扁平管の扁平な面と管軸方向とが並行になるようにして、管状部材が接続されており、管
状部材の内部に長手方向に仕切板52を挿入することにより、第1入口ヘッダー3と第2
出口ヘッダー6とが仕切板52を介して隣接配置され、第1出口ヘッダー4と第2入口ヘ
ッダー5とが仕切板52を介して隣接配置された構成となっており、第1扁平管1の両端
で第1入口ヘッダー3及び第1出口ヘッダー4が接続され、第2扁平管2の両端で第2入
口ヘッダー5及び第2出口ヘッダー6が接続されている。
第1扁平管の流路と第2扁平管の流路が一体となった管は、例えばアルミニウムの押出
し成形により加工することができる。
Embodiment 7 FIG.
14 is a view showing a heat exchanger according to Embodiment 7 of the present invention, in which FIG. 14 (a) is a perspective view, FIG. 14 (b) is a cross-sectional view in the xz plane, and FIG. 14 (c) is an xy plane. FIG.
In the figure, each of the first flat tube 1 and the second flat tube 2 has a plurality of through-holes through which a low-temperature fluid and a high-temperature fluid flow, and the longitudinal direction (surface where the first flat tube and the second flat tube are in contact with each other) Are integrally formed so that the flow directions of the fluids in FIG. The integrally formed first flat tube 1 and second flat tube 2 are made of a relatively ductile material such as aluminum alloy, copper and copper alloy, or a thin flexible member. Bend at 3
It is composed of stages. Further, at both ends of the integrally formed first flat tube 1 and second flat tube 2,
The tubular member is connected so that the flat surface of the flat tube and the tube axis direction are parallel to each other. By inserting a partition plate 52 in the longitudinal direction inside the tubular member, the first inlet header 3 and Second
The outlet header 6 is disposed adjacently via the partition plate 52, and the first outlet header 4 and the second inlet header 5 are disposed adjacently via the partition plate 52. The first inlet header 3 and the first outlet header 4 are connected at both ends, and the second inlet header 5 and the second outlet header 6 are connected at both ends of the second flat tube 2.
The tube in which the flow path of the first flat tube and the flow path of the second flat tube are integrated can be processed by, for example, aluminum extrusion.

このような構成によれば、実施の形態6の効果に加え、第1扁平管1と第2扁平管2と
の間の接触熱抵抗を完全になくすことができ大幅な熱交換性能の向上が得られる。
また、扁平管の一体成形、ヘッダーの一体化により、一層コンパクトとなるとともに、
製造の大幅な簡素化を図ることができる。
According to such a configuration, in addition to the effects of the sixth embodiment, the contact thermal resistance between the first flat tube 1 and the second flat tube 2 can be completely eliminated, and the heat exchange performance can be greatly improved. can get.
In addition, the flat tube integrated molding and header integration make it even more compact,
Manufacturing can be greatly simplified.

なお、ここでは、第1扁平管1及び第2扁平管2の貫通穴が一列になっている場合を示
したが、貫通穴は一列である必要はなく、複数の列をなしていてもよい。
In addition, although the case where the through-holes of the first flat tube 1 and the second flat tube 2 are arranged in a row is shown here, the through-holes need not be in a row, and may be in a plurality of rows. .

実施の形態8.
図15は本発明の実施の形態8による熱交換器を示す図であり、図15(a)は斜視図
、図15(b)はxz面での断面図、図15(c)はyz面での断面図である。
実施の形態6の第1扁平管1と第2扁平管2に相当する複数の貫通穴を有した流路をそ
れぞれ3段、合計6段配列して一体成形された多孔管60と、多孔管60の両端に設けら
れた第1ヘッダー体61、第2ヘッダー体62とから構成されている。第1ヘッダー体6
1は、内部に多孔管の1段目〜4段目と、5段目と、6段目とを仕切る仕切板、並びに多
孔管の5段目及び6段目の流路にそれぞれ連通するように接続された第1出口管611及
び第2入口管612を備えている。第2ヘッダー体62は、多孔管の1段目と、2段目と
、3段目〜6段目とを仕切る仕切板、並びに多孔管の1段目及び2段目の流路にそれぞれ
連通するように接続された第1入口管621及び第2出口管622を備えている。また、
第1ヘッダー体61に内蔵され多孔管60の2段目と3段目の流路を連通させる第1カバ
ー613、第2ヘッダー体62に内蔵され多孔管60の3段目と6段目の流路を連通させ
る第2カバー623が設けられている。
Embodiment 8 FIG.
15 is a view showing a heat exchanger according to an eighth embodiment of the present invention. FIG. 15 (a) is a perspective view, FIG. 15 (b) is a cross-sectional view in the xz plane, and FIG. 15 (c) is a yz plane. FIG.
A porous tube 60 integrally formed by arranging three passages each having a plurality of through-holes corresponding to the first flat tube 1 and the second flat tube 2 of Embodiment 6 in a total of six steps; The first header body 61 and the second header body 62 are provided at both ends of the 60. First header body 6
1 communicates with the partition plates that divide the first to fourth, fifth, and sixth stages of the porous tube, and the flow paths of the fifth and sixth stages of the porous tube, respectively. A first outlet pipe 611 and a second inlet pipe 612 connected to each other. The second header body 62 communicates with a partition plate that divides the first stage, the second stage, and the third to sixth stages of the perforated pipe, and the first and second stage flow paths of the perforated pipe, respectively. A first inlet pipe 621 and a second outlet pipe 622 connected to each other. Also,
A first cover 613 that communicates between the second and third flow paths of the porous tube 60 built in the first header body 61, and a third and sixth stage of the porous tube 60 built in the second header body 62. A second cover 623 that communicates the flow path is provided.

このように構成することにより、低温流体が、第1入口管621から、第1ヘッダー体
61、多孔管60、第2ヘッダー体62を蛇行して、第1出口管611へ、一方、高温流
体が、第2入口管612から、第2ヘッダー体62、多孔管60、第1ヘッダー体61を
蛇行して、第2出口管622へ、交互に対向して流れるようにできる。
With this configuration, the low-temperature fluid meanders the first header body 61, the porous pipe 60, and the second header body 62 from the first inlet pipe 621 to the first outlet pipe 611, while the high-temperature fluid However, the second header body 62, the perforated pipe 60, and the first header body 61 can meander from the second inlet pipe 612 to alternately flow to the second outlet pipe 622.

したがって、このような構成によれば、実施の形態6と同様の効果が得られ、また、そ
れに加え、扁平管部分のより一層の一体成形化、ヘッダーの一体化が図れ、より一層コン
パクトになるとともに、製造の大幅な簡素化を図ることができる。
Therefore, according to such a configuration, the same effects as those of the sixth embodiment can be obtained, and in addition to that, the flat tube portion can be further integrally formed and the header can be integrated, thereby further compacting. At the same time, the manufacturing can be greatly simplified.

なお、第1ヘッダー体61と第1カバー613、及び第2ヘッダー体62と第2カバー
623をそれぞれ一体成形しても良く、そうすれば部品点数削減によるさらなる製造簡素
化が図れる。
また、ここでは一体成形された多孔管60の場合を示したが、第1扁平管及び第2扁平
管を積層させて多孔管を構成してもよい。
また、ここでは、各段の流路を構成する貫通穴が一列になっている場合を示したが、貫
通穴は一列である必要はなく、複数の列をなしていてよい。
Note that the first header body 61 and the first cover 613, and the second header body 62 and the second cover 623 may be integrally formed, and further manufacturing can be simplified by reducing the number of parts.
Moreover, although the case of the integrally formed porous tube 60 is shown here, the porous tube may be configured by laminating the first flat tube and the second flat tube.
In addition, here, the case where the through holes constituting the flow paths of the respective stages are arranged in a row is shown, but the through holes are not necessarily arranged in a row, and may be formed in a plurality of rows.

実施の形態9.
図16は本発明の実施の形態9による熱交換器を示す図であり、図16(a)は斜視図
、図16(b)はyz面での断面図、図16(c)は多孔管の詳細図である。
実施の形態6の第1扁平管1と第2扁平管2とに相当する複数の貫通穴を有した流路を
それぞれ3段、合計6段配列して一体成形された多孔管60と、多孔管60の両端に設け
られた第1ヘッダー体61、及び第2ヘッダー体62から構成される。
Embodiment 9 FIG.
16 is a view showing a heat exchanger according to Embodiment 9 of the present invention, in which FIG. 16 (a) is a perspective view, FIG. 16 (b) is a cross-sectional view on the yz plane, and FIG. 16 (c) is a porous tube. FIG.
A porous tube 60 integrally formed by arranging three stages of flow passages each having a plurality of through holes corresponding to the first flat tube 1 and the second flat tube 2 of the sixth embodiment, a total of six steps; The first header body 61 and the second header body 62 are provided at both ends of the tube 60.

第1ヘッダー体61及び第2ヘッダー体62には、多孔管60の2、4、6段目の流路
と連通するようにそれぞれ接続された第1出口管611及び第1入口管621を備えてい
る。
また、第1ヘッダー体61及び第2ヘッダー体62に内蔵され、多孔管60の1、3、
5段目の流路と連通するようにそれぞれ接続された第1内部ヘッダー631及び第2内部
ヘッダー632を備え、さらに、第1内部ヘッダー631及び第2内部ヘッダー632に
は、それぞれ高温流体を外部に取り出す第2入口管612、第2出口管622が接続され
ている。
The first header body 61 and the second header body 62 include a first outlet pipe 611 and a first inlet pipe 621 respectively connected to communicate with the second, fourth, and sixth stage flow paths of the porous pipe 60. ing.
Further, it is built in the first header body 61 and the second header body 62,
The first internal header 631 and the second internal header 632 are respectively connected so as to communicate with the fifth-stage flow path. Further, the first internal header 631 and the second internal header 632 are respectively supplied with high-temperature fluid from the outside. A second inlet pipe 612 and a second outlet pipe 622 are connected to each other.

このように構成することにより、低温流体が、第1入口管621から、第1ヘッダー体
61、多孔管60、第2ヘッダー体62、第1出口管611へ、一方、高温流体が、第2
入口管612から、第2ヘッダー体62、多孔管60、第1ヘッダー体61、第2出口管
622へ、交互に対向して流れるようにできる。
また、ここでは一体成形された多孔管の場合を示したが、第1扁平管及び第2扁平管を
積層させて多孔管を構成してもよい。
With this configuration, the low-temperature fluid is transferred from the first inlet pipe 621 to the first header body 61, the porous pipe 60, the second header body 62, and the first outlet pipe 611, while the high-temperature fluid is supplied to the second header pipe 61, the porous pipe 60, the second header body 62, and the first outlet pipe 611.
From the inlet pipe 612, the second header body 62, the porous pipe 60, the first header body 61, and the second outlet pipe 622 can be alternately opposed to flow.
Moreover, although the case of the integrally formed porous tube is shown here, the porous tube may be configured by laminating the first flat tube and the second flat tube.

したがって、このような構成によれば、実施の形態6と同様の効果が得られ、また、そ
れに加え、ヘッダー構造の簡素化が図れ、より一層コンパクトになるとともに、製造の大
幅な簡素化を図ることができる。
Therefore, according to such a configuration, the same effects as those of the sixth embodiment can be obtained, and in addition to this, the header structure can be simplified, the size can be further reduced, and the manufacturing can be greatly simplified. be able to.

なお、図16(c)に示すように、多孔管60の端部を凹凸構造としているため、ヘッ
ダー体、内部ヘッダー及び多孔管とを接合することにより、高温流体と低温流体が通るそ
れぞれの流路を比較的容易に形成することができる。
As shown in FIG. 16 (c), since the end of the porous tube 60 has an uneven structure, the flow of the high-temperature fluid and the low-temperature fluid flows by joining the header body, the internal header, and the porous tube. The path can be formed relatively easily.

実施の形態10.
図17は本発明の実施の形態10による熱交換器を示す図であり、図17(a)は斜視
図、図17(b)はxy面での断面図である。
第1扁平管1及び第2扁平管2はそれぞれ低温流体及び高温流体が流れる複数の貫通穴
を有しており、扁平な面で互いに接触するように、かつそれぞれの長手方向(第1扁平管
と第2扁平管とが接触する面における各流体の流れ方向:L方向)が並行になるように、
交互に積層され、ロウ付け等で接合されている。
第1扁平管1は積層方向(S方向)に並んだ3本の第1扁平管1a,1b,1c、第2
扁平管2は積層方向(S方向)に並んだ3本の第2扁平管2a,2b,2cからなり、第
1扁平管1a,1b,1cの両端と第2扁平管2a,2bの両端とが積層方向から見て重
ならないように、第1扁平管1a,1b,1cと第2扁平管2a,2b,2cとは、両端
部が扁平な面に沿ってそれぞれ所定角度曲がっている。即ち、第1扁平管1a,1b,1
cの両端部と第2扁平管2a,2b,2cの両端部とを、それぞれ長手方向(L方向)と
積層方向(S方向)とのいずれにも直交する方向(W方向)に、かつ第1扁平管1の両端
と第2扁平管2の両端とが互いに交差しないように曲げて構成されている。
また、第1扁平管1a,1b,1cは両端部でそれぞれ第1入口ヘッダー3と第1出口
ヘッダー4とに接続され、並列流路を構成する。
また、第2扁平管2a,2b,2cは両端部でそれぞれ第2入口ヘッダー5と第2出口
ヘッダー6とに接続され、並列流路を構成する。
さらに、第1扁平管1の貫通穴の流路断面積(流体の流れ方向と垂直な断面積)または
数を第2扁平管2より大きく構成し、第1扁平管1の全流路面積は第2扁平管より大きく
してある。
Embodiment 10 FIG.
17 is a view showing a heat exchanger according to Embodiment 10 of the present invention, in which FIG. 17 (a) is a perspective view and FIG. 17 (b) is a cross-sectional view in the xy plane.
Each of the first flat tube 1 and the second flat tube 2 has a plurality of through holes through which a low-temperature fluid and a high-temperature fluid flow. The first flat tube 1 and the second flat tube 2 are in contact with each other on a flat surface and in the longitudinal direction (first flat tube). The flow direction of each fluid on the surface where the second flat tube and the second flat tube contact each other (L direction)
They are stacked alternately and joined by brazing or the like.
The first flat tube 1 includes three first flat tubes 1a, 1b, 1c, and second arranged in the stacking direction (S direction).
The flat tube 2 is composed of three second flat tubes 2a, 2b, 2c arranged in the stacking direction (S direction), and both ends of the first flat tubes 1a, 1b, 1c and both ends of the second flat tubes 2a, 2b. The first flat tubes 1a, 1b, 1c and the second flat tubes 2a, 2b, 2c are bent at predetermined angles along flat surfaces so that they do not overlap when viewed from the stacking direction. That is, the first flat tubes 1a, 1b, 1
c and both ends of the second flat tubes 2a, 2b, and 2c in the direction (W direction) orthogonal to both the longitudinal direction (L direction) and the stacking direction (S direction), respectively. The both ends of the 1 flat tube 1 and the 2nd flat tube 2 are bent so that they may not cross each other.
The first flat tubes 1a, 1b, and 1c are connected to the first inlet header 3 and the first outlet header 4 at both ends, respectively, and constitute a parallel flow path.
Further, the second flat tubes 2a, 2b, 2c are connected to the second inlet header 5 and the second outlet header 6 at both ends, respectively, to constitute a parallel flow path.
Furthermore, the flow passage cross-sectional area (cross-sectional area perpendicular to the fluid flow direction) or number of the through hole of the first flat tube 1 is configured to be larger than that of the second flat tube 2, and the total flow area of the first flat tube 1 is It is larger than the second flat tube.

また、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5、第2出口ヘッ
ダー6は、管軸が、並列流路を構成する複数の扁平管の扁平な面に直交する枝分岐ヘッダ
ーであり、上記枝分岐ヘッダーの側面に、上記複数の扁平管が接続されている。
The first inlet header 3, the first outlet header 4, the second inlet header 5, and the second outlet header 6 have branch branches whose tube axes are orthogonal to the flat surfaces of a plurality of flat tubes that form parallel flow paths. The plurality of flat tubes are connected to a side surface of the branch branch header.

また、第1扁平管1及び第2扁平管2の材質は、A1050やA1070など1000
番台や、A3003などの3000番台、及び6000番台などのアルミニウム合金、各
ヘッダーの材質は、ステンレス鋼や炭素鋼などの鉄鋼で、それぞれロウ付け等により接合
されている。
The material of the first flat tube 1 and the second flat tube 2 is 1000 such as A1050 and A1070.
The material of the base, aluminum alloys such as 3000 series such as A3003, and 6000 series, and steels such as stainless steel and carbon steel are joined by brazing or the like.

本実施の形態の構成によれば、第1扁平管の両端と第2扁平管の両端とが積層方向から
見て重ならないように、第1扁平管の両端または第2扁平管の両端を、扁平な面に沿って
曲げて構成しているので、第1扁平管と第2扁平管とを、流れ方向が並行となるように交
互に積層しても、第1扁平管に接続される第1ヘッダーと第2扁平管に接続される第2ヘ
ッダーとが干渉することがないため、複数の扁平管を積層方向にも多層積層して接触面積
を増加させることができる。その結果、熱交換性能を上げることができると共に、熱交換
器が二次元的に大型化することなくコンパクトとなる。
また、第1扁平管と第2扁平管の幅方向だけでなく積層方向にも大きくできるため、圧
力損失の増大により流体を熱交換器に送り循環させるための駆動装置の動力増加を招くこ
となく、低温流体及び高温流体の流量を増加させて熱交換特性を増大させることができる

また、製造時ロウ付け等により扁平管やヘッダーを接合する際の加工の簡素化を図るこ
とができる。
According to the configuration of the present embodiment, both ends of the first flat tube or both ends of the second flat tube are arranged so that both ends of the first flat tube and both ends of the second flat tube do not overlap when viewed from the stacking direction. Since the first flat tube and the second flat tube are alternately laminated so that the flow directions thereof are parallel, the first flat tube connected to the first flat tube is configured by bending along a flat surface. Since the first header and the second header connected to the second flat tube do not interfere with each other, a plurality of flat tubes can be stacked in the stacking direction to increase the contact area. As a result, the heat exchange performance can be improved, and the heat exchanger becomes compact without being two-dimensionally enlarged.
Moreover, since it can be enlarged not only in the width direction but also in the stacking direction of the first flat tube and the second flat tube, without increasing the power loss of the driving device for sending and circulating the fluid to the heat exchanger due to the increase in pressure loss. In addition, the heat exchange characteristics can be increased by increasing the flow rates of the low temperature fluid and the high temperature fluid.
Further, it is possible to simplify the processing when joining the flat tube and the header by brazing at the time of manufacture.

また、第1ヘッダーと第2ヘッダーとが干渉することがないため、積層方向に並んだ複
数の第1扁平管及び複数の第2扁平管が、それぞれ並列流路となるように構成できるので
、圧力損失を増大させること無く、流体流量を増加させて熱交換特性を増大させることが
できる。また、熱交換器に流体を送り循環させるための駆動装置の動力増加を招くことが
ない。
In addition, since the first header and the second header do not interfere with each other, the plurality of first flat tubes and the plurality of second flat tubes arranged in the stacking direction can be configured to be parallel flow paths, respectively. The heat exchange characteristics can be increased by increasing the fluid flow rate without increasing the pressure loss. Further, there is no increase in power of the driving device for sending and circulating the fluid to the heat exchanger.

なお、第1扁平管と第2扁平管とで両端が同じ曲げ角度の同じ扁平管を用いれば、上下
反転させて積層して構成することができるため、さらに、製造工程、管理を簡素化するこ
とができる。
また、ここでは、第1扁平管1及び第2扁平管2の貫通穴が一列になっている場合を示
したが、貫通穴は一列である必要はなく、複数の列をなしていてよい。
In addition, if the same flat tube with the same bending angle is used for both the first flat tube and the second flat tube, it can be configured by being inverted upside down, thereby further simplifying the manufacturing process and management. be able to.
Moreover, although the case where the through-holes of the first flat tube 1 and the second flat tube 2 are arranged in a row is shown here, the through-holes need not be in a row, and may be in a plurality of rows.

なお、本実施の形態10の熱交換器は、図2、図4、図5で示した全ての冷凍空調装置
に利用できる。
第1ヘッダー入口3に気液二相状態の低温流体が流入する場合は、第1扁平管内の流れ
が鉛直下向きになるように配置する方が望ましく、この場合、重力分離により第1入口ヘ
ッダー内に液面が形成されやすく、第1扁平管の貫通穴のそれぞれに冷媒が均等分配され
やすくなる。
In addition, the heat exchanger of this Embodiment 10 can be used for all the refrigeration air conditioners shown in FIG. 2, FIG. 4, FIG.
When a low-temperature fluid in a gas-liquid two-phase state flows into the first header inlet 3, it is desirable to arrange the flow in the first flat tube so as to be vertically downward. In this case, in the first inlet header by gravity separation The liquid level is easily formed on the first flat tube, and the refrigerant is easily distributed equally to each of the through holes of the first flat tube.

なお、熱交換器10は、実施の形態10の熱交換器を用いており、各扁平管を、アルミ
ニウム合金、銅及び銅合金のような比較的延性の大きな材質、または肉薄の可とう性部材
で構成すれば、第1扁平管1及び第2扁平管2は共に、長手方向(L方向)を揃えて並行
に、扁平な面で接合されており、またヘッダーは両端に接続されているので、長手方向を
比較的剛性が小さい積層方向に自在に曲げることができるため、冷凍空調装置の室外ユニ
ットに実装する場合、構成機器(例えば圧縮機や液だめ容器など)に沿わせて配置したり
、容器や配管との間の隙間スペースに配置することができ、装置への実装効率が上がり、
装置全体の小型化に寄与する。
In addition, the heat exchanger 10 uses the heat exchanger of Embodiment 10, and each flat tube is made of a relatively large ductile material such as an aluminum alloy, copper, and a copper alloy, or a thin flexible member. Since both the first flat tube 1 and the second flat tube 2 are aligned in the longitudinal direction (L direction) in parallel and joined by flat surfaces, and the headers are connected to both ends. Because the longitudinal direction can be bent freely in the laminating direction with relatively low rigidity, when mounted on the outdoor unit of a refrigeration air conditioner, it can be placed along the components (for example, compressors and reservoirs) , Can be placed in the gap space between the container and piping, and the mounting efficiency to the device is improved,
Contributes to downsizing of the entire device.

以上のように、この発明に係る熱交換器は、第1扁平管と第2扁平管とを、各流体の流
れ方向が直交するようにして、3以上の複数の積層数で積層配置したので、熱交換器が
二次元的に大型化することなくコンパクトとなり、また、第1扁平管と第2扁平管の幅方
向だけでなく積層方向にも大きくできるため、圧力損失の増大を招くことなく、低温流体
及び高温流体の流量を増加させて熱交換特性を増大させることができる。
また、第1扁平管と第2扁平管との少なくとも一方の扁平管を、扁平な面に沿って並ん
だ、または積層方向に並んだ複数の扁平管で構成したので、圧力損失を増大させること無
く、流体流量を増加させて熱交換特性を増大させることができる。
また、並列流路を構成する扁平管に接続される入口ヘッダーまたは出口ヘッダーのいず
れかを管状ヘッダーとし、並列流路を構成する複数の扁平管を束ねて、管状ヘッダーの開
口端に、管状ヘッダーの管軸方向と並列流路を構成する複数の扁平管内の流体の流れ方向
とが同一方向となるようにして接続すれば、上記開口端における各扁平管の貫通穴は、管
状ヘッダーの他方の開口端から流入または流出する流体に対し、ほぼ均等に配置されるた
め、各貫通穴に対する流路抵抗差は小さくなり、流体が均等に分配または混合されるので
、各扁平管における流量が均一化でき、熱交換性能が向上する。
As described above, in the heat exchanger according to the present invention, the first flat tube and the second flat tube are stacked with a plurality of stacks of three or more so that the flow directions of the respective fluids are orthogonal to each other. , Heat exchanger
It is compact without increasing in size two-dimensionally, and can be increased not only in the width direction of the first flat tube and the second flat tube but also in the stacking direction. Heat exchange characteristics can be increased by increasing the flow rate of the fluid.
Further, since at least one of the first flat tube and the second flat tube is composed of a plurality of flat tubes arranged along the flat surface or arranged in the stacking direction, the pressure loss is increased. And the heat exchange characteristics can be increased by increasing the fluid flow rate.
In addition, either the inlet header or the outlet header connected to the flat tubes constituting the parallel flow path is a tubular header, and a plurality of flat tubes constituting the parallel flow path are bundled, and the tubular header is formed at the opening end of the tubular header. If the connection is made so that the flow direction of the fluid in the plurality of flat tubes constituting the parallel flow path is the same direction, the through hole of each flat tube at the open end is the other side of the tubular header. Since the fluid flowing in or out from the open end is arranged almost evenly, the flow resistance difference with respect to each through hole is small, and the fluid is evenly distributed or mixed, so the flow rate in each flat tube is uniform. And heat exchange performance is improved.

また、この発明に係る熱交換器は、第1扁平管と第2扁平管とを、各流体の流れ方向が
並行になるようにして折り返し、3以上の複数の積層数で積層配置したので、熱交換器が
二次元的に大型化することなくコンパクトとなり、また、第1扁平管と第2扁平管の幅
方向だけでなく積層方向にも大きくできるため、圧力損失の増大を招くことなく、低温流
体及び高温流体の流量を増加させて熱交換特性を増大させることができる。
また、第1扁平管と第2扁平管との少なくとも一方の扁平管を、扁平な面に沿って並ん
だ複数の扁平管で構成し、上記複数の扁平管が並列流路を構成するようにすれば、圧力損
失を増大させること無く、流体流量を増加させて熱交換特性を増大させることができる。
また、上記並列流路を構成する扁平管に接続される入口ヘッダーまたは出口ヘッダーの
いずれかを管状ヘッダーとし、並列流路を構成する複数の扁平管を束ねて、管状ヘッダー
の開口端に、管状ヘッダーの管軸方向と並列流路を構成する複数の扁平管内の流体の流れ
方向とが同一方向となるようにして接続すれば、上記開口端における各扁平管の貫通穴は
、管状ヘッダーの他方の開口端から流入または流出する流体に対し、ほぼ均等に配置され
るため、各貫通穴に対する流路抵抗差は小さくなり、流体が均等に分配または混合される
ので、各扁平管における流量が均一化でき、熱交換性能が向上する。
Further, in the heat exchanger according to the present invention, the first flat tube and the second flat tube are folded so that the flow directions of the respective fluids are parallel to each other, and are arranged in a plurality of layers of 3 or more. Since the heat exchanger becomes compact without increasing in size two-dimensionally, and can be increased not only in the width direction of the first flat tube and the second flat tube but also in the stacking direction, without causing an increase in pressure loss, The heat exchange characteristics can be increased by increasing the flow rates of the cold fluid and the hot fluid.
Further, at least one of the first flat tube and the second flat tube is constituted by a plurality of flat tubes arranged along a flat surface, and the plurality of flat tubes constitute a parallel flow path. In this case, the heat exchange characteristics can be increased by increasing the fluid flow rate without increasing the pressure loss.
In addition, either the inlet header or the outlet header connected to the flat tube constituting the parallel flow path is a tubular header, a plurality of flat tubes constituting the parallel flow path are bundled, and a tubular header is formed at the opening end of the tubular header. If the connection is made so that the pipe axial direction of the header and the flow direction of the fluid in the plurality of flat tubes constituting the parallel flow path are in the same direction, the through hole of each flat tube at the open end is the other side of the tubular header Because the fluid flows in or out from the open end of the tube, the flow resistance difference for each through hole is small and the fluid is evenly distributed or mixed, so the flow rate in each flat tube is uniform. The heat exchange performance is improved.

また、この発明に係る熱交換器は、第1扁平管と第2扁平管とを、各流体の流れ方向が
並行になるようにして積層配置したので、熱交換器が 二次元的に大型化することなくコ
ンパクトとなり、また、第1扁平管と第2扁平管の幅方向だけでなく積層方向にも大きく
できるため、圧力損失の増大を招くことなく、低温流体及び高温流体の流量を増加させて
熱交換特性を増大させることができる。
また、第1扁平管と第2扁平管との少なくとも一方の扁平管を、積層方向に並んだ複数
の扁平管で構成し、上記複数の扁平管が並列流路を構成するようにしたので、圧力損失を
増大させること無く、流体流量を増加させて熱交換特性を増大させることができる。
また、上記複数の扁平管の両端を、第1扁平管の両端と第2扁平管の両端とが互いに交
差しないように、各流体の流れ方向と積層方向とのいずれにも直交する方向に曲げて構成
するので、第1扁平管と第2扁平管とを、流れ方向が並行となるように交互に積層しても
、各扁平管の両端に接続されるヘッダーが干渉することがない。
また、並列流路を構成する扁平管に接続される入口ヘッダーまたは出口ヘッダーのいず
れかを管状ヘッダーとし、並列流路を構成する複数の扁平管を束ねて、管状ヘッダーの開
口端に、管状ヘッダーの管軸方向と並列流路を構成する複数の扁平管内の流体の流れ方向
とが同一方向となるようにして接続すれば、上記開口端における各扁平管の貫通穴は、管
状ヘッダーの他方の開口端から流入または流出する流体に対し、ほぼ均等に配置されるた
め、各貫通穴に対する流路抵抗差は小さくなり、流体が均等に分配または混合されるので
、各扁平管における流量が均一化でき、熱交換性能が向上する。
In the heat exchanger according to the present invention, the first flat tube and the second flat tube are stacked so that the flow directions of the respective fluids are parallel to each other, so that the heat exchanger is two-dimensionally enlarged. And the flow rate of the low-temperature fluid and the high-temperature fluid can be increased without causing an increase in pressure loss because the size can be increased not only in the width direction but also in the stacking direction of the first flat tube and the second flat tube. The heat exchange characteristics can be increased.
In addition, since at least one of the first flat tube and the second flat tube is composed of a plurality of flat tubes arranged in the stacking direction, the plurality of flat tubes constitute a parallel flow path. The heat exchange characteristics can be increased by increasing the fluid flow rate without increasing the pressure loss.
Further, both ends of the plurality of flat tubes are bent in a direction perpendicular to both the flow direction of each fluid and the stacking direction so that the both ends of the first flat tube and the both ends of the second flat tube do not intersect each other. Therefore, even if the first flat tubes and the second flat tubes are alternately stacked so that the flow directions are parallel, headers connected to both ends of each flat tube do not interfere.
In addition, either the inlet header or the outlet header connected to the flat tubes constituting the parallel flow path is a tubular header, and a plurality of flat tubes constituting the parallel flow path are bundled, and the tubular header is formed at the opening end of the tubular header. If the connection is made so that the flow direction of the fluid in the plurality of flat tubes constituting the parallel flow path is the same direction, the through hole of each flat tube at the open end is the other side of the tubular header. Since the fluid flowing in or out from the open end is arranged almost evenly, the flow resistance difference with respect to each through hole is small, and the fluid is evenly distributed or mixed, so the flow rate in each flat tube is uniform. And heat exchange performance is improved.

また、この発明に係る熱交換器は、第1扁平管または第2扁平管をアルミニウム合金で
構成し、各ヘッダーを鉄鋼で構成したので、小型、低コスト化が図れると共に、一般的に
使用されている銅配管に比較的容易に取り付けることができる効果がある。
In addition, the heat exchanger according to the present invention includes the first flat tube or the second flat tube made of an aluminum alloy and each header made of steel, so that it can be reduced in size and cost and is generally used. There is an effect that it can be attached to a copper pipe that is relatively easy.

また、この発明に係る冷凍空調装置は、本発明の上記熱交換器を用いたので、高性能で
コンパクトな冷凍空調装置を得ることが可能となる。
Moreover, since the refrigerating and air-conditioning apparatus according to the present invention uses the heat exchanger of the present invention, a high-performance and compact refrigerating and air-conditioning apparatus can be obtained.

1 第1扁平管、2 第2扁平管、3 第1入口ヘッダー、4 第1出口ヘッダー、5
第2入口ヘッダー、6 第2出口ヘッダー、10 熱交換器、20 圧縮機、 21
放熱器、22 減圧装置、23 冷却器、31 第2減圧装置、32 バイパス配管、3
3 インジェクションポート、40 補助圧縮機、41 補助放熱器、42 補助減圧装
置、43 液溜め容器、50 内壁 51 オリフィス、52 仕切板、60 多孔管、
61 第1ヘッダー体、62 第2ヘッダー体、611 第1出口管、612 第2入口
管、613 第1カバー、621 第1入口管、622 第2出口管、623 第2カバ
ー、631 第1内部ヘッダー、632 第2内部ヘッダー。
DESCRIPTION OF SYMBOLS 1 1st flat pipe, 2 2nd flat pipe, 3 1st inlet header, 4 1st outlet header, 5
2nd inlet header, 6 2nd outlet header, 10 heat exchanger, 20 compressor, 21
Radiator, 22 decompressor, 23 cooler, 31 second decompressor, 32 bypass pipe, 3
3 Injection port, 40 Auxiliary compressor, 41 Auxiliary radiator, 42 Auxiliary decompressor, 43 Liquid reservoir, 50 Inner wall 51 Orifice, 52 Partition plate, 60 Perforated tube,
61 1st header body, 62 2nd header body, 611 1st outlet pipe, 612 2nd inlet pipe, 613 1st cover, 621 1st inlet pipe, 622 2nd outlet pipe, 623 2nd cover, 631 1st inside Header, 632 Second internal header.

Claims (11)

低温流体が流れる貫通穴を有する扁平状の第1扁平管と、高温流体が流れる貫通穴を有する扁平状の第2扁平管と、上記第1扁平管の両端にそれぞれ接続された第1入口ヘッダー及び第1出口ヘッダーと、上記第2扁平管の両端にそれぞれ接続された第2入口ヘッダー及び第2出口ヘッダーとを備えた熱交換器であって、上記第1扁平管と上記第2扁平管とは、扁平な面で互いに接触するように、かつ上記低流体の流れ方向と上記高温流体の流れ方向とが並行となるようにして積層配置されると共に、上記第1扁平管と上記第2扁平管との少なくとも一方の扁平管は、積層方向に並んだ複数の扁平管で構成され、上記第1扁平管の両端と上記第2扁平管の両端とが互いに交差しないように、上記複数の扁平管の両端を、上記各流体の流れ方向と上記積層方向とのいずれにも直交する方向且つ上記扁平な面に沿って曲げて構成し、上記複数の扁平管と、上記複数の扁平管の両端にそれぞれ設けた入口ヘッダー及び出口ヘッダーとにより並列流路を構成したことを特徴とする熱交換器。 A flat first flat tube having a through hole through which a low temperature fluid flows, a flat second flat tube having a through hole through which a high temperature fluid flows, and a first inlet header connected to both ends of the first flat tube, respectively. And a first outlet header and a second inlet header and a second outlet header connected to both ends of the second flat tube, respectively, wherein the first flat tube and the second flat tube Are arranged so that they are in contact with each other on a flat surface and the flow direction of the low fluid and the flow direction of the high-temperature fluid are parallel to each other, and the first flat tube and the second At least one flat tube with the flat tube is composed of a plurality of flat tubes arranged in the stacking direction, and the plurality of the plurality of flat tubes are arranged so that both ends of the first flat tube and both ends of the second flat tube do not intersect each other. The flow direction of each of the fluids above both ends of the flat tube Bending along a direction perpendicular to any of the laminating directions and along the flat surface, the plurality of flat tubes and an inlet header and an outlet header respectively provided at both ends of the flat tubes A heat exchanger comprising a flow path. 並列流路を構成する入口ヘッダーまたは並列流路を構成する出口ヘッダーのいずれかを、管軸が、上記並列流路を構成する複数の扁平管の扁平な面に直交する枝分岐ヘッダーで構成し、上記枝分岐ヘッダーの側面に、上記複数の扁平管を接続したことを特徴とする請求項1記載の熱交換器。 Either the inlet header that constitutes the parallel flow path or the outlet header that constitutes the parallel flow path is constituted by a branch-branch header whose tube axis is orthogonal to the flat surfaces of the plurality of flat tubes constituting the parallel flow path. The heat exchanger according to claim 1, wherein the plurality of flat tubes are connected to a side surface of the branch branch header. 並列流路を構成する入口ヘッダーまたは並列流路を構成する出口ヘッダーのいずれかを、両端が開口した管状ヘッダーで構成し、上記並列流路を構成する複数の扁平管を束ねて、上記管状ヘッダーの開口端に、上記管状ヘッダーの管軸方向と上記複数の扁平管内の流体の流れ方向とが同一方向となるようにして接続したことを特徴とする請求項1記載の熱交換器。 Either the inlet header constituting the parallel flow path or the outlet header constituting the parallel flow path is constituted by a tubular header having both ends opened, and the plurality of flat tubes constituting the parallel flow path are bundled to form the tubular header The heat exchanger according to claim 1, wherein a tube axial direction of the tubular header and a flow direction of fluid in the plurality of flat tubes are connected to the open end of the tubular header in the same direction. 第1扁平管及び第2扁平管は、それぞれ複数の貫通穴を有し、上記第1扁平管の貫通穴と
上記第2扁平管の貫通穴とは、数、流路断面積、配列ピッチの少なくとも一つが異なるこ
とを特徴とする請求項1〜3のいずれか1項に記載の熱交換器。
Each of the first flat tube and the second flat tube has a plurality of through holes, and the through holes of the first flat tube and the through holes of the second flat tube have a number, a channel cross-sectional area, and an arrangement pitch. The heat exchanger according to any one of claims 1 to 3, wherein at least one of them is different.
低温流体及び高温流体の少なくとも一方は、気液二相状態の流体であることを特徴とする
請求項1〜4のいずれか1項に記載の熱交換器。
The heat exchanger according to any one of claims 1 to 4, wherein at least one of the low-temperature fluid and the high-temperature fluid is a gas-liquid two-phase fluid.
低温流体及び高温流体の少なくとも一方は、気液二相状態の流体であり、第1扁平管また
は第2扁平管内を流れる上記気液二相状態の流れ方向が、鉛直方向となるように、第1扁
平管または第2扁平管を配置したことを特徴とする請求項1〜5のいずれか1項に記載の熱交換器。
At least one of the low-temperature fluid and the high-temperature fluid is a gas-liquid two-phase fluid, and the flow direction in the gas-liquid two-phase state flowing in the first flat tube or the second flat tube is the vertical direction. The heat exchanger according to any one of claims 1 to 5, wherein one flat tube or a second flat tube is disposed.
並列流路を構成する複数の扁平管は、各扁平管の端部を円弧状に湾曲させて環状に並べ、
管状ヘッダーの開口端に接続したことを特徴とする請求項3に記載の熱交換器。
The plurality of flat tubes constituting the parallel flow path are arranged in an annular shape by curving the ends of the flat tubes in an arc shape,
The heat exchanger according to claim 3, wherein the heat exchanger is connected to an open end of a tubular header.
管状ヘッダーの内部に、流路断面積が前後の流路断面積より小さいオリフィスを設けたこ
とを特徴とする請求項3に記載の熱交換器。
The heat exchanger according to claim 3, wherein an orifice having a channel cross-sectional area smaller than the front and rear channel cross-sectional areas is provided inside the tubular header.
低温流体及び高温流体の少なくとも一方は、二酸化炭素であることを特徴とする請求項1
〜8のいずれか1項に記載の熱交換器。
The at least one of the low temperature fluid and the high temperature fluid is carbon dioxide.
The heat exchanger of any one of -8.
第1扁平管または第2扁平管をアルミニウム合金で構成し、各ヘッダーを鉄鋼で構成した
ことを特徴とする請求項1〜9のいずれか1項に記載の熱交換器。
The heat exchanger according to any one of claims 1 to 9, wherein the first flat tube or the second flat tube is made of an aluminum alloy, and each header is made of steel.
請求項1〜10のいずれか1項に記載の熱交換器を用いた冷凍空調装置。 A refrigeration air conditioner using the heat exchanger according to any one of claims 1 to 10.
JP2012032997A 2012-02-17 2012-02-17 Heat exchanger and refrigeration air conditioning device Pending JP2012093091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032997A JP2012093091A (en) 2012-02-17 2012-02-17 Heat exchanger and refrigeration air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032997A JP2012093091A (en) 2012-02-17 2012-02-17 Heat exchanger and refrigeration air conditioning device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010166165A Division JP5141730B2 (en) 2010-07-23 2010-07-23 Heat exchanger and refrigeration air conditioner

Publications (1)

Publication Number Publication Date
JP2012093091A true JP2012093091A (en) 2012-05-17

Family

ID=46386598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032997A Pending JP2012093091A (en) 2012-02-17 2012-02-17 Heat exchanger and refrigeration air conditioning device

Country Status (1)

Country Link
JP (1) JP2012093091A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188866U (en) * 1975-01-13 1976-07-16
JPS5572790A (en) * 1978-11-06 1980-05-31 Akzo Nv Heat exchanger using smallldiameter pipe
JPH0236768U (en) * 1988-08-29 1990-03-09
JPH04263720A (en) * 1990-12-28 1992-09-18 Showa Alum Corp Heat-exchanger
JPH10132427A (en) * 1996-10-30 1998-05-22 Daikin Ind Ltd Heat-exchanger
JPH11157326A (en) * 1997-11-26 1999-06-15 Calsonic Corp Heat exchanger
JP2002243374A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Inter-cooler and air conditioner for co2 refrigerant vehicle
JP2002340485A (en) * 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2003287320A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Refrigerant distributor, and air-conditioner using the same
JP2005321151A (en) * 2004-05-10 2005-11-17 Sanden Corp Heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188866U (en) * 1975-01-13 1976-07-16
JPS5572790A (en) * 1978-11-06 1980-05-31 Akzo Nv Heat exchanger using smallldiameter pipe
JPH0236768U (en) * 1988-08-29 1990-03-09
JPH04263720A (en) * 1990-12-28 1992-09-18 Showa Alum Corp Heat-exchanger
JPH10132427A (en) * 1996-10-30 1998-05-22 Daikin Ind Ltd Heat-exchanger
JPH11157326A (en) * 1997-11-26 1999-06-15 Calsonic Corp Heat exchanger
JP2002243374A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Inter-cooler and air conditioner for co2 refrigerant vehicle
JP2002340485A (en) * 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2003287320A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Refrigerant distributor, and air-conditioner using the same
JP2005321151A (en) * 2004-05-10 2005-11-17 Sanden Corp Heat exchanger

Similar Documents

Publication Publication Date Title
JP4788766B2 (en) Heat exchanger and refrigeration air conditioner
JP5777622B2 (en) Heat exchanger, heat exchange method and refrigeration air conditioner
JP4827882B2 (en) Heat exchanger module, heat exchanger, indoor unit and air-conditioning refrigeration apparatus
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
CN112154297B (en) Integrated liquid air cooled condenser and low temperature radiator
JP2010091250A (en) Heat regenerator
JP2008503705A (en) Integrated heat exchanger for use in cooling systems
JP2009085569A (en) Evaporator unit
WO2007083680A1 (en) Evaporator
JP2002340485A (en) Heat exchanger for vehicle
JP4561305B2 (en) Heat exchanger
JP5141730B2 (en) Heat exchanger and refrigeration air conditioner
CN101915480B (en) Heat exchanger and refrigeration air conditioning device
US6814135B2 (en) Stacked-type evaporator
JP5540816B2 (en) Evaporator unit
JP2024045455A (en) Heat exchanger and refrigeration cycle device
JP2012093091A (en) Heat exchanger and refrigeration air conditioning device
WO2023079630A1 (en) Refrigeration cycle unit for vehicle
JP2007255871A (en) Heat exchanger for vehicle air conditioner
JP6801600B2 (en) Heat exchanger
JP2020186834A (en) Heat exchanger, and air conditioner using the same
WO2017170139A1 (en) Heat exchange device, refrigeration system, and heat exchange method
JP2014126285A (en) Refrigeration device
JP2005300021A (en) Heat exchanger
JP2020085257A (en) Header for heat exchanger, heat exchanger, outdoor unit, and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008