JP2012089449A - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents
燃料電池システムおよび燃料電池システムの制御方法 Download PDFInfo
- Publication number
- JP2012089449A JP2012089449A JP2010237713A JP2010237713A JP2012089449A JP 2012089449 A JP2012089449 A JP 2012089449A JP 2010237713 A JP2010237713 A JP 2010237713A JP 2010237713 A JP2010237713 A JP 2010237713A JP 2012089449 A JP2012089449 A JP 2012089449A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- output
- control unit
- value
- dry state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】燃料電池セル内の乾燥状態を判定し、ドライアップとならないように発電を制御する。
【解決手段】燃料電池セルの乾燥状態を測定するためにあらかじめ規定された測定環境下において、燃料電池セルの端子間に印加する電圧を走査し、走査する電圧の電圧値および電圧値において前記端子間に流れる電流値を測定する。測定した電圧値および電流値から燃料電池セルの容量成分を算出し、算出した容量成分に基づいて燃料電池セルの乾燥状態を判定する。
【選択図】図2
【解決手段】燃料電池セルの乾燥状態を測定するためにあらかじめ規定された測定環境下において、燃料電池セルの端子間に印加する電圧を走査し、走査する電圧の電圧値および電圧値において前記端子間に流れる電流値を測定する。測定した電圧値および電流値から燃料電池セルの容量成分を算出し、算出した容量成分に基づいて燃料電池セルの乾燥状態を判定する。
【選択図】図2
Description
本発明は、燃料電池セル内の乾燥によって発生する発電性能が大きく低下してしまう状態(いわゆる「ドライアップ」)とならないように発電を制御することが可能な技術に関する。
燃料電池セルの構成要素として用いられる電解質膜は、水分を含んだ状態においてのみ高いプロトン(水素イオン)の伝導性を示す。このため、燃料電池セル内の水分が不足して電解質膜の乾燥が進むと、プロトン伝導率(イオン伝導率)の低下に伴って燃料電池セルの発電性能が大きく低下してしまう状態(ドライアップ)が発生する。
従来技術として、例えば特許文献1には、燃料電池セルのドライアップの発生を検知して、発電性能の回復制御を実行する技術が開示されている。
しかしながら、ドライアップが発生して発電性能が低下する速度、具体的には、電圧が降下する速度は、非常に速いため、従来技術のようにドライアップの発生を検知してから回復制御を実行していたのでは、発電性能の低下(電圧降下)を回避することはできない、という問題がある。
そこで、本発明は、燃料電池セル内の乾燥状態を判定し、これに応じてドライアップとならないように発電を制御することが可能な技術を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
燃料電池セルから構成される燃料電池を備えた燃料電池システムであって、
前記燃料電池システムの動作を制御する制御部と、
前記制御部からの指示に従って、前記燃料電池セルの2つの電極にそれぞれ発電用のガスを供給するガス供給部と、
前記制御部からの指示に従って、前記燃料電池からの電力の出力を制御する電力出力制御部と、
前記制御部からの指示に従って、前記燃料電池セルの電極間に印加する電圧を走査し、前記走査する電圧の電圧値および前記電圧値において前記電極間に流れる電流値を測定する測定部と、
を備え、
前記制御部は、
前記燃料電池セルの乾燥状態を測定するためにあらかじめ規定された測定環境下で前記ガス供給部が動作している状態において、前記測定部によって前記電圧値および前記電流値を測定させ、前記電圧値および前記電流値から前記燃料電池セルの乾燥状態と相関を有する容量成分を算出し、前記容量成分に基づいて前記燃料電池セルの乾燥状態を判定する乾燥状態判定部を含む
ことを特徴とする燃料電池システム。
上記燃料電池システムによれば、算出した燃料電池セルの容量成分は燃料電池セルの乾燥状態と相関があるので、燃料電池セルの乾燥状態を判定することが可能となるため、判定した燃料電池セルの乾燥状態に応じて、ドライアップが発生しないような発電制御を容易に行うことが可能となる。
燃料電池セルから構成される燃料電池を備えた燃料電池システムであって、
前記燃料電池システムの動作を制御する制御部と、
前記制御部からの指示に従って、前記燃料電池セルの2つの電極にそれぞれ発電用のガスを供給するガス供給部と、
前記制御部からの指示に従って、前記燃料電池からの電力の出力を制御する電力出力制御部と、
前記制御部からの指示に従って、前記燃料電池セルの電極間に印加する電圧を走査し、前記走査する電圧の電圧値および前記電圧値において前記電極間に流れる電流値を測定する測定部と、
を備え、
前記制御部は、
前記燃料電池セルの乾燥状態を測定するためにあらかじめ規定された測定環境下で前記ガス供給部が動作している状態において、前記測定部によって前記電圧値および前記電流値を測定させ、前記電圧値および前記電流値から前記燃料電池セルの乾燥状態と相関を有する容量成分を算出し、前記容量成分に基づいて前記燃料電池セルの乾燥状態を判定する乾燥状態判定部を含む
ことを特徴とする燃料電池システム。
上記燃料電池システムによれば、算出した燃料電池セルの容量成分は燃料電池セルの乾燥状態と相関があるので、燃料電池セルの乾燥状態を判定することが可能となるため、判定した燃料電池セルの乾燥状態に応じて、ドライアップが発生しないような発電制御を容易に行うことが可能となる。
[適用例2]
適用例1記載の燃料電池システムであって、
前記制御部は、
あらかじめ規定された容量成分と出力可能最大電流との関係を示す情報を参照することにより、算出した前記容量成分に対応する前記燃料電池の乾燥状態において出力が許容される出力許容電流値を決定する出力許容電流決定部を含む
ことを特徴とする燃料電池システム。
この構成によれば、判定した燃料電池セルの乾燥状態において、ドライアップが発生しないと推定される出力許容電流値を容易に求めることができる。
適用例1記載の燃料電池システムであって、
前記制御部は、
あらかじめ規定された容量成分と出力可能最大電流との関係を示す情報を参照することにより、算出した前記容量成分に対応する前記燃料電池の乾燥状態において出力が許容される出力許容電流値を決定する出力許容電流決定部を含む
ことを特徴とする燃料電池システム。
この構成によれば、判定した燃料電池セルの乾燥状態において、ドライアップが発生しないと推定される出力許容電流値を容易に求めることができる。
[適用例3]
適用例2記載の燃料電池システムであって、
前記制御部は、
前記出力許容電流値以下で前記燃料電池セルが発電するように前記ガス供給部および前記電力出力制御部の動作を制御する発電制御部を含む
ことを特徴とする燃料電池システム。
この構成によれば、判定した燃料電池セルの乾燥状態において、燃料電池セルが発電により出力する電流は、ドライアップが発生しないと推定される出力許容電流値以下となるように制御されるので、ドライアップが発生して発電性能が低下し、発生電圧が負電圧となって、燃料電池セルが劣化することを抑制することが可能となる。
適用例2記載の燃料電池システムであって、
前記制御部は、
前記出力許容電流値以下で前記燃料電池セルが発電するように前記ガス供給部および前記電力出力制御部の動作を制御する発電制御部を含む
ことを特徴とする燃料電池システム。
この構成によれば、判定した燃料電池セルの乾燥状態において、燃料電池セルが発電により出力する電流は、ドライアップが発生しないと推定される出力許容電流値以下となるように制御されるので、ドライアップが発生して発電性能が低下し、発生電圧が負電圧となって、燃料電池セルが劣化することを抑制することが可能となる。
[適用例4]
適用例3記載の燃料電池システムであって、
前記発電制御部は、出力要求が前記出力許容電流値を超える場合において、前記ガス供給部の動作を制御して、前記ガス供給部が供給するガスを加湿することにより、前記燃料電池セル内を加湿させることを特徴とする燃料電池システム。
この構成によれば、出力許容電流値を越える電流を出力するように発電しても、燃料電池セルを加湿して乾燥状態を改善することにより、ドライアップが発生して発電性能が低下し、発生電圧が負電圧となって、燃料電池セルが劣化することを抑制することが可能となる。
適用例3記載の燃料電池システムであって、
前記発電制御部は、出力要求が前記出力許容電流値を超える場合において、前記ガス供給部の動作を制御して、前記ガス供給部が供給するガスを加湿することにより、前記燃料電池セル内を加湿させることを特徴とする燃料電池システム。
この構成によれば、出力許容電流値を越える電流を出力するように発電しても、燃料電池セルを加湿して乾燥状態を改善することにより、ドライアップが発生して発電性能が低下し、発生電圧が負電圧となって、燃料電池セルが劣化することを抑制することが可能となる。
[適用例5]
適用例1ないし適用例4のいずれか一例に記載の燃料電池システムであって、
前記測定部の前記走査する電圧の下限値は0.8Vとすることを特徴とする燃料電池システム。
この構成によれば、走査する電圧の変動の幅を制限することにより、燃料電池セルに含まれる触媒電極の劣化を抑制することができる。
適用例1ないし適用例4のいずれか一例に記載の燃料電池システムであって、
前記測定部の前記走査する電圧の下限値は0.8Vとすることを特徴とする燃料電池システム。
この構成によれば、走査する電圧の変動の幅を制限することにより、燃料電池セルに含まれる触媒電極の劣化を抑制することができる。
なお、本発明は、種々の形態で実現することが可能であり、例えば、燃料電池システム、燃料電池システムの制御方法、および、燃料電池セルの乾燥状態判定方法などの種々の形態で実現することが可能である。
本発明の実施の形態を、実施例に基づいて以下の順序で説明する。
A.第1実施例:
B.第2実施例:
C.第3実施例:
D.変形例:
A.第1実施例:
B.第2実施例:
C.第3実施例:
D.変形例:
A.第1実施例:
A1.システム構成:
図1は、第1実施例としての燃料電池システムの概略構成を示すブロック図である。この燃料電池システム10は、燃料電池100と、アノードガス(燃料ガス)供給部200およびカソードガス(酸化ガス)供給部300と、冷却装置400と、モニター切替部500と、ポテンショスタット600と、電力出力制御部700と、システム制御部800と、負荷装置900と、を備えている。
A1.システム構成:
図1は、第1実施例としての燃料電池システムの概略構成を示すブロック図である。この燃料電池システム10は、燃料電池100と、アノードガス(燃料ガス)供給部200およびカソードガス(酸化ガス)供給部300と、冷却装置400と、モニター切替部500と、ポテンショスタット600と、電力出力制御部700と、システム制御部800と、負荷装置900と、を備えている。
燃料電池100は、アノードに供給されるアノードガスとしての燃料ガス(水素)と、カソードに供給されるカソードガスとしての酸化ガス(空気に含まれる酸素)との電気化学反応により電力を発生する。この燃料電池100としては、固体高分子電解質膜を用いた燃料電池セルで構成される燃料電池が対象となる。また、燃料電池100は、複数の燃料電池セル110を積層したスタック構造を有するものとする。
燃料電池セル110は、図示は省略するが、基本的に、膜電極接合体((MEA:Membrane-Electrode Assembly)をセパレータで挟持した構成を有している。MEAは、イオン交換膜からなる電解質膜と、電解質膜のアノード側の面上に形成された触媒電極(「アノード側触媒電極」とも呼ぶ)と、電解質膜のカソード側の面上に形成された触媒電極(「カソード側触媒電極」とも呼ぶ)とで構成される。MEAとセパレータとの間には、アノード側およびカソード側に、それぞれガス拡散層(GDL)が設けられている。また、セパレータとガス拡散層に接する面には、アノードガスやカソードガスのガスを流す溝状のガス流路が形成されている。ただし、セパレータとガス拡散層との間に、ガス流路部が別途設けられる場合もある。
アノードガス供給部200は、水素供給源210と、流量調整部220と、加湿調整部230と、背圧調整バルブ240と、を備える。水素供給源210と、流量調整部220と、加湿調整部230と、背圧調整バルブ240とは、それぞれ、システム制御部800の入出力制御部810に接続されており、システム制御部800からの指示に従って動作する。
アノードガス供給部200は、燃料電池100を構成する各燃料電池セル110のアノード(以下、「燃料電池100のアノード」とも略す)に、水素供給源210から、配管270a、流量調整部220、配管270b、加湿調整部230、および、配管270cを介して、燃料ガスである水素をアノードガスとして供給する。水素供給源210は、例えば、高圧水素が貯蔵された水素タンクと圧力調整弁を用いて構成することができ、貯蔵されている水素を、システム制御部800からの指示に従った圧力で流量調整部220へ向けて送り出すことができる。また、流量調整部220は、システム制御部800からの指示に従った流量でアノードガス(水素)を燃料電池100のアノードへ供給する。また、加湿調整部230は、流量調整部220から送り出されたアノードガスを、システム制御部800からの指示に従って加湿する。なお、配管270cには、露点計280が接続されており、燃料電池100のアノードに供給されるアノードガスの露点温度Haを計測することができ、その出力は、システム制御部800の入出力制御部810に接続される。そして、この露点温度からアノードガスの湿度を求めることができる。
また、アノードガス供給部200は、燃料電池100のアノードから排出されたアノードオフガスを、配管270d、背圧調整バルブ240、配管270eを介して、排気口360から排出する。この際、背圧調整バルブ240は、システム制御部800からの指示に従って、バルブの開閉量を調整することにより、燃料電池100のアノードを流れるアノードガス(水素)の圧力を調整する。なお、アノードオフガスは、電気化学反応に供された後のアノードガス、すなわち、燃料ガス(水素)である。なお、配管270cには、圧力計290が接続されており、燃料電池100のアノードに供給されるアノードガスの圧力Paを計測することができ、その出力は、システム制御部800の入出力制御部810に接続される。また、配管270dにも、圧力計292が接続されており、燃料電池100のアノードから排出されるアノードオフガスの圧力(背圧)Pabを計測することができ、その出力は、システム制御部800の入出力制御部810に接続される。
カソードガス供給部300は、吸気口310と、コンプレッサ320と、流量調整部330と、加湿調整部340と、背圧調整バルブ350と、を備える。コンプレッサ320と、流量調整部330と、加湿調整部340と、背圧調整バルブ350とは、それぞれ、システム制御部800の入出力制御部810に接続されており、システム制御部800からの指示に従って動作する。
カソードガス供給部300は、燃料電池100を構成する各燃料電池セル110のカソード(以下、「燃料電池100のカソード」とも略す)に、吸気口310、配管370a、コンプレッサ320、配管370b、流量調整部330、配管370c、加湿調整部340、および、配管370dを介して、酸化ガスである酸素を含む空気をカソードガスとして供給する。この際、コンプレッサ320は、吸気口310から取り込む空気をシステム制御部800からの指示に従った圧力で流量調整部330へ向けて送り出す。また、流量調整部330は、システム制御部800からの指示に従った流量でカソードガスを燃料電池100のカソードへ供給する。また、加湿調整部340は、流量調整部330から送り出されたカソードガスを、システム制御部800からの指示に従って加湿する。なお、配管370dには、露点計380が接続されており、燃料電池100のアノードに供給されるカソードガスの露点温度Hcを計測することができ、その出力は、システム制御部800の入出力制御部810に接続される。そして、この露点温度からカソードガスの湿度を求めることができる。
また、カソードガス供給部300は、燃料電池100のカソードから排出されたカソードオフガスを、配管370e、背圧調整バルブ350、および、配管370fを介して排気口360から排出する。なお、配管370dには、圧力計390が接続されており、燃料電池100のカソードへ供給されるカソードガスの圧力Pcを計測することができ、その出力は、システム制御部800の入出力制御部810に接続される。また、配管370eにも、圧力計392が接続されており、燃料電池100のカソードから排出されるカソードオフガスの圧力(背圧)Pcbを計測することができ、その出力は、システム制御部800の入出力制御部810に接続される。
なお、アノードガス供給部200およびカソードガス供給部300が本発明のガス供給部に相当する。
冷却装置400は、2つの配管410a,410bを介して燃料電池100に接続されており、配管410aを介して、冷却媒体を供給し、配管410bを介して、冷却に供された後の冷却媒体を受け取ることにより、冷却媒体を循環させて、燃料電池100の冷却を実行する。冷却媒体としては、水、不凍液、空気等を用いることができる。なお、配管410bには、温度計420が接続されており、配管410bを流れる冷却媒体の温度を測定することにより、各燃料電池セル110の温度を測定することができる。なお、温度計420の出力は、システム制御部800の入出力制御部810に接続される。
モニター切替部500は、各燃料電池セル110のモニター端子120に接続されており、いずれか一つの燃料電池セル110のアノード(電極)およびカソード(電極)に対応するモニター端子を、ポテンショスタットの2つの電圧供給端子610に接続する。なお、モニター切替部500は、システム制御部800の入出力制御部810に接続されており、モニター端子の接続の切換は、システム制御部800からの指示に従って実行さる。
ポテンショスタット600は、システム制御部800の入出力制御部810に接続されており、システム制御部800からの指示に従って、モニター切替部500を介して接続されたモニター端子120間、すなわち、一つの燃料電池セル110のアノードとカソードとの間に、一定の速度で変化する走査電圧Vsを印加し、印加した走査電圧Vsの電圧値を電圧計630で測定し、発生する電流Isの電流値を電流計620で測定する。なお、ポテンショスタットでなくても、印加する電圧を一定速度で走査可能であり、そのときの電圧と電流を測定可能な装置であれば用いることができる。なお、このポテンショスタットが本発明における測定部に相当する。
電力出力制御部700は、負荷装置900への電力の出力を制御する制御回路や、二次電池750の充放電を制御する制御回路、コンプレッサや流量調整部、加湿調整部、ポテンショスタット、バルブ、システム制御部、起動回路等への電力の出力を制御する制御回路や、余剰電力調整用の制御回路等の図示しない種々の制御回路を有している。
負荷装置900としては、燃料電池の電力を利用可能な全ての負荷装置が適用可能である。例えば、燃料電池システムを搭載した自動車の場合には、負荷装置としては電動モータ等が挙げられる。
ある。
ある。
システム制御部800は、入出力制御部810と、発電制御部820と、乾燥状態判定部830と、出力許容電流決定部840と、水収支算出部850と、記憶部860と、を備え、燃料電池システム10の動作を制御する。
入出力制御部810は、実際に燃料電池システムの各構成要素からの出力を受け取って対応する機能ブロックに受け渡すとともに、対応する機能ブロックからの指示を各構成要素に出力して、各構成要素の動作を実際に制御する機能ブロックである。発電制御部820は、入出力制御部810を介して各構成要素の動作を制御して発電動作を制御する機能ブロックである。乾燥状態判定部830は、後述するように、燃料電池セル110の乾燥状態、より具体的には、燃料電池セル110に含まれる電解質膜の乾燥状態を判定する機能ブロックである。出力許容電流決定部840は、後述するように、燃料電池セル110の乾燥状態においてドライアップの発生を抑制して出力することが可能な出力許容電流を決定する機能ブロックである。水収支算出部850は、後述するように、燃料電池セル110内の水収支を算出し、出力許容電流を補正する機能ブロックである。記憶部860は、発電制御部820がその制御動作に利用する発電制御情報860aや、乾燥状態判定部830がその判定動作に利用する乾燥状態判定情報860b、出力許容電流決定部840が出力許容電流を決定するために出力許容電流決定情報860c、水収支算出部850が水収支を算出し、出力許容電流を補正するために利用する水収支算出・補正情報860dを記憶する機能ブロックであり、書き換え可能な不揮発性のメモリにより構成される。
システム制御部800は、上記したように、発電制御部820によって各構成要素の動作を制御して発電動作を制御するとともに、二次電池750の充放電を制御して、燃料電池100の発電による電力の出力と、二次電池750からの電力の出力とを制御する。例えば、二次電池750のSOC(State Of Charge:充電状態)が満充電状態の場合には、燃料電池100の発電を停止して、二次電池750から負荷装置900への電力の出力を行い、SOCがあらかじめ規定した状態となった場合には、燃料電池100から負荷装置900への電力の出力を行うとともに、二次電池750への充電を実行する。なお、以下では、このように燃料電池100の発電を停止して、二次電池750から負荷装置900への電力の出力を行う動作を「間欠運転」とも呼ぶ。また、システム制御部800は、発電制御部820による発電動作の制御と平行して、以下で説明するように、乾燥状態判定部830、出力許容電流決定部840、および、水収支算出部850によって、燃料電池セル110の乾燥状態に応じて、ドライアップの発生を抑制して出力することが可能な出力許容電流を決定し、発電制御部820によって出力許容電流を超えないように発電を制御することによって、ドライアップの発生を抑制する制御を行っている。
A2.出力許容電流制御:
図2は、燃料電池セルの乾燥状態に応じて実行する出力許容電流制御を示すフローチャートである。この制御は、発電制御部820が、乾燥状態判定部830と出力許容電流決定部840と水収支算出部850の動作を制御して実行する。この制御は、燃料電池100内のいずれかの燃料電池セル110を対象として実行する。通常は、温度が上昇して乾燥しやすい積層中央部の燃料電池セルを対象とする。
図2は、燃料電池セルの乾燥状態に応じて実行する出力許容電流制御を示すフローチャートである。この制御は、発電制御部820が、乾燥状態判定部830と出力許容電流決定部840と水収支算出部850の動作を制御して実行する。この制御は、燃料電池100内のいずれかの燃料電池セル110を対象として実行する。通常は、温度が上昇して乾燥しやすい積層中央部の燃料電池セルを対象とする。
この制御を開始すると、まず、発電制御部820は、間欠運転状態の判断(ステップS102)を行い、間欠運転でない場合には、二次電池750のSOCが満充電に近い状態を示す基準値以上であるか否か判断し(ステップS104)、間欠運転の場合には、間欠運転が終了するまで待機する(ステップS106)。
そして、ステップS104で二次電池のSOCが基準値未満であった場合、および、ステップS106で間欠運転が終了した場合には、二次電池750が充分に充電可能な状態であるので、後述するステップS108〜S112の処理を実行した後、ステップS102に戻って上記間欠運転の判断処理を繰り返す。一方、ステップS104で二次電池750のSOCが基準値以上であり、満充電状態に近くて、充電を繰り返すことは不可と判断された状態の場合には、後述するステップS120〜S130の処理を実行する。なお、この出力許容電流制御は、燃料電池システムの動作を停止するまで、常時実行される。
まず、二次電池750が充電可能な状態の場合について説明する。この場合には、上記したように、ステップS108〜S112の処理が実行された後、ステップS102に戻る。
ステップS108では、発電制御部820は、乾燥状態判定部830によって燃料電池セル110の乾燥状態に応じて変化する燃料電池セル110の容量成分Csの測定を実行する。この容量成分の測定は以下で説明するようにして実行することができる。
乾燥状態判定部830は、ポテンショスタット600を制御して、一定の速度で変化する走査電圧Vsを印加し、印加した走査電圧Vsの電圧値を電圧計630で測定し、発生する電流Isの電流値を電流計620で測定する。そして、測定した走査電圧Vsの電圧値および電流Isの電流値を取得する。なお、この場合のアノードガス供給部200およびカソードガス供給部300は、1つの燃料電池セル110において理論設計値として最大電流0.06A/cm2となるように設定されているものとする。例えば、発電に充分なアノードガスが供給されるように、アノードストイキ比は充分高く設定され、カソードイキ比は理論設計値となるようなカソードストイキ比、例えば、例えば、通常の1.5/1に対して1/1に設定される。また、ガスの湿度は無加湿状態とされる。
図3は、走査電圧Vsと発生電流Isとの関係の一例を示す説明図である。ここで、走査電圧Vsは一定速度で変化する電圧であり、本例では200mV/secの速度で変化させている。従って、図4の縦軸は走査電圧Vsを示していると同時に、時間を示していることにもなる。従って、規定値0.06A/cm2以上の発生電流Isの積算値(図中の斜線領域の面積)は、走査電圧Vsの印加により燃料電池セル110の容量成分に蓄積された電荷量qsとみなすことができる。そして、この電荷量qsと査電圧Vsの幅とから容量成分Csの値を求めることができる。
従って、乾燥状態判定部830は、取得した走査電圧Vsと発生電流Isに基づいて、規定値0.06A/cm2を除いた発生電流Isの積算値を求め、求めた積算値から容量成分Csの値を求める。
次に、図2のステップS110では、発電制御部820は、出力許容電流決定部840によって、求めた容量成分Csの値に対応する乾燥状態の燃料電池セル110において出力可能な許容電流の限界値(以下、「出力許容電流値」とも呼ぶ)Ilimitを推定する。出力許容電流値Ilimitは、具体的には、以下で説明するようにして求めることができる。
図4は、燃料電池セルの容量成分と最大電流との関係を示す説明図である。図4の関係は、燃料電池セルの容量成分を求め、求めた容量成分の燃料電池セルの最大電流を実験により求めたものである。この図からわかるように、容量成分の値が小さいほど最大電流は小さくなり、燃料電池セルの乾燥度合いが高くなると考えられる。なお、最大電流は、出力電圧が0Vにおける電流であり、これ以上の電流を出力しようとすると、ドライアップが発生し、出力電圧が負電圧となってしまうことが想定される。従って、この最大電流の値が各容量成分に対応する出力許容電流値と推定される。
従って、出力許容電流決定部840は、求めた容量成分Csの値に対応する最大電流の値を、あらかじめ実験的に求めた燃料電池セルの容量成分と最大電流との関係を示した情報を参照することにより、求めた容量成分Csの値に対応する出力許容電流値Ilimitを推定することができる。あらかじめ実験的に求めた燃料電池セルの容量成分と最大電流との関係を示した情報は、出力許容電流決定情報860cとして記憶部860に記憶されている。
次に、図2のステップS112では、発電制御部820は、並行して実行している発電制御処理において、求めた出力電流許容値Ilimitを超えないように発電制御を実行する。こうして、ステップS108〜S112の処理を実行後は、再び、ステップS102に戻って、間欠運転の判断処理を実行する。
次に、二次電池750が満充電状態に近く充電を繰り返すことは不可と判断される状態の場合について説明する。この場合には、上記したように、ステップS120〜S130の処理が実行される。
ステップS120では、ステップS108と同様に、発電制御部820は、乾燥状態判定部830によって燃料電池セル110の乾燥状態に応じて変化する燃料電池セル110の容量成分Csの測定を実行する。
そして、ステップS122では、ステップS110と同様に、発電制御部820は、出力許容電流決定部840によって、求めた容量成分Csの値に対応する乾燥状態の燃料電池セル110において出力許容電流値Ilimitを推定する。
ここで、上記したように、二次電池750が充電可能状態である場合には、発電制御部820は、ステップS108〜S112の、容量成分Csの測定、出力許容電流値Ilimitの推定、および、発電制御を繰り返し実行することができる。この場合、容量成分Csの測定によって発生した電流は、通常、余剰電力として二次電池750に充電される。これに対して、二次電池750が満充電に近い状態で充電を繰り返すことは不可と判断された場合には、容量成分Csの測定を繰り返すことは不可である。
そこで、発電制御部820は、ステップS124では水収支算出部850によって燃料電池セル110内の水収支を計算し、ステップS126では、ステップS122で推定した出力許容電流値Ilimitを水収支WBの状況に応じて補正し、補正した値を出力許容電流値Ilimitとする。そして、発電制御部820は、並行して実行している発電制御処理において、求めた出力許容電流値Ilimitを超えないように発電制御を実行する。
そして、ステップS128で間欠運転と判断されるまで、また、ステップS130で二次電池750のSOCが基準値未満で充電可能と判断されるまで、ステップS124における水収支計算とステップS126における出力許容電流値Ilimitの補正および発電制御を繰り返す。
なお、水収支WB[g/cm2/s]は下記に示す式を用いて計算することができる。
なお、NH2Oは生成水量[g/cm2/s]、Ninは供給水量[g/cm2/s]、Noutは持ち去り水量[g/cm2/s]を示す。Fはファラデー定数[C/mol]、MH2Oは水の分子量[g/mol]、Aは発電面積[cm2]を示す。Nairはエア供給量[NL/s]、Psat_outは飽和水蒸気圧(出口)[kPa]、Poutはガス圧力(出口)[kPa]、Sairはエアストイキ比を示す。PH2O_inは水蒸気圧(入口)[kPa]、Pinはガス圧力(入口)[kPa]を示す。
出力許容電流値Ilimitは、例えば、水収支WBが正の値で大きくなるほど、燃料電池セル110内は湿潤状態が高くなるので、出力許容電流値Ilimitが高くなるように補正される。また、水収支WBが負の値で大きくなるほど、燃料電池セル110内の乾燥状態が高くなるので、出力許容電流値Ilimitが小さくなるように補正される。なお、どの程度の補正量とするかは、水収支と補正量の関係をあらかじめ実験で求めておき、求めておいた関係の情報を参照することにより決定すればよい。なお、水収支と補正量の関係を示した情報は、水収支算出・補正情報860dとして記憶部860に記憶されている。
以上のように、上記実施例においては、燃料電池セルの容量成分を求めることにより、燃料電池セルの乾燥状態を判定することができる。また、求めた容量成分から、対応する乾燥状態においてドライアップとならないための出力許容電流値を推定することができる。そして、出力許容電流値を超えないように発電を制御することにより、ドライアップの発生を抑制することが可能となる。また、二次電池が満充電状態に近く、充電を繰り返すことができない場合には、一度だけ容量成分を求めて、出力許容電流値を推定し、水収支に応じて出力許容電流値を補正して、補正した出力許容電流値を越えないように発電を制御することにより、ドライアップの発生を抑制することが可能となる。
なお、図2のステップS108やS120で測定される容量成分Csの値は、圧力や温度の影響を受ける。例えば、図5は背圧と容量成分との関係を示す説明図であり、図6は温度と容量成分との関係を示す説明図である。図5に示すように、燃料電池セルの容量成分Csの値は、背圧が高いほど大きくなる傾向にある。また、図6に示すように、燃料電池セルの容量成分Csは、温度が高いほど大きくなる傾向にある。従って、燃料電池セルの容量成分Csを測定する際の圧力や温度条件に応じて、測定された容量成分Csの値を補正して、補正した容量成分から出力許容電流値を推定することが好ましい。
B.第2実施例:
第2実施例は、図2のステップS108およびS120で求められる容量成分Csの値の求め方、および、これに伴い、ステップS110およびS122で出力許容電流値を求めるために用いられる容量成分と最大電流との関係の情報が異なる点を除いて、第1実施例と全く同じである。そこで、以下では、上記相違点についてのみ説明を加えることとする。
第2実施例は、図2のステップS108およびS120で求められる容量成分Csの値の求め方、および、これに伴い、ステップS110およびS122で出力許容電流値を求めるために用いられる容量成分と最大電流との関係の情報が異なる点を除いて、第1実施例と全く同じである。そこで、以下では、上記相違点についてのみ説明を加えることとする。
図7は、第2実施例における走査電圧Vsと発生電流Isとの関係の一例を示す説明図である。ここで、図7は、基本的には、図3に示した第1実施例における走査電圧Vsと発生電流Isとの関係と同じであり、走査電圧Vsは200mV/secの速度で変化させている。ただし、走査電圧Vsの下限を0.8Vとし、走査電圧Vsの変化の幅を制限している点に特徴を有している。燃料電池セル110に印加する走査電圧の幅が大きいと、アノードおよびカソードを構成する触媒電極から白金等の触媒が溶出し易くなり、燃料電池セルの劣化を招く。そこで、本実施例では、走査電圧Vsの下限を0.8Vとして、走査電圧Vsの変化の幅を制限することにより、触媒溶出を抑制している。
従って、本実施例では、制限された走査電圧Vsの範囲での変化に応じて、規定値0.06A/cm2以上の発生電流Isの積算値(図中の斜線領域の面積)を求め、燃料電池セル110の容量成分に蓄積された電荷量qsを求め、求めた電荷量qsと査電圧Vsの幅とから容量成分Csの値を求めるものとしている。
ここで、本実施例で求めた容量成分Csの値は、走査電圧Vsの幅が制限されているため、蓄積された電荷量qsが小さくなり、これに応じて小さくなる。従って、出力許容電流値Ilimitと容量成分Csとの関係も図4に示した第1実施例の関係は利用することができず、これに応じたものが必要となる。
図8は、第2実施例における燃料電池セルの容量成分と最大電流との関係を示す説明図である。この図8の関係は、図4の関係と同様に、制限された走査電圧Vsにより求めた容量成分の燃料電池セルの最大電流を実験により求めたものである。容量成分と最大電流の関係は、図4の関係と同様であり、容量成分の値が小さいほど最大電流は小さくなり、燃料電池セルの乾燥度合いが高くなると考えられる。
第2実施例においても、第1実施例と同様に、燃料電池セルの容量成分を求めることにより、燃料電池セルの乾燥状態を判定することができる。また、求めた容量成分から、対応する乾燥状態においてドライアップとならないための出力許容電流値を推定することができる。そして、出力許容電流値を超えないように発電を制御することにより、ドライアップの発生を抑制することが可能となる。また、二次電池が満充電状態に近く、充電を繰り返すことができない場合には、一度だけ容量成分を求めて、出力許容電流値を推定し、水収支に応じて出力許容電流値を補正して、補正した出力許容電流値を越えないように発電を制御することにより、ドライアップの発生を抑制することが可能となる。なお、第2実施例は、第1実施例のように走査電圧Vsの範囲を制限しているので、上記したように、触媒溶出による燃料電池セルの劣化を抑制することができるという効果もある。
C.第3実施例:
第3実施例は、発電制御部820が実行する出力許容電流制御を除いて、第1実施例または第2実施例と全く同じである。そこで、以下では、上記相違点についてのみ説明を加えることとする。
第3実施例は、発電制御部820が実行する出力許容電流制御を除いて、第1実施例または第2実施例と全く同じである。そこで、以下では、上記相違点についてのみ説明を加えることとする。
図9は、第3実施例における燃料電池セルの乾燥状態に応じて実行する出力許容電流制御を示すフローチャートである。この制御は、燃料電池システムの動作開始時や二次電池による出力の停止時に、燃料電池による発電が開始される際に実行され、発電動作が継続している間継続される。そして、燃料電池システムの動作停止時や二次電池による出力の開始時に燃料電池の発電を停止する際に終了される。
この制御を開始すると、発電制御部820は、ステップS202において、乾燥状態判定部830によって燃料電池セル110の乾燥状態に応じて変化する燃料電池セル110の容量成分Csの測定を実行する。次に、ステップS204において、出力許容電流決定部840によって、求めた容量成分Csの値に対応する乾燥状態の燃料電池セル110における出力許容電流値Ilimitを推定する。そして、S206において、発電制御部820は、並行して実行している発電制御処理において、求めた出力電流許容値Ilimitを超えないように発電制御を実行する。なお、ステップS202〜S206における各処理は、第1実施例または第2実施例において説明した各処理と同様に実行することができる。
次に、ステップS208では、発電制御部820は、水収支算出部850によって燃料電池セル110内の水収支を計算する。なお、この水収支の計算は、第1実施例におけるステップS124と同様に、上記(1)式〜(4)式を用いて行うことができる。
そして、ステップS210では、発電制御部820は、計算した水収支の積算値が基準値未満であるか否か判断する。なお、ここでは、基準値を「0」とする。水収支の積算値が基準値「0」未満である場合には、燃料電池セルから持ち去られる水の量が供給あるいは生成される水の量よりも多いことを示しており、燃料電池セル110の乾燥度合いが高まることを意味している。一方、水収支の積算値が基準値「0」以上である場合には、燃料電池セルから持ち去られる水の量よりも供給あるいは生成される水の量が多いことを意味しており、燃料電池セル110の湿潤度合いが高まることを意味している。従って、燃料電池セル110の湿潤度合いが高まっている場合には、先に求めた出力許容電流値Ilimitを越えないように発電制御を実行しても、ドライアップが発生する可能性は低くなる方向である。そこで、この場合には、水収支が基準値未満と判断されるまで、水収支の計算(ステップS208)を繰り返せばよい。
一方、水収支が基準値未満である場合には、上記したように、乾燥度合いが高まるため、先に求めた出力許容電流値Ilimitに基づいて発電制御を実行していた場合には、ドライアップが発生する可能性が高まる方向となる。そこで、この場合には、発電制御部820は、ステップS212において、乾燥状態判定部830によって燃料電池セル110の乾燥状態に応じて変化する燃料電池セル110の容量成分Csの測定を実行する。次に、ステップS214において、出力許容電流決定部840によって、求めた容量成分Csの値に対応する乾燥状態の燃料電池セル110における出力許容電流値Ilimitを新たに推定する。そして、S216において、発電制御部820は、並行して実行している発電制御処理において、新たに求めた出力電流許容値Ilimitを超えないように発電制御を実行する。そして、ステップS208における水収支の計算からステップS216における出力許容電流値Ilimitに基づいた発電制御の実行までを繰り返す。
なお、上記説明では、基準値を「0」としていたが、必ずしもその必要はなく、ガス供給条件や、燃料電池セルの種類等によって、乾燥度合いが高まる場合と湿潤度合い高まる場合との境界となる値を、あらかじめ実験的に求めて基準値として設定すればよい。
第3実施例においても、第1実施例と同様に、燃料電池セルの容量成分を求めることにより、燃料電池セルの乾燥状態を判定することができる。また、求めた容量成分から、対応する乾燥状態においてドライアップとならないための出力許容電流値を推定することができる。そして、出力許容電流値を超えないように発電を制御することにより、ドライアップの発生を抑制することが可能となる。水収支の積算値が基準値未満であるか否か判断することにより、燃料電池セルの湿潤度合いが高まる状態の場合には、最初に求めた出力許容電流値に基づいて発電制御を実行し、燃料電池セルの乾燥度合いが高まる状態の場合には、容量成分の測定、出力許容電流値の測定をしなおすことにより、乾燥度合いに応じた出力許容電流値に基づいて発電制御を実行することができる。そして、第3実施例の場合には、第1実施例や第2実施例の場合に比べて、乾燥状態を判定するための容量成分の測定および出力許容電流値の推定回数を低減することが可能である。
D.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
上記実施例において、燃料電池セルの容量成分Csの測定タイミングについて、その処理に移行したらそのまま実行する場合を例に説明したが、例えば、処理ステップに移行した際に、先の測定タイミングから一定の間隔経過ごと(例えば、30秒ごと)に、実行するようにしてもよい。
また、間欠運転終了後に容量成分を測定する場合には、間欠運転の長さに応じて、容量成分の測定、出力許容電流の推定処理を実行しないようにしてもよい。例えば、間欠運転時間が1分以内の場合には、処理を省略し、1分を超えた場合には処理を実行するようにしてもよい。
なお、上記実施例では、出力許容電流値を超えないように発電を制御する処理について説明した。これに対して、出力要求が出力許容電流値を超える場合には、ガス供給部の動作を制御して、ガス供給部が供給するガスを加湿することにより、燃料電池セル内を加湿させるようにすれば、燃料電池セルを加湿して乾燥状態を改善することができるので、出力許容電流値を越える電流を出力するように発電しても、ドライアップが発生して発電性能が低下し、発生電圧が負電圧となって、燃料電池セルが劣化することを抑制することが可能となる。
また、上記実施例では、容量成分を測定する際に走査電圧を一定速度で変化させた場合を例に説明したが、必ずしも一定速度で変化させる場合に限定されるものではない。電圧を走査させた場合に発生する電流は、走査電圧の変化速度に比例するので、例えば、例えば、電圧の変化量を段階的に変化させたり、変化時間を段階的に変化させたりしてもよい。すなわち、走査する電圧と時間の関係が既知あればよい。
10…燃料電池システム
100…燃料電池
110…燃料電池セル
120…モニター端子
200…アノードガス供給部
210…水素供給源
220…流量調整部
230…加湿調整部
240…背圧調整バルブ
270a…配管
270b…配管
270c…配管
270d…配管
270e…配管
280…露点計
290…圧力計
292…圧力計
300…カソードガス供給部
310…吸気口
320…コンプレッサ
330…流量調整部
340…加湿調整部
350…背圧調整バルブ
360…排気口
370a…配管
370b…配管
370c…配管
370d…配管
370e…配管
370f…配管
380…露点計
390…圧力計
392…圧力計
400…冷却装置
410a…配管
410b…配管
420…温度計
500…モニター切替部
600…ポテンショスタット
610…電圧供給端子
620…電流計
630…電圧計
700…電力出力制御部
750…二次電池
800…システム制御部
810…入出力制御部
820…発電制御部
830…乾燥状態判定部
840…出力許容電流決定部
850…水収支算出部
860…記憶部
860a…発電制御情報
860b…乾燥状態判定情報
860c…出力許容電流決定情報
860d…水収支算出・補正情報
900…負荷装置
100…燃料電池
110…燃料電池セル
120…モニター端子
200…アノードガス供給部
210…水素供給源
220…流量調整部
230…加湿調整部
240…背圧調整バルブ
270a…配管
270b…配管
270c…配管
270d…配管
270e…配管
280…露点計
290…圧力計
292…圧力計
300…カソードガス供給部
310…吸気口
320…コンプレッサ
330…流量調整部
340…加湿調整部
350…背圧調整バルブ
360…排気口
370a…配管
370b…配管
370c…配管
370d…配管
370e…配管
370f…配管
380…露点計
390…圧力計
392…圧力計
400…冷却装置
410a…配管
410b…配管
420…温度計
500…モニター切替部
600…ポテンショスタット
610…電圧供給端子
620…電流計
630…電圧計
700…電力出力制御部
750…二次電池
800…システム制御部
810…入出力制御部
820…発電制御部
830…乾燥状態判定部
840…出力許容電流決定部
850…水収支算出部
860…記憶部
860a…発電制御情報
860b…乾燥状態判定情報
860c…出力許容電流決定情報
860d…水収支算出・補正情報
900…負荷装置
Claims (6)
- 燃料電池セルから構成される燃料電池を備えた燃料電池システムであって、
前記燃料電池システムの動作を制御する制御部と、
前記制御部からの指示に従って、前記燃料電池セルの2つの電極にそれぞれ発電用のガスを供給するガス供給部と、
前記制御部からの指示に従って、前記燃料電池からの電力の出力を制御する電力出力制御部と、
前記制御部からの指示に従って、前記燃料電池セルの電極間に印加する電圧を走査し、前記走査する電圧の電圧値および前記電圧値において前記電極間に流れる電流値を測定する測定部と、
を備え、
前記制御部は、
前記燃料電池セルの乾燥状態を測定するためにあらかじめ規定された測定環境下で前記ガス供給部が動作している状態において、前記測定部によって前記電圧値および前記電流値を測定させ、前記電圧値および前記電流値から前記燃料電池セルの乾燥状態と相関を有する容量成分を算出し、前記容量成分に基づいて前記燃料電池セルの乾燥状態を判定する乾燥状態判定部を含む
ことを特徴とする燃料電池システム。 - 請求項1記載の燃料電池システムであって、
前記制御部は、
あらかじめ規定された容量成分と出力可能最大電流との関係を示す情報を参照することにより、算出した前記容量成分に対応する前記燃料電池の乾燥状態において出力が許容される出力許容電流値を決定する出力許容電流決定部を含む
ことを特徴とする燃料電池システム。 - 請求項2記載の燃料電池システムであって、
前記制御部は、
前記出力許容電流値以下で前記燃料電池セルが発電するように前記ガス供給部および前記電力出力制御部の動作を制御する発電制御部を含む
ことを特徴とする燃料電池システム。 - 請求項3記載の燃料電池システムであって、
前記発電制御部は、出力要求が前記出力許容電流値を超える場合において、前記ガス供給部の動作を制御して、前記ガス供給部が供給するガスを加湿することにより、前記燃料電池セル内を加湿させることを特徴とする燃料電池システム。 - 請求項1ないし請求項4のいずれか一項に記載の燃料電池システムであって、
前記測定部の前記走査する電圧の下限値は0.8Vとすることを特徴とする燃料電池システム。 - 燃料電池セルから構成される燃料電池を備えた燃料電池システムの制御方法であって、
前記燃料電池セルの乾燥状態を測定するためにあらかじめ規定された測定環境下において、前記燃料電池セルの端子間に印加する電圧を走査し、前記走査する電圧の電圧値および前記電圧値において前記端子間に流れる電流値を測定する工程と、
前記電圧値および前記電流値から前記燃料電池セルの容量成分を算出し、前記容量成分に基づいて前記燃料電池セルの乾燥状態を判定する工程と、
を備えることを特徴とする料電池システムの制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010237713A JP2012089449A (ja) | 2010-10-22 | 2010-10-22 | 燃料電池システムおよび燃料電池システムの制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010237713A JP2012089449A (ja) | 2010-10-22 | 2010-10-22 | 燃料電池システムおよび燃料電池システムの制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012089449A true JP2012089449A (ja) | 2012-05-10 |
Family
ID=46260845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010237713A Pending JP2012089449A (ja) | 2010-10-22 | 2010-10-22 | 燃料電池システムおよび燃料電池システムの制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012089449A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9401521B2 (en) | 2014-02-24 | 2016-07-26 | Hyundai Motor Company | Method and apparatus for diagnosing state of fuel cell system |
-
2010
- 2010-10-22 JP JP2010237713A patent/JP2012089449A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9401521B2 (en) | 2014-02-24 | 2016-07-26 | Hyundai Motor Company | Method and apparatus for diagnosing state of fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5338903B2 (ja) | 燃料電池の水素濃度推定装置、燃料電池システム | |
US9281532B2 (en) | Remedial actions for air flow errors in a fuel cell system | |
US8895200B2 (en) | Fuel cell system | |
US20140335433A1 (en) | Fuel cell system and control method of fuel cell system | |
JP4300346B2 (ja) | 燃料電池システム | |
US8623564B2 (en) | Method for remedial action in the event of the failure of the primary air flow measurement device in a fuel cell system | |
US9099701B2 (en) | Vehicle application for air storage cathode carbon loss estimation | |
US20130189596A1 (en) | Fuel cell system, method and program of determining cause of negative voltage, and storage medium storing program | |
US20090061263A1 (en) | Fuel cell system and method for estimating output characteristic of fuel cell | |
CN109216737B (zh) | 不纯燃料的检测和补救措施 | |
US8660819B2 (en) | Utilization of HFR-based cathode inlet RH model in comparison to sensor feedback to determine failed water vapor transfer unit and utilize for a diagnostic code and message | |
JP4973138B2 (ja) | 燃料電池システム | |
JP2006351506A (ja) | 燃料電池システム | |
US9853312B2 (en) | Method for determining membrane protonic resistance of a fuel cell stack | |
JP5581880B2 (ja) | 燃料電池システム | |
US9153828B2 (en) | Method to diagnose fuel cell humidification problems | |
CN103926535B (zh) | 经由调整性阴极加湿单元模型和高频电阻来估计瞬态入口相对湿度 | |
US8927165B2 (en) | Stack cathode inlet RH (relative humidity) control without RH sensing device feedback | |
JP4655486B2 (ja) | 固体高分子型燃料電池の湿潤状態判定装置 | |
JP2012089449A (ja) | 燃料電池システムおよび燃料電池システムの制御方法 | |
JP5402433B2 (ja) | 燃料電池システム | |
JP2023031581A (ja) | 燃料電池システム |