JP2012052202A - Member for electrolysis cell and hydrogen production device using the same - Google Patents
Member for electrolysis cell and hydrogen production device using the same Download PDFInfo
- Publication number
- JP2012052202A JP2012052202A JP2010196883A JP2010196883A JP2012052202A JP 2012052202 A JP2012052202 A JP 2012052202A JP 2010196883 A JP2010196883 A JP 2010196883A JP 2010196883 A JP2010196883 A JP 2010196883A JP 2012052202 A JP2012052202 A JP 2012052202A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- electrolysis
- porous
- hydrogen production
- metal powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
本発明は、メタノール等のアルコール類を含む有機化合物の電気分解から水素を製造する装置の電解セル用部材およびそれを用いた水素製造装置に関するものである。 The present invention relates to an electrolytic cell member of an apparatus for producing hydrogen from electrolysis of an organic compound containing alcohols such as methanol, and a hydrogen production apparatus using the same.
近年、燃料電池等に代表されるように、水素は将来のクリーンエネルギー源として大変重要なものであり、例えばアルコール類等の有機化合物の電解分解を用いる水素製造は、高温環境を必要とする従来の改質法等に比べて少エネルギーで水素製造が可能である。このアルコール類等の有機化合物の電気分解を用いる水素製造は、例えば水素イオン伝導型の固体高分子電解質膜が使用され、100℃以下、または、常温等の低温で作動することが知られている。 In recent years, as represented by fuel cells and the like, hydrogen is very important as a future clean energy source. For example, hydrogen production using electrolytic decomposition of organic compounds such as alcohols conventionally requires a high temperature environment. Compared to the reforming method, etc., hydrogen can be produced with less energy. Hydrogen production using electrolysis of organic compounds such as alcohols is known to use, for example, a hydrogen ion conductive solid polymer electrolyte membrane and operate at a temperature of 100 ° C. or lower or at a low temperature such as room temperature. .
また、メタノール(理論分解電圧0.016V)、ギ酸(理論分解電圧−0.251V)、ホルムアルデヒド(理論分解電圧−0.142V)等の有機化合物の電気分解から水素を得る手法は、理論分解電圧が低いために、水の電気分解(理論分解電圧1.23V)よりも小さいエネルギーで水素を得ることができる。 Moreover, the method of obtaining hydrogen from the electrolysis of organic compounds such as methanol (theoretical decomposition voltage 0.016 V), formic acid (theoretical decomposition voltage -0.251 V), formaldehyde (theoretical decomposition voltage -0.142 V) is the theoretical decomposition voltage. Therefore, hydrogen can be obtained with energy smaller than the electrolysis of water (theoretical decomposition voltage 1.23 V).
例えば、特開平11−229167号公報(特許文献1)に開示されているように、メタノールの電気分解から水素を製造する方法で、その実施例の中で集電部材としてチタンのエクスパンドメッシュに銀メッキ等の表面処理したものを用いているものが開示されている。しかし、この方法は、球状の金属粉末からなる多孔体を用いる方法とは異なる手法に基づくものである。 For example, as disclosed in Japanese Patent Application Laid-Open No. 11-229167 (Patent Document 1), in a method for producing hydrogen from electrolysis of methanol, silver is applied to a titanium expanded mesh as a current collecting member in the embodiment. The thing using what surface-treated, such as plating, is disclosed. However, this method is based on a method different from the method using a porous body made of spherical metal powder.
また、特開2005−23412号公報(特許文献2)に開示されているように、メタノールの電気分解から水素を製造する方法として、陽イオン交換樹脂を有機多孔質薄膜の空隙中に充填して電解質膜を形成し、この電解質膜の両面に、陽極と陰極の電極触媒層を形成してなる反応装置を設けた燃料改質装置が開示されている。しかし、これも集電部材には特に触れていないし、球状の金属粉末からなる多孔体を用いる方法とは異なる。
上述したように、燃料電池等に代表されるような水素は、将来のクリーンエネルギー源として大変重要なものであり、例えばアルコール類等の有機化合物の電解分解を用いる水素製造は、高温環境を必要とする従来の改質法等に比べて少エネルギーで水素製造が可能である。しかし、電解セル中の接触抵抗、メタノール等のアルコール類の供給特性、生成ガスおよび生成される水素の排出特性等に問題があり、これらの改善による水素製造の効率向上の要請がなされている。 As described above, hydrogen such as fuel cells is very important as a future clean energy source. For example, hydrogen production using electrolytic decomposition of organic compounds such as alcohols requires a high temperature environment. Compared to the conventional reforming method and the like, hydrogen can be produced with less energy. However, there are problems in the contact resistance in the electrolytic cell, the supply characteristics of alcohols such as methanol, the discharge characteristics of the generated gas and the generated hydrogen, and there is a demand for improving the efficiency of hydrogen production through these improvements.
メタノール等のアルコール類を含む有機化合物の電気分解による水素製造において、電解セル中の水素生成極の反応に必要とされる電子は、対極のメタノール等の有機化合物の分解反応から外部回路を通じて得られるものであるから、水素製造の効率向上には、電解セル中の集電部材と、触媒電極層または拡散層等との接触抵抗を低減し、電子の移動性を高めることが益々重要となる。さらにメタノール水溶液等の優れた供給特性、および、生成CO2 と生成H2 の優れた排出特性も水素製造の効率向上に重要となる。 In hydrogen production by electrolysis of organic compounds containing alcohols such as methanol, the electrons required for the reaction of the hydrogen generating electrode in the electrolytic cell are obtained through an external circuit from the decomposition reaction of the organic compound such as methanol at the counter electrode. Therefore, in order to improve the efficiency of hydrogen production, it is increasingly important to reduce the contact resistance between the current collecting member in the electrolysis cell and the catalyst electrode layer or the diffusion layer, and to increase the mobility of electrons. Further, excellent supply characteristics such as aqueous methanol solution and excellent discharge characteristics of generated CO 2 and generated H 2 are important for improving the efficiency of hydrogen production.
上述にような問題を解消するために、発明者らは鋭意開発を進めた結果、メタノール等のアルコール類を含む有機化合物の電気分解から水素を製造する装置において、電解セル中の集電部材に、導電性の球状金属粉末からなる多孔体を用いることにより水素製造の効率向上を可能とした電解セル用部材およびそれを用いた水素製造装置を提供する。 In order to solve the problems as described above, the inventors have made extensive developments. As a result, in an apparatus for producing hydrogen from electrolysis of organic compounds containing alcohols such as methanol, the current collectors in the electrolytic cell The present invention also provides an electrolytic cell member capable of improving the efficiency of hydrogen production by using a porous body made of conductive spherical metal powder and a hydrogen production apparatus using the same.
その発明の要旨とするところは、
(1)有機化合物の電気分解から水素を製造する装置の電解セル用部材において、導電性の金属粉末からなる多孔体を用いる多孔性集電部材よりなることを特徴とする電解セル用部材。
(2)有機化合物の電気分解から水素を製造する装置の電解セル用部材において、導電性の金属粉末からなる多孔体を用いる多孔性集電部材と板状の基材を組合せて構成されることを特徴とする電解セル用部材。
The gist of the invention is that
(1) An electrolytic cell member for an electrolytic cell of an apparatus for producing hydrogen from electrolysis of an organic compound, comprising a porous current collecting member using a porous body made of conductive metal powder.
(2) In a member for an electrolytic cell of an apparatus for producing hydrogen from electrolysis of an organic compound, a porous current collecting member using a porous body made of conductive metal powder and a plate-like base material are combined. Electrolytic cell member characterized by the above.
(3)金属粉末同士が互いに金属結合していることを特徴とする前記(1)または(2)に記載した電解セル用部材。
(4)金属粉末と板状の基材が金属結合していることを特徴とする前記(2)または(3)に記載した電解セル用部材。
(5)金属粉末が球形状であることを特徴とする前記(1)〜(4)のいずれか1項に記載した電解セル用部材。
(6)前記(1)〜(4)のいずれか1項に記載した電解セル用部材を用いることを特徴とする水素製造装置にある。
(3) The electrolytic cell member described in (1) or (2) above, wherein metal powders are metal-bonded to each other.
(4) The electrolytic cell member described in (2) or (3) above, wherein the metal powder and the plate-like substrate are metal-bonded.
(5) The electrolytic cell member described in any one of (1) to (4) above, wherein the metal powder has a spherical shape.
(6) A hydrogen production apparatus using the electrolytic cell member described in any one of (1) to (4).
以上述べたように、本発明により電解セルの集電部材が、球状金属粉末同士が3次元的に結合された多孔体からなるため、多孔性あるいは弾力性を有する触媒電極層または拡散層との接触において優れた密着性を示すとともに有効接触面積も大きくなるため、接触抵抗の低減が可能となり、水素製造に必要な電子の移動性を高め反応効率を高めることで、水素製造の効率向上を可能とする。したがって、接触抵抗低減の目的で集電部材に実施される金めっき、銀めっき、カーボンコーティング等の表面処理を不要とすることも可能となる。 As described above, since the current collecting member of the electrolytic cell according to the present invention is composed of a porous body in which spherical metal powders are three-dimensionally bonded, the catalyst electrode layer or diffusion layer having porosity or elasticity can be used. Excellent contact adhesion and large effective contact area enable contact resistance to be reduced, improving the efficiency of hydrogen production by increasing the mobility of electrons required for hydrogen production and increasing reaction efficiency And Therefore, surface treatment such as gold plating, silver plating, and carbon coating performed on the current collecting member for the purpose of reducing contact resistance can be made unnecessary.
また、メタノール等の有機化合物の供給機能、及び、生成物の排出機能に関しては、本発明では、球状金属粉末同士が主に点接触で接合した多孔体構造が得られ、触媒電極層や拡散層との接触界面における空孔率が例えば80%以上等と大きく、かつ、球同士で囲まれた多孔体内部の連結空孔を十分に確保出来るため、メタノール等の有機化合物の供給特性、生成ガス及び生成される水素の排出特性に優れ、水素製造の効率向上を可能とする等極めて優れた効果を奏するものである。 In addition, regarding the supply function of organic compounds such as methanol and the discharge function of products, in the present invention, a porous structure in which spherical metal powders are joined mainly by point contact is obtained, and a catalyst electrode layer and a diffusion layer are obtained. Since the porosity at the contact interface with the surface is large, for example, 80% or more, etc., and the connecting pores inside the porous body surrounded by the spheres can be sufficiently secured, supply characteristics of organic compounds such as methanol, generated gas In addition, it has excellent discharge characteristics of generated hydrogen, and exhibits extremely excellent effects such as improving the efficiency of hydrogen production.
以下、本発明について詳細に説明する。
本発明に係る有機化合物としては、例えば、メタノール、エタノール、ホルムアルデヒド、ギ酸等があるが、水素源となるものであればこの限りではない。また、導電性の金属粉末には球状粉末を用いることが望ましいが、球状金属粉末の球状とは完全な球を意味するものでなく、溶融状態から固化する際に表面張力等の作用によって自然に得られる球状である。また、機械加工等によって類似の球状が得られればそれも適用可能である。
Hereinafter, the present invention will be described in detail.
Examples of the organic compound according to the present invention include methanol, ethanol, formaldehyde, formic acid and the like. In addition, it is desirable to use a spherical powder for the conductive metal powder. However, the spherical shape of the spherical metal powder does not mean a perfect sphere, and it naturally occurs by the action of surface tension and the like when solidifying from a molten state. The resulting sphere. Further, if a similar spherical shape is obtained by machining or the like, it is also applicable.
また、溶融状態からの粉末成形する際に、主たる球状金属粉末に、微小な金属粉末、または、扁平型の微小金属粉末等が結合付着しているものも含むものとし、これらは使用用途によっては多孔構造体と他部材との密着性を向上させる等の効果も有する。 In addition, when powder molding is performed from a molten state, it includes those in which fine metal powder or flat micro metal powder is bonded to the main spherical metal powder, depending on the intended use. It also has an effect of improving the adhesion between the structure and other members.
上記、球状金属粉末の製造にはアトマイズ法が適し、特にガスアトマイズ法によって製造された球状の金属粉末を用いる場合、金属粉末同士が主に点接触した構造となるため、互いに連結した十分な空孔部を確保でき、空孔部分を流れる液体や気体の優れた物質移動を保てる。また、他部材との接触時に密着性が向上し接触抵抗の低減が可能となる。なお、ガスアトマイズ法についての説明をしたが、必ずしもガスアトマイズ法に限定することなく、球状や球に類似の形状が得られる手法であればこの限りではない。また、用途に応じて、耐食コーティング、金めっき、カーボンコーティング等の導電性コーティング、撥水処理、疎水処理、新水性処理等を適用することも可能である。 The above atomizing method is suitable for the production of the spherical metal powder. Especially when the spherical metal powder produced by the gas atomizing method is used, the metal powder has a structure in which the metal powders are mainly in point contact with each other. Can be secured, and excellent mass transfer of liquid and gas flowing through the pores can be maintained. Further, the adhesion is improved at the time of contact with other members, and the contact resistance can be reduced. Although the gas atomizing method has been described, the present invention is not necessarily limited to the gas atomizing method, and the present invention is not limited to this as long as the method can obtain a spherical shape or a similar shape to a sphere. Depending on the application, it is also possible to apply a conductive coating such as corrosion resistant coating, gold plating, carbon coating, water repellent treatment, hydrophobic treatment, new aqueous treatment, and the like.
金属粉末からなる多孔体を形成する場合、および、金属粉末と板状の基材を接合する場合、真空熱処理、加圧焼結、通電焼結、放電プラズマ焼結、コールドスプレー法、圧接、導電性接着剤を用いる手法等が考えられるが、必要な電気伝導性、耐食性、強度等を満足すればよい。また、金属粉末と接合する板状の基材は導電性を有するグラファイト製基材、または、金属製基材等が考えられるが、特にこれに限定するものではない。 When forming a porous body made of metal powder, and when joining metal powder to a plate-shaped substrate, vacuum heat treatment, pressure sintering, current sintering, discharge plasma sintering, cold spray method, pressure welding, electrical conductivity Although a method using an adhesive is conceivable, it may be sufficient to satisfy necessary electrical conductivity, corrosion resistance, strength, and the like. The plate-like base material to be joined to the metal powder may be a graphite base material having conductivity or a metal base material, but is not particularly limited thereto.
金属粉末同士、および、金属粉末と板状の基材の接合形態については、電気抵抗の低減、構造体の強度確保という目的から金属結合が望ましいが、各用途の必要とする特性を満足すれば、この限りではない。また、板状の基材については、平板に限定するものではなく、平板を用いて必要な曲げ加工やプレス加工を行うもの、板状の基材が渦巻状に巻かれたもの、および、ニアネット形状に成形された粉末成形品等からなる基材を含む。 For metal powders and between metal powders and plate-like base materials, metal bonding is desirable for the purpose of reducing electrical resistance and ensuring the strength of the structure, but if the properties required for each application are satisfied, This is not the case. In addition, the plate-like base material is not limited to a flat plate, and a plate-like base material that is bent or pressed using a flat plate, a plate-like base material wound in a spiral shape, and a near It includes a substrate made of a powder molded product or the like formed into a net shape.
本発明で得られる多孔体部の空孔率が20%未満の場合、気体や液体の十分な物質移動性が得られにくい場合がある。また、空孔率が70%を超えると構造体としての強度が不十分となる場合がある。したがって、空孔率は20%〜70%程度が好ましいが、各用途で実際に求められる物質移動性や強度を十分に満足できる場合には、この限りではない。なお、この場合の空孔率とは、多孔体部の一定体積中に空孔が占める平均の体積率のことを言いい、断面の顕微鏡観察等を用いた計算、水銀圧入法による測定、ガス吸着法等による測定が可能である。 When the porosity of the porous body portion obtained in the present invention is less than 20%, it may be difficult to obtain sufficient mass mobility of gas or liquid. On the other hand, if the porosity exceeds 70%, the strength of the structure may be insufficient. Therefore, the porosity is preferably about 20% to 70%, but this is not the case when the substance mobility and strength actually required for each application can be sufficiently satisfied. Note that the porosity in this case refers to the average volume ratio occupied by the pores in a certain volume of the porous body portion, calculation using microscopic observation of the cross section, measurement by mercury intrusion method, gas Measurement by an adsorption method or the like is possible.
各空孔の大きさは使用する球状金属粉末の粒径によって制御可能であり、用途によっては、この空孔の大きさが多孔構造体中の位置によって異なるものでも構わない。具体的には空孔の大きさが位置によって2段階に分かれるもの、または、順に傾斜分布するもの等がある。使用する粉末粒径は必要とされる特性によって使い分けが可能であり、例えば、ガスアトマイズ粉末で製造する金属粉末に関しては、1μm〜1000μmの大きさが考えられるが、用途によって、例えば、数μm〜20μm、20μm〜70μm、100μm〜200μm、200〜300μm、300〜500μm等に分級しそれぞれの用途に適した粉末粒径を適用する。 The size of each hole can be controlled by the particle size of the spherical metal powder to be used. Depending on the application, the size of the hole may be different depending on the position in the porous structure. Specifically, there are those in which the size of the holes is divided into two stages depending on the position, or those in which the pores are distributed in order. The powder particle size to be used can be properly selected depending on the required properties. For example, for metal powders manufactured with gas atomized powder, a size of 1 μm to 1000 μm can be considered, but depending on the application, for example, several μm to 20 μm. , 20 μm to 70 μm, 100 μm to 200 μm, 200 to 300 μm, 300 to 500 μm, etc., and a powder particle size suitable for each application is applied.
金属粉末の化学成分は、要求される耐食性、耐酸化性、熱膨張特性、熱伝導性、電気伝導性等に応じて様々な選択が可能である。例えば、ステンレス鋼、Ni基耐食超合金、Ni−Cu系耐食合金、耐酸化合金等を適用する。また、粉末多孔体部の厚みを制御するため、プレス加工、圧延加工、研削加工、研磨加工等を適用する。 Various chemical components of the metal powder can be selected according to required corrosion resistance, oxidation resistance, thermal expansion characteristics, thermal conductivity, electrical conductivity, and the like. For example, stainless steel, Ni-base corrosion-resistant superalloy, Ni—Cu-based corrosion-resistant alloy, oxidation-resistant alloy, or the like is applied. Moreover, in order to control the thickness of a powder porous body part, press processing, rolling processing, grinding processing, polishing processing, etc. are applied.
以下、本発明について図面によって詳細に説明する。
図1は、メタノールの電気分解から水素を製造する装置の電解セル用部材の概略図である。この図に示すように、球状金属粉末の焼結多孔体からなる水素生成側の多孔性集電体1と球状金属粉末の焼結多孔体からなるメタノール水溶液供給側の多孔性集電体2間に固体高分子電解質膜3を配置し、その左右の水素生成側の多孔性集電体1とメタノール水溶液供給側の多孔性集電体2間にメタノール水溶液供給側の触媒電極層4、水素生成側の触媒電極層5を配置させてなる電解セルを構成する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view of a member for an electrolysis cell of an apparatus for producing hydrogen from electrolysis of methanol. As shown in this figure, between the porous current collector 1 on the hydrogen generation side made of a sintered porous body of spherical metal powder and the porous
この構成において、水素生成側の多孔性集電体1と水素生成側の触媒電極層5、または、メタノール水溶液供給側の多孔性集電体2とメタノール水溶液供給側の触媒電極層4の間に、カーボン製の拡散層(GDL)を追加して用いることも可能である。また、水素生成側の多孔性集電体1とメタノール水溶液供給側の多孔性集電体2の金属粉末からなる多孔体に直接触媒を担持する場合、メタノール水溶液供給側の触媒電極層4および水素生成側の触媒電極層5の触媒電極層を省略することも可能である。
In this configuration, between the porous collector 1 on the hydrogen generation side and the
さらには、水素生成側の多孔性集電体1とメタノール水溶液供給側の多孔性集電体2の金属粉末からなる多孔体自身が、その化学成分によって触媒機能を有する場合、メタノール水溶液供給側の触媒電極層4および水素生成側の触媒電極層5の触媒電極層を省略することも可能である。図2は、図1に示した水素生成側の多孔性集電体1およびメタノール水溶液供給側の多孔性集電体2の外側に、金属製又はグラファイト製の板状の基材6を配置することで、メタノール水溶液と生成される水素を分離するセパレータの機能を保持させた場合の電解セル用部材を示す。
Furthermore, when the porous body itself composed of the metal powder of the porous current collector 1 on the hydrogen generation side and the porous
水素生成側の多孔性集電体1の球状の金属粉末は、ガスアトマイズ法により製造された、質量%で、Fe−17Cr−12Ni−2Mo、Fe−25Cr−20Ni、Fe−25Cr−35Ni、Fe−26Cr−1Mo、Ni−22Cr−9Mo−4Nb、Ni−16Cr−16Mo−5Fe−4W、Ni−30Cu、Fe−20Cr−1Al−1Si、Ti等を用いる。また、使用する金属粉末の粉末粒径は、例えば、1μm〜20μm、20μm〜70μm、100μm〜300μm、350〜500μm等に分級し、各用途に適した粉末粒径を適用する。 Spherical metal powder of the porous current collector 1 on the hydrogen production side was produced by gas atomization method in mass%, and Fe-17Cr-12Ni-2Mo, Fe-25Cr-20Ni, Fe-25Cr-35Ni, Fe- 26Cr-1Mo, Ni-22Cr-9Mo-4Nb, Ni-16Cr-16Mo-5Fe-4W, Ni-30Cu, Fe-20Cr-1Al-1Si, Ti, or the like is used. Moreover, the powder particle diameter of the metal powder to be used is classified into, for example, 1 μm to 20 μm, 20 μm to 70 μm, 100 μm to 300 μm, 350 to 500 μm, and the like, and a powder particle size suitable for each application is applied.
メタノール水溶液供給側の多孔性集電体2の球状の金属粉末は、ガスアトマイズ法により製造された、質量%で、Fe−17Cr−12Ni−2Mo、Fe−25Cr−20Ni、Fe−25Cr−35Ni、Fe−26Cr−1Mo、Ni−22Cr−9Mo−4Nb、Ni−16Cr−16Mo−5Fe−4W、Ni−30Cu、Fe−20Cr−1Al−1Si、Ti等を用いる。また、使用する金属粉末の粉末粒径は、例えば、1μm〜20μm、20μm〜70μm、100μm〜300μm、350〜500μm等に分級し、各用途に適した粉末粒径を適用する。
Spherical metal powder of the porous
図3は、水素製造性の評価における電流−電圧特性の関係を示す図である。本発明に係る多孔性集電体を有する電解セル用部材には、ガスアトマイズ法で製造した粉末粒径が350〜500μmの球状のSUS316L製金属粉末を1200℃の90分の真空熱処理で、空孔率50%の焼結多孔体とし、得られた多孔体をSUS316L製の板状の基材と真空焼結により一体構造とし、評価に用いた。 FIG. 3 is a diagram showing a relationship between current-voltage characteristics in the evaluation of hydrogen productivity. The electrolytic cell member having the porous current collector according to the present invention is prepared by subjecting a spherical SUS316L metal powder having a powder particle size of 350 to 500 μm produced by a gas atomization method to a vacuum heat treatment at 1200 ° C. for 90 minutes. A sintered porous body having a rate of 50% was obtained, and the obtained porous body was integrated with a plate-like base material made of SUS316L by vacuum sintering and used for evaluation.
また、比較例に用いた電解セル用部材には、集電機能も備え、かつ、メタノール等の供
給および生成される水素の排出に用いられる流路が、溝型形状を有する構造で、同じSUS316L製の電解セル用部材を用いた。(流路部および集電部が燃料電池等の発電セルにも適用される溝型形状となり、本発明の粉末多孔体から形成される部材とは異なるもの。)
In addition, the electrolytic cell member used in the comparative example has a current collecting function, and the flow path used for supplying methanol and discharging generated hydrogen has a groove shape, and the same SUS316L. The member for electrolytic cells made from was used. (The flow path portion and the current collecting portion have a groove shape that is also applied to power generation cells such as fuel cells, and are different from the members formed from the porous powder body of the present invention.
以下、本発明について実施例によって具体的に説明する。
上述した図2の電解セル構成において、その試験条件として、反応部面積が25cm2 、電解質膜がナフィオン117、メタノール供給側触媒がPt−Ruで1mg/cm2 、水素生成側触媒がPtで1mg/cm2 、電解セル温度が25℃、メタノール水溶液濃度供給が2M、メタノール水溶液供給量が10cc/minにおいて、電圧を徐々に上げる制御を行った時の得られる電流密度を測定することで水素製造の効率に関する検討を行った。その結果、図3に示すように、本発明の集電機能と供給排出機能を兼ね備えた金属粉末多孔体を用いた電解セルの場合は、比較例の溝型部材に比べて、同一電位条件において大きな電流値が得られ、水素生成の反応効率を高める効果が認められることが分かる。その要因としては、第1に球状粉末多孔体の特徴による接触抵抗の低減、第2にメタノール水溶液の供給特性の改善、第3に生成される水素の排出特性の改善にあると考えられる。
Hereinafter, the present invention will be specifically described with reference to examples.
In the electrolytic cell configuration of FIG. 2 described above, the test conditions are as follows: reaction area is 25 cm 2 , electrolyte membrane is Nafion 117, methanol supply side catalyst is 1 mg / cm 2 with Pt—Ru, and hydrogen generation side catalyst is 1 mg with Pt. / Cm 2 , hydrogen production by measuring the current density obtained when the voltage is gradually increased at an electrolytic cell temperature of 25 ° C., a methanol aqueous solution concentration supply of 2 M, and a methanol aqueous solution supply amount of 10 cc / min. The efficiency of the system was examined. As a result, as shown in FIG. 3, in the case of the electrolytic cell using the metal powder porous body having both the current collecting function and the supply / discharge function of the present invention, compared with the groove-type member of the comparative example, the same potential condition is used. It can be seen that a large current value is obtained, and the effect of increasing the reaction efficiency of hydrogen generation is recognized. The factors are considered to be firstly reduction of contact resistance due to the characteristics of the spherical powder porous body, secondly improvement of supply characteristics of the methanol aqueous solution, and third improvement of discharge characteristics of hydrogen produced.
以上のように、本発明により電解セルの集電部材が、球状金属粉末同士が3次元的に結合された多孔体からなるため、多孔性あるいは弾力性を有する触媒電極層または拡散層との接触において優れた密着性を示すとともに有効接触面積も大きくなるため、接触抵抗の低減が可能となり、水素製造に必要な電子の移動性を高め反応効率を高めることで、水素製造の効率向上を可能とすることができる。また、球状金属粉末同士が主に点接触で接合した多孔体構造が得られるため、触媒電極層または拡散層との接触界面における空孔率が大きく、かつ、球同士で囲まれた連結空孔を十分に確保出来るため、メタノール等の有機化合物の供給特性、生成ガス及び生成される水素の排出特性に優れ、水素製造の効率向上を可能とする等極めて優れた効果のあることが分かる。 As described above, since the current collecting member of the electrolysis cell according to the present invention is composed of a porous body in which spherical metal powders are three-dimensionally bonded, contact with the catalyst electrode layer or the diffusion layer having porosity or elasticity is possible. In addition to its excellent adhesion, the effective contact area also increases, so the contact resistance can be reduced, and the efficiency of hydrogen production can be improved by increasing the mobility of electrons required for hydrogen production and increasing the reaction efficiency. can do. In addition, since a porous structure in which spherical metal powders are joined mainly by point contact is obtained, the porosity at the contact interface with the catalyst electrode layer or the diffusion layer is large, and the connected pores surrounded by the spheres Therefore, it can be seen that there are excellent effects such as excellent supply characteristics of organic compounds such as methanol, discharge characteristics of generated gas and generated hydrogen, and improvement of hydrogen production efficiency.
1 水素生成側の多孔性集電体
2 メタノール水溶液供給側の多孔性集電体
3 固体高分子電解質膜
4 メタノール水溶液供給側の触媒電極層
5 水素生成側の触媒電極層
6 板状の基板
特許出願人 山陽特殊製鋼株式会社 他1名
代理人 弁理士 椎 名 彊
DESCRIPTION OF SYMBOLS 1 Porous collector on the
Patent applicant Sanyo Special Steel Co., Ltd. and 1 other
Attorney: Attorney Shiina
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196883A JP2012052202A (en) | 2010-09-02 | 2010-09-02 | Member for electrolysis cell and hydrogen production device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196883A JP2012052202A (en) | 2010-09-02 | 2010-09-02 | Member for electrolysis cell and hydrogen production device using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012052202A true JP2012052202A (en) | 2012-03-15 |
Family
ID=45905842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010196883A Pending JP2012052202A (en) | 2010-09-02 | 2010-09-02 | Member for electrolysis cell and hydrogen production device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012052202A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014020647A (en) * | 2012-07-17 | 2014-02-03 | Toshiba Corp | Refrigerator |
JP2017179601A (en) * | 2016-03-23 | 2017-10-05 | Jxtgエネルギー株式会社 | Separator for electrolytic cells, electrolytic cell, electrochemical reduction device, and method for producing hydrogenated body of aromatic hydrocarbon compound |
JP2020033600A (en) * | 2018-08-30 | 2020-03-05 | 株式会社グラヴィトン | Electrolyzer |
CN115216793A (en) * | 2022-08-13 | 2022-10-21 | 电子科技大学中山学院 | Device and method for indirectly electrolyzing water to produce hydrogen |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5713189A (en) * | 1980-06-26 | 1982-01-23 | Osaka Soda Co Ltd | Cathode for electrolysis |
JPS58147575A (en) * | 1982-02-26 | 1983-09-02 | Tokuyama Soda Co Ltd | Production of joined body of porous electrode and ion exchange membrane |
JPH08269761A (en) * | 1995-02-01 | 1996-10-15 | Japan Energy Corp | Water electrolytic cell and its production |
JPH11229167A (en) * | 1998-02-16 | 1999-08-24 | Permelec Electrode Ltd | Electrolytic hydrogen generating device |
JP2003155588A (en) * | 2001-11-15 | 2003-05-30 | Permelec Electrode Ltd | Electrolytic production method of organic compound and electrode for electrolytic production |
JP2004071456A (en) * | 2002-08-08 | 2004-03-04 | Sumitomo Titanium Corp | Porous conductive plate |
JP3126047U (en) * | 2006-07-28 | 2006-10-12 | 大同メタル工業株式会社 | Oxygen gas treatment equipment using water electrolysis equipment |
JP2006291330A (en) * | 2005-04-14 | 2006-10-26 | Nippon Telegr & Teleph Corp <Ntt> | Hydrogen production method and apparatus |
JP2009252399A (en) * | 2008-04-02 | 2009-10-29 | Sanyo Special Steel Co Ltd | Metallic porous separator for fuel, cell and manufacturing method therefor |
JP2009252416A (en) * | 2008-04-02 | 2009-10-29 | Sanyo Special Steel Co Ltd | Fuel battery cell, and manufacturing method therefor |
-
2010
- 2010-09-02 JP JP2010196883A patent/JP2012052202A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5713189A (en) * | 1980-06-26 | 1982-01-23 | Osaka Soda Co Ltd | Cathode for electrolysis |
JPS58147575A (en) * | 1982-02-26 | 1983-09-02 | Tokuyama Soda Co Ltd | Production of joined body of porous electrode and ion exchange membrane |
JPH08269761A (en) * | 1995-02-01 | 1996-10-15 | Japan Energy Corp | Water electrolytic cell and its production |
JPH11229167A (en) * | 1998-02-16 | 1999-08-24 | Permelec Electrode Ltd | Electrolytic hydrogen generating device |
JP2003155588A (en) * | 2001-11-15 | 2003-05-30 | Permelec Electrode Ltd | Electrolytic production method of organic compound and electrode for electrolytic production |
JP2004071456A (en) * | 2002-08-08 | 2004-03-04 | Sumitomo Titanium Corp | Porous conductive plate |
JP2006291330A (en) * | 2005-04-14 | 2006-10-26 | Nippon Telegr & Teleph Corp <Ntt> | Hydrogen production method and apparatus |
JP3126047U (en) * | 2006-07-28 | 2006-10-12 | 大同メタル工業株式会社 | Oxygen gas treatment equipment using water electrolysis equipment |
JP2009252399A (en) * | 2008-04-02 | 2009-10-29 | Sanyo Special Steel Co Ltd | Metallic porous separator for fuel, cell and manufacturing method therefor |
JP2009252416A (en) * | 2008-04-02 | 2009-10-29 | Sanyo Special Steel Co Ltd | Fuel battery cell, and manufacturing method therefor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014020647A (en) * | 2012-07-17 | 2014-02-03 | Toshiba Corp | Refrigerator |
JP2017179601A (en) * | 2016-03-23 | 2017-10-05 | Jxtgエネルギー株式会社 | Separator for electrolytic cells, electrolytic cell, electrochemical reduction device, and method for producing hydrogenated body of aromatic hydrocarbon compound |
JP2020033600A (en) * | 2018-08-30 | 2020-03-05 | 株式会社グラヴィトン | Electrolyzer |
JP7179314B2 (en) | 2018-08-30 | 2022-11-29 | グローバル・リンク株式会社 | Manufacturing method for anode and cathode of electrolyzer |
CN115216793A (en) * | 2022-08-13 | 2022-10-21 | 电子科技大学中山学院 | Device and method for indirectly electrolyzing water to produce hydrogen |
CN115216793B (en) * | 2022-08-13 | 2024-05-07 | 电子科技大学中山学院 | Device and method for indirectly electrolyzing water to prepare hydrogen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Razmjooei et al. | Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer | |
Stiber et al. | A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components | |
Yu et al. | In situ growth of Ni2P–Cu3P bimetallic phosphide with bicontinuous structure on self-supported NiCuC substrate as an efficient hydrogen evolution reaction electrocatalyst | |
Park et al. | Ultra-low loading of IrO2 with an inverse-opal structure in a polymer-exchange membrane water electrolysis | |
Wei et al. | A hierarchically porous nickel–copper phosphide nano-foam for efficient electrochemical splitting of water | |
Feng et al. | Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation | |
Zhang et al. | Unique Ni crystalline core/Ni phosphide amorphous shell heterostructured electrocatalyst for hydrazine oxidation reaction of fuel cells | |
JP2008204876A (en) | Fuel cell separator, manufacturing method of fuel cell separator and fuel cell | |
KR101584725B1 (en) | Alkaline anion exchange membrane water electrolyzer using Ni electrodeposited hydrophilic porous carbon material and method for preparing the same | |
JP6614131B2 (en) | Porous current collector, fuel cell, and method for producing porous current collector | |
JP6786426B2 (en) | Electrochemical reduction device and method for producing a hydrogenated product of an aromatic hydrocarbon compound | |
Oh et al. | Self-supported electrodes to enhance mass transfer for high-performance anion exchange membrane water electrolyzer | |
Chen et al. | Supported Ni@ Ni2P core–shell nanotube Arrays on Ni foam for hydrazine electrooxidation | |
Rezaei et al. | Electrocatalytic activity of bimetallic PdAu nanostructure supported on nanoporous stainless steel surface using galvanic replacement reaction toward the glycerol oxidation in alkaline media | |
CN104037428B (en) | Direct methanol fuel cell with alloy-TiO2 nanotube/Ti anode and preparation method thereof | |
Guo et al. | 3D printing of multiscale Ti64‐based lattice electrocatalysts for robust oxygen evolution reaction | |
Mojabi et al. | Decorated fractal Ni-Cu foam with Pd nanoparticles as a high-performance electrocatalyst toward hydrogen evolution reaction | |
JP2012052202A (en) | Member for electrolysis cell and hydrogen production device using the same | |
JP2018031046A (en) | Cathode, electrolysis cell for organic hydride production, and method for producing organic hydrides | |
Chang et al. | Recent advances in zinc–air batteries: self-standing inorganic nanoporous metal films as air cathodes | |
JP2009252399A (en) | Metallic porous separator for fuel, cell and manufacturing method therefor | |
JP4534033B2 (en) | Current collector for fuel cell and electrolyte composite using the same | |
Mahmoodi et al. | Novel electrocatalysts for borohydride fuel cells: enhanced power generation by optimizing anodic core–shell nanoparticles on reduced graphene oxide | |
JP2008055310A (en) | Supporting body for hydrogen-permeable membrane and its manufacturing method | |
Jiang et al. | Deep reconstruction of Ni–Al-based pre-catalysts for a highly efficient and durable anion-exchange membrane (AEM) electrolyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121029 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140325 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140509 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141007 |