[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011204731A - Method of bonding optical package and lens, and optical package - Google Patents

Method of bonding optical package and lens, and optical package Download PDF

Info

Publication number
JP2011204731A
JP2011204731A JP2010067813A JP2010067813A JP2011204731A JP 2011204731 A JP2011204731 A JP 2011204731A JP 2010067813 A JP2010067813 A JP 2010067813A JP 2010067813 A JP2010067813 A JP 2010067813A JP 2011204731 A JP2011204731 A JP 2011204731A
Authority
JP
Japan
Prior art keywords
lens
optical package
thermoplastic resin
optical
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010067813A
Other languages
Japanese (ja)
Inventor
Hidekazu Takahashi
秀和 高橋
Manabu Mizobuchi
学 溝渕
Nagayuki Sato
永幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010067813A priority Critical patent/JP2011204731A/en
Priority to KR1020100129231A priority patent/KR20110107264A/en
Priority to EP11153606A priority patent/EP2372426A1/en
Priority to CN2011100386179A priority patent/CN102201501A/en
Publication of JP2011204731A publication Critical patent/JP2011204731A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Lens Barrels (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of bonding an optical package to a lens which can easily and accurately adjust a distance between the optical package and the lens, and the optical package.SOLUTION: A thermoplastic resin 30 is used to bond a condensing lens 20 to the optical package 1 containing an optical element 3 for integration. First, the thermoplastic resin 30 is disposed between bonding surfaces 4 and 21 of the optical package 1 and the lens 20 to align the optical element 3 with a light axis X of the lens 20 while they are in contact with each other. Then, the thermoplastic resin 30 is heated by a heater 40 to be melted. In addition, a distance between the bonding surfaces 4 and 21 is controlled while applying pressure to the lens 20 toward the optical package 1, and an excess of the thermoplastic resin 30 is discharged together with air bubbles from between the bonding surfaces 4 and 21. By the molding of the thermoplastic resin 30 to a joint 30a, the optical package 1 and the lens 20 are bonded.

Description

この発明は、光学素子を収容した光学パッケージに集光用のレンズを取り付けて一体化する接合方法と、この接合方法によりレンズを一体化した光学パッケージに関するものである。   The present invention relates to a bonding method in which a condensing lens is attached to and integrated with an optical package containing an optical element, and an optical package in which the lens is integrated by this bonding method.

一般に、光学素子を収容した光学パッケージとレンズの接合には、液状の光学用接着剤を用いる(例えば、特許文献1参照)。また、接着箇所に単に接着剤を塗布して部材を押し付けて接合するだけでは、接合面及び接着剤自体に気泡が入りやすく、かつ、逃げづらいので、遠心脱泡機、真空脱泡機等を使用して気泡を除去している。   In general, a liquid optical adhesive is used for bonding an optical package containing an optical element and a lens (see, for example, Patent Document 1). In addition, simply applying an adhesive to the bonding location and pressing the members to join them makes it easy for bubbles to enter the bonding surface and the adhesive itself, and it is difficult to escape, so use a centrifugal defoamer, vacuum defoamer, etc. Use to remove bubbles.

図10に、従来の接合方法を示す。図10(a)において、光学パッケージ1は、基板上に実装された光学素子3を収容し、リード電極2を側方へ延出させる。ここでは、光学パッケージ1を、光学素子3を封止する透光性の樹脂とする。先ず、光学パッケージ1の上面に、液状の、紫外線硬化タイプの光学用接着剤(以下、接着剤)10を塗布する。接着剤10が高粘度の場合、気泡が抜けにくいので脱泡処理を行う。   FIG. 10 shows a conventional joining method. In FIG. 10A, the optical package 1 accommodates the optical element 3 mounted on the substrate, and extends the lead electrode 2 to the side. Here, the optical package 1 is made of a translucent resin that seals the optical element 3. First, a liquid ultraviolet curing type optical adhesive (hereinafter referred to as an adhesive) 10 is applied to the upper surface of the optical package 1. When the adhesive 10 has a high viscosity, it is difficult for bubbles to escape, and thus defoaming is performed.

続いて、図10(b)に示すように、光学パッケージ1とレンズ20の光軸X(図中に一点鎖線で示す)を非接触状態で位置合わせする。続いて、図10(c)に示すように、光学パッケージ1とレンズ20の光軸Xを保持しつつ、光学パッケージ1の上面にレンズ20を載せ、高さ方向を調整して、その状態を保持する。接着剤10が高粘度の場合、レンズ20と光学パッケージ1の間に入った気泡が抜けにくいので、ここで再度の脱泡処理を行う。その後、紫外線照射により、接着剤10を硬化させて光学パッケージ1とレンズ20とを接合する。   Subsequently, as shown in FIG. 10B, the optical axis X of the optical package 1 and the lens 20 (indicated by a one-dot chain line in the figure) is aligned in a non-contact state. Subsequently, as shown in FIG. 10C, the lens 20 is placed on the upper surface of the optical package 1 while holding the optical axis X of the optical package 1 and the lens 20, and the height direction is adjusted to change the state. Hold. When the adhesive 10 has a high viscosity, it is difficult for air bubbles that have entered between the lens 20 and the optical package 1 to be removed, so the defoaming process is performed again here. Thereafter, the adhesive 10 is cured by ultraviolet irradiation, and the optical package 1 and the lens 20 are bonded.

特開2006−339653号公報JP 2006-339653 A

従来用いられてきた液状の接着剤10は、低粘度でも高粘度でも、その塗布面の厚みが薄いため、光学パッケージ1とレンズ20の高さ方向(即ち、光軸方向)の調整しろが小さく、光学パッケージ1とレンズ20との間の距離の調整が難しいという課題があった。超小型光電センサ等に組み込むための光学パッケージは、光学パッケージとレンズとの間の距離を許容範囲内に抑える必要があるが、上記のような課題があるので実現が困難であった。   The liquid adhesive 10 that has been used conventionally has a thin thickness of the coated surface regardless of whether it is low viscosity or high viscosity, so that the adjustment margin in the height direction (that is, the optical axis direction) of the optical package 1 and the lens 20 is small. There is a problem that it is difficult to adjust the distance between the optical package 1 and the lens 20. An optical package to be incorporated into an ultra-small photoelectric sensor or the like needs to keep the distance between the optical package and the lens within an allowable range, but is difficult to realize due to the above-described problems.

この発明は、上記のような課題を解決するためになされたもので、光学パッケージとレンズの間の距離調整を容易かつ高精度に実施可能な光学パッケージとレンズの接合方法、及びこの接合方法でレンズを一体化した光学パッケージを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an optical package and lens bonding method capable of easily and highly accurately adjusting the distance between the optical package and the lens, and the bonding method. An object is to provide an optical package in which a lens is integrated.

この発明の請求項1に係る光学パッケージとレンズの接合方法は、光学パッケージとレンズの接合面の間に熱可塑性樹脂を配置する第一の工程と、熱可塑性樹脂を加熱して溶融させると共に、光学パッケージ及びレンズのいずれか一方又は両方を互いの方向へ加圧しながら接合面間の距離を調整する第二の工程とを備えるものである。   The method for bonding an optical package and a lens according to claim 1 of the present invention includes a first step of disposing a thermoplastic resin between the bonding surfaces of the optical package and the lens, and heating and melting the thermoplastic resin, And a second step of adjusting the distance between the joint surfaces while pressing one or both of the optical package and the lens in the direction of each other.

この発明の請求項2に係る光学パッケージとレンズの接合方法は、第一の工程と第二の工程の間に、光学パッケージと熱可塑性樹脂、及び当該熱可塑性樹脂とレンズをそれぞれ接触させた状態で、光学パッケージの光学素子及びレンズの光軸の位置合わせを行う工程を更に備えるものである。   The optical package and lens bonding method according to claim 2 of the present invention is a state in which the optical package and the thermoplastic resin, and the thermoplastic resin and the lens are brought into contact between the first step and the second step, respectively. The method further includes a step of aligning the optical elements of the optical package and the optical axis of the lens.

この発明の請求項3に係る光学パッケージとレンズの接合方法は、第二の工程では、溶融した熱可塑性樹脂の余分を接合面間から排出するようにしたものである。   According to a third aspect of the present invention, there is provided a method for bonding an optical package and a lens, wherein in the second step, excess molten thermoplastic resin is discharged from between the bonding surfaces.

この発明の請求項4に係る光学パッケージとレンズの接合方法は、溶融前の熱可塑性樹脂が、光学パッケージとレンズの両接合面に両端面が接する軸部と、当該軸部を中心にして放射状に形成した複数の凸部とを有するようにしたものである。   According to a fourth aspect of the present invention, there is provided a method for joining an optical package and a lens, wherein the thermoplastic resin before melting is a radial portion centering on the shaft portion, the shaft portion having both end surfaces in contact with both joint surfaces of the optical package and the lens. And a plurality of convex portions formed on the surface.

この発明の請求項5に係る光学パッケージとレンズの接合方法は、レンズの接合面が、当該接合面から突出した先細りの凸形状を有し、溶融前の熱可塑性樹脂が、レンズの接合面の凸形状に合わせた凹形状を有するようにしたものである。   In the method for bonding an optical package and a lens according to claim 5 of the present invention, the lens bonding surface has a tapered convex shape protruding from the bonding surface, and the thermoplastic resin before melting is formed on the lens bonding surface. It has a concave shape matched to the convex shape.

この発明の請求項6に係る光学パッケージは、光学素子を収容した光学パッケージと、集光用のレンズと、熱可塑性樹脂が、光学パッケージとレンズの接合面間に配置され、加熱されて溶融すると共に加圧されて当該熱可塑性樹脂の余分が当該接合面間から排出されて成形された、光学パッケージとレンズとを接合する接合部とを備えるものである。   According to a sixth aspect of the present invention, an optical package containing an optical element, a condensing lens, and a thermoplastic resin are disposed between the joint surfaces of the optical package and the lens, and are heated and melted. In addition, there is provided a joining portion for joining the optical package and the lens, which is pressed together with the excess of the thermoplastic resin and discharged from between the joining surfaces.

この発明の請求項1によれば、光学パッケージとレンズの接合面の間に熱可塑性樹脂を配置し、熱可塑性樹脂を加熱して溶融させると共に、加圧しながら接合面間の距離を調整するようにしたので、光学パッケージとレンズの間の距離調整を容易かつ高精度に実施可能な光学パッケージとレンズの接合方法を提供することができる。   According to the first aspect of the present invention, the thermoplastic resin is disposed between the joint surface of the optical package and the lens so that the thermoplastic resin is heated and melted, and the distance between the joint surfaces is adjusted while being pressurized. Therefore, it is possible to provide a method for joining an optical package and a lens, which can easily and accurately adjust the distance between the optical package and the lens.

この発明の請求項2によれば、光学パッケージと熱可塑性樹脂、及び当該熱可塑性樹脂とレンズをそれぞれ接触させた状態で、光学パッケージの光学素子及びレンズの光軸の位置合わせを行うようにしたので、光軸合わせを容易かつ高精度に実施できる。   According to claim 2 of the present invention, the optical package and the thermoplastic resin, and the optical element of the optical package and the optical axis of the lens are aligned in a state where the thermoplastic resin and the lens are in contact with each other. Therefore, optical axis alignment can be performed easily and with high accuracy.

この発明の請求項3によれば、溶融した熱可塑性樹脂の余分を接合面間から排出するようにしたので、光学パッケージと熱可塑性樹脂とレンズの間の各接合面の気泡を余分の熱可塑性樹脂と共に外部へ流し出すことにより、接合部分の気泡を低減できる。   According to the third aspect of the present invention, since the excess of the molten thermoplastic resin is discharged from between the bonding surfaces, bubbles on each bonding surface between the optical package, the thermoplastic resin, and the lens are removed from the excessive thermoplasticity. By flowing out together with the resin, bubbles at the joint can be reduced.

この発明の請求項4によれば、溶融前の熱可塑性樹脂が放射状に形成した複数の凸部を有するようにしたので、溶融前は光学パッケージ及びレンズとの接触面積が小さく、また、溶融すると中心から放射状に広がり気泡と共に外部へ流れ出るので、接合部分の気泡を低減できる。   According to claim 4 of the present invention, since the thermoplastic resin before melting has a plurality of convex portions formed radially, the contact area between the optical package and the lens is small before melting, Since it spreads radially from the center and flows to the outside together with the bubbles, the bubbles at the joint can be reduced.

この発明の請求項5によれば、レンズの接合面に先細りの凸形状を、熱可塑性樹脂に凹形状を設けるようにしたので、凸形状と凹形状を嵌合することにより、容易に光学パッケージとレンズの位置合わせができ、かつ、溶融した熱可塑性樹脂が気泡と共に凸形状に沿って外部へ流れ出るので、接合部分の気泡を低減できる。   According to the fifth aspect of the present invention, since the tapered convex shape is provided on the joint surface of the lens and the concave shape is provided on the thermoplastic resin, the optical package can be easily obtained by fitting the convex shape and the concave shape. And the lens can be aligned, and the molten thermoplastic resin flows out along the convex shape together with the bubbles, so that bubbles at the joint portion can be reduced.

この発明の請求項6によれば、熱可塑性樹脂が、光学パッケージとレンズの接合面間に配置され、加熱されて溶融すると共に加圧されて当該熱可塑性樹脂の余分が当該接合面間から排出されて成形された接合部で、光学パッケージとレンズとを接合するようにしたので、光学パッケージとレンズの間の距離調整及び光軸合わせを熱可塑性樹脂に接触させた状態で容易かつ高精度にでき、かつ、光学パッケージと熱可塑性樹脂とレンズの間の各接合面の気泡を余分の熱可塑性樹脂と共に外部へ流し出すことにより、接合部分の気泡を低減した光学パッケージを提供することができる。   According to the sixth aspect of the present invention, the thermoplastic resin is disposed between the bonding surfaces of the optical package and the lens, heated and melted and pressurized, and excess of the thermoplastic resin is discharged from between the bonding surfaces. Since the optical package and the lens are bonded to each other with the molded joint, the distance adjustment between the optical package and the lens and the optical axis alignment can be easily and accurately performed in a state of being in contact with the thermoplastic resin. In addition, it is possible to provide an optical package in which the bubbles at the joint portion are reduced by flowing out the bubbles at each joint surface between the optical package, the thermoplastic resin, and the lens together with the extra thermoplastic resin.

この発明の実施の形態1に係る光学パッケージとレンズの接合方法を説明する側面図であり、接合前の状態を示す。It is a side view explaining the joining method of the optical package and lens which concern on Embodiment 1 of this invention, and shows the state before joining. この発明の実施の形態1に係る光学パッケージとレンズの接合方法を説明する側面図であり、接合後の状態を示す。It is a side view explaining the joining method of the optical package and lens which concern on Embodiment 1 of this invention, and shows the state after joining. 光学パッケージとレンズを接合するための、熱可塑性樹脂の外観斜視図である。It is an external appearance perspective view of the thermoplastic resin for joining an optical package and a lens. この発明の実施の形態2に係る光学パッケージとレンズの接合方法を説明する側面図であり、接合前の状態を示す。It is a side view explaining the joining method of the optical package and lens which concern on Embodiment 2 of this invention, and shows the state before joining. この発明の実施の形態2に係る光学パッケージとレンズの接合方法を説明する側面図であり、接合後の状態を示す。It is a side view explaining the joining method of the optical package and lens which concern on Embodiment 2 of this invention, and shows the state after joining. 図4及び図5に示すレンズの正面図である。FIG. 6 is a front view of the lens shown in FIGS. 4 and 5. この発明の実施の形態3に係る光学パッケージとレンズの接合方法を説明する側面図であり、接合前の状態を示す。It is a side view explaining the joining method of the optical package and lens which concern on Embodiment 3 of this invention, and shows the state before joining. この発明の実施の形態3に係る光学パッケージとレンズの接合方法を説明する側面図であり、接合後の状態を示す。It is a side view explaining the joining method of the optical package and lens which concern on Embodiment 3 of this invention, and shows the state after joining. 図7及び図8に示すレンズの正面図である。It is a front view of the lens shown in FIG.7 and FIG.8. 従来の、光学パッケージとレンズの接合方法を説明する側面図である。It is a side view explaining the conventional joining method of an optical package and a lens.

実施の形態1.
図1及び図2は、この発明の実施の形態1に係る光学パッケージ1とレンズ20の接合方法を説明する側面図であり、図1が接合前の状態、図2が接合後の状態を示す。図1において、光学パッケージ1は、先立って説明した図10の光学パッケージ1と同様に、基板上に光学素子3が、透光性の樹脂により封止されてなる。光学素子3には受光素子、投光素子(例えばLight Emitting Diode)等を用いる。なお、図示例は概略図であり、光学素子3と基板とを接続するワイヤ等の詳細は図示を省略する。また、熱可塑性樹脂30、接合部30a及びヒータ40は断面を示す。
Embodiment 1 FIG.
1 and 2 are side views for explaining a method of joining the optical package 1 and the lens 20 according to Embodiment 1 of the present invention. FIG. 1 shows a state before joining, and FIG. 2 shows a state after joining. . In FIG. 1, an optical package 1 is formed by sealing an optical element 3 on a substrate with a light-transmitting resin in the same manner as the optical package 1 shown in FIG. As the optical element 3, a light receiving element, a light projecting element (for example, Light Emitting Diode) or the like is used. Note that the illustrated example is a schematic diagram, and details of wires and the like that connect the optical element 3 and the substrate are omitted. Moreover, the thermoplastic resin 30, the joint part 30a, and the heater 40 show a cross section.

図3は、光学パッケージ1とレンズ20を接合するための接着剤となる、熱可塑性樹脂30の外観斜視図である。この熱可塑性樹脂30は、熱を加えることで溶融し、常温で再び固体になるものである。ただし、レンズ20の材質と光学パッケージ1の材質の融点又はガラス転移温度は、この熱可塑性樹脂30の溶融温度より高いものとする。例えば、熱可塑性樹脂30としてアクリル樹脂(PMMA、屈折率;1.49、ガラス転移温度;マイナス数度から数十度)、レンズ20としてポリカーボネート(屈折率;1.585、融点;250度)及びポリアリレート(屈折率;1.61、ガラス転移温度;193度)等を用いる。また、光学パッケージ1としてエポキシ樹脂(熱硬化性樹脂)、ケイ素樹脂等を用いる。   FIG. 3 is an external perspective view of a thermoplastic resin 30 that serves as an adhesive for joining the optical package 1 and the lens 20. This thermoplastic resin 30 is melted by applying heat and becomes solid again at room temperature. However, the melting point or glass transition temperature of the material of the lens 20 and the material of the optical package 1 is higher than the melting temperature of the thermoplastic resin 30. For example, acrylic resin (PMMA, refractive index: 1.49, glass transition temperature: minus several degrees to several tens of degrees) as the thermoplastic resin 30, polycarbonate (refractive index: 1.585, melting point: 250 degrees) as the lens 20, and Polyarylate (refractive index: 1.61, glass transition temperature: 193 degrees) or the like is used. Further, an epoxy resin (thermosetting resin), a silicon resin, or the like is used as the optical package 1.

熱可塑性樹脂30の形状は、中実の軸部31と、この軸部31を中心にして放射状に形成した複数の凸部32〜35とを有する。図3の例では、各凸部32〜35間の角度を90度にして断面十字形状に構成したが、これに限定されるものではなく、例えば3つの凸部を120度間隔で形成したり、断面星型形状にしたりしてもよい。この熱可塑性樹脂30は、その軸部31の両端面が、光学パッケージ1の接合面4とレンズ20の接合面21に接する向きで、接合面4,21間に配置される。   The shape of the thermoplastic resin 30 includes a solid shaft portion 31 and a plurality of convex portions 32 to 35 that are radially formed around the shaft portion 31. In the example of FIG. 3, the angle between the convex portions 32 to 35 is 90 degrees to form a cross-shaped cross section. However, the present invention is not limited to this. For example, three convex portions are formed at intervals of 120 degrees. Alternatively, it may have a star shape in cross section. The thermoplastic resin 30 is disposed between the joint surfaces 4 and 21 such that both end surfaces of the shaft portion 31 are in contact with the joint surface 4 of the optical package 1 and the joint surface 21 of the lens 20.

本実施の形態1では、図1の熱可塑性樹脂30を溶融して、接合面4,21間を接合する接合部30a(図2)に成形する。詳細は後述するが、熱可塑性樹脂30の一部は接合面4,21間から流し出すので、溶融前の熱可塑性樹脂30の体積は、接合面4,21間を接合するために必要な接合部30aの体積より多くする必要がある。   In the first embodiment, the thermoplastic resin 30 of FIG. 1 is melted and formed into a joint portion 30a (FIG. 2) for joining the joint surfaces 4 and 21 together. Although details will be described later, a part of the thermoplastic resin 30 flows out from between the joint surfaces 4 and 21, so that the volume of the thermoplastic resin 30 before melting is the joint necessary for joining the joint surfaces 4 and 21. It is necessary to increase the volume of the part 30a.

次に、接合方法を説明する。
図1に示すように、光学パッケージ1とレンズ20の接合面4,21間に熱可塑性樹脂30を配置し、光学パッケージ1と熱可塑性樹脂30とレンズ20とが相互に接触した安定状態で、光学素子3とレンズ20の光軸X(図中に一点鎖線で示す)を位置合わせする。接触状態で位置合わせするので、光軸合わせが容易かつ高精度にできる。
Next, a joining method will be described.
As shown in FIG. 1, a thermoplastic resin 30 is disposed between the joint surfaces 4 and 21 of the optical package 1 and the lens 20, and the optical package 1, the thermoplastic resin 30, and the lens 20 are in contact with each other in a stable state. The optical axis X of the optical element 3 and the lens 20 (indicated by the alternate long and short dash line in the figure) is aligned. Since alignment is performed in a contact state, optical axis alignment can be performed easily and with high accuracy.

これに対して、従来は液状の接着剤を用いるので、光学パッケージ1とレンズ20を非接触状態で光軸合わせする必要があった。そのため、光軸合わせの作業が安定せず、繰り返し精度が確保できなかった。   On the other hand, since a liquid adhesive is conventionally used, it is necessary to align the optical axis of the optical package 1 and the lens 20 in a non-contact state. Therefore, the optical axis alignment operation is not stable, and the repeatability cannot be ensured.

続いて、ヒータ40で加熱して熱可塑性樹脂30を溶融させつつ、レンズ20を光学パッケージ1の方向へ加圧して接合面4,21間の距離を調整する。そのため、距離調整が容易かつ高精度にできる。加圧の際、溶融した熱可塑性樹脂30は中心から放射状に押し広げられて、余分な熱可塑性樹脂30が接合面4,21間から流れ出る。それと同時に、4つの凸部32〜35で仕切られた4つの空間(空気層)も中心から外部へ向って流れるので、熱可塑性樹脂30と接合面4,21との接合部分の気泡を少なくすることができる。また、溶融前の熱可塑性樹脂30と接合面4,21との接触面積が小さいため、熱可塑性樹脂30と4,21との間に存在する気泡を減らすことができる。気泡を抑制できるので、従来のような脱泡処理を行う必要もない。   Subsequently, while heating with the heater 40 to melt the thermoplastic resin 30, the lens 20 is pressed in the direction of the optical package 1 to adjust the distance between the bonding surfaces 4 and 21. Therefore, distance adjustment can be performed easily and with high accuracy. At the time of pressurization, the molten thermoplastic resin 30 is radially spread from the center, and excess thermoplastic resin 30 flows out between the joint surfaces 4 and 21. At the same time, the four spaces (air layers) partitioned by the four convex portions 32 to 35 also flow from the center toward the outside, so that the bubbles at the joint portion between the thermoplastic resin 30 and the joint surfaces 4 and 21 are reduced. be able to. In addition, since the contact area between the thermoplastic resin 30 before melting and the joining surfaces 4 and 21 is small, bubbles existing between the thermoplastic resins 30 and 4 and 21 can be reduced. Since bubbles can be suppressed, it is not necessary to perform a conventional defoaming treatment.

これに対して、従来は液状の接着剤を用いるので、光学パッケージ1とレンズ20の間の距離の調整しろが小さく、調整が困難であった。また、接着剤が高粘度の場合は気泡が生じやすく、かつ、抜けにくかった。接着剤が低粘度の場合は特に塗布面の厚みが薄いので、光学パッケージ1とレンズ20の間の気泡が抜けにくかった。このため、先立って説明した従来の接合方法でレンズ20を一体化した光学パッケージ1を、例えば光電センサに用いる場合、気泡によりレンズ20の期待した光学特性を確保することができず、光電センサの長距離化及び高感度化の弊害となる恐れがあった。   On the other hand, conventionally, since a liquid adhesive is used, the adjustment distance of the distance between the optical package 1 and the lens 20 is small and adjustment is difficult. Further, when the adhesive had a high viscosity, bubbles were easily generated and it was difficult to remove. When the adhesive has a low viscosity, the thickness of the coated surface is particularly thin, so that bubbles between the optical package 1 and the lens 20 are difficult to escape. For this reason, when the optical package 1 in which the lens 20 is integrated by the conventional bonding method described above is used for, for example, a photoelectric sensor, the expected optical characteristics of the lens 20 cannot be ensured by bubbles, and the photoelectric sensor There was a risk of increasing the distance and increasing the sensitivity.

続いて、熱可塑性樹脂30が常温になるまで図2の状態を保持し、熱可塑性樹脂30を接合部30aの形状に成形して、光学パッケージ1とレンズ20とを接合部30aを介して接合する。
なお、ヒータ40は、リング状ヒータ、ジャケットヒータ、ラバーヒータ等を用いればよい。また、光学パッケージ1の保存温度上限を超えないように、ヒータ温度を制御する。また、この例では、レンズ20を光学パッケージ1の方向へ加圧したが、これに限定されるものではなく、光学パッケージ1をレンズ20の方向へ加圧してもよいし、光学パッケージ1とレンズ20とを互いの方向へ加圧してもよい。
Subsequently, the state of FIG. 2 is maintained until the thermoplastic resin 30 reaches room temperature, the thermoplastic resin 30 is molded into the shape of the joint portion 30a, and the optical package 1 and the lens 20 are joined via the joint portion 30a. To do.
The heater 40 may be a ring heater, jacket heater, rubber heater, or the like. Further, the heater temperature is controlled so as not to exceed the storage temperature upper limit of the optical package 1. In this example, the lens 20 is pressed in the direction of the optical package 1. However, the present invention is not limited to this, and the optical package 1 may be pressed in the direction of the lens 20. 20 may be pressurized in the direction of each other.

以上より、実施の形態1によれば、光学素子3を収容した光学パッケージ1に集光用のレンズ20を接合して一体化する接合方法として、光学パッケージ1とレンズ20の接合面4,21の間に熱可塑性樹脂30を配置して、光学パッケージ1と熱可塑性樹脂30、及びこの熱可塑性樹脂30とレンズ20をそれぞれ接触させた状態で、光学素子3とレンズ20の光軸Xの位置合わせを行う工程と、熱可塑性樹脂30をヒータ40により加熱して溶融させると共に、レンズ20を光学パッケージ1の方向へ加圧しながら接合面4,21間の距離を調整して、接合面4,21間から熱可塑性樹脂30の余分を排出する工程と、その状態を保持して熱可塑性樹脂30を接合部30aに成形して光学パッケージ1とレンズ20とを接合させる工程とを備えるように構成した。このため、熱可塑性樹脂30は高さを有するので、加熱時にこの高さを調整しながらレンズ20を加圧することで、接合面4,21間の距離を容易かつ高精度に調整できるようになる。また、光学素子3とレンズ20の光軸Xの位置合わせを、接合面4,21を熱可塑性樹脂30に接触させた安定状態で容易かつ高精度にできるようになる。   As described above, according to the first embodiment, the bonding surfaces 4 and 21 of the optical package 1 and the lens 20 are used as a bonding method for bonding and integrating the condensing lens 20 to the optical package 1 in which the optical element 3 is accommodated. A position of the optical axis X of the optical element 3 and the lens 20 in a state where the thermoplastic resin 30 is disposed between the optical package 1 and the thermoplastic resin 30, and the thermoplastic resin 30 and the lens 20 are in contact with each other. A step of performing the alignment, the thermoplastic resin 30 is heated and melted by the heater 40, and the distance between the bonding surfaces 4 and 21 is adjusted while pressing the lens 20 in the direction of the optical package 1, thereby A step of discharging excess of the thermoplastic resin 30 from between 21, a step of maintaining the state and molding the thermoplastic resin 30 into the joint portion 30a to join the optical package 1 and the lens 20; It was configured to include. For this reason, since the thermoplastic resin 30 has a height, the distance between the joining surfaces 4 and 21 can be adjusted easily and with high accuracy by pressurizing the lens 20 while adjusting the height during heating. . Further, the optical axis X of the optical element 3 and the lens 20 can be aligned easily and with high accuracy in a stable state where the bonding surfaces 4 and 21 are in contact with the thermoplastic resin 30.

また、実施の形態1によれば、溶融前の熱可塑性樹脂30は、光学パッケージ1とレンズ20の接合面4,21間の方向と平行に配置される軸部31と、この軸部31を中心にして放射状に形成した複数の凸部32〜35とを有するように構成したので、接合面4,21との接触面積が小さくでき、光学パッケージ1と熱可塑性樹脂30とレンズ20の各接合面に存在する気泡を低減することができる。また、熱可塑性樹脂30が溶融すると軸部31側から放射状に広がり、気泡と共に外部へ流れ出るので、接合部分の気泡を低減することができる。   Further, according to the first embodiment, the thermoplastic resin 30 before melting includes a shaft portion 31 arranged in parallel to the direction between the joint surfaces 4 and 21 of the optical package 1 and the lens 20, and the shaft portion 31. Since it is configured to have a plurality of convex portions 32 to 35 that are radially formed at the center, the contact area with the joint surfaces 4 and 21 can be reduced, and each joint of the optical package 1, the thermoplastic resin 30, and the lens 20. Bubbles existing on the surface can be reduced. Further, when the thermoplastic resin 30 is melted, it spreads radially from the shaft portion 31 side and flows to the outside together with bubbles, so that bubbles at the joint portion can be reduced.

実施の形態2.
図4及び図5は、この発明の実施の形態2に係る光学パッケージ1とレンズ20の接合方法を説明する側面図であり、図4が接合前の状態、図5が接合後の状態を示す。図6は、レンズ20の正面図である。なお、図4〜図6において図1及び図2と同一又は相当の部分については同一の符号を付し説明を省略する。また、レンズ20の一部、熱可塑性樹脂36、接合部36a、ヒータ40及びスペーサ50は断面を示す。
Embodiment 2. FIG.
4 and 5 are side views for explaining a method of joining the optical package 1 and the lens 20 according to the second embodiment of the present invention. FIG. 4 shows a state before joining, and FIG. 5 shows a state after joining. . FIG. 6 is a front view of the lens 20. 4 to 6, the same or corresponding parts as those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted. Further, a part of the lens 20, the thermoplastic resin 36, the joining portion 36a, the heater 40, and the spacer 50 are shown in cross section.

本実施の形態2では、レンズ20の接合面21に、熱可塑性樹脂36側へ突出する先細りの凸形状22を形成すると共に、凸形状22の周囲に溝を設けて、この溝を、溶融した樹脂が流れ込む樹脂受け部23にする。   In the second embodiment, a tapered convex shape 22 projecting toward the thermoplastic resin 36 is formed on the joint surface 21 of the lens 20, and a groove is provided around the convex shape 22, and the groove is melted. The resin receiving portion 23 into which the resin flows is used.

熱可塑性樹脂36は、光学パッケージ1と略同じ外径の中実円筒形状にし、その円筒のレンズ20に対向する上面に、凸形状22の外形に合わせた凹形状37を形成する。図示例ではレンズ20には凸形状22を円錐形状に形成し、この円錐の頂点をレンズ20の光軸Xに一致させると共に、一方の熱可塑性樹脂36には凸形状22の円錐形状を抜いた形状の凹形状37を形成し、この円錐の頂点を光学素子3の光軸Xに一致させる。   The thermoplastic resin 36 has a solid cylindrical shape with substantially the same outer diameter as that of the optical package 1, and a concave shape 37 that matches the outer shape of the convex shape 22 is formed on the upper surface of the cylinder facing the lens 20. In the illustrated example, the convex shape 22 is formed in the lens 20 in a conical shape, the apex of the cone is made coincident with the optical axis X of the lens 20, and the conical shape of the convex shape 22 is extracted in one thermoplastic resin 36. A concave shape 37 is formed, and the apex of the cone is made to coincide with the optical axis X of the optical element 3.

また、スペーサ50は、光学パッケージ1の外径と略同じ内径にする。また、光学パッケージ1とレンズ20との間の距離をスペーサ50の高さにより規定する。即ち、加圧されて移動するレンズ20の接合面21がスペーサ50の上面に当接することにより、レンズ20の移動が規制されるようにする。   The spacer 50 has an inner diameter that is substantially the same as the outer diameter of the optical package 1. Further, the distance between the optical package 1 and the lens 20 is defined by the height of the spacer 50. In other words, the movement of the lens 20 is restricted when the cemented surface 21 of the lens 20 that moves under pressure comes into contact with the upper surface of the spacer 50.

次に、接合方法を説明する。
図4に示すように、光学パッケージ1とレンズ20の接合面4,21間に熱可塑性樹脂36を配置する。このとき、スペーサ50により光学パッケージ1と熱可塑性樹脂36とが位置合わせされ、凹形状37の頂点が光学パッケージ1の中心にある光学素子3の光軸X上にくる。また、凸形状22と凹形状37の嵌合によりレンズ20と熱可塑性樹脂36とが位置合わせされ、凸形状22の頂点がレンズ20の光軸X上にくる。よって、光学素子3とレンズ20の光軸合わせができる。
Next, a joining method will be described.
As shown in FIG. 4, a thermoplastic resin 36 is disposed between the joint surfaces 4 and 21 of the optical package 1 and the lens 20. At this time, the optical package 1 and the thermoplastic resin 36 are aligned by the spacer 50, and the vertex of the concave shape 37 comes on the optical axis X of the optical element 3 at the center of the optical package 1. In addition, the lens 20 and the thermoplastic resin 36 are aligned by fitting the convex shape 22 and the concave shape 37, and the vertex of the convex shape 22 is on the optical axis X of the lens 20. Therefore, the optical axes of the optical element 3 and the lens 20 can be aligned.

続いて、ヒータ40で加熱して熱可塑性樹脂36を溶融させつつ、レンズ20を光学パッケージ1の方向へ加圧して接合面21をスペーサ50の上面に押し付けることにより、接合面4,21間の距離が自動的に調整される。即ち、図6に示すように、接合面21のうちの樹脂受け部23の無い面が、スペーサ50の上面(不図示)に当接して、その高さ位置で保持される。また、加圧の際、溶融した熱可塑性樹脂36は凸形状22のV字面に沿って上昇し、余分な熱可塑性樹脂36が接合面4,21間から樹脂受け部23へ流れ出る。このようにして熱可塑性樹脂36を接合部36aの形状に成形し(図5)、光学パッケージ1とレンズ20とを接合部36aを介して接合する。   Subsequently, while the thermoplastic resin 36 is melted by heating with the heater 40, the lens 20 is pressed in the direction of the optical package 1 and the bonding surface 21 is pressed against the upper surface of the spacer 50. The distance is adjusted automatically. That is, as shown in FIG. 6, the surface of the bonding surface 21 without the resin receiving portion 23 abuts on the upper surface (not shown) of the spacer 50 and is held at the height position. In addition, during the pressurization, the molten thermoplastic resin 36 rises along the V-shaped surface of the convex shape 22, and excess thermoplastic resin 36 flows out from between the joint surfaces 4 and 21 to the resin receiving portion 23. In this way, the thermoplastic resin 36 is formed into the shape of the joint portion 36a (FIG. 5), and the optical package 1 and the lens 20 are joined via the joint portion 36a.

以上より、実施の形態2によれば、レンズ20の接合面21が、この接合面21から突出した先細りの凸形状22を有し、溶融前の熱可塑性樹脂36が、レンズ20の接合面21の凸形状22に合わせた凹形状37を有するように構成したので、凸形状22と凹形状37を嵌合することにより、容易に光学パッケージ1とレンズ20との位置合わせができる。また、溶融した熱可塑性樹脂36が気泡と共に凸形状22に沿って接合面4,21間から外部へ流れ出るので、接合部分の気泡を低減できる。   As described above, according to the second embodiment, the joint surface 21 of the lens 20 has the tapered convex shape 22 protruding from the joint surface 21, and the thermoplastic resin 36 before melting is the joint surface 21 of the lens 20. Therefore, the optical package 1 and the lens 20 can be easily aligned by fitting the convex shape 22 and the concave shape 37 together. Moreover, since the molten thermoplastic resin 36 flows out along the convex shape 22 along the convex shape 22 from the space between the joint surfaces 4 and 21, the bubbles at the joint portion can be reduced.

また、実施の形態2によれば、加圧されて移動するレンズ20の接合面21に当接して移動規制し、接合面4,21間の距離を調整するスペーサ50を備えるようにしたので、接合面4,21間の距離を容易に調整できるようになる。   Further, according to the second embodiment, since the movement is restricted by contacting the bonding surface 21 of the lens 20 that moves under pressure, the spacer 50 that adjusts the distance between the bonding surfaces 4 and 21 is provided. The distance between the joining surfaces 4 and 21 can be easily adjusted.

実施の形態3.
図7及び図8は、この発明の実施の形態3に係る光学パッケージ1とプリズムレンズ24の接合方法を説明する側面図であり、図7が接合前の状態、図8が接合後の状態を示す。図9は、プリズムレンズ24の正面図である。なお、図7〜図9において図1〜図6と同一又は相当の部分については同一の符号を付し説明を省略する。また、プリズムレンズ24の一部、熱可塑性樹脂38、接合部38a、ヒータ40及びスペーサ51は断面を示す。
Embodiment 3 FIG.
7 and 8 are side views for explaining a method of joining the optical package 1 and the prism lens 24 according to Embodiment 3 of the present invention. FIG. 7 shows a state before joining, and FIG. 8 shows a state after joining. Show. FIG. 9 is a front view of the prism lens 24. 7 to 9, the same or corresponding parts as those in FIGS. 1 to 6 are denoted by the same reference numerals and description thereof is omitted. Further, a part of the prism lens 24, the thermoplastic resin 38, the joining portion 38a, the heater 40, and the spacer 51 show cross sections.

本実施の形態3でも上記実施の形態2と同様に、プリズムレンズ24の接合面21に、熱可塑性樹脂38側へ突出する先細りの凸形状22を形成すると共に、凸形状22の周囲に溝を設けて、溶融した樹脂が流れ込む樹脂受け部23にする。   In the third embodiment, as in the second embodiment, a tapered convex shape 22 that protrudes toward the thermoplastic resin 38 is formed on the joint surface 21 of the prism lens 24, and a groove is formed around the convex shape 22. The resin receiving portion 23 into which molten resin flows is provided.

熱可塑性樹脂38は、光学パッケージ1の外径より大きい外径の中実円筒形状にし、その円筒のプリズムレンズ24に対向する上面に、凸形状22の外形より嵌め合い程度大きい外形の凹形状37を形成する。図示例ではプリズムレンズ24には凸形状22を略円錐形状に形成し、この略円錐形状の頂点をプリズムレンズ24の光軸Xに一致させると共に、一方の熱可塑性樹脂38には凸形状22の略円錐形状を嵌め合い程度大きく抜いた形状の凹形状37を形成する。   The thermoplastic resin 38 has a solid cylindrical shape with an outer diameter larger than the outer diameter of the optical package 1, and a concave shape 37 having an outer shape larger than the outer shape of the convex shape 22 on the upper surface of the cylinder facing the prism lens 24. Form. In the illustrated example, the convex shape 22 is formed in the prism lens 24 in a substantially conical shape, and the apex of the substantially conical shape is made to coincide with the optical axis X of the prism lens 24, and the one thermoplastic resin 38 has a convex shape 22. A concave shape 37 having a substantially conical shape with a large degree of fitting is formed.

また、スペーサ51は、光学パッケージ1と熱可塑性樹脂38の各外径より大きい内径にし、また、その高さによって光学パッケージ1とプリズムレンズ24との間の距離を規定する。   The spacer 51 has an inner diameter that is larger than the outer diameters of the optical package 1 and the thermoplastic resin 38, and the height defines the distance between the optical package 1 and the prism lens 24.

次に、接合方法を説明する。
図7に示すように、光学パッケージ1とプリズムレンズ24の接合面4,21間に熱可塑性樹脂38を配置する。このとき、熱可塑性樹脂38と光学パッケージ1とが接触した安定状態で、熱可塑性樹脂38の凹形状37の頂点と光学素子3の光軸Xを位置合わせする。また、凸形状22と凹形状37の嵌合によりレンズ20と熱可塑性樹脂36とが位置合わせされ、凸形状22の頂点がプリズムレンズ24の光軸X上にくる。よって光学素子3とプリズムレンズ24の位置合わせができる。
Next, a joining method will be described.
As shown in FIG. 7, a thermoplastic resin 38 is disposed between the joint surfaces 4 and 21 of the optical package 1 and the prism lens 24. At this time, the apex of the concave shape 37 of the thermoplastic resin 38 and the optical axis X of the optical element 3 are aligned in a stable state where the thermoplastic resin 38 and the optical package 1 are in contact. Further, the lens 20 and the thermoplastic resin 36 are aligned by fitting the convex shape 22 and the concave shape 37, and the vertex of the convex shape 22 is on the optical axis X of the prism lens 24. Therefore, the optical element 3 and the prism lens 24 can be aligned.

続いて、ヒータ40で加熱して熱可塑性樹脂38を溶融させつつ、プリズムレンズ24を光学パッケージ1の方向へ加圧して接合面21をスペーサ51の上面に押し付けることにより、接合面4,21間の距離が自動的に調整される。即ち、図9に示すように、接合面21のうちの樹脂受け部23の無い面が、スペーサ51の上面(不図示)に当接して、その高さ位置で保持される。また、加圧の際、溶融した熱可塑性樹脂38は凸形状22のV字面に沿って上昇し、余分な熱可塑性樹脂38が接合面4,21間から樹脂受け部23へ流れ出る。このようにして熱可塑性樹脂38を接合部38aの形状に成形し(図8)、光学パッケージ1とプリズムレンズ24とを接合部38aを介して接合する。   Subsequently, while the thermoplastic resin 38 is melted by heating with the heater 40, the prism lens 24 is pressed in the direction of the optical package 1 to press the bonding surface 21 against the upper surface of the spacer 51, thereby The distance is automatically adjusted. That is, as shown in FIG. 9, the surface of the bonding surface 21 without the resin receiving portion 23 abuts on the upper surface (not shown) of the spacer 51 and is held at the height position. In addition, during the pressurization, the molten thermoplastic resin 38 rises along the V-shaped surface of the convex shape 22, and excess thermoplastic resin 38 flows out from between the joint surfaces 4 and 21 to the resin receiving portion 23. In this way, the thermoplastic resin 38 is formed into the shape of the joint portion 38a (FIG. 8), and the optical package 1 and the prism lens 24 are joined via the joint portion 38a.

以上より、実施の形態3によれば、プリズムレンズ24の接合面21が、この接合面21から突出した先細りの凸形状22を有し、溶融前の熱可塑性樹脂38が、プリズムレンズ24の接合面21の凸形状22に合わせた凹形状37を有するように構成した。このため、光学パッケージ1にプリズムレンズ24を接合する場合にも、凸形状22と凹形状37を嵌合することにより、容易に位置合わせができる。また、溶融した熱可塑性樹脂38が気泡と共に凸形状22に沿って接合面4,21間から外部へ流れ出るので、接合部分の気泡を低減できる。   As described above, according to the third embodiment, the joint surface 21 of the prism lens 24 has the tapered convex shape 22 protruding from the joint surface 21, and the thermoplastic resin 38 before melting is joined to the prism lens 24. The concave shape 37 matched with the convex shape 22 of the surface 21 was configured. Therefore, even when the prism lens 24 is bonded to the optical package 1, the alignment can be easily performed by fitting the convex shape 22 and the concave shape 37. In addition, since the molten thermoplastic resin 38 flows out of the joint surfaces 4 and 21 to the outside along the convex shape 22 together with the bubbles, the bubbles in the joint portion can be reduced.

1 光学パッケージ
2 リード電極
3 光学素子
4 接合面
10 接着剤
20 レンズ
21 接合面
22 凸形状
23 樹脂受け部
24 プリズムレンズ
30,36,38 熱可塑性樹脂
30a,36a,38a 接合部
31 軸部
32〜35 凸部
37 凹形状
40 ヒータ
50,51 スペーサ
X 光軸
DESCRIPTION OF SYMBOLS 1 Optical package 2 Lead electrode 3 Optical element 4 Joint surface 10 Adhesive 20 Lens 21 Joint surface 22 Convex shape 23 Resin receiving part 24 Prism lens 30, 36, 38 Thermoplastic resin 30a, 36a, 38a Joint part 31 Shaft part 32- 35 Convex part 37 Concave shape 40 Heater 50, 51 Spacer X Optical axis

Claims (6)

光学素子を収容した光学パッケージに集光用のレンズを接合して一体化する、光学パッケージとレンズの接合方法であって、
前記光学パッケージと前記レンズの接合面の間に熱可塑性樹脂を配置する第一の工程と、
前記熱可塑性樹脂を加熱して溶融させると共に、前記光学パッケージ及び前記レンズのいずれか一方又は両方を互いの方向へ加圧しながら前記接合面間の距離を調整する第二の工程とを備えることを特徴とする光学パッケージとレンズの接合方法。
A method for joining an optical package and a lens, in which a condensing lens is joined to and integrated with an optical package containing an optical element,
A first step of disposing a thermoplastic resin between a bonding surface of the optical package and the lens;
A second step of heating and melting the thermoplastic resin and adjusting a distance between the joint surfaces while pressing one or both of the optical package and the lens in the direction of each other. A method of joining an optical package and a lens.
第一の工程と第二の工程の間に、光学パッケージと熱可塑性樹脂、及び当該熱可塑性樹脂とレンズをそれぞれ接触させた状態で、前記光学パッケージの光学素子及び前記レンズの光軸の位置合わせを行う工程を更に備えることを特徴とする請求項1記載の光学パッケージとレンズの接合方法。   Between the first step and the second step, the optical package and the thermoplastic resin, and the alignment of the optical element of the optical package and the optical axis of the lens with the thermoplastic resin and the lens in contact with each other The method for bonding an optical package and a lens according to claim 1, further comprising: 第二の工程では、溶融した熱可塑性樹脂の余分を接合面間から排出することを特徴とする請求項1記載の光学パッケージとレンズの接合方法。   2. The method for bonding an optical package and a lens according to claim 1, wherein, in the second step, the excess of the molten thermoplastic resin is discharged from between the bonding surfaces. 溶融前の熱可塑性樹脂は、光学パッケージとレンズの両接合面に両端面が接する軸部と、当該軸部を中心にして放射状に形成した複数の凸部とを有することを特徴とする請求項1から請求項3のうちのいずれか1項記載の光学パッケージとレンズの接合方法。   The thermoplastic resin before melting has a shaft portion whose both end surfaces are in contact with both joint surfaces of the optical package and the lens, and a plurality of convex portions formed radially around the shaft portion. The method for bonding an optical package and a lens according to any one of claims 1 to 3. レンズの接合面は、当該接合面から突出した先細りの凸形状を有し、
溶融前の前記熱可塑性樹脂は、前記レンズの接合面の凸形状に合わせた凹形状を有することを特徴とする請求項1から請求項4のうちのいずれか1項記載の光学パッケージとレンズの接合方法。
The joint surface of the lens has a tapered convex shape protruding from the joint surface,
5. The optical package and the lens according to claim 1, wherein the thermoplastic resin before melting has a concave shape that matches a convex shape of a joint surface of the lens. Joining method.
光学素子を収容した光学パッケージと、
集光用のレンズと、
熱可塑性樹脂が、前記光学パッケージと前記レンズの接合面間に配置され、加熱されて溶融すると共に加圧されて当該熱可塑性樹脂の余分が当該接合面間から排出されて成形された、前記光学パッケージと前記レンズとを接合する接合部とを備える光学パッケージ。
An optical package containing the optical element;
A condensing lens;
The optical resin in which the thermoplastic resin is disposed between the joint surfaces of the optical package and the lens, is heated and melted and pressed to discharge excess thermoplastic resin from the joint surfaces, and is molded. An optical package comprising a package and a joint that joins the lens.
JP2010067813A 2010-03-24 2010-03-24 Method of bonding optical package and lens, and optical package Pending JP2011204731A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010067813A JP2011204731A (en) 2010-03-24 2010-03-24 Method of bonding optical package and lens, and optical package
KR1020100129231A KR20110107264A (en) 2010-03-24 2010-12-16 Bonding method of optical package and lense, and optical package
EP11153606A EP2372426A1 (en) 2010-03-24 2011-02-07 Optical package-lens bonding method and optical device including lens and optical package
CN2011100386179A CN102201501A (en) 2010-03-24 2011-02-10 Optical package-lens bonding method and optical package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067813A JP2011204731A (en) 2010-03-24 2010-03-24 Method of bonding optical package and lens, and optical package

Publications (1)

Publication Number Publication Date
JP2011204731A true JP2011204731A (en) 2011-10-13

Family

ID=43927590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067813A Pending JP2011204731A (en) 2010-03-24 2010-03-24 Method of bonding optical package and lens, and optical package

Country Status (4)

Country Link
EP (1) EP2372426A1 (en)
JP (1) JP2011204731A (en)
KR (1) KR20110107264A (en)
CN (1) CN102201501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138989A (en) * 2016-12-20 2018-09-06 アクシス アーベー Alignment member and method for aligning sensor board

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2722701B1 (en) * 2012-10-19 2019-03-13 Baumer Electric AG Optical system for a sensor
KR102009904B1 (en) 2012-10-24 2019-08-12 삼성전자주식회사 Optical member mounting apparatus and manufacturing method of light emitting device
EP3570103B1 (en) * 2018-05-17 2020-07-01 Axis AB Camera arrangement and method for aligning a sensor board and an optics unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940564A (en) * 1997-08-05 1999-08-17 Picolight, Inc. Device for coupling a light source or receiver to an optical waveguide
JP3822361B2 (en) * 1998-07-10 2006-09-20 株式会社日立製作所 Light distribution control element and display device including the same
DE10163117C5 (en) * 2001-12-24 2005-12-01 G.L.I. Global Light Industries Gmbh Process for producing light-conducting LED bodies in two time-separated stages
US20060139772A1 (en) * 2004-12-27 2006-06-29 Canon Kabushiki Kaisha Method of fixing optical member and optical unit
KR100616684B1 (en) 2005-06-03 2006-08-28 삼성전기주식회사 High power led package and fabrication method thereof
DE102005034793B3 (en) * 2005-07-21 2007-04-19 G.L.I. Global Light Industries Gmbh Light-emitting semiconductor diode of high light output

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138989A (en) * 2016-12-20 2018-09-06 アクシス アーベー Alignment member and method for aligning sensor board
TWI669562B (en) * 2016-12-20 2019-08-21 瑞典商安訊士有限公司 An alignment member and a method for aligning a sensor board

Also Published As

Publication number Publication date
KR20110107264A (en) 2011-09-30
CN102201501A (en) 2011-09-28
EP2372426A1 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5208778B2 (en) Bonding optical element and manufacturing method thereof
TWI554385B (en) Method and device for producing a microlens
US8982486B2 (en) Image pickup lens unit manufacturing method and image pickup lens unit
CN101213477A (en) Method of manufacturing an electrowetting-based variable-focus lens
JP2011204731A (en) Method of bonding optical package and lens, and optical package
US8749901B2 (en) Lens module and method for assembling the lens module
TWM557833U (en) Camera module, molded photosensitive element, molding die, and its electronic equipment
TW200532265A (en) Optical component and method of manufacturing the same
WO2017022500A1 (en) Method for adhesion fixing of optical assembly, and optical assembly
JP6456064B2 (en) Lens fixing device, method for adjusting lens fixing device, and lens fixing method
WO2007145115A1 (en) Composite optical element and method for manufacturing same
JP2007193270A (en) Lens with cap and manufacturing method therefor
JP2016085409A (en) Lens holding frame, lens assembly and assembly method of lens assembly
JPWO2014042060A1 (en) Lens array, lens array laminate, lens array manufacturing method, lens array laminate manufacturing method, and lens unit manufacturing method
US9151925B2 (en) Image pickup lens unit and method for manufacturing image pickup lens unit
JP2008285377A (en) Joined optical element
WO2023071732A1 (en) Optical lens and corresponding camera module
JP4366142B2 (en) Position-controlled adhesive bonding method
JP6236579B2 (en) Bonding optical member
JP4073208B2 (en) Lens and optical component assembly
JP2006221062A (en) Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element
KR101701060B1 (en) Camera module
TWI581031B (en) Wafer level lens system and method of fabricating the same
JP5608402B2 (en) Method for manufacturing composite optical element and apparatus for manufacturing the same
TWI683739B (en) Contact lens mould