[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006221062A - Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element - Google Patents

Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element Download PDF

Info

Publication number
JP2006221062A
JP2006221062A JP2005036061A JP2005036061A JP2006221062A JP 2006221062 A JP2006221062 A JP 2006221062A JP 2005036061 A JP2005036061 A JP 2005036061A JP 2005036061 A JP2005036061 A JP 2005036061A JP 2006221062 A JP2006221062 A JP 2006221062A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
photocurable resin
diffraction optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005036061A
Other languages
Japanese (ja)
Inventor
Kazuto Kubo
和人 窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005036061A priority Critical patent/JP2006221062A/en
Publication of JP2006221062A publication Critical patent/JP2006221062A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a lamination type diffraction optical element by which firm joint is attained and a joining process is made efficient to be able to drastically reduce the cost in a joining technique for forming the lamination type diffraction optical element by laminating a pair of diffraction optical elements formed by a replica forming method. <P>SOLUTION: In the replica forming process of the diffraction optical element, a joint part of one of the diffraction optical element is formed and a photosetting resin uncured part of another one of the diffraction optical element to make a pair is formed. In the joint step for forming the lamination type diffraction optical element by laminating a pair of the the diffraction optical elements formed in the replica forming process, the joint part of the diffraction optical element and the photosetting type resin uncured part are joined and irradiated with light for curing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学素子の製造方法及び光学素子に関し、特に成形用型により光硬化性樹脂に成形面を転写して所望の光学面形状を得る所謂レプリカ成形による積層型回折光学素子の製造方法及び積層型回折光学素子と、該回折光学素子を張り合わせることで形成される積層型回折光学素子の製造方法及び積層型回折光学素子に関するものである。   The present invention relates to a method for manufacturing an optical element and an optical element, and more particularly to a method for manufacturing a laminated diffractive optical element by so-called replica molding, which obtains a desired optical surface shape by transferring a molding surface to a photocurable resin by a molding die, and The present invention relates to a laminated diffractive optical element, a method for producing a laminated diffractive optical element formed by bonding the diffractive optical element, and the laminated diffractive optical element.

従来、回折光学素子や非球面レンズなど光学素子の成形技術のひとつとして、大面積成形性と高転写性に優れたことを特徴とし、その成形技術の容易さから大量生産に適しているレプリカ成形技術がある。このレプリカ成形技術は、所望の光学形状の反転形状を有する成形型面上に光硬化性樹脂を滴下し、その上からレンズブランクを圧着させて押し広げ、所望の形状になったところで、光源からの光を照射し光硬化性樹脂を硬化させ、該硬化樹脂をレンズブランクと共に離型することで成形を行なう。   Conventionally, as one of the molding techniques for optical elements such as diffractive optical elements and aspherical lenses, it is characterized by excellent large area moldability and high transferability, and replica molding that is suitable for mass production due to the ease of the molding technique There is technology. In this replica molding technique, a photocurable resin is dropped onto a mold surface having a reversal shape of a desired optical shape, and a lens blank is crimped and spread out from the mold surface. The light curable resin is irradiated to cure the photocurable resin, and the cured resin is released from the mold together with the lens blank.

さらに、該レプリカ成形技術で成形された一対の回折光学素子を、小型かつ高性能な光学性能を付加させるために、互いに張り合わせ接合することで積層型回折光学素子を形成する接合技術がある。   Furthermore, there is a joining technique in which a pair of diffractive optical elements molded by the replica molding technique are bonded together to form a laminated diffractive optical element in order to add small and high-performance optical performance.

例えば、図1にあるように、対となる回折光学素子1と2を互いに張り合わせ接合する場合、それぞれの回折光学素子の光学有効径外端部外周に平面部3が設置されており、該平面部を互いに張り合わせ高精度に位置決めをし、接着剤で固着することで積層型回折光学素子4を形成する。この平面部3の形状は、レプリカ成形における成形型の外周部に設置された該平面部の反転形状を転写することで、光学有効面と同時に成形される。   For example, as shown in FIG. 1, when the paired diffractive optical elements 1 and 2 are bonded to each other, a plane part 3 is provided on the outer periphery of the outer end of the optical effective diameter of each diffractive optical element. The laminated diffractive optical element 4 is formed by sticking the parts together and positioning with high accuracy and fixing them with an adhesive. The shape of the flat surface portion 3 is formed simultaneously with the optically effective surface by transferring the inverted shape of the flat surface portion installed on the outer peripheral portion of the forming die in replica forming.

回折光学素子や非球面レンズを成形する該レプリカ成形法においては、所望とする光学形状や前述した平面部3のような機構形状を高精度に成形する方法が数多く提案されている。   In the replica molding method for molding a diffractive optical element and an aspherical lens, many methods for molding a desired optical shape and a mechanism shape such as the above-described flat portion 3 with high accuracy have been proposed.

本発明の課題を対象とした先例提案としては、特許文献1において、所望の光学有効領域の外側まで光硬化性樹脂を充填した後に、該光学有効領域の外側を遮光するマスクを介して光硬化性樹脂に光を照射することで、該光学有効領域の転写性を向上させる方法が提案されている。   As a precedent proposal for the subject of the present invention, in Patent Document 1, after photocurable resin is filled to the outside of a desired optical effective area, photocuring is performed through a mask that shields the outside of the optical effective area. There has been proposed a method for improving the transferability of the optically effective area by irradiating a light-sensitive resin with light.

さらに、該レプリカ成形法で成形された一対の回折光学素子を互いに張り合わせることで積層型回折光学素子を形成する接合技術においては、高精度且つ強固に効率良く接合する方法がいくつか提案されている。   Furthermore, in a joining technique for forming a laminated diffractive optical element by bonding together a pair of diffractive optical elements formed by the replica molding method, several methods for highly accurately, firmly and efficiently joining have been proposed. Yes.

本発明の課題を対象とした先例提案としては、特許文献2において、互いに張り合わせる回折光学素子の光学有効径外の外周部に接着剤を塗布しこれを硬化させることで、高精度且つ強固に接合する方法が提案されている。
特開平6−75106号公報 特開2002−182022号公報
As a precedent proposal for the subject of the present invention, in Patent Document 2, an adhesive is applied to the outer peripheral portion outside the optical effective diameter of the diffractive optical elements to be bonded to each other, and this is cured to be highly accurate and strong. A method of joining has been proposed.
JP-A-6-75106 JP 2002-182022 A

レプリカ成形法で成形された一対の回折光学素子を、互いに張り合わせることで積層型回折光学素子を形成する接合技術においては、高精度な位置決めと強固な接合、さらには接合工程の効率化が求められている。通常、2つの回折光学素子の中心軸は±2μm未満の精度で位置決めされるが、この位置が±2μm以上でずれた場合、光学性能を表す回折効率にリップルが発生するなど、積層型回折光学素子の光学性能を著しく低下させる。また、接着不良などで2つの回折光学素子の接合が強固でない場合、温度湿度などの環境変動や外部からの小さな衝撃で簡単に積層型回折光学素子が壊れてしまう。   In a joining technology that forms a laminated diffractive optical element by bonding together a pair of diffractive optical elements molded by the replica molding method, high-precision positioning and strong bonding, and further improvement in the efficiency of the joining process are required. It has been. Normally, the central axes of the two diffractive optical elements are positioned with an accuracy of less than ± 2 μm, but if this position deviates by more than ± 2 μm, a ripple occurs in the diffraction efficiency representing the optical performance. The optical performance of the device is significantly reduced. In addition, when the bonding of two diffractive optical elements is not strong due to poor adhesion or the like, the laminated diffractive optical element is easily broken by environmental fluctuations such as temperature and humidity and small external impacts.

しかるに、特許文献1においては、光学有効領域の外側を遮光するマスクを介して光硬化性樹脂に光を照射することで、光学有効領域の外側に未硬化樹脂部が形成されるが、該未硬化樹脂部は光学素子の接合時における接着工程になんら寄与しないため、回折光学素子を強固に接合することができない。   However, in Patent Document 1, an uncured resin portion is formed outside the optically effective region by irradiating light to the photocurable resin through a mask that shields the outside of the optically effective region. Since the cured resin portion does not contribute to the bonding process at the time of bonding of the optical element, the diffractive optical element cannot be bonded firmly.

さらに、特許文献2においては、互いに張り合わせる回折光学素子の光学有効径外の外周部に接着剤を塗布しこれを硬化させることで、2つの回折光学素子を高精度且つ強固に接合するが、以下にあるような理由から接合工程をより効率化することができない。   Furthermore, in Patent Document 2, two diffractive optical elements are bonded to each other with high accuracy and firmly by applying an adhesive to the outer peripheral portion outside the optical effective diameter of the diffractive optical elements to be bonded to each other and curing the adhesive. The joining process cannot be made more efficient for the following reasons.

具体的に説明すると、特許文献2における接合工程は、それぞれの回折光学素子の光学有効径外に設置された平面部を互いに張り合わせ高精度に位置決めをする工程と、位置決めされた一対の回折光学素子を接着剤で固着する工程から構成している。回折光学素子の光学有効径外に設置された平面部を互いに張り合わせ高精度に位置決めをする工程は、位置を認識する画像処理技術や位置を制御する精密駆動技術を用いることで効率良く行なうことができる。しかしながら、位置決めされた一対の回折光学素子を接着剤で固着する工程は、接着剤塗布装置を用いて、光硬化性樹脂等の微量な接着剤を回折光学素子外周部の3点以上に精密に塗布しなければならないため、長い時間がかかり生産効率を低下させる。さらには、該接着剤と接着剤塗布装置の使用や、接着剤の塗布の失敗による歩留まりの悪化が製品のコストアップにつながる。   More specifically, the bonding process in Patent Document 2 includes a step of bonding flat portions installed outside the effective optical diameter of each diffractive optical element to each other and positioning with high accuracy, and a pair of positioned diffractive optical elements. Is composed of a step of fixing with an adhesive. The step of attaching the flat portions installed outside the effective optical diameter of the diffractive optical element to each other with high accuracy can be efficiently performed by using an image processing technique for recognizing the position and a precision driving technique for controlling the position. it can. However, in the process of fixing the pair of positioned diffractive optical elements with an adhesive, a small amount of adhesive such as a photo-curing resin is precisely applied to three or more points on the outer periphery of the diffractive optical element using an adhesive application device. Since it must be applied, it takes a long time and reduces the production efficiency. Furthermore, the use of the adhesive and the adhesive applicator and the deterioration of the yield due to the failure of the adhesive application lead to an increase in the cost of the product.

そこで、本発明は、上記課題に鑑み、レプリカ成形法で成形された一対の回折光学素子を互いに張り合わせることで積層型回折光学素子を形成する接合技術において、従来のものに比して、強固な接合が得られ且つ接合工程の効率化と大幅なコストダウンが可能となる積層型回折光学素子の製造方法及び積層型回折光学素子を提供することを目的とするものである。   Therefore, in view of the above problems, the present invention is a bonding technique for forming a laminated diffractive optical element by bonding a pair of diffractive optical elements molded by a replica molding method to each other, which is stronger than the conventional technique. It is an object of the present invention to provide a method for manufacturing a laminated diffractive optical element and a laminated diffractive optical element, which can achieve simple joining and can improve the efficiency of the joining process and greatly reduce costs.

前述の課題を解決するための請求項1の発明は、所望の光学形状を有する成形型面上に光硬化性樹脂を滴下し、該光硬化性樹脂を平面または曲面ガラス基板で押圧充填し、光照射の後に該光硬化性樹脂とガラス基板から成る成形品を離型することで回折光学素子を形成し、対となる該回折光学素子を接合することで積層型回折光学素子を製造する製造方法において、一方の回折光学素子の接合部を形成する工程と、対となるもう一方の回折光学素子の光硬化性樹脂未硬化部を形成する工程と、該回折光学素子の接合部と該光硬化性樹脂未硬化部とを接合する工程と、該接合部と該光硬化性樹脂未硬化部に対して光を照射する工程から成ることを特徴とする積層型回折光学素子の製造方法である。   The invention of claim 1 for solving the above-mentioned problems is a method in which a photocurable resin is dropped on a mold surface having a desired optical shape, and the photocurable resin is pressed and filled with a flat or curved glass substrate. Manufacture of a laminated diffractive optical element by forming a diffractive optical element by releasing a molded product composed of the photocurable resin and a glass substrate after light irradiation, and joining the paired diffractive optical element In the method, a step of forming a joint portion of one diffractive optical element, a step of forming a photocurable resin uncured portion of the other diffractive optical element to be paired, a joint portion of the diffractive optical element, and the light A method of manufacturing a laminated diffractive optical element, comprising: a step of bonding a curable resin uncured portion; and a step of irradiating light to the bonded portion and the photocurable resin uncured portion. .

上記構成において、一方の回折光学素子の接合部を形成する工程では、一方の回折光学素子の光学有効外に接合のための形状を形成し、対となるもう一方の回折光学素子の光硬化性樹脂未硬化部を形成する工程では、対となるもう一方の回折光学素子の前述した一方の回折光学素子における接合のための形状と合う箇所に光硬化性樹脂未硬化部を形成し、該回折光学素子の接合部と該光硬化性樹脂未硬化部とを接合する工程では、前述した一方の回折光学素子における接合のための形状ともう一方の回折光学素子の光硬化性樹脂未硬化部とを互いに嵌め合わせることで接合形状を形成し、該接合部と該光硬化性樹脂未硬化部に対して光を照射する工程では、前述した接合形状に対して光を照射し該光硬化性樹脂未硬化部を硬化させることで、2枚の回折光学素子が固着された積層型回折光学素子を形成する。   In the above configuration, in the step of forming the joint portion of one diffractive optical element, a shape for joining is formed outside the optically effective one diffractive optical element, and the photo-curing property of the other diffractive optical element that forms a pair is formed. In the step of forming the resin uncured portion, the photocurable resin uncured portion is formed at a position that matches the shape for joining of the other diffractive optical element described above of the other diffractive optical element to be paired. In the step of joining the joint portion of the optical element and the uncured portion of the photocurable resin, the shape for joining in the one diffractive optical element described above and the uncured portion of the photocurable resin of the other diffractive optical element are Are joined to each other, and in the step of irradiating light to the joint and the uncured portion of the photocurable resin, the photocurable resin is irradiated with light to the joint shape described above. By curing the uncured part, Like the diffractive optical element to form a anchored laminated diffractive optical element.

請求項2の発明は、回折光学素子の成形型面上に該接合部の反転形状を有した成形型を用いて該回折光学素子を成形することを特徴とする積層型回折光学素子の製造方法である。   According to a second aspect of the present invention, there is provided a method for producing a laminated diffractive optical element, wherein the diffractive optical element is molded on a molding die surface of the diffractive optical element using a molding die having an inverted shape of the joint portion. It is.

上記構成において、回折光学素子の成形型面上に接合部の反転形状を有した成形型を用いて該回折光学素子を成形し、該回折光学素子の光学形状と接合のための形状を同時に形成する。   In the above configuration, the diffractive optical element is molded using a mold having a reversal shape of the joining portion on the mold surface of the diffractive optical element, and the optical shape of the diffractive optical element and the shape for bonding are simultaneously formed. To do.

請求項3の発明は、該光硬化性樹脂未硬化部の形成部と光硬化用の光源との間に遮光用マスクを配置し、該遮光用マスクを介して回折光学素子に光照射を行なうことを特徴とする積層型回折光学素子の製造方法である。   According to a third aspect of the present invention, a light-shielding mask is disposed between the formation portion of the uncured portion of the photocurable resin and the light source for photocuring, and the diffractive optical element is irradiated with light through the light-shielding mask. This is a method for producing a laminated diffractive optical element.

上記構成において、光硬化性樹脂未硬化部の形成部と光硬化用の光源との間に遮光用マスクを配置し、該遮光用マスクを介して回折光学素子に光照射を行ない、該回折光学素子の光学形状と接合のための光硬化性樹脂未硬化部を同時に形成する。   In the above configuration, a light-shielding mask is disposed between the light-curing resin uncured portion forming portion and the light-curing light source, and the diffractive optical element is irradiated with light through the light-shielding mask. The optical shape of the element and a photo-curing resin uncured portion for bonding are simultaneously formed.

請求項4の発明は、請求項1及び2及び3いずれかに記載の製造方法を用いて製造されたことを特徴とする積層型回折光学素子である。   A fourth aspect of the present invention is a laminated diffractive optical element manufactured using the manufacturing method according to any one of the first, second, and third aspects.

以上説明したように、本出願に係る第1の発明によれば、レプリカ成形法で成形された一対の回折光学素子を互いに張り合わせることで積層型回折光学素子を形成する接合技術において、従来のものに比して、強固な接合が得られ且つ接合工程の効率化と大幅なコストダウンが可能となる。   As described above, according to the first invention of the present application, in the joining technique for forming a laminated diffractive optical element by bonding a pair of diffractive optical elements molded by a replica molding method to each other, Compared to the above, a strong bond can be obtained, and the efficiency of the bonding process and a significant cost reduction can be achieved.

また、本出願に係る第2の発明によれば、回折光学素子の光学形状と接合のための形状を同時に形成できるので、さらなる接合工程の効率化と大幅なコストダウンが可能となる。   Further, according to the second invention of the present application, the optical shape of the diffractive optical element and the shape for bonding can be formed at the same time, so that the efficiency of the further bonding process and the cost can be significantly reduced.

また、本出願に係る第3の発明によれば、回折光学素子の光学形状と接合のための光硬化性樹脂未硬化部を同時に形成できるので、さらなる接合工程の効率化と大幅なコストダウンが可能となる。   Further, according to the third invention of the present application, the optical shape of the diffractive optical element and the uncured portion of the photocurable resin for bonding can be formed at the same time, which further increases the efficiency of the bonding process and significantly reduces the cost. It becomes possible.

また、本出願に係る第4の発明によれば、非球面レンズや蛍石等を用いた従来の光学系に比して、光学系全体の小型軽量化が可能になり、且つ良好に光学色収差を補正できる。   Further, according to the fourth invention of the present application, the entire optical system can be reduced in size and weight as compared with a conventional optical system using an aspheric lens, fluorite, or the like, and optical chromatic aberration can be satisfactorily achieved. Can be corrected.

以下に、本発明の実施の形態として、光硬化性樹脂を用いた回折光学素子のレプリカ成形と、該レプリカ成形で成形された一対の回折光学素子を張り合わせ積層型回折光学素子を形成する接合工程について説明する。   Hereinafter, as an embodiment of the present invention, replica molding of a diffractive optical element using a photocurable resin, and a bonding step of forming a laminated diffractive optical element by bonding a pair of diffractive optical elements molded by the replica molding Will be described.

図2は本発明の第1の実施形態に係わるカメラレンズに用いられる回折光学素子のレプリカ成形装置を示す概略構成図である。図2において、5は所望とする光学機能形状の反転形状6と接合部の形状7とをその成形面に設けた成形金型である。成形金型5は固定されており、成形金型5を嵌め込んでいるリング状のレンズブランク保持部材8上にはレンズブランク9が載置される。レンズブランク9の中心軸と成形金型5の成形面の中心との軸合わせは、レンズブランク保持材8上のレンズブランク9を載置する内周部の全周に、成形金型5の成形面の中心と軸を合わせた深さ1mm幅1mm程度の嵌合部を設け、該嵌合部にレンズブランク9の外周部を嵌め込むことで実現する。レンズブランク9は、ガラスまたはプラスティックの材質から成り、光学面においては平面または曲面を有する。リング状のレンズブランク保持部材8は上下動自在に保持されている。成形金型5の成形面上には不図示のディスペンサーにより光硬化性樹脂10が適量供給され、レンズブランク9の上方には紫外線照射ランプ11が成形金型5の光学機能面に対して紫外光が垂直に入射するように設置されている。光硬化性樹脂10としては、光開始剤の紫外線波長365nm付近の吸収からラジカルが生成されるアクリレート系またはメタクリレート系またはエポキシ等の光学用樹脂を使用しており、紫外線照射ランプ11は、高圧水銀ランプまたは超高圧水銀ランプの波長365nm付近に発振のピークを有する光源を使用する。   FIG. 2 is a schematic block diagram showing a diffractive optical element replica molding apparatus used for the camera lens according to the first embodiment of the present invention. In FIG. 2, 5 is a molding die in which a reverse shape 6 of the desired optical function shape and a shape 7 of the joint portion are provided on the molding surface. The molding die 5 is fixed, and the lens blank 9 is placed on the ring-shaped lens blank holding member 8 into which the molding die 5 is fitted. Axis alignment between the center axis of the lens blank 9 and the center of the molding surface of the molding die 5 is performed by molding the molding die 5 on the entire circumference of the inner peripheral portion on which the lens blank 9 on the lens blank holding material 8 is placed. This is realized by providing a fitting portion having a depth of 1 mm and a width of about 1 mm, the center of which is aligned with the axis, and fitting the outer peripheral portion of the lens blank 9 into the fitting portion. The lens blank 9 is made of glass or plastic material, and has a flat surface or a curved surface on the optical surface. The ring-shaped lens blank holding member 8 is held so as to be movable up and down. An appropriate amount of a photo-curable resin 10 is supplied onto the molding surface of the molding die 5 by a dispenser (not shown), and an ultraviolet irradiation lamp 11 is disposed above the lens blank 9 with respect to the optical function surface of the molding die 5. Are installed so that they are perpendicularly incident. As the photocurable resin 10, an optical resin such as an acrylate, methacrylate, or epoxy that generates radicals from absorption of a photoinitiator near an ultraviolet wavelength of 365 nm is used. A light source having an oscillation peak in the vicinity of a wavelength of 365 nm of a lamp or an ultrahigh pressure mercury lamp is used.

図8は本発明の第1の実施形態に係わるカメラレンズに用いられる回折光学素子のレプリカ成形装置を示す概略構成図である。図8において、18は所望とする光学機能形状の反転形状6をその成形面に設けた成形金型である。成形金型18は固定されており、成形金型18を嵌め込んでいるリング状のレンズブランク保持部材8上にはレンズブランク9が載置される。レンズブランク9の中心軸と成形金型18の成形面の中心との軸合わせは、レンズブランク保持材8上のレンズブランク9を載置する内周部の全周に、成形金型18の成形面の中心と軸を合わせた深さ1mm幅1mm程度の嵌合部を設け、該嵌合部にレンズブランク9の外周部を嵌め込むことで実現する。レンズブランク9は、ガラスまたはプラスティックの材質から成り、光学面においては平面または曲面を有する。リング状のレンズブランク保持部材8は上下動自在に保持されている。成形金型18の成形面上には不図示のディスペンサーにより光硬化性樹脂10が適量供給され、レンズブランク9上にはリング状の遮光用マスク19が設置され、該レンズブランク9の上方には紫外線照射ランプ11が成形金型18の光学機能面に対して紫外光が垂直に入射するように設置されている。光硬化性樹脂10としては、光開始剤の紫外線波長365nm付近の吸収からラジカルが生成されるアクリレート系またはメタクリレート系またはエポキシ等の光学用樹脂を使用しており、紫外線照射ランプ11は、高圧水銀ランプまたは超高圧水銀ランプの波長365nm付近に発振のピークを有する光源を使用する。   FIG. 8 is a schematic block diagram showing a diffractive optical element replica molding apparatus used in the camera lens according to the first embodiment of the present invention. In FIG. 8, reference numeral 18 denotes a molding die provided with a reverse shape 6 of a desired optical function shape on its molding surface. The molding die 18 is fixed, and the lens blank 9 is placed on the ring-shaped lens blank holding member 8 into which the molding die 18 is fitted. Axis alignment between the center axis of the lens blank 9 and the center of the molding surface of the molding die 18 is performed by molding the molding die 18 on the entire circumference of the inner peripheral portion on which the lens blank 9 on the lens blank holding material 8 is placed. This is realized by providing a fitting portion having a depth of 1 mm and a width of about 1 mm, the center of which is aligned with the axis, and fitting the outer peripheral portion of the lens blank 9 into the fitting portion. The lens blank 9 is made of glass or plastic material, and has a flat surface or a curved surface on the optical surface. The ring-shaped lens blank holding member 8 is held so as to be movable up and down. An appropriate amount of photocurable resin 10 is supplied onto the molding surface of the molding die 18 by a dispenser (not shown), and a ring-shaped shading mask 19 is installed on the lens blank 9, and above the lens blank 9. The ultraviolet irradiation lamp 11 is installed so that the ultraviolet light is perpendicularly incident on the optical functional surface of the molding die 18. As the photocurable resin 10, an optical resin such as an acrylate type, a methacrylate type, or an epoxy that generates radicals from absorption of a photoinitiator near an ultraviolet wavelength of 365 nm is used. A light source having an oscillation peak in the vicinity of a wavelength of 365 nm of a lamp or an ultrahigh pressure mercury lamp is used.

図3は、本実施例における成形金型5の上面図と側面図を示している。光学機能面6を形成する微細形状は、光学有効径φ20mmにおいて、平面上に格子高さ5〜20μm、格子幅0.1〜3mmのブレーズ型回折格子を有し、上面図に示されるように中心への凸形状で同心円状に配置されている。また、接合部の形状7は、光学有効径外において、高さ30〜200μm、幅0.1〜1mmの楔型の溝形状で同心円状に配置されている。該成形面の微細形状は、金型メッキ層の切削法等により形成される。   FIG. 3 shows a top view and a side view of the molding die 5 in this embodiment. The fine shape forming the optical function surface 6 has a blazed diffraction grating having a grating height of 5 to 20 μm and a grating width of 0.1 to 3 mm on a plane at an effective optical diameter of φ20 mm, as shown in the top view. Concentric with a convex shape toward the center. The joint shape 7 is concentrically arranged in a wedge-shaped groove shape having a height of 30 to 200 μm and a width of 0.1 to 1 mm outside the optical effective diameter. The fine shape of the molding surface is formed by a die plating layer cutting method or the like.

図9は、本実施例における成形金型18の上面図と側面図を示している。光学機能面6を形成する微細形状は、光学有効径φ20mmにおいて、平面上に格子高さ5〜20μm、格子幅0.1〜3mmのブレーズ型回折格子を有し、上面図に示されるように中心への凹形状で同心円状に配置されている。該成形面の微細形状は、金型メッキ層の切削法等により形成される。   FIG. 9 shows a top view and a side view of the molding die 18 in this embodiment. The fine shape forming the optical function surface 6 has a blazed diffraction grating having a grating height of 5 to 20 μm and a grating width of 0.1 to 3 mm on a plane at an effective optical diameter of φ20 mm, as shown in the top view. Concentric with a concave shape toward the center. The fine shape of the molding surface is formed by a die plating layer cutting method or the like.

図4は、本実施例における該成形金型5により理想的に作製される回折光学素子12を示している。レンズブランク9上に形成された樹脂層の光学機能面6’は、ブレーズ型回折格子の中心への凹形状、即ち該成形金型5の反転形状として同心円状に形成される。また、樹脂層の接合部の形状7’も同様に、成形金型5における接合部の形状7の反転形状として同心円状に形成される。   FIG. 4 shows a diffractive optical element 12 ideally produced by the molding die 5 in this embodiment. The optical functional surface 6 ′ of the resin layer formed on the lens blank 9 is formed concentrically as a concave shape toward the center of the blazed diffraction grating, that is, as an inverted shape of the molding die 5. Similarly, the shape 7 ′ of the joint portion of the resin layer is formed concentrically as an inverted shape of the shape 7 of the joint portion in the molding die 5.

図10は、本実施例における該成形金型18により理想的に作製される回折光学素子20を示している。レンズブランク9上に形成された樹脂層の光学機能面6’は、ブレーズ型回折格子の中心への凸形状、即ち該成形金型18の反転形状として同心円状に形成される。17は、本実施例の成形プロセスにおいて形成される光硬化性樹脂未硬化部であり、光学有効径外において幅0.1〜1mmで同心円状に形成される。   FIG. 10 shows a diffractive optical element 20 ideally produced by the molding die 18 in this embodiment. The optical functional surface 6 ′ of the resin layer formed on the lens blank 9 is formed concentrically as a convex shape toward the center of the blazed diffraction grating, that is, as an inverted shape of the molding die 18. 17 is an uncured portion of the photocurable resin formed in the molding process of this example, and is formed concentrically with a width of 0.1 to 1 mm outside the effective optical diameter.

図5は、本実施例における回折光学素子の張り合わせ接合装置を示す概略構成図である。13は回折光学素子保持部材であり、下に設置された一方の回折光学素子12の下面を真空吸着により保持するための真空系機構が設けられている。14はピエゾ圧電素子を備えた回折光学素子の中心軸合わせ機構であり、上に設置されたもう一方の回折光学素子20のレンズブランク側面を少なくとも2方向から押圧できるように配置されている。光学顕微鏡15は、回折光学素子の上方に設置され、該回折光学素子の回折格子の形状部に焦点が合うように調整されるが、作業の利便上のためできるだけ焦点深度が深いことが望ましい。16は紫外線照射ランプであり、高圧水銀ランプまたは超高圧水銀ランプの波長365nm付近に発振のピークを有する光源を使用する。7’と17は、それぞれ回折光学素子12における接合部の形状と、回折光学素子20における光硬化性樹脂未硬化部を表す。   FIG. 5 is a schematic configuration diagram illustrating a diffractive optical element bonding and bonding apparatus according to the present embodiment. A diffractive optical element holding member 13 is provided with a vacuum system mechanism for holding the lower surface of one diffractive optical element 12 disposed below by vacuum suction. Reference numeral 14 denotes a center axis alignment mechanism of a diffractive optical element provided with a piezoelectric element, and is arranged so that the lens blank side surface of the other diffractive optical element 20 placed thereon can be pressed from at least two directions. The optical microscope 15 is installed above the diffractive optical element and is adjusted so as to focus on the shape part of the diffraction grating of the diffractive optical element, but it is desirable that the depth of focus is as deep as possible for the convenience of work. Reference numeral 16 denotes an ultraviolet irradiation lamp, which uses a light source having an oscillation peak in the vicinity of a wavelength of 365 nm of a high pressure mercury lamp or an ultrahigh pressure mercury lamp. Reference numerals 7 ′ and 17 respectively denote the shape of the joint in the diffractive optical element 12 and the uncured portion of the photocurable resin in the diffractive optical element 20.

次に、本実施例における回折光学素子12の成形プロセスを図2と図6を参照して説明する。まず、成形金型5の成形面上中央付近に不図示のディスペンサーにて光硬化性樹脂10を適量供給し、あらかじめ樹脂との密着力を上げるためのシランカップリング処理を片面に施したレンズブランク9を、カップリング処理面を下にしてリング状のレンズブランク保持部材8上の内周に設けられた嵌合部に嵌め込む。この際に、芯だし用チャックやベルクランプ方式等、さらにレンズブランク9を保持するための機構を備えても良い。   Next, the molding process of the diffractive optical element 12 in the present embodiment will be described with reference to FIGS. First, an appropriate amount of a photocurable resin 10 is supplied to the vicinity of the center of the molding surface of the molding die 5 by a dispenser (not shown), and a lens blank is previously subjected to silane coupling treatment for increasing the adhesion to the resin on one side. 9 is fitted into a fitting portion provided on the inner periphery of the ring-shaped lens blank holding member 8 with the coupling processing surface facing down. At this time, a mechanism for holding the lens blank 9, such as a centering chuck or a bell clamp system, may be provided.

次に、図6に示されるように、リング状のレンズブランク保持部材8を下降させ、成形金型5とレンズブランク9を相対的に接近させ、光硬化性樹脂10を所望の厚み、かつ光学有効径外周まで満たすように押し広げる。この時、光硬化性樹脂10への気泡混入や型の成形形状への樹脂未充填を防止するために、樹脂の粘度や型の成形面の濡れ性を考慮して、接液速度を調整しなければならない。   Next, as shown in FIG. 6, the ring-shaped lens blank holding member 8 is lowered, the molding die 5 and the lens blank 9 are relatively approached, and the photocurable resin 10 is made to have a desired thickness and optical properties. Push to fill the outer circumference of the effective diameter. At this time, the liquid contact speed is adjusted in consideration of the viscosity of the resin and the wettability of the molding surface of the mold in order to prevent air bubbles from being mixed into the photocurable resin 10 and unfilled resin in the molded shape of the mold. There must be.

次に、充填された光硬化性樹脂10に対して、紫外線照射ランプ11による紫外光を24J(40[mW/cm]×10分)照射する。光硬化性樹脂10の重合硬化が完了した後、リング状のレンズブランク保持部材8を上昇させることで、成形金型5から硬化した光硬化性樹脂10とレンズブランク9とから成る回折光学素子12を剥離させる。 Next, the filled photocurable resin 10 is irradiated with ultraviolet light from the ultraviolet irradiation lamp 11 for 24 J (40 [mW / cm 2 ] × 10 minutes). After completion of the polymerization and curing of the photocurable resin 10, the ring-shaped lens blank holding member 8 is lifted so that the diffractive optical element 12 composed of the photocurable resin 10 cured from the molding die 5 and the lens blank 9. To peel off.

次に、本実施例における回折光学素子20の成形プロセスを図8と図7を参照して説明する。まず、成形金型18の成形面上中央付近に不図示のディスペンサーにて光硬化性樹脂10を適量供給し、あらかじめ樹脂との密着力を上げるためのシランカップリング処理を片面に施したレンズブランク9を、カップリング処理面を下にしてリング状のレンズブランク保持部材8上の内周に設けられた嵌合部に嵌め込む。この際に、芯だし用チャックやベルクランプ方式等、さらにレンズブランク9を保持するための機構を備えても良い。   Next, the molding process of the diffractive optical element 20 in the present embodiment will be described with reference to FIGS. First, an appropriate amount of the photocurable resin 10 is supplied to the vicinity of the center of the molding surface of the molding die 18 by a dispenser (not shown), and a silane coupling process is performed on one side in advance to increase the adhesion with the resin. 9 is fitted into a fitting portion provided on the inner periphery of the ring-shaped lens blank holding member 8 with the coupling processing surface facing down. At this time, a mechanism for holding the lens blank 9, such as a centering chuck or a bell clamp system, may be provided.

次に、図7に示されるように、リング状のレンズブランク保持部材8を下降させ、成形金型18とレンズブランク9を相対的に接近させ、光硬化性樹脂10を所望の厚み、かつ光学有効径外周まで満たすように押し広げる。この時、光硬化性樹脂10への気泡混入や型の成形形状への樹脂未充填を防止するために、樹脂の粘度や型の成形面の濡れ性を考慮して、接液速度を調整しなければならない。   Next, as shown in FIG. 7, the ring-shaped lens blank holding member 8 is lowered, the molding die 18 and the lens blank 9 are relatively approached, and the photocurable resin 10 is made to have a desired thickness and optical properties. Push to fill the outer circumference of the effective diameter. At this time, the liquid contact speed is adjusted in consideration of the viscosity of the resin and the wettability of the molding surface of the mold in order to prevent air bubbles from being mixed into the photocurable resin 10 and unfilled resin in the molded shape of the mold. There must be.

次に、レンズブランク9上の光学有効径外に配置されたリング状の遮光用マスク19を介して、充填された光硬化性樹脂10に対して紫外線照射ランプ11による紫外光を18J(100[mW/cm]×3分)照射する。この時、光硬化性樹脂10のリング状の遮光用マスク19によって遮光された樹脂部は硬化しないため、光硬化性樹脂未硬化部17が形成される。光照射が完了した後、リング状のレンズブランク保持部材8を上昇させることで、成形金型18から光硬化性樹脂未硬化部17を含む光硬化性樹脂10とレンズブランク9とから成る回折光学素子20を剥離させる。 Next, ultraviolet light from the ultraviolet irradiation lamp 11 is applied to the filled photocurable resin 10 through a ring-shaped light shielding mask 19 disposed outside the optical effective diameter on the lens blank 9 by 18J (100 [100 [ mW / cm 2 ] × 3 minutes). At this time, since the resin portion shielded by the ring-shaped shading mask 19 of the photocurable resin 10 is not cured, the photocurable resin uncured portion 17 is formed. After the light irradiation is completed, the ring-shaped lens blank holding member 8 is lifted, so that the diffractive optical element composed of the photocurable resin 10 including the photocurable resin uncured portion 17 and the lens blank 9 is formed from the molding die 18. The element 20 is peeled off.

次に、本実施例における回折光学素子の張り合わせ接合プロセスについて図5を参照して説明する。上述したレプリカ成形工程から得られた回折光学素子12を回折光学素子保持部材13に嵌め込み、回折光学素子保持部材13に備えられた真空系機構を起動することで該回折光学素子12を吸着保持し、対を成す回折光学素子20を回折光学素子12上に載置する。この時、光硬化性樹脂未硬化部17の中に接合部の形状7’が挿入して載置される。回折光学素子12と回折光学素子20の載置順は逆にしても良い。   Next, the bonding process of the diffractive optical element in this embodiment will be described with reference to FIG. The diffractive optical element 12 obtained from the replica molding step described above is fitted into the diffractive optical element holding member 13, and the vacuum system mechanism provided in the diffractive optical element holding member 13 is activated to hold the diffractive optical element 12 by suction. The diffractive optical element 20 forming a pair is placed on the diffractive optical element 12. At this time, the joint shape 7 ′ is inserted into the uncured portion 17 of the photocurable resin and placed. The order of placing the diffractive optical element 12 and the diffractive optical element 20 may be reversed.

次に、光学顕微鏡15を用いて張り合わせ接合位置を常時確認しながら、ピエゾ圧電素子を備えた回折光学素子の中心軸合わせ機構14により正確な位置決めを行なう。さらに、位置決めされた回折光学素子20の光硬化性樹脂未硬化部17に対して紫外線照射ランプ16による紫外光を18J(100[mW/cm]×3分)照射する。この時、光硬化性樹脂未硬化部17が硬化することで該光硬化性樹脂未硬化部17と接合部の形状7’が固着されるので、一対の回折光学素子が接合された積層型回折光学素子が形成される。 Next, accurate positioning is performed by the center axis alignment mechanism 14 of the diffractive optical element including the piezoelectric element while constantly confirming the bonding position using the optical microscope 15. Further, ultraviolet light from the ultraviolet irradiation lamp 16 is irradiated to the uncured portion 17 of the positioned diffractive optical element 20 by 18 J (100 [mW / cm 2 ] × 3 minutes). At this time, since the uncured portion 17 of the photocurable resin is cured, the uncured portion 17 of the photocurable resin 17 and the shape 7 'of the bonded portion are fixed, so that the laminated diffraction in which a pair of diffractive optical elements are bonded. An optical element is formed.

このように、本実施例によれば、従来のものに比して、接着剤を用いないで成形用の光硬化性樹脂そのもので接合するために強固な接合が得られる。また、接着剤と接着剤塗布装置を必要としないので、接合工程の効率化と大幅なコストダウンが可能となる。また、このような優れた積層型回折光学素子を用いて光学系を構成し、それらを撮影装置あるいは観察装置等に適用することが可能となる。   As described above, according to the present embodiment, compared to the conventional one, a strong bonding can be obtained because the bonding is performed by the molding photo-curing resin itself without using an adhesive. Moreover, since an adhesive and an adhesive application device are not required, the efficiency of the joining process and a significant cost reduction can be achieved. In addition, it is possible to configure an optical system using such an excellent laminated diffractive optical element and to apply them to an imaging apparatus or an observation apparatus.

従来例の積層型回折光学素子を説明する断面図と上面図である。It is sectional drawing and a top view explaining the multilayer type diffractive optical element of a prior art example. 本発明の実施の形態を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die and shaping | molding apparatus which show embodiment of this invention. 本発明の実施の形態を示す成形金型の断面図と上面図である。It is sectional drawing and the top view of the molding die which show embodiment of this invention. 本発明の実施の形態を示す回折光学素子の断面図と上面図である。It is sectional drawing and the top view of the diffractive optical element which show embodiment of this invention. 本発明の実施の形態を示す接合装置と回折光学素子の断面図である。It is sectional drawing of the joining apparatus and diffractive optical element which show embodiment of this invention. 本発明の実施の形態を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die and shaping | molding apparatus which show embodiment of this invention. 本発明の実施の形態を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die and shaping | molding apparatus which show embodiment of this invention. 本発明の実施の形態を示す成形型と成形装置の断面図である。It is sectional drawing of the shaping | molding die and shaping | molding apparatus which show embodiment of this invention. 本発明の実施の形態を示す成形金型の断面図と上面図である。It is sectional drawing and the top view of the molding die which show embodiment of this invention. 本発明の実施の形態を示す回折光学素子の断面図と上面図である。It is sectional drawing and the top view of the diffractive optical element which show embodiment of this invention.

符号の説明Explanation of symbols

1 回折光学素子
2 回折光学素子
3 光学有効径外端部外周の平面部
4 積層型回折光学素子
5 成形金型
6 光学機能形状
6’ 光学機能形状
7 接合部の形状
7’ 接合部の形状
8 レンズブランク保持部材
9 レンズブランク
10 光硬化性樹脂
11 紫外線照射ランプ
12 回折光学素子
13 回折光学素子保持部材
14 回折光学素子の中心軸合わせ機構
15 光学顕微鏡
16 紫外線照射ランプ
17 光硬化性樹脂未硬化部
18 成形金型
19 リング状の遮光用マスク
20 回折光学素子
DESCRIPTION OF SYMBOLS 1 Diffractive optical element 2 Diffractive optical element 3 Flat part of outer periphery of optical effective diameter outer peripheral part 4 Laminated diffractive optical element 5 Mold 6 Optical function shape 6 'Optical function shape 7 Joint shape 7' Joint shape 8 Lens blank holding member 9 Lens blank 10 Photocurable resin 11 Ultraviolet irradiation lamp 12 Diffractive optical element 13 Diffractive optical element holding member 14 Center axis alignment mechanism 15 of diffractive optical element 15 Optical microscope 16 Ultraviolet irradiation lamp 17 Photocurable resin uncured portion 18 Molding die 19 Ring-shaped light shielding mask 20 Diffractive optical element

Claims (4)

所望の光学形状を有する成形型面上に光硬化性樹脂を滴下し、該光硬化性樹脂を平面または曲面ガラス基板で押圧充填し、光照射の後に該光硬化性樹脂とガラス基板から成る成形品を離型することで回折光学素子を形成し、対となる該回折光学素子を接合することで積層型回折光学素子を製造する製造方法において、一方の回折光学素子の接合部を形成する工程と、対となるもう一方の回折光学素子の光硬化性樹脂未硬化部を形成する工程と、該回折光学素子の接合部と該光硬化性樹脂未硬化部とを接合する工程と、該接合部と該光硬化性樹脂未硬化部に対して光を照射する工程から成ることを特徴とする積層型回折光学素子の製造方法。   A photocurable resin is dropped on a molding die surface having a desired optical shape, the photocurable resin is pressed and filled with a flat or curved glass substrate, and after the light irradiation, the molding comprising the photocurable resin and the glass substrate is performed. Forming a junction part of one diffractive optical element in a manufacturing method in which a diffractive optical element is formed by releasing a product and a laminated diffractive optical element is manufactured by joining the paired diffractive optical elements And a step of forming a photocurable resin uncured portion of the other diffractive optical element to be paired, a step of bonding the bonded portion of the diffractive optical element and the uncured portion of the photocurable resin, and the bonding And a step of irradiating light to the uncured portion of the photocurable resin and a method for producing a laminated diffractive optical element. 前記回折光学素子の接合部を形成する工程は、回折光学素子の成形型面上に該接合部の反転形状を有した成形型を用いて該回折光学素子を成形することを特徴とする積層型回折光学素子の製造方法。   The step of forming the joint portion of the diffractive optical element comprises forming the diffractive optical element using a mold having a reversal shape of the joint portion on the mold surface of the diffractive optical element. A method for manufacturing a diffractive optical element. 前記回折光学素子の光硬化性樹脂未硬化部を形成する工程は、該光硬化性樹脂未硬化部の形成部と光硬化用の光源との間に遮光用マスクを配置し、該遮光用マスクを介して回折光学素子に光照射を行なうことを特徴とする積層型回折光学素子の製造方法。   The step of forming the light curable resin uncured portion of the diffractive optical element includes disposing a light shielding mask between the light curable resin uncured portion forming portion and the light curing light source, and the light shielding mask. A method for producing a laminated diffractive optical element, wherein the diffractive optical element is irradiated with light through 請求項1及び2及び3いずれかに記載の製造方法を用いて製造されたことを特徴とする積層型回折光学素子。   A laminated diffractive optical element manufactured using the manufacturing method according to claim 1, 2 or 3.
JP2005036061A 2005-02-14 2005-02-14 Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element Withdrawn JP2006221062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036061A JP2006221062A (en) 2005-02-14 2005-02-14 Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036061A JP2006221062A (en) 2005-02-14 2005-02-14 Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element

Publications (1)

Publication Number Publication Date
JP2006221062A true JP2006221062A (en) 2006-08-24

Family

ID=36983421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036061A Withdrawn JP2006221062A (en) 2005-02-14 2005-02-14 Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element

Country Status (1)

Country Link
JP (1) JP2006221062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020541A1 (en) 2006-08-14 2008-02-21 Fujikura Ltd. Light emitting device and illumination device
JP2011170224A (en) * 2010-02-22 2011-09-01 Konica Minolta Opto Inc Method for manufacturing optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020541A1 (en) 2006-08-14 2008-02-21 Fujikura Ltd. Light emitting device and illumination device
JP2011170224A (en) * 2010-02-22 2011-09-01 Konica Minolta Opto Inc Method for manufacturing optical element

Similar Documents

Publication Publication Date Title
JP5310569B2 (en) Wafer lens assembly manufacturing method and wafer lens assembly
US6989932B2 (en) Method of manufacturing micro-lens
JP6198016B2 (en) Manufacturing method of optical member and manufacturing method of lens
JP2012529069A (en) Lens and manufacturing method thereof
TW201037385A (en) Rectangular stacked glass lens module with alignment fixture and manufacturing method thereof
JP2010131969A (en) Microlens, method and apparatus of manufacturing microlens, and camera module provided with microlens
WO2002095465A1 (en) Optical module and production method therefor
WO2007145115A1 (en) Composite optical element and method for manufacturing same
JP2849299B2 (en) Manufacturing method of composite precision molded products
JP2006106229A (en) Method for manufacturing transmission type optical element and transmission type optical element
JP2004046093A (en) Method for manufacturing diffraction optical element
JP2007212547A (en) Method of manufacturing optical element, and optical element
JP4781001B2 (en) Compound lens manufacturing method
JP2006221062A (en) Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element
JP2011204731A (en) Method of bonding optical package and lens, and optical package
JP4612801B2 (en) Mold, composite optical element manufacturing method, and composite optical element
JP7277268B2 (en) Optical element, optical equipment, imaging device, and method for manufacturing optical element
JP2006171164A (en) Hybrid lens and method of manufacturing hybrid lens
JP4481531B2 (en) Optical element
TWI581031B (en) Wafer level lens system and method of fabricating the same
JP2008299148A (en) Junction type optical element and manufacturing method therefor
JP2006113339A (en) Molding method of diffraction optical element and diffraction optical element molded by using the method
WO2013084475A1 (en) Lens unit and method for manufacturing same
CN217932148U (en) Optical article
JP2010139722A (en) Optical component and method of manufacturing the same, and optical device and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513