[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011203467A - Near-infrared absorption filter and method for manufacturing the same - Google Patents

Near-infrared absorption filter and method for manufacturing the same Download PDF

Info

Publication number
JP2011203467A
JP2011203467A JP2010070389A JP2010070389A JP2011203467A JP 2011203467 A JP2011203467 A JP 2011203467A JP 2010070389 A JP2010070389 A JP 2010070389A JP 2010070389 A JP2010070389 A JP 2010070389A JP 2011203467 A JP2011203467 A JP 2011203467A
Authority
JP
Japan
Prior art keywords
infrared absorber
general formula
infrared
monomer
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010070389A
Other languages
Japanese (ja)
Other versions
JP5611631B2 (en
Inventor
Katsuichi Machida
克一 町田
Akira Saito
章 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2010070389A priority Critical patent/JP5611631B2/en
Publication of JP2011203467A publication Critical patent/JP2011203467A/en
Application granted granted Critical
Publication of JP5611631B2 publication Critical patent/JP5611631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a near-infrared absorption filter superior in near-infrared absorption characteristics, visible light transmissivity, and environmental resistance, and to provide a method for manufacturing the near-infrared absorption filter with high productivity.SOLUTION: The near-infrared absorption filter comprises: an infrared absorbent obtained from a phosphonic acid compound, at least one kind of phosphoric ester compounds, and a copper salt; and a resin.

Description

本発明は、近赤外線吸収フィルターおよびその製造方法に関し、詳しくは近赤外線を好適に吸収することが可能であり、かつ透明性に優れる樹脂製の近赤外線吸収フィルターおよびその製造方法に関する。   The present invention relates to a near-infrared absorbing filter and a method for producing the same, and more particularly to a resin-made near-infrared absorbing filter capable of suitably absorbing near-infrared rays and having excellent transparency and a method for producing the same.

金属イオンの中でも、銅イオンは、近赤外領域の光(以下、「近赤外線」ともいう)の吸収特性に優れている。
銅イオンが有する近赤外線の吸収特性を利用した光学材料が従来から提案されている(例えば、特許文献1〜4参照)。特許文献1には、特定のリン酸エステル化合物と銅化合物とから形成されるリン酸エステル銅化合物を含有する光学材料が開示されている。特許文献2には、特定のリン酸エステル化合物、銅化合物および樹脂を含有する樹脂組成物から形成されたディスプレイ前面板が開示されている。特許文献3には、特定のリン酸エステル化合物と、銅化合物とから形成されるリン酸エステル銅化合物を含有する近赤外線吸収層を有する光学フィルターが開示されている。また、特許文献4には、特定のリン酸エステル化合物と、銅イオンとを含有してなる近赤外線吸収性組成物が開示されている。
Among metal ions, copper ions have excellent absorption characteristics of light in the near infrared region (hereinafter also referred to as “near infrared”).
Conventionally, optical materials using near-infrared absorption characteristics of copper ions have been proposed (see, for example, Patent Documents 1 to 4). Patent Document 1 discloses an optical material containing a phosphate ester copper compound formed from a specific phosphate ester compound and a copper compound. Patent Document 2 discloses a display front plate formed from a resin composition containing a specific phosphate compound, a copper compound, and a resin. Patent Document 3 discloses an optical filter having a near-infrared absorbing layer containing a phosphate ester copper compound formed from a specific phosphate ester compound and a copper compound. Patent Document 4 discloses a near-infrared absorbing composition comprising a specific phosphate compound and copper ions.

従来提案されている光学材料は、近赤外線吸収フィルターとして用いた場合には、近赤外線の吸収特性には優れるものであった。しかしながら、ディスプレイパネル用、シリコンフォトダイオード用等の近赤外線吸収フィルターでは、近赤外線の吸収特性に優れるとともに、可視光の透過性に優れることが望まれるが、従来提案されている光学材料は、可視光の透過性が充分ではなく、いまだ改善が望まれていた。なお、前記特許文献に記載された各種光学材料では、銅イオンは、主にリン酸エステル化合物と銅塩(銅化合物)とを反応させることにより得られる錯体として光学材料中に含まれる。   Conventionally proposed optical materials have excellent near infrared absorption characteristics when used as near infrared absorption filters. However, near-infrared absorption filters for display panels, silicon photodiodes, and the like are desired to have excellent near-infrared absorption characteristics and excellent visible light transmission properties, but conventionally proposed optical materials are visible. The light transmission was not sufficient, and improvement was still desired. In the various optical materials described in the above-mentioned patent documents, copper ions are mainly contained in the optical material as a complex obtained by reacting a phosphate ester compound with a copper salt (copper compound).

また、近年、各種電子機器は、小型化、省スペース化、軽量化が強く求められている。そのため近赤外線吸収フィルターは、優れた近赤外線の吸収特性を維持しつつ、フィルター自体の厚さを薄くすることが求められている。   In recent years, various electronic devices are strongly required to be small, save space, and light. Therefore, the near-infrared absorption filter is required to reduce the thickness of the filter itself while maintaining excellent near-infrared absorption characteristics.

しかしながら、特許文献1〜4に記載された発明はいずれも、フィルター自体の厚さを薄くした場合には、近赤外線の吸収特性が充分ではなかった。   However, none of the inventions described in Patent Documents 1 to 4 have sufficient absorption characteristics of near infrared rays when the thickness of the filter itself is reduced.

特開2001−83318号公報JP 2001-83318 A 特開2001−83890号公報JP 2001-83890 A 特開2001−154015号公報JP 2001-154015 A 国際公開第01/77250号パンフレットInternational Publication No. 01/77250 Pamphlet

近赤外線の吸収特性を維持しつつ、フィルターの厚さを薄くするためには、近赤外線吸収特性に寄与する銅イオンの濃度を高くする必要、すなわち、多量の錯体を含有する原料から近赤外線吸収フィルターを製造する必要がある。しかしながら、原料中の錯体濃度を増加させると、一般に成形性が悪化するため生産性が低下するという問題点があった。   In order to reduce the filter thickness while maintaining the near-infrared absorption characteristics, it is necessary to increase the concentration of copper ions that contribute to the near-infrared absorption characteristics. It is necessary to manufacture a filter. However, when the complex concentration in the raw material is increased, there is a problem that the productivity is lowered because the moldability generally deteriorates.

また、フィルターを薄くするために銅イオン濃度を上げた場合には、一般にフィルターの耐湿性、耐熱性等の耐環境性が悪化する傾向があるが、屋外で使用されることが多い各種携帯機器に用いられる近赤外線吸収フィルターは、耐環境性にも優れることが要求される。   In addition, when the copper ion concentration is increased to make the filter thinner, the environmental resistance such as moisture resistance and heat resistance of the filter generally tends to deteriorate, but various portable devices often used outdoors. The near-infrared absorption filter used in the production is required to have excellent environmental resistance.

また、ディスプレイの表示部等に用いられる近赤外線吸収フィルターは、ディスプレイの視認性の観点から当然に可視光の透過性に優れることが望まれる。フォトダイオード等の受光部等に視感度補正フィルターとして用いられる近赤外線樹脂フィルターもまた、可視光の透過性に優れることが望まれる。   In addition, it is naturally desirable that the near-infrared absorption filter used in the display unit of the display is excellent in visible light transmission from the viewpoint of display visibility. It is desired that a near infrared resin filter used as a visibility correction filter for a light receiving portion such as a photodiode is also excellent in visible light transmission.

本発明は、上記のような事情に鑑み、近赤外線の吸収特性に優れ、かつ可視光の透過性に優れるとともに、耐環境性にも優れる近赤外線吸収フィルターおよび、該近赤外線吸収フィルターを生産性よく製造する方法を提供することを目的とする。   In view of the circumstances as described above, the present invention has a near-infrared absorption filter excellent in near-infrared absorption characteristics and excellent in visible light transmittance and excellent in environmental resistance, and productivity of the near-infrared absorption filter. The object is to provide a method of manufacturing well.

本発明者らは、前記課題を解決するために鋭意研究を行った結果、特定の近赤外線吸収フィルターは、近赤外線の吸収特性に優れ、かつ可視光の透過性に優れるとともに、耐環境性にも優れることを見出し、さらに該近赤外線吸収フィルターは生産性に優れることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that a specific near-infrared absorption filter has excellent near-infrared absorption characteristics, excellent visible light transmission, and environmental resistance. And the near-infrared absorption filter was found to be excellent in productivity, and the present invention was completed.

すなわち、本発明の近赤外線吸収フィルターは、下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とから得られる近赤外線吸収剤および樹脂から形成される。   That is, the near-infrared absorption filter of the present invention is represented by the phosphonic acid compound represented by the following general formula (1), the phosphoric acid ester compound represented by the following general formula (2a), and the following general formula (2b). It is formed from the near-infrared absorber and resin obtained from the at least 1 sort (s) of phosphoric acid ester compound selected from this, and a copper salt.

Figure 2011203467
[式中、R1は、−CH2CH2−R11で表される1価の基であり、R11は水素原子、炭素数1〜20のアルキル基、または炭素数1〜20のフッ素化アルキル基を示す。R21、R22およびR23は、−(CH2CH2O)n5で表される1価の基であり、nは4〜25の整数であり、R5は、炭素数6〜25のアルキル基または炭素数6〜25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
Figure 2011203467
[In the formula, R 1 is a monovalent group represented by -CH 2 CH 2 -R 11, R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a fluorine having 1 to 20 carbon atoms, Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 25, and R 5 has 6 to 6 carbon atoms. 25 alkyl group or C6-C25 alkylphenyl group is shown. However, R 21 , R 22 and R 23 may be the same or different. ]

本発明の近赤外線吸収フィルターは、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得て、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得て、前記近赤外線吸収剤をモノマーに分散させ、近赤外線吸収剤含有モノマーを得て、前記近赤外線吸収剤含有モノマーを重合することにより得られる、近赤外線吸収剤および樹脂を含む組成物から形成されることが好ましい。   The near-infrared absorption filter of the present invention includes a phosphonic acid compound represented by the general formula (1), a phosphoric acid ester compound represented by the general formula (2a), and a phosphorus represented by the general formula (2b). By mixing at least one phosphate ester compound selected from acid ester compounds and a copper salt in a solvent to obtain a reaction mixture, and removing at least part of the solvent from the reaction mixture A near-infrared absorber and a resin obtained by obtaining a near-infrared absorber, dispersing the near-infrared absorber in a monomer, obtaining a near-infrared absorber-containing monomer, and polymerizing the near-infrared absorber-containing monomer It is preferable to form from the composition containing this.

本発明の近赤外線吸収フィルターは、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得て、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得て、前記近赤外線吸収剤を低沸点溶媒に分散させることにより分散液を得て、前記分散液にモノマーを添加した後に、少なくとも低沸点溶媒の一部を除去することにより、近赤外線吸収剤含有モノマーを得て、前記近赤外線吸収剤含有モノマーを重合することにより得られる、近赤外線吸収剤および樹脂を含む組成物から形成される近赤外線吸収フィルター。   The near-infrared absorption filter of the present invention includes a phosphonic acid compound represented by the general formula (1), a phosphoric acid ester compound represented by the general formula (2a), and a phosphorus represented by the general formula (2b). By mixing at least one phosphate ester compound selected from acid ester compounds and a copper salt in a solvent to obtain a reaction mixture, and removing at least part of the solvent from the reaction mixture By obtaining a near-infrared absorbent, obtaining a dispersion by dispersing the near-infrared absorbent in a low-boiling solvent, adding a monomer to the dispersion, and then removing at least part of the low-boiling solvent A near infrared ray formed from a composition comprising a near infrared absorber and a resin, obtained by polymerizing the near infrared absorber-containing monomer, obtaining a near infrared absorber-containing monomer Absorption filter.

前記樹脂が、単官能芳香族ビニル化合物、多官能芳香族ビニル化合物、単官能(メタ)アクリル酸エステルおよび多官能(メタ)アクリル酸エステルから選択される少なくとも1種のモノマー由来の構成単位を有することが好ましい。また、前記モノマーの少なくとも一部が、多官能(メタ)アクリル酸エステルおよび多官能芳香族ビニル化合物から選択される少なくとも1種のモノマーであることが好ましい。   The resin has a structural unit derived from at least one monomer selected from a monofunctional aromatic vinyl compound, a polyfunctional aromatic vinyl compound, a monofunctional (meth) acrylic acid ester, and a polyfunctional (meth) acrylic acid ester. It is preferable. Moreover, it is preferable that at least a part of the monomer is at least one monomer selected from a polyfunctional (meth) acrylic acid ester and a polyfunctional aromatic vinyl compound.

本発明の近赤外線吸収フィルターの製造方法は、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得る工程、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得る工程、前記近赤外線吸収剤をモノマーに分散させ、近赤外線吸収剤含有モノマーを得る工程、前記近赤外線吸収剤含有モノマーを重合し、近赤外線吸収剤および樹脂を含む組成物を得る工程を有する。   The manufacturing method of the near-infrared absorption filter of the present invention is represented by the phosphonic acid compound represented by the general formula (1), the phosphoric acid ester compound represented by the general formula (2a), and the general formula (2b). A step of mixing a copper salt with at least one phosphate ester compound selected from the phosphate ester compounds to be obtained in a solvent, and removing at least a part of the solvent from the reaction mixture A step of obtaining a near-infrared absorber by dispersing the near-infrared absorber in a monomer, obtaining a near-infrared absorber-containing monomer, polymerizing the near-infrared absorber-containing monomer, Obtaining a composition comprising.

本発明の近赤外線吸収フィルターの製造方法の別の態様としては、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得る工程、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得る工程、前記近赤外線吸収剤を低沸点溶媒に分散させることにより分散液を得る工程、前記分散液にモノマーを添加した後に、少なくとも低沸点溶媒の一部を除去することにより、近赤外線吸収剤含有モノマーを得る工程、前記近赤外線吸収剤含有モノマーを重合し、近赤外線吸収剤および樹脂を含む組成物を得る工程を有する。   As another aspect of the manufacturing method of the near-infrared absorption filter of this invention, the phosphonic acid compound represented by the said General formula (1), the phosphate ester compound represented by the said General formula (2a), and the said General formula The step of mixing at least one phosphate ester compound selected from the phosphate ester compounds represented by (2b) and a copper salt in a solvent to obtain a reaction mixture, from the reaction mixture, at least the solvent A step of obtaining a near-infrared absorber by removing a part of the step, a step of obtaining a dispersion by dispersing the near-infrared absorber in a low-boiling solvent, and after adding a monomer to the dispersion, at least a low-boiling solvent A step of obtaining a near-infrared absorber-containing monomer by removing a part of the composition, polymerizing the near-infrared absorber-containing monomer, and a composition comprising a near-infrared absorber and a resin A step of obtaining a.

本発明の近赤外線吸収フィルターは、近赤外線の吸収特性に優れ、かつ可視光の透過性に優れるとともに、耐環境性にも優れる。また、本発明の近赤外線吸収フィルターの製造方法は、生産性よく該近赤外線吸収フィルターを製造することができる。   The near-infrared absorption filter of the present invention has excellent near-infrared absorption characteristics, excellent visible light transparency, and excellent environmental resistance. Moreover, the manufacturing method of the near-infrared absorption filter of this invention can manufacture this near-infrared absorption filter with sufficient productivity.

実施例1および比較例1で得られた樹脂板(近赤外線吸収フィルター)の分光透過率を示す。The spectral transmission factor of the resin board (near-infrared absorption filter) obtained in Example 1 and Comparative Example 1 is shown. 実施例2で得られた樹脂板(近赤外線吸収フィルター)の分光透過率を示す。The spectral transmittance of the resin plate (near infrared absorption filter) obtained in Example 2 is shown. 実施例3で得られた樹脂板(近赤外線吸収フィルター)の分光透過率を示す。The spectral transmittance of the resin plate (near infrared absorption filter) obtained in Example 3 is shown. 実施例2および比較例1で得られた樹脂板(近赤外線吸収フィルター)を60℃、相対湿度90%で保持した際の樹脂板のヘイズの変化を示す。The change of the haze of the resin board at the time of hold | maintaining the resin board (near-infrared absorption filter) obtained in Example 2 and Comparative Example 1 at 60 degreeC and 90% of relative humidity is shown.

次に本発明について具体的に説明する。
本発明の近赤外線吸収フィルターは、下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とから得られる近赤外線吸収剤および樹脂から形成される。
Next, the present invention will be specifically described.
The near-infrared absorption filter of the present invention includes a phosphonic acid compound represented by the following general formula (1), a phosphoric acid ester compound represented by the following general formula (2a), and a phosphorus represented by the following general formula (2b). It is formed from a near-infrared absorber and resin obtained from at least one phosphate ester compound selected from acid ester compounds and a copper salt.

Figure 2011203467
[式中、R1は、−CH2CH2−R11で表される1価の基であり、R11は水素原子、炭素数1〜20のアルキル基、または炭素数1〜20のフッ素化アルキル基を示す。R21、R22およびR23は、−(CH2CH2O)n5で表される1価の基であり、nは4〜25の整数であり、R5は、炭素数6〜25のアルキル基または炭素数6〜25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
Figure 2011203467
[In the formula, R 1 is a monovalent group represented by -CH 2 CH 2 -R 11, R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a fluorine having 1 to 20 carbon atoms, Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 25, and R 5 has 6 to 6 carbon atoms. 25 alkyl group or C6-C25 alkylphenyl group is shown. However, R 21 , R 22 and R 23 may be the same or different. ]

<近赤外線吸収剤>
本発明の近赤外線吸収フィルターには、近赤外線吸収剤が含有される。
前記近赤外線吸収剤は、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とから得られる。
<Near infrared absorber>
The near infrared absorbing filter of the present invention contains a near infrared absorbing agent.
The near-infrared absorber includes a phosphonic acid compound represented by the general formula (1), a phosphoric acid ester compound represented by the general formula (2a), and a phosphoric acid ester represented by the general formula (2b). It is obtained from at least one phosphate ester compound selected from compounds and a copper salt.

なお、本発明において、「一般式(1)で表されるホスホン酸化合物」を、「特定のホスホン酸化合物」とも記し、「一般式(2a)で表されるリン酸エステル化合物および一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物」を、「特定のリン酸エステル化合物」とも記す。   In the present invention, the “phosphonic acid compound represented by the general formula (1)” is also referred to as “specific phosphonic acid compound”, and the phosphoric acid ester compound represented by the general formula (2a) and the general formula ( The “at least one phosphate ester compound selected from the phosphate ester compounds represented by 2b)” is also referred to as “specific phosphate ester compound”.

本発明に用いられる近赤外線吸収剤は、主として前記特定のホスホン酸化合物と銅塩とが反応したホスホン酸銅塩が有する銅イオンによって近赤外線吸収特性を有すると考えられる。前記ホスホン酸銅塩は、前記特定のリン酸エステル化合物の作用によって、極めて微細な状態で維持されると考えられる。本発明の近赤外線吸収フィルター中に存在する近赤外線吸収剤は、微細な粒子として存在するため、本発明の近赤外線吸収フィルターは可視光の透過率に優れる。   The near-infrared absorber used in the present invention is considered to have near-infrared absorption characteristics mainly due to copper ions contained in the phosphonic acid copper salt obtained by reacting the specific phosphonic acid compound with the copper salt. The phosphonic acid copper salt is considered to be maintained in a very fine state by the action of the specific phosphate compound. Since the near-infrared absorbing agent present in the near-infrared absorbing filter of the present invention exists as fine particles, the near-infrared absorbing filter of the present invention is excellent in visible light transmittance.

また、本発明に用いられる近赤外線吸収剤は、銅イオンに対して主として前記特定のホスホン酸化合物が配位し、さらにその周りに前記特定のリン酸エステル化合物が存在すると考えられる。このため、近赤外線吸収剤中の銅イオンは、熱等に対する安定性に優れ、例えば近赤外線吸収フィルターを近赤外線吸収剤およびモノマーから製造する際に、高温下でモノマーの重合をおこなった場合であっても、得られる近赤外線吸収フィルターは、銅イオンの影響を受けず、着色が少なく透明性に優れる。   Moreover, it is thought that the said specific phosphonic acid compound coordinates mainly with respect to a copper ion, and also the said specific phosphoric acid ester compound exists around the near-infrared absorber used for this invention. For this reason, the copper ion in the near-infrared absorber is excellent in stability to heat and the like. For example, when the near-infrared absorption filter is produced from the near-infrared absorber and the monomer, the monomer is polymerized at a high temperature. Even if it exists, the near-infrared absorption filter obtained does not receive the influence of a copper ion, and there is little coloring and it is excellent in transparency.

前記一般式(1)で表されるホスホン酸化合物において、R1は、−CH2CH2−R11で表される1価の基である。前記R11は、水素原子、炭素数1〜20のアルキル基または炭素数1〜20のフッ素化アルキル基である。フッ素化アルキル基は、対応するアルキル基における水素原子の一部または全部がフッ素原子によって置換されたものである。 In the phosphonic acid compound represented by the general formula (1), R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 . R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a fluorinated alkyl group having 1 to 20 carbon atoms. The fluorinated alkyl group is one in which part or all of the hydrogen atoms in the corresponding alkyl group are substituted with fluorine atoms.

このような特定のホスホン酸化合物を用いることにより、本発明の近赤外線吸収フィルターは、近赤外線の吸収特性に優れ、かつ可視光の透過性に優れ、耐熱性等の耐環境性にも優れる。   By using such a specific phosphonic acid compound, the near-infrared absorption filter of the present invention has excellent near-infrared absorption characteristics, excellent visible light permeability, and excellent environmental resistance such as heat resistance.

前記特定のホスホン酸化合物としては、R11が水素原子または炭素数1〜20のアルキル基であるものが好ましい。一般式(1)で表されるホスホン酸化合物としては例えば、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、ヘプチルホスホン酸、オクチルホスホン酸、ノニルホスホン酸、デシルホスホン酸、ウンデシルホスホン酸、ドデシルホスホン酸、トリデシルホスホン酸、テトラデシルホスホン酸、ペンタデシルホスホン酸、ヘキサデシルホスホン酸、ヘプタデシルホスホン酸、オクタデシルホスホン酸等のアルキルホスホン酸が挙げられる。なお、一般式(1)で表されるホスホン酸化合物としては、一種単独で用いても、二種以上を用いてもよい。 As the specific phosphonic acid compound, those in which R 11 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms are preferable. Examples of the phosphonic acid compound represented by the general formula (1) include ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid, heptylphosphonic acid, octylphosphonic acid, nonylphosphonic acid, and decylphosphonic acid. Examples thereof include alkylphosphonic acids such as acid, undecylphosphonic acid, dodecylphosphonic acid, tridecylphosphonic acid, tetradecylphosphonic acid, pentadecylphosphonic acid, hexadecylphosphonic acid, heptadecylphosphonic acid, and octadecylphosphonic acid. In addition, as a phosphonic acid compound represented by General formula (1), you may use individually by 1 type, or may use 2 or more types.

前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物において、R21、R22およびR23は、−(CH2CH2O)n5で表される1価の基(ポリオキシアルキル基)である。nは4〜25の整数であり、6〜15の整数であるとより好ましい。
nが4未満である場合には、赤外線吸収フィルターの透明性が不充分となる。また、nが25を超えると、充分な透明性を有する赤外線吸収フィルターを得るために必要な、リン酸エステル化合物の量が増え、コスト高の原因となる。
In at least one phosphate ester compound selected from the phosphate ester compound represented by the general formula (2a) and the phosphate ester compound represented by the general formula (2b), R 21 , R 22 and R 23 is a monovalent group (polyoxyalkyl group) represented by — (CH 2 CH 2 O) n R 5 . n is an integer of 4 to 25, and more preferably an integer of 6 to 15.
When n is less than 4, the transparency of the infrared absorption filter is insufficient. On the other hand, when n exceeds 25, the amount of the phosphoric acid ester compound necessary for obtaining an infrared absorption filter having sufficient transparency increases, resulting in high costs.

また、R5は、炭素数6〜25のアルキル基または炭素数6〜25のアルキルフェニル基であり、炭素数6〜25のアルキル基であることが好ましく、12〜20のアルキル基であることがより好ましい。R5が、炭素数6未満の基であると、近赤外線吸収フィルターの透明性が不充分となる。また、R5が、炭素数25を超える基であると、充分な透明性を有する赤外線吸収フィルターを得るために必要な、リン酸エステル化合物の量が増え、コスト高の原因となる。 R 5 is an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms, preferably an alkyl group having 6 to 25 carbon atoms, and is an alkyl group having 12 to 20 carbon atoms. Is more preferable. When R 5 is a group having less than 6 carbon atoms, the near-infrared absorbing filter has insufficient transparency. Further, if R 5 is a group having more than 25 carbon atoms, the amount of the phosphoric acid ester compound necessary for obtaining an infrared absorption filter having sufficient transparency increases, resulting in high costs.

本発明に用いる近赤外線吸収剤を得る際には、前記一般式(2a)で表されるリン酸エステル化合物、前記一般式(2b)で表されるリン酸エステル化合物の少なくとも一方が用いられるが、前記一般式(2a)で表されるリン酸エステル化合物、前記一般式(2b)で表されるリン酸エステル化合物の両方を用いることが好ましい。前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物を用いると、近赤外線吸収フィルターの透明性、耐熱性に優れる傾向があり好ましい。前記一般式(2a)で表されるリン酸エステル化合物、前記一般式(2b)で表されるリン酸エステル化合物の両方を用いる場合には、一般式(2a)で表されるリン酸エステル化合物と、一般式(2b)で表されるリン酸エステル化合物との割合は、特に限定されないが、通常はモル比((2a):(2b))で10:90〜90:10である。   When obtaining the near-infrared absorber used in the present invention, at least one of the phosphate compound represented by the general formula (2a) and the phosphate compound represented by the general formula (2b) is used. It is preferable to use both the phosphate compound represented by the general formula (2a) and the phosphate compound represented by the general formula (2b). When the phosphate ester compound represented by the general formula (2a) and the phosphate ester compound represented by the general formula (2b) are used, the near-infrared absorption filter tends to be excellent in transparency and heat resistance. When both the phosphate compound represented by the general formula (2a) and the phosphate compound represented by the general formula (2b) are used, the phosphate compound represented by the general formula (2a) The ratio of the phosphoric acid ester compound represented by the general formula (2b) is not particularly limited, but is usually 10:90 to 90:10 in molar ratio ((2a) :( 2b)).

また、前記一般式(2a)で表されるリン酸エステル化合物としては、一種単独で用いても、二種以上を用いてもよく、前記一般式(2b)で表されるリン酸エステル化合物としては、一種単独で用いても、二種以上を用いてもよい。   Moreover, as a phosphate ester compound represented by the said General formula (2a), it may be used individually by 1 type, or 2 or more types may be used, As a phosphate ester compound represented by the said General formula (2b) May be used alone or in combination of two or more.

また、近赤外線吸収剤を得る際には、その他のリン系化合物、例えばリン酸トリエステルをさらに用いてもよい。
前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物としては、市販されているリン酸エステル化合物を用いることもできる。
Moreover, when obtaining a near-infrared absorber, you may further use another phosphorus compound, for example, phosphoric acid triester.
As at least one phosphate ester compound selected from the phosphate ester compound represented by the general formula (2a) and the phosphate ester compound represented by the general formula (2b), commercially available phosphoric acid An ester compound can also be used.

前記銅塩としては、2価の銅イオンを供給することが可能な銅塩が通常用いられる。前記銅塩としては例えば、無水酢酸銅、無水蟻酸銅、無水ステアリン酸銅、無水安息香酸銅、無水エチルアセト酢酸銅、無水ピロリン酸銅、無水ナフテン酸銅、無水クエン酸銅等の有機酸の銅塩、該有機酸の銅塩の水和物もしくは水化物;酸化銅、塩化銅、硫酸銅、硝酸銅、塩基性炭酸銅等の無機酸の銅塩、該無機酸の銅塩の水和物もしくは水化物;水酸化銅が挙げられる。なお、銅塩としては、一種単独で用いても、二種以上を用いてもよい。   As the copper salt, a copper salt capable of supplying divalent copper ions is usually used. Examples of the copper salt include copper of organic acids such as anhydrous copper acetate, anhydrous copper formate, anhydrous copper stearate, anhydrous copper benzoate, anhydrous ethyl acetoacetate copper, anhydrous pyrophosphate, anhydrous naphthenic acid copper, and anhydrous copper citrate. Salt, hydrate or hydrate of copper salt of organic acid; copper salt of inorganic acid such as copper oxide, copper chloride, copper sulfate, copper nitrate, basic copper carbonate, hydrate of copper salt of inorganic acid Or a hydrate; copper hydroxide is mentioned. In addition, as a copper salt, you may use individually by 1 type, or may use 2 or more types.

銅塩としては、無水酢酸銅、酢酸銅1水和物が、溶解性や副生成物の除去の点から好ましく用いられる。
本発明に用いられる近赤外線吸収剤は、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とから得られる。近赤外線吸収剤は、各成分自体を含んでいてもよいが、通常は各成分同士が反応して生じた成分を含む。具体的には、本発明に用いられる近赤外線吸収剤としては、前記特定のホスホン酸化合物と銅塩とが反応したホスホン酸銅塩が存在し、さらにその周りに前記特定のリン酸エステル化合物が存在すると考えられる。また、前記ホスホン酸銅塩を構成する前記特定のホスホン酸化合物の一部が、前記特定のリン酸エステル化合物で置き換わったホスホン酸銅塩も存在すると考えられる。
As the copper salt, anhydrous copper acetate and copper acetate monohydrate are preferably used from the viewpoint of solubility and removal of by-products.
The near-infrared absorber used in the present invention is represented by the phosphonic acid compound represented by the general formula (1), the phosphate compound represented by the general formula (2a), and the general formula (2b). It is obtained from at least one phosphate ester compound selected from phosphoric acid ester compounds and a copper salt. Although the near-infrared absorber may contain each component itself, the near-infrared absorber usually contains a component produced by the reaction of each component. Specifically, as the near-infrared absorber used in the present invention, there is a phosphonic acid copper salt obtained by reacting the specific phosphonic acid compound with a copper salt, and the specific phosphoric acid ester compound is present around the phosphonic acid copper compound. Presumed to exist. Further, it is considered that there is also a phosphonic acid copper salt in which a part of the specific phosphonic acid compound constituting the phosphonic acid copper salt is replaced with the specific phosphoric acid ester compound.

本発明の近赤外線吸収フィルターは、近赤外線吸収剤および樹脂から形成されるが、前記ホスホン酸銅塩は、主に粒子の状態で、樹脂中に分散していることが好ましい。前記ホスホン酸銅塩は、前記特定のリン酸エステル化合物とともに、近赤外線吸収剤を構成するため、樹脂中で微細な粒子となると考えられる。前記ホスホン酸銅塩の、平均粒子径は、好ましくは250nm以下であり、より好ましくは10〜200nmである。樹脂中に微細なホスホン酸銅塩の粒子が分散することにより、本発明の近赤外線吸収フィルターは、優れた透明性および耐熱性を有する。   The near-infrared absorbing filter of the present invention is formed from a near-infrared absorbing agent and a resin, but the phosphonic acid copper salt is preferably dispersed in the resin mainly in the form of particles. Since the said phosphonic acid copper salt comprises a near-infrared absorber with the said specific phosphate ester compound, it is thought that it becomes a fine particle in resin. The average particle diameter of the phosphonic acid copper salt is preferably 250 nm or less, more preferably 10 to 200 nm. When the fine phosphonic acid copper salt particles are dispersed in the resin, the near-infrared absorbing filter of the present invention has excellent transparency and heat resistance.

本発明に用いられる近赤外線吸収剤を、前記特定のホスホン酸化合物と、前記特定のリン酸エステル化合物と、銅塩とから得る際に用いる、前記各成分の量は以下のとおりである。前記特定のホスホン酸化合物は、前記特定のリン酸エステル化合物1モルあたり、5モル以上用いることが好ましく、8〜100モル用いることがより好ましく、10〜80モル用いることが特に好ましい。5モルを下回ると、近赤外線吸収フィルターの透明性には優れるものの、近赤外線の吸収特性が悪化する場合や、耐熱性が低下する場合がある。   The amount of each component used when the near-infrared absorber used in the present invention is obtained from the specific phosphonic acid compound, the specific phosphoric acid ester compound and the copper salt is as follows. The specific phosphonic acid compound is preferably used in an amount of 5 mol or more, more preferably 8 to 100 mol, and particularly preferably 10 to 80 mol, per 1 mol of the specific phosphate compound. If it is less than 5 mol, the near-infrared absorption filter is excellent in transparency, but the near-infrared absorption characteristics may be deteriorated or the heat resistance may be lowered.

また、前記特定のホスホン酸化合物は、銅塩中の銅1モルあたり、0.4モル以上であることが好ましく、0.5〜1.5モルであることがより好ましく、0.5〜1.2モルであることが特に好ましい。前記範囲内では、近赤外線吸収フィルターの透明性、耐熱性が特に優れるため好ましい。   Further, the specific phosphonic acid compound is preferably 0.4 mol or more, more preferably 0.5 to 1.5 mol, more preferably 0.5 to 1 per 1 mol of copper in the copper salt. Particularly preferred is 2 moles. Within the said range, since the transparency and heat resistance of a near-infrared absorption filter are especially excellent, it is preferable.

<近赤外線吸収剤の製造方法>
本発明に用いる近赤外線吸収剤の製造方法としては、例えば、前記特定のホスホン酸化合物と、前記特定のリン酸エステル化合物と、前記銅塩とを、溶媒中で混合して反応混合物を得る工程(以下、反応工程とも記す)、および前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得る工程(以下、溶媒除去工程とも記す)を有する方法が挙げられる。
<Method for producing near-infrared absorber>
As a manufacturing method of the near-infrared absorber used for this invention, the process of obtaining the reaction mixture by mixing the said specific phosphonic acid compound, the said specific phosphate ester compound, and the said copper salt in a solvent, for example. (Hereinafter also referred to as a reaction step), and a method having a step of obtaining a near-infrared absorber by removing at least a part of the solvent from the reaction mixture (hereinafter also referred to as a solvent removal step).

前記反応工程では、主に前記特定のリン酸エステル化合物の存在下で、前記特定のホスホン酸化合物と、前記銅塩とが反応し、該反応によって、前記溶媒に溶解しない粒子状のホスホン酸銅塩が生成する。前記リン酸エステル化合物は、反応時に良好な分散剤として作用することができるため、前記ホスホン酸銅塩は分散性が高く保たれ、凝集を抑制することができる。   In the reaction step, particulate copper phosphonate that does not dissolve in the solvent due to the reaction of the specific phosphonic acid compound and the copper salt mainly in the presence of the specific phosphate compound. A salt is formed. Since the phosphoric ester compound can act as a good dispersant during the reaction, the phosphonic acid copper salt can be kept highly dispersible and can suppress aggregation.

なお、前記反応工程では、前記特定のホスホン酸化合物と銅塩との反応のみではなく、例えば前記特定のリン酸エステル化合物と銅塩とが反応してもよい。また、前記特定のホスホン酸化合物、特定のリン酸エステル化合物、銅塩の一部が反応せずに残存していてもよい。   In the reaction step, not only the reaction between the specific phosphonic acid compound and the copper salt but also the specific phosphate compound and the copper salt may react, for example. In addition, the specific phosphonic acid compound, the specific phosphate ester compound, and a part of the copper salt may remain without reacting.

反応工程で用いる溶媒としては、メタノール、エタノール等のアルコール、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、水等が挙げられ、良好に反応を行う観点から、エタノール、THFまたはDMFが好ましい。また、反応工程は、好ましくは室温〜60℃、より好ましくは20〜40℃の温度条件で、好ましくは0.5〜5時間、より好ましくは1〜3時間行われる。   Examples of the solvent used in the reaction step include alcohols such as methanol and ethanol, tetrahydrofuran (THF), dimethylformamide (DMF), water, and the like, and ethanol, THF, or DMF is preferable from the viewpoint of satisfactory reaction. The reaction step is preferably performed at room temperature to 60 ° C, more preferably 20 to 40 ° C, preferably 0.5 to 5 hours, more preferably 1 to 3 hours.

本発明に用いる近赤外線吸収剤としては、通常、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより得られる。
前記反応工程で得られた反応混合物には、前記ホスホン酸銅塩、前記特定のリン酸エステル化合物、特定のホスホン酸化合物、銅塩、副生成物、反応工程で用いた溶媒等が含まれる。
The near-infrared absorber used in the present invention is usually obtained by removing at least a part of the solvent from the reaction mixture.
The reaction mixture obtained in the reaction step includes the phosphonic acid copper salt, the specific phosphoric acid ester compound, the specific phosphonic acid compound, a copper salt, a by-product, the solvent used in the reaction step, and the like.

溶媒除去工程では、反応混合物中から、少なくとも前記溶媒の一部を除去する。溶媒除去工程では、溶媒以外にも、反応混合物中の液体成分を合わせて除去してもよい。
溶媒除去工程では、通常反応混合物を加熱することにより、少なくとも前記溶媒の一部を除去するが加熱条件は、通常、室温〜70℃であり、好ましくは40〜60℃である。また、溶媒除去工程は、常圧下で行ってもよく、減圧下で行ってもよい。減圧下で溶媒除去工程を行う場合には、加熱を行わなくてもよい場合や、加熱温度が低くてもよい場合がある。
In the solvent removal step, at least a part of the solvent is removed from the reaction mixture. In the solvent removal step, in addition to the solvent, the liquid components in the reaction mixture may be removed together.
In the solvent removal step, at least a part of the solvent is usually removed by heating the reaction mixture, but the heating condition is usually room temperature to 70 ° C, preferably 40 to 60 ° C. The solvent removal step may be performed under normal pressure or under reduced pressure. When the solvent removal step is performed under reduced pressure, heating may not be performed or the heating temperature may be low.

<樹脂>
本発明の近赤外線吸収フィルターは、前記近赤外線吸収剤および樹脂から形成される。
本発明に用いられる樹脂としては、単官能芳香族ビニル化合物、多官能芳香族ビニル化合物、単官能(メタ)アクリル酸エステルおよび多官能(メタ)アクリル酸エステルから選択される少なくとも1種のモノマー由来の構成単位を有することが、近赤外線吸収フィルターの透明性、耐熱性の観点から好ましい。また、前記モノマーの少なくとも一部が、多官能(メタ)アクリル酸エステルおよび多官能芳香族ビニル化合物から選択される少なくとも1種のモノマーであることが好ましい。
<Resin>
The near-infrared absorption filter of the present invention is formed from the near-infrared absorber and resin.
The resin used in the present invention is derived from at least one monomer selected from monofunctional aromatic vinyl compounds, polyfunctional aromatic vinyl compounds, monofunctional (meth) acrylic acid esters and polyfunctional (meth) acrylic acid esters. It is preferable from a viewpoint of the transparency of a near-infrared absorption filter, and heat resistance. Moreover, it is preferable that at least a part of the monomer is at least one monomer selected from a polyfunctional (meth) acrylic acid ester and a polyfunctional aromatic vinyl compound.

なお、本発明において、「(メタ)アクリル酸」とは、「メタクリル酸」および「アクリル酸」を意味する。
単官能芳香族ビニル化合物としては例えば、スチレン、α‐メチルスチレン、エチルスチレン、tert-ブチルスチレン、クロルスチレン、ジブロムスチレン、メトキシスチレン、ビニル安息香酸、ヒドロキシメチルスチレンが挙げられる。
In the present invention, “(meth) acrylic acid” means “methacrylic acid” and “acrylic acid”.
Examples of the monofunctional aromatic vinyl compound include styrene, α-methylstyrene, ethylstyrene, tert-butylstyrene, chlorostyrene, dibromostyrene, methoxystyrene, vinylbenzoic acid, and hydroxymethylstyrene.

多官能芳香族ビニル化合物としては例えば、ジビニルベンゼン、ジイソプロペニルベンゼン、トリビニルベンゼンが挙げられる。
単官能(メタ)アクリル酸エステルとしては例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n−ブチルアクリレート、n−ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、tert-ブチルアクリレート、tert-ブチルメタクリレート、2−エチルヘキシルアクリレート、2−エチルヘキシルメタクリレート、イソデシルアクリレート、イソデシルメタクリレート、n−ラウリルアクリレート、n−ラウリルメタクリレート、トリデシルアクリレート、トリデシルメタクリレート、n−ステアリルアクリレート、n−ステアリルメタクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、ベンジルアクリレート、ベンジルメタクリレート、メトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルアクリレート、エトキシエチルメタクリレート、フェノキシエチルアクリレート、フェノキシエチルメタクリレートが挙げられる。
Examples of the polyfunctional aromatic vinyl compound include divinylbenzene, diisopropenylbenzene, and trivinylbenzene.
Examples of monofunctional (meth) acrylic acid esters include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isodecyl acrylate, isodecyl methacrylate, n-lauryl acrylate, n-lauryl methacrylate, tridecyl acrylate, tridecyl methacrylate, n-stearyl acrylate, n-stearyl methacrylate, isobornyl acrylate , Isobornyl methacrylate, benzyl acrylate, benzyl methacrylate, methoxy Examples include ethyl acrylate, methoxyethyl methacrylate, ethoxyethyl acrylate, ethoxyethyl methacrylate, phenoxyethyl acrylate, and phenoxyethyl methacrylate.

多官能(メタ)アクリル酸エステルとしては例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、2,2−ビス(4−メタクリロキシエトキシフェニル)プロパン、トリシクロデカンジメタノールジメタクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラアクリレートが挙げられる。   Examples of the polyfunctional (meth) acrylic acid ester include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 2,2-bis ( 4-methacryloxyethoxyphenyl) propane, tricyclodecane dimethanol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol trimethacrylate, pentaerythritol tetraacrylate.

本発明に用いられる樹脂は、前述のように単官能芳香族ビニル化合物、多官能芳香族ビニル化合物、単官能(メタ)アクリル酸エステルおよび多官能(メタ)アクリル酸エステルから選択される少なくとも1種のモノマー由来の構成単位を有することが好ましいが、樹脂を構成する、全構成単位100重量%あたり、単官能芳香族ビニル化合物や単官能(メタ)アクリル酸エステル等の単官能性モノマーに由来する構成単位を95〜50重量%有し、多官能芳香族ビニル化合物や多官能(メタ)アクリル酸エステル等の多官能性モノマーに由来する構成単位を5〜50重量%有することが好ましい。また、(メタ)アクリル酸エステルモノマーに由来する構成単位、すなわち単官能(メタ)アクリル酸エステルおよび多官能(メタ)アクリル酸エステルに由来する構成単位を、40重量%以上有することが樹脂の信頼性の点から好ましい。   As described above, the resin used in the present invention is at least one selected from a monofunctional aromatic vinyl compound, a polyfunctional aromatic vinyl compound, a monofunctional (meth) acrylic acid ester, and a polyfunctional (meth) acrylic acid ester. Although it is preferable to have a structural unit derived from the monomer, it is derived from a monofunctional monomer such as a monofunctional aromatic vinyl compound or a monofunctional (meth) acrylate per 100% by weight of all the structural units constituting the resin. It is preferable to have 95 to 50% by weight of structural units and 5 to 50% by weight of structural units derived from polyfunctional monomers such as polyfunctional aromatic vinyl compounds and polyfunctional (meth) acrylic acid esters. In addition, the reliability of the resin is that it has 40% by weight or more of structural units derived from (meth) acrylic acid ester monomers, that is, structural units derived from monofunctional (meth) acrylic acid esters and polyfunctional (meth) acrylic acid esters. From the viewpoint of sex.

本発明において、近赤外線吸収フィルターは、前記近赤外線吸収剤と樹脂とから形成されるが、樹脂100重量部に対して、近赤外線吸収剤が通常は1〜30重量部、好ましくは2〜20重量部用いられる。   In the present invention, the near-infrared absorbing filter is formed from the near-infrared absorbing agent and the resin. The near-infrared absorbing agent is usually 1 to 30 parts by weight, preferably 2 to 20 parts per 100 parts by weight of the resin. Part by weight is used.

<近赤外線吸収フィルター>
本発明の近赤外線吸収フィルターは、前述の近赤外線吸収剤および樹脂から形成される。本発明の近赤外線吸収フィルターは、近赤外線の吸収特性に優れ、かつ可視光の透過性に優れるとともに、耐環境性にも優れる。
<Near infrared absorption filter>
The near-infrared absorption filter of the present invention is formed from the aforementioned near-infrared absorber and resin. The near-infrared absorption filter of the present invention has excellent near-infrared absorption characteristics, excellent visible light transparency, and excellent environmental resistance.

本発明の近赤外線吸収フィルターは、前記近赤外線吸収剤を、樹脂中に混練することにより得られる組成物を成形することにより製造してもよい。しかしながら、該方法では、得られる組成物中に、近赤外線吸収剤が偏在する場合がある。そのため、近赤外線吸収フィルターを製造する場合には、通常は、近赤外線吸収剤存在下で、モノマーを重合し、近赤外線吸収剤および樹脂を含む組成物を得る。該組成物の形状がフィルターとなる条件で重合をおこなった場合には、重合により得られた組成物を近赤外線吸収フィルターとして用いることができる。また、得られた組成物をさらに切断・研磨等成形することにより、近赤外線吸収フィルターを得てもよい。   The near-infrared absorption filter of the present invention may be produced by molding a composition obtained by kneading the near-infrared absorber in a resin. However, in this method, the near-infrared absorber may be unevenly distributed in the resulting composition. Therefore, when manufacturing a near-infrared absorption filter, normally, a monomer is polymerized in the presence of a near-infrared absorber to obtain a composition containing a near-infrared absorber and a resin. When the polymerization is carried out under the condition that the shape of the composition becomes a filter, the composition obtained by the polymerization can be used as a near infrared absorption filter. Moreover, you may obtain a near-infrared absorption filter by shape | molding the obtained composition further, such as cutting | disconnection and grinding | polishing.

本発明の近赤外線吸収フィルターとしては、具体的には、以下の二つの態様が挙げられる。
第一の態様の近赤外線吸収フィルターは、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得て、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得て、前記近赤外線吸収剤をモノマーに分散させ、近赤外線吸収剤含有モノマーを得て、前記近赤外線吸収剤含有モノマーを重合することにより得られる、近赤外線吸収剤および樹脂を含む組成物から形成される近赤外線吸収フィルターである。
Specific examples of the near infrared absorption filter of the present invention include the following two embodiments.
The near-infrared absorption filter of the first aspect is represented by the phosphonic acid compound represented by the general formula (1), the phosphate compound represented by the general formula (2a), and the general formula (2b). At least one phosphate ester compound selected from phosphoric acid ester compounds and a copper salt are mixed in a solvent to obtain a reaction mixture, and at least a part of the solvent is removed from the reaction mixture. A near infrared absorber obtained by dispersing the near infrared absorber in a monomer to obtain a near infrared absorber-containing monomer and polymerizing the near infrared absorber-containing monomer. And a near-infrared absorption filter formed from a composition containing a resin.

第二の態様の近赤外線吸収フィルターは、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得て、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得て、前記近赤外線吸収剤を低沸点溶媒に分散させることにより分散液を得て、前記分散液にモノマーを添加した後に、少なくとも低沸点溶媒の一部を除去することにより、近赤外線吸収剤含有モノマーを得て、前記近赤外線吸収剤含有モノマーを重合することにより得られる、近赤外線吸収剤および樹脂を含む組成物から形成される近赤外線吸収フィルターである。   The near-infrared absorption filter of the second aspect is represented by the phosphonic acid compound represented by the general formula (1), the phosphoric acid ester compound represented by the general formula (2a), and the general formula (2b). At least one phosphate ester compound selected from phosphoric acid ester compounds and a copper salt are mixed in a solvent to obtain a reaction mixture, and at least a part of the solvent is removed from the reaction mixture. To obtain a near-infrared absorber, disperse the near-infrared absorber in a low-boiling solvent, obtain a dispersion, add a monomer to the dispersion, and then remove at least a portion of the low-boiling solvent. The near-infrared absorber-containing monomer is obtained, and the near-infrared absorber-containing monomer is obtained by polymerizing the near-infrared absorber-containing monomer. It is an outside line absorption filter.

すなわち、第一の態様では、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより得られた近赤外線吸収剤を、直接モノマーに分散させることにより、近赤外線吸収剤含有モノマーを得ているのに対して、第二の態様では、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより得られた近赤外線吸収剤を、低沸点溶媒に分散させることにより分散液を得て、得られた分散液にモノマーを添加し、その後低沸点溶媒の除去を行うことにより、近赤外線吸収剤含有モノマーを得ている。   That is, in the first aspect, a near-infrared absorber-containing monomer is obtained by directly dispersing a near-infrared absorber obtained by removing at least a part of the solvent from the reaction mixture in the monomer. In contrast, in the second embodiment, a dispersion is obtained by dispersing a near-infrared absorber obtained by removing at least a part of the solvent from the reaction mixture in a low-boiling solvent. The near-infrared absorber-containing monomer is obtained by adding a monomer to the obtained dispersion and then removing the low-boiling solvent.

第一の態様、第二の態様はともに、近赤外線吸収剤を、樹脂ではなくモノマーに分散させることにより、得られる近赤外線吸収フィルター中に偏在することなく、近赤外線吸収剤が分散しており、近赤外線吸収フィルターは、近赤外線の吸収特性に優れ、透明性にも優れる。   In both the first and second embodiments, the near-infrared absorber is dispersed without being unevenly distributed in the obtained near-infrared absorption filter by dispersing the near-infrared absorber in the monomer instead of the resin. The near-infrared absorption filter has excellent near-infrared absorption characteristics and excellent transparency.

第二の態様のように、近赤外線吸収剤を一度低沸点溶媒に分散させ、得られた分離液にモノマーを添加すると、近赤外線吸収フィルター中に、より均一に近赤外線吸収剤が分散する傾向があり好ましい。   As in the second embodiment, when the near-infrared absorber is once dispersed in the low boiling point solvent and the monomer is added to the obtained separation liquid, the near-infrared absorber tends to disperse more uniformly in the near-infrared absorption filter. Is preferable.

本発明の近赤外線吸収フィルターは、前記近赤外線吸収剤および樹脂からなるが、さらに各種添加剤を含有していてもよい。添加剤としては、例えば酸化防止剤、紫外線吸収剤、光安定剤、重合速度調整剤、連鎖移動剤等が挙げられる。   Although the near-infrared absorption filter of this invention consists of the said near-infrared absorber and resin, it may contain various additives further. Examples of the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a polymerization rate adjusting agent, and a chain transfer agent.

本発明の近赤外線吸収フィルターの厚さとしては特に限定はないが、通常は0.1mm〜3.0mmである。
本発明の近赤外線吸収フィルターは、近赤外線を吸収することが求められる各種フィルターとして用いることができる。具体的には、近赤外線カットフィルター、色純度補正フィルター等が挙げられる。本発明の近赤外線吸収フィルターは、近赤外線の吸収性に優れ、かつ耐環境性にも優れるため、従来よりもフィルターの厚さを薄くすることが可能である。また、本発明の近赤外線吸収フィルターは、可視光の透明性にも優れるため、ディスプレイの表示面上に設置される近赤外線カットフィルターや、フォトダイオード等の受光部等に設置される視感度補正フィルター、CCD素子やC−MOS素子等の撮像素子を使用したカメラの視感度補正フィルターとして用いることができる。他の色素との組み合わせにより、特定波長および近赤外域を吸収するフィルターを作成する事も可能である。
Although there is no limitation in particular as the thickness of the near-infrared absorption filter of this invention, Usually, they are 0.1 mm-3.0 mm.
The near-infrared absorption filter of the present invention can be used as various filters that are required to absorb near-infrared rays. Specific examples include a near-infrared cut filter and a color purity correction filter. Since the near-infrared absorption filter of the present invention has excellent near-infrared absorption properties and excellent environmental resistance, the thickness of the filter can be made thinner than before. In addition, the near-infrared absorption filter of the present invention is also excellent in transparency of visible light, so that a near-infrared cut filter installed on the display surface of the display, a visibility correction installed in a light receiving unit such as a photodiode, etc. The filter can be used as a visibility correction filter for a camera using an image sensor such as a CCD element or a C-MOS element. It is also possible to create a filter that absorbs a specific wavelength and near-infrared region by combining with other dyes.

<近赤外線吸収フィルターの製造方法>
本発明の近赤外線吸収フィルターの製造方法としては、以下の二つの態様がある。
第一の態様の近赤外線吸収フィルターの製造方法は、前記特定のホスホン酸化合物と、前記特定のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得る工程((I)工程)、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得る工程((II)工程)、前記近赤外線吸収剤をモノマーに分散させ、近赤外線吸収剤含有モノマーを得る工程((III)工程)、前記近赤外線吸収剤含有モノマーを重合し、近赤外線吸収剤および樹脂を含む組成物を得る工程((IV)工程)を有する近赤外線吸収フィルターの製造方法である。
<Method for manufacturing near-infrared absorbing filter>
As a manufacturing method of the near-infrared absorption filter of this invention, there exist the following two aspects.
In the method for producing a near-infrared absorption filter of the first aspect, the specific phosphonic acid compound, the specific phosphate ester compound, and a copper salt are mixed in a solvent to obtain a reaction mixture ((I ) Step), a step of obtaining a near-infrared absorber by removing at least a part of the solvent from the reaction mixture (step (II)), the near-infrared absorber is dispersed in a monomer, and a near-infrared absorber is contained. A method for producing a near-infrared absorption filter comprising a step of obtaining a monomer (step (III)), a step of polymerizing the near-infrared absorber-containing monomer to obtain a composition containing a near-infrared absorber and a resin (step (IV)). It is.

第二の態様の近赤外線吸収フィルターの製造方法は、前記特定のホスホン酸化合物と、前記特定のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得る工程((i)工程)、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得る工程((ii)工程)、前記近赤外線吸収剤を低沸点溶媒に分散させることにより分散液を得る工程((iii)工程)、前記分散液にモノマーを添加した後に、少なくとも低沸点溶媒の一部を除去することにより、近赤外線吸収剤含有モノマーを得る工程((iv)工程)、前記近赤外線吸収剤含有モノマーを重合し、近赤外線吸収剤および樹脂を含む組成物を得る工程((v)工程)を有する近赤外線吸収フィルターの製造方法である。   In the method for producing a near-infrared absorption filter of the second aspect, the specific phosphonic acid compound, the specific phosphoric acid ester compound, and a copper salt are mixed in a solvent to obtain a reaction mixture ((i ) Step), a step of obtaining a near-infrared absorber by removing at least part of the solvent from the reaction mixture (step (ii)), and a dispersion liquid by dispersing the near-infrared absorber in a low-boiling solvent. (Step (iii)), after adding a monomer to the dispersion, removing at least part of the low-boiling solvent to obtain a near-infrared absorber-containing monomer (step (iv)), It is a manufacturing method of the near-infrared absorption filter which has the process ((v) process) which superpose | polymerizes a near-infrared absorber containing monomer and obtains the composition containing a near-infrared absorber and resin.

第一の態様の近赤外線吸収フィルターの製造方法の(I)工程および(II)工程は、第二の態様の近赤外線吸収フィルターの製造方法の(i)工程および(ii)工程と同様の工程であり、それぞれ前述の<近赤外線吸収剤の製造方法>の項で記載した、反応工程および溶媒除去工程に相当する。   Steps (I) and (II) of the method for producing a near-infrared absorption filter of the first embodiment are the same as steps (i) and (ii) of the method for producing a near-infrared absorption filter of the second embodiment. These correspond to the reaction step and the solvent removal step described in the above section <Method for producing near-infrared absorber>, respectively.

第一の態様の近赤外線吸収フィルターの製造方法の、(III)工程は、近赤外線吸収剤をモノマーに分散させ、近赤外線吸収剤含有モノマーを得る工程である。
近赤外線吸収剤をモノマーに分散させる方法としては、例えばモノマーを近赤外線吸収剤に添加し、超音波照射、ホモジナイザー、攪拌、加温攪拌等の方法によって、近赤外線吸収剤をモノマー中に分散させる方法が挙げられる。
The (III) process of the manufacturing method of the near-infrared absorption filter of a 1st aspect is a process of disperse | distributing a near-infrared absorber to a monomer and obtaining a near-infrared absorber containing monomer.
As a method for dispersing the near-infrared absorber in the monomer, for example, the monomer is added to the near-infrared absorber, and the near-infrared absorber is dispersed in the monomer by a method such as ultrasonic irradiation, homogenizer, stirring, and warming stirring. A method is mentioned.

なお、近赤外線吸収剤をモノマーに分散させる場合には、モノマーの一部に近赤外線吸収剤を分散し、その後残りのモノマーを添加しさらに混合を行ってもよい。
また、後述の(IV)工程において、モノマーを好適に重合するために、通常はラジカル重合開始剤を、近赤外線吸収剤をモノマーに分散させるのと同時、あるいは分散させた後に添加し、ラジカル重合開始剤を含む近赤外線吸収剤含有モノマーを得ることが好ましい。
In addition, when disperse | distributing a near-infrared absorber to a monomer, a near-infrared absorber may be disperse | distributed to a part of monomer, and the remaining monomer may be added after that and it may mix further.
Further, in the step (IV) described later, in order to polymerize the monomer suitably, a radical polymerization initiator is usually added at the same time as or after the near infrared absorber is dispersed in the monomer, and radical polymerization is performed. It is preferable to obtain a near infrared absorber-containing monomer containing an initiator.

第二の態様の近赤外線吸収フィルターの製造方法の、(iii)工程は、近赤外線吸収剤を低沸点溶媒に分散させることにより分散液を得る工程である。
低沸点溶媒としては通常、沸点が35℃〜80℃の沸点が用いられ、前記近赤外線吸収剤を分散可能な溶媒が用いられる。低沸点溶媒としては、例えば、塩化メチレン、アセトン、メタノール、クロロフォルム等が用いられる。
The (iii) process of the manufacturing method of the near-infrared absorption filter of a 2nd aspect is a process of obtaining a dispersion liquid by disperse | distributing a near-infrared absorber in a low boiling-point solvent.
As the low boiling point solvent, a boiling point of 35 ° C. to 80 ° C. is usually used, and a solvent capable of dispersing the near infrared absorber is used. As the low boiling point solvent, for example, methylene chloride, acetone, methanol, chloroform and the like are used.

近赤外線吸収剤を低沸点溶媒に分散させる方法としては、例えば低沸点溶媒を近赤外線吸収剤に添加し、超音波照射、ホモジナイザー、攪拌、加温攪拌等の方法によって、近赤外線吸収剤を低沸点溶媒中に分散させる方法が挙げられる。   As a method for dispersing the near-infrared absorber in the low-boiling solvent, for example, a low-boiling solvent is added to the near-infrared absorber, and the near-infrared absorber is reduced by a method such as ultrasonic irradiation, homogenizer, stirring, and warming stirring. The method of making it disperse | distribute in a boiling point solvent is mentioned.

第二の態様の近赤外線吸収フィルターの製造方法の、(iv)工程は、分散液にモノマーを添加した後に、少なくとも低沸点溶媒の一部を除去することにより、近赤外線吸収剤含有モノマーを得る工程である。   In the step (iv) of the method for producing a near-infrared absorption filter of the second aspect, after adding the monomer to the dispersion, at least a part of the low-boiling solvent is removed to obtain a near-infrared absorber-containing monomer. It is a process.

(iv)工程では、(iii)工程で得られた分散液に、モノマーを添加することにより、分散液中にモノマーを溶解させることが好ましい。次いで低沸点溶媒を除去することにより、近赤外線吸収剤が分散した、近赤外線吸収剤含有モノマーを得ることができる。   In the step (iv), it is preferable to dissolve the monomer in the dispersion by adding the monomer to the dispersion obtained in the step (iii). Subsequently, the near-infrared absorber-containing monomer in which the near-infrared absorber is dispersed can be obtained by removing the low boiling point solvent.

低沸点溶媒を除去する方法としては、特に限定はなく、例えば減圧による低沸点溶媒の除去、加温と減圧の組み合わせによる除去等が挙げられる。
なお、分散液にモノマーを添加する場合には、モノマーの一部を分散液に添加し、低沸点溶媒の除去を行った後に、残りのモノマーをさらに添加し、混合を行ってもよい。
The method for removing the low boiling point solvent is not particularly limited, and examples thereof include removal of the low boiling point solvent by reduced pressure, removal by a combination of heating and reduced pressure, and the like.
In addition, when adding a monomer to a dispersion liquid, after adding a part of monomer to a dispersion liquid and removing a low boiling-point solvent, the remaining monomer may be added further and mixing may be performed.

また、後述の(v)工程において、モノマーを好適に重合するために、通常はラジカル重合開始剤を、モノマーを分散液に添加するのと同時、あるいは添加した後に添加し、ラジカル重合開始剤を含む近赤外線吸収剤含有モノマーを得ることが好ましい。   Further, in the step (v) described later, in order to polymerize the monomer suitably, a radical polymerization initiator is usually added at the same time as or after the monomer is added to the dispersion, and the radical polymerization initiator is added. It is preferable to obtain a near-infrared absorber-containing monomer.

モノマーとしては、単官能芳香族ビニル化合物、多官能芳香族ビニル化合物、単官能(メタ)アクリル酸エステルおよび多官能(メタ)アクリル酸エステルから選択される少なくとも1種のモノマーを含むことが好ましい。   The monomer preferably includes at least one monomer selected from a monofunctional aromatic vinyl compound, a polyfunctional aromatic vinyl compound, a monofunctional (meth) acrylic acid ester, and a polyfunctional (meth) acrylic acid ester.

用いる全モノマー100重量%あたり、単官能芳香族ビニル化合物や単官能(メタ)アクリル酸エステル等の単官能性モノマーを95〜50重量%用い、多官能芳香族ビニル化合物や多官能(メタ)アクリル酸エステル等の多官能性モノマーを5〜50重量%用いることが好ましい。また、(メタ)アクリル酸エステルモノマー、すなわち単官能(メタ)アクリル酸エステルおよび多官能(メタ)アクリル酸エステルを、40重量%以上用いることが、得られる樹脂の信頼性の点から好ましい。   A polyfunctional aromatic vinyl compound or polyfunctional (meth) acrylic is used by using 95 to 50 wt% of a monofunctional monomer such as a monofunctional aromatic vinyl compound or monofunctional (meth) acrylate per 100% by weight of all monomers used. It is preferable to use 5 to 50% by weight of a polyfunctional monomer such as an acid ester. Moreover, it is preferable from the viewpoint of the reliability of resin obtained to use (meth) acrylic acid ester monomer, ie, monofunctional (meth) acrylic acid ester, and polyfunctional (meth) acrylic acid ester 40weight% or more.

前記ラジカル重合開始剤としては、特に限定はなく、例えば有機過酸化物系重合開始剤、アゾ系ラジカル重合開始剤を用いることができる。有機過酸化物系重合開始剤としては例えば、tert-ブチルパーオクタノエート、tert-ブチルパーオキシネオデカネート、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシ−2−エチルヘキサノエート、tert-ブチルパーオキシラウレート等の非芳香族系のパーオキシエステル、ラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド等のジアシルパーオキサイドなどを用いることが、得られる樹脂の着色が少ない点で好ましい。アゾ系ラジカル重合開始剤としては、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)1,1’−アゾビス(シクロヘキサン−2−カルボニトリル)等を用いることができる。ラジカル重合開始剤は、モノマー100重量部に対して、0.3〜5.0重量部用いられる。   The radical polymerization initiator is not particularly limited, and for example, an organic peroxide polymerization initiator or an azo radical polymerization initiator can be used. Examples of the organic peroxide polymerization initiator include tert-butyl peroctanoate, tert-butyl peroxyneodecanate, tert-butyl peroxypivalate, tert-butyl peroxy-2-ethylhexanoate, Use of non-aromatic peroxyesters such as tert-butylperoxylaurate, diacyl peroxides such as lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, etc. It is preferable in terms of few points. As the azo radical polymerization initiator, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile) 1,1′-azobis (cyclohexane-2-carbonitrile) ) Etc. can be used. The radical polymerization initiator is used in an amount of 0.3 to 5.0 parts by weight with respect to 100 parts by weight of the monomer.

第一の態様の近赤外線吸収フィルターの製造方法の(IV)工程と、第二の態様の近赤外線吸収フィルターの製造方法の(v)工程とは、同様の工程(以下、重合工程とも記す)であり、近赤外線吸収剤含有モノマーを重合し、近赤外線吸収剤および樹脂を含む組成物を得る工程である。該工程ではモノマーが重合され樹脂になる。通常はラジカル重合開始剤を含む近赤外線吸収剤含有モノマーを用い、該工程ではラジカル重合が行われる。重合工程は、近赤外線吸収剤含有モノマーが重合されればよいが、例えば、注型(キャスト)重合法によって行われる。   The (IV) step of the manufacturing method of the near-infrared absorption filter of the first embodiment and the (v) step of the manufacturing method of the near-infrared absorption filter of the second embodiment are the same steps (hereinafter also referred to as polymerization step). And a step of polymerizing a near-infrared absorber-containing monomer to obtain a composition containing a near-infrared absorber and a resin. In this step, the monomer is polymerized to become a resin. Usually, a near-infrared absorber-containing monomer containing a radical polymerization initiator is used, and radical polymerization is performed in this step. The polymerization step may be performed by a cast polymerization method, for example, as long as the near-infrared absorber-containing monomer is polymerized.

本発明の重合工程では、近赤外線吸収剤および樹脂を含む組成物が得られるが、該組成物は溶融成形等の成形が困難であるため、モールド等を用いた注型重合法によって、該組成物の形状がフィルター上、すなわち近赤外線吸収フィルターとして得られる条件で重合を行うことが好ましい。特に、多官能(メタ)アクリル酸エステル、多官能芳香族ビニル化合物等の多官能性モノマーを用いた場合には、得られる組成物は耐熱性に優れ、熱成形が困難であるため、該組成物が近赤外線吸収フィルターとして得られる条件で重合を行うことが好ましい。   In the polymerization step of the present invention, a composition containing a near-infrared absorber and a resin is obtained. However, since the composition is difficult to mold such as melt molding, the composition is obtained by a casting polymerization method using a mold or the like. Polymerization is preferably carried out under the condition that the shape of the product is obtained on a filter, that is, as a near infrared absorption filter. In particular, when a polyfunctional monomer such as a polyfunctional (meth) acrylic acid ester or a polyfunctional aromatic vinyl compound is used, the resulting composition is excellent in heat resistance and difficult to thermoform. It is preferable to carry out the polymerization under the condition that the product is obtained as a near infrared absorption filter.

次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.

〔実施例1〕
酢酸銅1水和物0.70g(3.5×10-3mol)を、エタノール35gに溶解させた溶液(a1)、並びに、酢酸銅1水和物に対して等モルのヘキシルホスホン酸0.58gおよび下記リン酸エステル化合物(A)0.5gを、エタノール5gに溶解させた溶液(b1)をそれぞれ準備した。
[Example 1]
A solution (a1) obtained by dissolving 0.70 g (3.5 × 10 −3 mol) of copper acetate monohydrate in 35 g of ethanol, and equimolar hexylphosphonic acid 0 with respect to copper acetate monohydrate A solution (b1) in which .58 g and 0.5 g of the following phosphoric ester compound (A) were dissolved in 5 g of ethanol was prepared.

なお、前記リン酸エステル化合物(A)は、前記一般式(2a)で表されるリン酸エステル化合物(モノエステル)と、前記一般式(2b)で表されるリン酸エステル化合物(ジエステル)と、前記一般式(2b)中のヒドロキシル基の水素原子が同様の基でさらに置換されたトリエステルとの混合物であり、前記式中におけるnが10であり、R5が炭素数13〜15のアルキル基であるものである。なお、リン酸エステル化合物(A)中のモノエステルとジエステルとトリエステルとの存在比(モル比)は、1:1:1であり、R5は炭素数が13〜15のアルキル基であるが、平均すると炭素数14のアルキル基である。リン酸エステル化合物(A)のモル数や、リン酸エステル化合物(A)中の各成分のモル数を算出する場合には、上記値に基づいて算出することができる。 The phosphate ester compound (A) includes a phosphate ester compound (monoester) represented by the general formula (2a) and a phosphate ester compound (diester) represented by the general formula (2b). , A mixture of a triester in which the hydrogen atom of the hydroxyl group in the general formula (2b) is further substituted with the same group, n in the formula is 10, and R 5 is a carbon number of 13 to 15 It is an alkyl group. In addition, the abundance ratio (molar ratio) of the monoester, diester and triester in the phosphoric ester compound (A) is 1: 1: 1, and R 5 is an alkyl group having 13 to 15 carbon atoms. Is an alkyl group having 14 carbon atoms on average. When calculating the number of moles of the phosphate ester compound (A) and the number of moles of each component in the phosphate ester compound (A), the calculation can be made based on the above values.

次いで、上記で得られた溶液(a1)と溶液(b1)とを混合し、室温下で2時間攪拌して反応させた。反応後、得られた反応混合物から副生成物および溶媒を、減圧下、60℃で留去した。   Next, the solution (a1) and the solution (b1) obtained above were mixed and reacted by stirring at room temperature for 2 hours. After the reaction, by-products and the solvent were distilled off from the obtained reaction mixture at 60 ° C. under reduced pressure.

そして、反応混合物から溶媒を除去して得られた固形分にスチレンを3.7g添加し超音波照射して再分散処理を行い、近赤外線吸収剤を分散したスチレンモノマー5gを得た。この分散液中の近赤外線吸収剤(銅錯体)の、平均粒子径は125nmであった。なお、平均粒子径は大塚電子株式会社製ELSZ−2を用いて求めた。   Then, 3.7 g of styrene was added to the solid content obtained by removing the solvent from the reaction mixture, and redispersion treatment was performed by ultrasonic irradiation to obtain 5 g of a styrene monomer in which a near infrared absorber was dispersed. The average particle diameter of the near-infrared absorber (copper complex) in this dispersion was 125 nm. In addition, the average particle diameter was calculated | required using Otsuka Electronics Co., Ltd. ELSZ-2.

この近赤外線吸収剤を分散したスチレンモノマー3.5g、フェノキシエチルメタクリレート(ライトエステルPO 共栄社化学(株)社製)2.5g、トリシクロデカンジメタノールジメタクリレート(NKエステル DCP 新中村化学工業(株)社製)1.0gを混合し、重合開始剤としてtert-ブチルパーオキシピバレート(パーブチルPV 日本油脂(株)社製)0.07gを添加、混合して近赤外線吸収剤含有モノマーA1を得た。   Styrene monomer in which this near-infrared absorber is dispersed 3.5 g, Phenoxyethyl methacrylate (Light Ester PO, manufactured by Kyoeisha Chemical Co., Ltd.) 2.5 g, Tricyclodecane dimethanol dimethacrylate (NK Ester DCP Shin-Nakamura Chemical Co., Ltd.) ) Made by mixing) 1.0 g, tert-butyl peroxypivalate (perbutyl PV manufactured by Nippon Oil & Fats Co., Ltd.) 0.07 g as a polymerization initiator was added and mixed to obtain near-infrared absorber-containing monomer A1. Obtained.

次に2枚の直径80mm厚さ5mmのガラス板を、間隔0.54mmで対向して配置し、両ガラス板の端面をテープにてシールし、ガラスモールドを作成した。
次に、該ガラスモールド中に、近赤外線吸収剤含有モノマーA1を注入した。
Next, two glass plates having a diameter of 80 mm and a thickness of 5 mm were arranged to face each other at an interval of 0.54 mm, and the end surfaces of both glass plates were sealed with tape to prepare a glass mold.
Next, the near-infrared absorber-containing monomer A1 was injected into the glass mold.

近赤外線吸収剤含有モノマーA1を注入したガラスモールドをオーブンにて、45℃で8時間加温した後に、65℃まで4時間かけて昇温、次いで2.5時間かけて100℃まで昇温した後に100℃で1時間保持することにより重合を行った。重合終了後、オーブン温度を2時間かけて70℃まで降温した後にオーブンから取り出して、ガラスモールドを解体し、ガラスモールド内の無色透明な樹脂板(近赤外線吸収フィルター)を取り出した。   The glass mold into which the near-infrared absorber-containing monomer A1 was injected was heated in an oven at 45 ° C. for 8 hours, then heated to 65 ° C. over 4 hours, and then heated to 100 ° C. over 2.5 hours. Thereafter, polymerization was carried out by maintaining at 100 ° C. for 1 hour. After completion of the polymerization, the oven temperature was lowered to 70 ° C. over 2 hours and then removed from the oven, the glass mold was disassembled, and the colorless transparent resin plate (near infrared absorption filter) in the glass mold was taken out.

取り出した樹脂板は厚さ0.5mmであった。該樹脂板の分光透過率を図1に示す。なお、分光透過率は、(株)日立製作所製分光光度計U4000を使用して求めた。また、この近赤外線吸収フィルターのヘイズは0.9であった。なお、ヘイズは日本電色工業(株)製濁度計NDH2000を使用して光源設定をD65にして求めた。   The removed resin plate was 0.5 mm thick. The spectral transmittance of the resin plate is shown in FIG. The spectral transmittance was determined using a spectrophotometer U4000 manufactured by Hitachi, Ltd. Moreover, the haze of this near-infrared absorption filter was 0.9. Haze was determined by using a turbidimeter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and setting the light source to D65.

〔比較例1〕
リン酸ビスメタクリロキシエチルエステルとリン酸メタクリロキシエチルエステルとの混合物(ライトエステル P2M 共栄社化学(株)社製)18.0g、1,6−ヘキサンジオールジメタクリレート8.45g、メチルメタクリレート15.36g、α-メチルスチレン0.35g、水0.8gを混合し、モノマー混合液を調製した。ここに無水安息香酸銅17.74gを加えて、80℃で加熱混合して銅イオンの溶解したモノマー混合液を調製した。このモノマー混合液を-20℃に冷却する事により析出してきた安息香酸を濾別しモノマーBを作成した。
[Comparative Example 1]
18.0 g of a mixture of bismethacryloxyethyl phosphate and methacryloxyethyl phosphate (light ester P2M manufactured by Kyoeisha Chemical Co., Ltd.), 8.45 g of 1,6-hexanediol dimethacrylate, 15.36 g of methyl methacrylate Α-methylstyrene 0.35 g and water 0.8 g were mixed to prepare a monomer mixture. To this, 17.74 g of copper benzoate anhydride was added and heated and mixed at 80 ° C. to prepare a monomer mixed solution in which copper ions were dissolved. By cooling the monomer mixture to −20 ° C., benzoic acid precipitated was filtered off to prepare monomer B.

このようにして作成したモノマーB10.0gにtert‐ブチル パーオキシ‐2-エチルヘキサノエート(パーブチル O 日本油脂(株)社製)0.17gを混合、攪拌して実施例1と同様のガラスモールドに注入し、実施例1と同様に重合を行う事により青い樹脂板を得た。   The same glass mold as in Example 1 was prepared by mixing and stirring 0.17 g of tert-butyl peroxy-2-ethylhexanoate (Perbutyl O Nippon Oil & Fats Co., Ltd.) to 10.0 g of the monomer B thus prepared. And a blue resin plate was obtained by performing polymerization in the same manner as in Example 1.

取り出した樹脂板は厚さ0.5mmであった。該樹脂板の分光透過率を図1に示す。なお、分光透過率は、(株)日立製作所製分光光度計U4000を使用して求めた。また、この近赤外線吸収フィルターのヘイズは0.5であった。なお、ヘイズは日本電色工業(株)製濁度計NDH2000を使用して光源設定をD65にして求めた。   The removed resin plate was 0.5 mm thick. The spectral transmittance of the resin plate is shown in FIG. The spectral transmittance was determined using a spectrophotometer U4000 manufactured by Hitachi, Ltd. Moreover, the haze of this near-infrared absorption filter was 0.5. Haze was determined by using a turbidimeter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and setting the light source to D65.

〔実施例2〕
酢酸銅1水和物2.00g(1.0×10-2mol)を、エタノール100gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのブチルホスホン酸1.38gおよび前記リン酸エステル化合物(A)1.0gを、エタノール10gに溶解させた溶液(b2)をそれぞれ準備した。
[Example 2]
A solution (a2) obtained by dissolving 2.00 g (1.0 × 10 −2 mol) of copper acetate monohydrate in 100 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate A solution (b2) prepared by dissolving .38 g and 1.0 g of the phosphoric ester compound (A) in 10 g of ethanol was prepared.

次いで、上記で得られた溶液(a2)と溶液(b2)とを混合し、室温下で2時間攪拌して反応させた。反応後、得られた反応混合物から副生成物および溶媒を、減圧下、60℃で留去した。   Next, the solution (a2) obtained above and the solution (b2) were mixed and reacted by stirring at room temperature for 2 hours. After the reaction, by-products and the solvent were distilled off from the obtained reaction mixture at 60 ° C. under reduced pressure.

そして、この反応混合物から溶媒を除去して得られた固形分に塩化メチレン20gを添加して5時間超音波照射して再分散処理を行った。次いでこの分散液に、ジビニルベンゼン(試薬 ジビニルベンゼン55質量%、エチルスチレン45質量%の混合物)を4.0gを添加し、室温、減圧にて塩化メチレンを留去して近赤外線吸収剤を分散したジビニルベンゼン7gを得た。この分散液中の近赤外線吸収剤(銅錯体)の、平均粒子径は58nmであった。なお、平均粒子径は大塚電子株式会社製ELSZ−2を用いて求めた。   Then, 20 g of methylene chloride was added to the solid content obtained by removing the solvent from the reaction mixture, and redispersion treatment was performed by ultrasonic irradiation for 5 hours. Next, 4.0 g of divinylbenzene (a mixture of 55% by mass of reagent divinylbenzene and 45% by mass of ethylstyrene) was added to this dispersion, and methylene chloride was distilled off at room temperature under reduced pressure to disperse the near infrared absorber. 7 g of divinylbenzene was obtained. The average particle diameter of the near-infrared absorber (copper complex) in this dispersion was 58 nm. In addition, the average particle diameter was calculated | required using Otsuka Electronics Co., Ltd. ELSZ-2.

この近赤外線吸収剤を分散したジビニルベンゼン1.6g、フェノキシエチルメタクリレート(ライトエステルPO 共栄社化学(株)社製)4.5g、スチレン0.4g、ジエチレングリコールジメタクリレート(NKエステル 2EG 新中村化学工業(株)社製)0.5gを混合し、重合開始剤としてtert-ブチルパーオキシピバレート(パーブチルPV 日本油脂(株)社製)0.1gを添加、混合して近赤外線吸収剤含有モノマーA2を得た。   1.6 g of divinylbenzene in which this near-infrared absorber is dispersed, 4.5 g of phenoxyethyl methacrylate (light ester PO, manufactured by Kyoeisha Chemical Co., Ltd.), 0.4 g of styrene, diethylene glycol dimethacrylate (NK ester 2EG Shin-Nakamura Chemical Co., Ltd.) Co., Ltd.) 0.5 g is mixed, and 0.1 g of tert-butyl peroxypivalate (Perbutyl PV manufactured by Nippon Oil & Fats Co., Ltd.) is added and mixed as a polymerization initiator, and the near-infrared absorber-containing monomer A2 Got.

得られた近赤外線吸収剤含有モノマーA2を、実施例1と同様のガラスモールドに注入し、実施例1と同様に重合を行う事により無色透明な樹脂板(近赤外線吸収フィルター)を得た。   The obtained near-infrared absorber-containing monomer A2 was poured into the same glass mold as in Example 1 and polymerized in the same manner as in Example 1 to obtain a colorless and transparent resin plate (near-infrared absorption filter).

取り出した樹脂板は厚さ0.5mmであった。該樹脂板の分光透過率を図2に示す。なお、分光透過率は、(株)日立製作所製分光光度計U4000を使用して求めた。また、この近赤外光カットフィルターのヘイズは0.1であった。なお、ヘイズは日本電色工業(株)製濁度計NDH2000を使用して光源設定をD65にして求めた。   The removed resin plate was 0.5 mm thick. The spectral transmittance of the resin plate is shown in FIG. The spectral transmittance was determined using a spectrophotometer U4000 manufactured by Hitachi, Ltd. Moreover, the haze of this near-infrared light cut filter was 0.1. Haze was determined by using a turbidimeter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and setting the light source to D65.

〔実施例3〕
酢酸銅1水和物1.56g(7.8×10-3mol)を、エタノール80gに溶解させた溶液(a3)、並びに、酢酸銅1水和物に対して等モルのオクチルホスホン酸1.52gおよび下記リン酸エステル化合物(B)1.0gを、エタノール10gに溶解させた溶液(b3)をそれぞれ準備した。
Example 3
A solution (a3) obtained by dissolving 1.56 g (7.8 × 10 −3 mol) of copper acetate monohydrate in 80 g of ethanol, and equimolar octylphosphonic acid 1 with respect to copper acetate monohydrate A solution (b3) in which 0.52 g and 1.0 g of the following phosphoric ester compound (B) were dissolved in 10 g of ethanol was prepared.

前記リン酸エステル化合物(B)は、前記一般式(2a)で表されるリン酸エステル化合物と前記一般式(2b)で表されるリン酸エステル化合物との、混合比(モル比)((2a):(2b))が2:1の混合物である。リン酸エステル化合物(B)は、該式中におけるnが15であり、R5が炭素数12のアルキル基であるものである。リン酸エステル化合物(B)のモル数や、リン酸エステル化合物(B)中の各成分のモル数を算出する場合には、上記値に基づいて算出することができる。 The phosphate ester compound (B) is a mixture ratio (molar ratio) of the phosphate ester compound represented by the general formula (2a) and the phosphate ester compound represented by the general formula (2b) (( 2a) :( 2b)) is a 2: 1 mixture. In the phosphoric ester compound (B), n in the formula is 15 and R 5 is an alkyl group having 12 carbon atoms. When calculating the number of moles of the phosphate ester compound (B) and the number of moles of each component in the phosphate ester compound (B), the calculation can be made based on the above values.

次いで、上記で得られた溶液(a3)と溶液(b3)とを混合し、室温下で2時間攪拌して反応させた。反応後、容器を静置すると沈殿物が得られるので上澄みの溶媒を取り除き、残った反応混合物から副生成物及び残存する溶媒を、減圧下、60℃で留去した。   Next, the solution (a3) and the solution (b3) obtained above were mixed and reacted by stirring at room temperature for 2 hours. After the reaction, the container was allowed to stand to obtain a precipitate. Therefore, the supernatant solvent was removed, and the by-product and the remaining solvent were distilled off from the remaining reaction mixture at 60 ° C. under reduced pressure.

そして、この反応混合物から溶媒を除去して得られた固形分に塩化メチレン20gを添加して14時間超音波照射して再分散処理を行った。次いでこの分散液に、tert-ブチルスチレンを5.0g、スチレンを3.0gを添加し、室温、減圧にて塩化メチレンを留去して近赤外線吸収剤を分散したスチレン系モノマー9.5gを得た。この分散液中の近赤外線吸収剤(銅錯体)の、平均粒子径は70nmであった。なお、平均粒子径は大塚電子株式会社製ELSZ−2を用いて求めた。   Then, 20 g of methylene chloride was added to the solid content obtained by removing the solvent from the reaction mixture, and redispersion treatment was performed by ultrasonic irradiation for 14 hours. Next, 5.0 g of tert-butylstyrene and 3.0 g of styrene were added to this dispersion, and 9.5 g of a styrene monomer in which methylene chloride was distilled off at room temperature under reduced pressure to disperse a near infrared absorber. Obtained. The average particle diameter of the near-infrared absorber (copper complex) in this dispersion was 70 nm. In addition, the average particle diameter was calculated | required using Otsuka Electronics Co., Ltd. ELSZ-2.

この近赤外線吸収剤を分散したスチレン系モノマー3.1g、フェノキシエチルメタクリレート(ライトエステルPO 共栄社化学(株)社製)1.7g、エチレングリコールジメタクリレート(NKエステル 2EG 新中村化学工業(株)社製)0.7g、メチルメタクリレート 1.5gを混合し、重合開始剤としてtert-ブチル パーオキシ-2-エチルヘキサノエート(パーブチル O 日本油脂(株)社製)0.1gを添加、混合して近赤外線吸収剤含有モノマーA3を得た。   3.1 g of styrene monomer in which this near-infrared absorber is dispersed, 1.7 g of phenoxyethyl methacrylate (light ester PO, manufactured by Kyoeisha Chemical Co., Ltd.), ethylene glycol dimethacrylate (NK ester 2EG, Shin-Nakamura Chemical Co., Ltd.) 0.7 g and 1.5 g of methyl methacrylate are mixed, and 0.1 g of tert-butyl peroxy-2-ethylhexanoate (Perbutyl O Nippon Oil & Fats Co., Ltd.) is added and mixed as a polymerization initiator. A near-infrared absorber-containing monomer A3 was obtained.

得られた近赤外線吸収剤含有モノマーA3を、実施例1と同様のガラスモールドに注入し、実施例1と同様に重合を行う事により無色透明な樹脂板(近赤外線吸収フィルター)を得た。   The obtained near-infrared absorber-containing monomer A3 was poured into the same glass mold as in Example 1 and polymerized in the same manner as in Example 1 to obtain a colorless and transparent resin plate (near-infrared absorption filter).

取り出した樹脂板は厚さ0.5mmであった。該樹脂板の分光透過率を図3に示す。なお、分光透過率は、(株)日立製作所製分光光度計U4000を使用して求めた。また、この近赤外光カットフィルターのヘイズは0.5であった。なお、ヘイズは日本電色工業(株)製濁度計NDH2000を使用して光源設定をD65にして求めた。   The removed resin plate was 0.5 mm thick. The spectral transmittance of the resin plate is shown in FIG. The spectral transmittance was determined using a spectrophotometer U4000 manufactured by Hitachi, Ltd. Moreover, the haze of this near-infrared light cut filter was 0.5. Haze was determined by using a turbidimeter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and setting the light source to D65.

<耐湿性試験(信頼性試験)>
前記実施例2で得られた樹脂板および比較例1で得られた樹脂板を、それぞれ60℃、相対湿度90%に保持した恒温恒湿器に入れて、500時間保持した。
<Moisture resistance test (reliability test)>
The resin plate obtained in Example 2 and the resin plate obtained in Comparative Example 1 were placed in a constant temperature and humidity chamber maintained at 60 ° C. and 90% relative humidity, respectively, and held for 500 hours.

樹脂板のヘイズの変化を図4に示す。なお、ヘイズは日本電色工業(株)製濁度計NDH2000を使用して光源設定をD65にして求めた。   The change in haze of the resin plate is shown in FIG. Haze was determined by using a turbidimeter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and setting the light source to D65.

Claims (7)

下記一般式(1)で表されるホスホン酸化合物と、
下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、
銅塩とから得られる近赤外線吸収剤および樹脂から形成される近赤外線吸収フィルター。
Figure 2011203467
[式中、R1は、−CH2CH2−R11で表される1価の基であり、R11は水素原子、炭素数1〜20のアルキル基、または炭素数1〜20のフッ素化アルキル基を示す。R21、R22およびR23は、−(CH2CH2O)n5で表される1価の基であり、nは4〜25の整数であり、R5は、炭素数6〜25のアルキル基または炭素数6〜25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
A phosphonic acid compound represented by the following general formula (1):
At least one phosphate ester compound selected from a phosphate ester compound represented by the following general formula (2a) and a phosphate ester compound represented by the following general formula (2b);
A near-infrared absorbing filter formed from a near-infrared absorber and a resin obtained from a copper salt.
Figure 2011203467
[In the formula, R 1 is a monovalent group represented by -CH 2 CH 2 -R 11, R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a fluorine having 1 to 20 carbon atoms, Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 25, and R 5 has 6 to 6 carbon atoms. 25 alkyl group or C6-C25 alkylphenyl group is shown. However, R 21 , R 22 and R 23 may be the same or different. ]
下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得て、
前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得て、
前記近赤外線吸収剤をモノマーに分散させ、近赤外線吸収剤含有モノマーを得て、
前記近赤外線吸収剤含有モノマーを重合することにより得られる、近赤外線吸収剤および樹脂を含む組成物から形成される近赤外線吸収フィルター。
Figure 2011203467
[式中、R1は、−CH2CH2−R11で表される1価の基であり、R11は水素原子、炭素数1〜20のアルキル基、または炭素数1〜20のフッ素化アルキル基を示す。R21、R22およびR23は、−(CH2CH2O)n5で表される1価の基であり、nは4〜25の整数であり、R5は、炭素数6〜25のアルキル基または炭素数6〜25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
At least one selected from a phosphonic acid compound represented by the following general formula (1), a phosphoric acid ester compound represented by the following general formula (2a), and a phosphoric acid ester compound represented by the following general formula (2b) A seed phosphate compound and a copper salt are mixed in a solvent to obtain a reaction mixture,
A near-infrared absorber is obtained by removing at least a part of the solvent from the reaction mixture,
The near infrared absorber is dispersed in a monomer to obtain a near infrared absorber-containing monomer,
The near-infrared absorption filter formed from the composition containing the near-infrared absorber and resin obtained by superposing | polymerizing the said near-infrared absorber containing monomer.
Figure 2011203467
[In the formula, R 1 is a monovalent group represented by -CH 2 CH 2 -R 11, R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a fluorine having 1 to 20 carbon atoms, Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 25, and R 5 has 6 to 6 carbon atoms. 25 alkyl group or C6-C25 alkylphenyl group is shown. However, R 21 , R 22 and R 23 may be the same or different. ]
下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得て、
前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得て、
前記近赤外線吸収剤を低沸点溶媒に分散させることにより分散液を得て、
前記分散液にモノマーを添加した後に、少なくとも低沸点溶媒の一部を除去することにより、近赤外線吸収剤含有モノマーを得て、
前記近赤外線吸収剤含有モノマーを重合することにより得られる、近赤外線吸収剤および樹脂を含む組成物から形成される近赤外線吸収フィルター。
Figure 2011203467
[式中、R1は、−CH2CH2−R11で表される1価の基であり、R11は水素原子、炭素数1〜20のアルキル基、または炭素数1〜20のフッ素化アルキル基を示す。R21、R22およびR23は、−(CH2CH2O)n5で表される1価の基であり、nは4〜25の整数であり、R5は、炭素数6〜25のアルキル基または炭素数6〜25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
At least one selected from a phosphonic acid compound represented by the following general formula (1), a phosphoric acid ester compound represented by the following general formula (2a), and a phosphoric acid ester compound represented by the following general formula (2b) A seed phosphate compound and a copper salt are mixed in a solvent to obtain a reaction mixture,
A near-infrared absorber is obtained by removing at least a part of the solvent from the reaction mixture,
A dispersion is obtained by dispersing the near-infrared absorber in a low boiling point solvent,
After adding the monomer to the dispersion, by removing at least a part of the low boiling point solvent, obtaining a near-infrared absorber-containing monomer,
The near-infrared absorption filter formed from the composition containing the near-infrared absorber and resin obtained by superposing | polymerizing the said near-infrared absorber containing monomer.
Figure 2011203467
[In the formula, R 1 is a monovalent group represented by -CH 2 CH 2 -R 11, R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a fluorine having 1 to 20 carbon atoms, Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 25, and R 5 has 6 to 6 carbon atoms. 25 alkyl group or C6-C25 alkylphenyl group is shown. However, R 21 , R 22 and R 23 may be the same or different. ]
前記樹脂が、単官能芳香族ビニル化合物、多官能芳香族ビニル化合物、単官能(メタ)アクリル酸エステルおよび多官能(メタ)アクリル酸エステルから選択される少なくとも1種のモノマー由来の構成単位を有する請求項1〜3のいずれか一項に記載の近赤外線吸収フィルター。   The resin has a structural unit derived from at least one monomer selected from a monofunctional aromatic vinyl compound, a polyfunctional aromatic vinyl compound, a monofunctional (meth) acrylic acid ester, and a polyfunctional (meth) acrylic acid ester. The near-infrared absorption filter as described in any one of Claims 1-3. 前記前記モノマーの少なくとも一部が、多官能(メタ)アクリル酸エステルおよび多官能芳香族ビニル化合物から選択される少なくとも1種のモノマーである請求項4に記載の近赤外線吸収フィルター。   The near-infrared absorption filter according to claim 4, wherein at least a part of the monomer is at least one monomer selected from a polyfunctional (meth) acrylic acid ester and a polyfunctional aromatic vinyl compound. 下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得る工程、
前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得る工程、
前記近赤外線吸収剤をモノマーに分散させ、近赤外線吸収剤含有モノマーを得る工程、
前記近赤外線吸収剤含有モノマーを重合し、近赤外線吸収剤および樹脂を含む組成物を得る工程を有する近赤外線吸収フィルターの製造方法。
Figure 2011203467
[式中、R1は、−CH2CH2−R11で表される1価の基であり、R11は水素原子、炭素数1〜20のアルキル基、または炭素数1〜20のフッ素化アルキル基を示す。R21、R22およびR23は、−(CH2CH2O)n5で表される1価の基であり、nは4〜25の整数であり、R5は、炭素数6〜25のアルキル基または炭素数6〜25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
At least one selected from a phosphonic acid compound represented by the following general formula (1), a phosphoric acid ester compound represented by the following general formula (2a), and a phosphoric acid ester compound represented by the following general formula (2b) A step of mixing a seed phosphate compound and a copper salt in a solvent to obtain a reaction mixture;
Obtaining a near-infrared absorber by removing at least part of the solvent from the reaction mixture;
Dispersing the near-infrared absorber in a monomer to obtain a near-infrared absorber-containing monomer;
The manufacturing method of the near-infrared absorption filter which has the process of polymerizing the said near-infrared absorber containing monomer and obtaining the composition containing a near-infrared absorber and resin.
Figure 2011203467
[In the formula, R 1 is a monovalent group represented by -CH 2 CH 2 -R 11, R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a fluorine having 1 to 20 carbon atoms, Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 25, and R 5 has 6 to 6 carbon atoms. 25 alkyl group or C6-C25 alkylphenyl group is shown. However, R 21 , R 22 and R 23 may be the same or different. ]
下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して反応混合物を得る工程、
前記反応混合物から、少なくとも前記溶媒の一部を除去することにより近赤外線吸収剤を得る工程、
前記近赤外線吸収剤を低沸点溶媒に分散させることにより分散液を得る工程、
前記分散液にモノマーを添加した後に、少なくとも低沸点溶媒の一部を除去することにより、近赤外線吸収剤含有モノマーを得る工程、
前記近赤外線吸収剤含有モノマーを重合し、近赤外線吸収剤および樹脂を含む組成物を得る工程を有する近赤外線吸収フィルターの製造方法。
Figure 2011203467
[式中、R1は、−CH2CH2−R11で表される1価の基であり、R11は水素原子、炭素数1〜20のアルキル基、または炭素数1〜20のフッ素化アルキル基を示す。R21、R22およびR23は、−(CH2CH2O)n5で表される1価の基であり、nは4〜25の整数であり、R5は、炭素数6〜25のアルキル基または炭素数6〜25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
At least one selected from a phosphonic acid compound represented by the following general formula (1), a phosphoric acid ester compound represented by the following general formula (2a), and a phosphoric acid ester compound represented by the following general formula (2b) A step of mixing a seed phosphate compound and a copper salt in a solvent to obtain a reaction mixture;
Obtaining a near-infrared absorber by removing at least part of the solvent from the reaction mixture;
A step of obtaining a dispersion by dispersing the near-infrared absorber in a low boiling point solvent;
A step of obtaining a near-infrared absorber-containing monomer by removing at least a part of the low-boiling solvent after adding the monomer to the dispersion;
The manufacturing method of the near-infrared absorption filter which has the process of polymerizing the said near-infrared absorber containing monomer and obtaining the composition containing a near-infrared absorber and resin.
Figure 2011203467
[In the formula, R 1 is a monovalent group represented by -CH 2 CH 2 -R 11, R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a fluorine having 1 to 20 carbon atoms, Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 25, and R 5 has 6 to 6 carbon atoms. 25 alkyl group or C6-C25 alkylphenyl group is shown. However, R 21 , R 22 and R 23 may be the same or different. ]
JP2010070389A 2010-03-25 2010-03-25 Near-infrared absorbing filter and manufacturing method thereof Active JP5611631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070389A JP5611631B2 (en) 2010-03-25 2010-03-25 Near-infrared absorbing filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070389A JP5611631B2 (en) 2010-03-25 2010-03-25 Near-infrared absorbing filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011203467A true JP2011203467A (en) 2011-10-13
JP5611631B2 JP5611631B2 (en) 2014-10-22

Family

ID=44880168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070389A Active JP5611631B2 (en) 2010-03-25 2010-03-25 Near-infrared absorbing filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5611631B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146497A1 (en) * 2012-03-28 2013-10-03 株式会社クレハ Material used for buildings or transportation devices
WO2014010425A1 (en) * 2012-07-09 2014-01-16 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut-off filter using same, method for manufacturing near-infrared cut-off filter, camera module, and method for manufacturing camera module
WO2014017669A1 (en) * 2012-07-27 2014-01-30 Fujifilm Corporation Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
WO2014017574A1 (en) * 2012-07-27 2014-01-30 富士フイルム株式会社 Near-infrared ray-absorbing composition, near-infrared ray cut filter produced using said composition and method for producing same, and camera module and method for producing same
WO2015016142A1 (en) * 2013-07-30 2015-02-05 富士フイルム株式会社 Method for manufacturing film containing copper compound, method for suppressing thickening of film-forming composition, kit for manufacturing film-forming composition, and solid-state image sensor
JP2015034837A (en) * 2012-07-27 2015-02-19 富士フイルム株式会社 Near infrared absorptive composition, near infrared cut filter using the same, and camera module and method of manufacturing the same
JP2016014845A (en) * 2013-07-12 2016-01-28 富士フイルム株式会社 Near infrared absorbing composition, near infrared cut filter, method for manufacturing the same, and solid-state image sensing device
WO2017006571A1 (en) * 2015-07-09 2017-01-12 日本板硝子株式会社 Infrared cutoff filter, imaging device, and method for manufacturing infrared cutoff filter
WO2017051512A1 (en) * 2015-09-24 2017-03-30 日本板硝子株式会社 Composition for infrared absorption layer, infrared cut filter, and imaging device
JP6220107B1 (en) * 2016-04-21 2017-10-25 日本板硝子株式会社 Infrared absorbing composition, infrared cut filter, and imaging optical system
WO2018088561A1 (en) * 2016-11-14 2018-05-17 日本板硝子株式会社 Light-absorbing composition, and optical filter
JP6368417B1 (en) * 2017-10-20 2018-08-01 日本板硝子株式会社 Optical filter
WO2018173386A1 (en) 2017-03-22 2018-09-27 日本板硝子株式会社 Ultraviolet and infrared absorbing composition and ultraviolet and infrared absorbing filter
JP2019028427A (en) * 2017-12-22 2019-02-21 日本板硝子株式会社 Optical filter and camera-equipped information terminal
KR20200028023A (en) 2017-07-27 2020-03-13 니혼 이타가라스 가부시키가이샤 Optical filter
KR20200030602A (en) 2017-07-27 2020-03-20 니혼 이타가라스 가부시키가이샤 Information terminal with optical filter and camera
KR20200074118A (en) 2017-11-07 2020-06-24 니혼 이타가라스 가부시키가이샤 Light absorbing composition and optical filter
JP2020112826A (en) * 2018-04-27 2020-07-27 日本板硝子株式会社 Optical filter
JP2021189251A (en) * 2020-05-27 2021-12-13 日本板硝子株式会社 Light absorber, light absorber article, imaging device and light absorptive composition
CN116496682A (en) * 2022-01-19 2023-07-28 白金科技股份有限公司 Organometallic complex coating liquid and near infrared ray absorbing film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200121579A (en) 2019-04-16 2020-10-26 삼성전자주식회사 Near-Infrared Absorbing COMPOSITION, OPTICAL STRUCTURE COMPRISING THE SAME, AND CAMERA MODULE AND ECTRONIC DEVICE COMPRISING THE SAME
JP7552193B2 (en) 2020-09-25 2024-09-18 コニカミノルタ株式会社 Near-infrared absorbing composition, near-infrared absorbing film, near-infrared cut filter, image sensor for solid-state imaging device, and camera module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152563A (en) * 1997-08-06 1999-02-26 Hitachi Chem Co Ltd Photosensitive liquid for forming colored image, production of color filter using the same and color filter
WO2009123016A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper phosphonate compound, and infrared absorption material and laminate containing the copper phosphonate compound
JP2009242650A (en) * 2008-03-31 2009-10-22 Kureha Corp Copper salt composition, resin composition using the same, infrared-absorbing film and optical member
JP2011099038A (en) * 2009-11-05 2011-05-19 Kureha Corp Near-infrared ray absorber, method for producing the same and optical material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152563A (en) * 1997-08-06 1999-02-26 Hitachi Chem Co Ltd Photosensitive liquid for forming colored image, production of color filter using the same and color filter
WO2009123016A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper phosphonate compound, and infrared absorption material and laminate containing the copper phosphonate compound
JP2009242650A (en) * 2008-03-31 2009-10-22 Kureha Corp Copper salt composition, resin composition using the same, infrared-absorbing film and optical member
JP2011099038A (en) * 2009-11-05 2011-05-19 Kureha Corp Near-infrared ray absorber, method for producing the same and optical material

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146497A1 (en) * 2012-03-28 2013-10-03 株式会社クレハ Material used for buildings or transportation devices
JPWO2013146497A1 (en) * 2012-03-28 2015-12-10 株式会社クレハ Materials used for construction or transportation equipment
JP2014032380A (en) * 2012-07-09 2014-02-20 Fujifilm Corp Near infrared absorbing composition, near infrared cut filter made from the same and manufacturing method therefor, and camera module and manufacturing method therefor
WO2014010425A1 (en) * 2012-07-09 2014-01-16 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut-off filter using same, method for manufacturing near-infrared cut-off filter, camera module, and method for manufacturing camera module
CN104487875B (en) * 2012-07-27 2017-05-17 富士胶片株式会社 Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
JP2014041318A (en) * 2012-07-27 2014-03-06 Fujifilm Corp Near-infrared absorbing composition, near-infrared cut filter using the same and method for manufacturing the cut filter, and camera module and method for manufacturing the camera module
JP2015034837A (en) * 2012-07-27 2015-02-19 富士フイルム株式会社 Near infrared absorptive composition, near infrared cut filter using the same, and camera module and method of manufacturing the same
CN104487875A (en) * 2012-07-27 2015-04-01 富士胶片株式会社 Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
WO2014017574A1 (en) * 2012-07-27 2014-01-30 富士フイルム株式会社 Near-infrared ray-absorbing composition, near-infrared ray cut filter produced using said composition and method for producing same, and camera module and method for producing same
US9465142B2 (en) 2012-07-27 2016-10-11 Fujifilm Corporation Near-infrared absorptive composition, near-infrared cut filter using near-infrared absorptive composition, method for manufacturing near-infrared cut filter, and camera module and method for manufacturing camera module
WO2014017669A1 (en) * 2012-07-27 2014-01-30 Fujifilm Corporation Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
JP2016014845A (en) * 2013-07-12 2016-01-28 富士フイルム株式会社 Near infrared absorbing composition, near infrared cut filter, method for manufacturing the same, and solid-state image sensing device
WO2015016142A1 (en) * 2013-07-30 2015-02-05 富士フイルム株式会社 Method for manufacturing film containing copper compound, method for suppressing thickening of film-forming composition, kit for manufacturing film-forming composition, and solid-state image sensor
JPWO2017006571A1 (en) * 2015-07-09 2017-07-13 日本板硝子株式会社 Infrared cut filter, imaging device, and method of manufacturing infrared cut filter
US10830931B2 (en) 2015-07-09 2020-11-10 Nippon Sheet Glass Company, Limited Infrared cut filter, imaging device, and method for producing infrared cut filter
JP2018060236A (en) * 2015-07-09 2018-04-12 日本板硝子株式会社 Infrared cut filter, image capturing device, and method of manufacturing infrared cut filter
CN107076896A (en) * 2015-07-09 2017-08-18 日本板硝子株式会社 The manufacture method of infrared cut off filter, camera device and infrared cut off filter
WO2017006571A1 (en) * 2015-07-09 2017-01-12 日本板硝子株式会社 Infrared cutoff filter, imaging device, and method for manufacturing infrared cutoff filter
US20200332084A1 (en) * 2015-09-24 2020-10-22 Nippon Sheet Glass Company, Limited Infrared-cut filter
US11873385B2 (en) 2015-09-24 2024-01-16 Nippon Sheet Glass Company, Limited Infrared-cut filter
JPWO2017051512A1 (en) * 2015-09-24 2018-08-30 日本板硝子株式会社 Infrared absorbing layer composition, infrared cut filter, and imaging device
WO2017051512A1 (en) * 2015-09-24 2017-03-30 日本板硝子株式会社 Composition for infrared absorption layer, infrared cut filter, and imaging device
CN108027465A (en) * 2015-09-24 2018-05-11 日本板硝子株式会社 Infrared ray-absorbing layer composition, infrared intercepting filter and camera device
TWI706029B (en) * 2015-09-24 2020-10-01 日商日本板硝子股份有限公司 Composition for infrared absorption layer, filter for cutting infrared and imaging device
KR102153205B1 (en) * 2015-09-24 2020-09-07 니혼 이타가라스 가부시키가이샤 Composition for infrared absorbing layer, infrared cut filter, and imaging device
KR20180059494A (en) * 2015-09-24 2018-06-04 니혼 이타가라스 가부시키가이샤 A composition for an infrared absorbing layer, an infrared cut filter,
US10745541B2 (en) * 2015-09-24 2020-08-18 Nippon Sheet Glass Company, Limited Composition for infrared-absorbing layers, infrared-cut filter, and imaging apparatus
JP2020112802A (en) * 2015-09-24 2020-07-27 日本板硝子株式会社 Infrared absorbing layer composition, infrared cut filter, and image capturing device
JP6220107B1 (en) * 2016-04-21 2017-10-25 日本板硝子株式会社 Infrared absorbing composition, infrared cut filter, and imaging optical system
JP2018090809A (en) * 2016-04-21 2018-06-14 日本板硝子株式会社 Infrared absorptive composition, infrared-cut filter, and imaging optical system
CN108291992A (en) * 2016-04-21 2018-07-17 日本板硝子株式会社 Infrared ray-absorbable composition, infrared ray cut off filter and imaging optical system
TWI636128B (en) * 2016-04-21 2018-09-21 日本板硝子股份有限公司 Infrared absorbing composition, infrared cut filter, and photographic optical system
WO2017183671A1 (en) * 2016-04-21 2017-10-26 日本板硝子株式会社 Infrared-absorbing composition, infrared-cut filter, optical system for imaging
TWI719392B (en) * 2016-04-21 2021-02-21 日商日本板硝子股份有限公司 Method of manufacturing infrared cut filter
KR102177847B1 (en) * 2016-04-21 2020-11-11 니혼 이타가라스 가부시키가이샤 Infrared-absorbing composition, infrared-cut filter, and imaging optical system
JP2018018094A (en) * 2016-04-21 2018-02-01 日本板硝子株式会社 Infrared absorptive composition, infrared cut filter and imaging optical system
JP6282778B1 (en) * 2016-04-21 2018-02-21 日本板硝子株式会社 Infrared cut filter manufacturing method
TWI651400B (en) * 2016-04-21 2019-02-21 日商日本板硝子股份有限公司 Infrared absorbing composition, infrared ray cut filter, and photographic optical system
US10809427B2 (en) 2016-04-21 2020-10-20 Nippon Sheet Glass Company, Limited Infrared-absorbing composition, infrared-cut filter, and imaging optical system
CN108291992B (en) * 2016-04-21 2020-09-22 日本板硝子株式会社 Infrared absorbing composition, infrared cut filter, and imaging optical system
JP2018081323A (en) * 2016-04-21 2018-05-24 日本板硝子株式会社 Manufacturing method of infrared cut filter
KR20200030630A (en) * 2016-04-21 2020-03-20 니혼 이타가라스 가부시키가이샤 Infrared-absorbing composition, infrared-cut filter, and imaging optical system
US11300719B2 (en) 2016-11-14 2022-04-12 Nippon Sheet Glass Company, Limited Light-absorbing composition and optical filter
TWI736709B (en) * 2016-11-14 2021-08-21 日商日本板硝子股份有限公司 Light-absorbing composition and filter
JP2018151655A (en) * 2016-11-14 2018-09-27 日本板硝子株式会社 Light-absorbing composition
CN109923447B (en) * 2016-11-14 2021-03-30 日本板硝子株式会社 Light absorbing composition and optical filter
JP2019023723A (en) * 2016-11-14 2019-02-14 日本板硝子株式会社 Light absorbing composition for optical filter and optical filter
JP6339755B1 (en) * 2016-11-14 2018-06-06 日本板硝子株式会社 Light absorbing composition and optical filter
CN109923447A (en) * 2016-11-14 2019-06-21 日本板硝子株式会社 Light absorption composition and optical filter
WO2018088561A1 (en) * 2016-11-14 2018-05-17 日本板硝子株式会社 Light-absorbing composition, and optical filter
US11535726B2 (en) 2017-03-22 2022-12-27 Nippon Sheet Glass Company, Limited Ultraviolet- and infrared-absorbing composition and ultraviolet- and infrared-absorbing filter
WO2018173386A1 (en) 2017-03-22 2018-09-27 日本板硝子株式会社 Ultraviolet and infrared absorbing composition and ultraviolet and infrared absorbing filter
KR20190124796A (en) 2017-03-22 2019-11-05 니혼 이타가라스 가부시키가이샤 Ultraviolet and infrared absorbing compositions, and ultraviolet and infrared absorbing filters
US11885993B2 (en) 2017-07-27 2024-01-30 Nippon Sheet Glass Company, Limited Optical filter and method of manufacturing
US11592603B2 (en) 2017-07-27 2023-02-28 Nippon Sheet Glass Company, Limited Optical filter
US12072517B2 (en) 2017-07-27 2024-08-27 Nippon Sheet Glass Company, Limited Light-absorbing composition and method of manufacturing
CN110998377A (en) * 2017-07-27 2020-04-10 日本板硝子株式会社 Optical filter and information terminal with camera
KR20200030602A (en) 2017-07-27 2020-03-20 니혼 이타가라스 가부시키가이샤 Information terminal with optical filter and camera
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
KR20200028023A (en) 2017-07-27 2020-03-13 니혼 이타가라스 가부시키가이샤 Optical filter
JP6368417B1 (en) * 2017-10-20 2018-08-01 日本板硝子株式会社 Optical filter
JP2019028421A (en) * 2017-10-20 2019-02-21 日本板硝子株式会社 Optical filter
KR20200074118A (en) 2017-11-07 2020-06-24 니혼 이타가라스 가부시키가이샤 Light absorbing composition and optical filter
US12071542B2 (en) 2017-11-07 2024-08-27 Nippon Sheet Glass Company, Limited Light-absorbing composition and optical filter
JP2019028427A (en) * 2017-12-22 2019-02-21 日本板硝子株式会社 Optical filter and camera-equipped information terminal
JP2020112826A (en) * 2018-04-27 2020-07-27 日本板硝子株式会社 Optical filter
JP7510278B2 (en) 2020-05-27 2024-07-03 日本板硝子株式会社 Light absorber, article with light absorber, imaging device, and light absorbing composition
JP2021189251A (en) * 2020-05-27 2021-12-13 日本板硝子株式会社 Light absorber, light absorber article, imaging device and light absorptive composition
JP2023105786A (en) * 2022-01-19 2023-07-31 白金科技股▲分▼有限公司 Organometallic complex coating solution and near infrared absorption film
CN116496682A (en) * 2022-01-19 2023-07-28 白金科技股份有限公司 Organometallic complex coating liquid and near infrared ray absorbing film
JP7573584B2 (en) 2022-01-19 2024-10-25 白金科技股▲分▼有限公司 Organometallic complex coating liquid and near-infrared absorbing film

Also Published As

Publication number Publication date
JP5611631B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5611631B2 (en) Near-infrared absorbing filter and manufacturing method thereof
JP4804572B2 (en) Infrared shielding film and infrared shielding laminated film
JP5132950B2 (en) Manufacturing method of optical film
WO2001020374A1 (en) Optical filter and process for producing the same
JP6062968B2 (en) Resin particles and their use
JP2007211164A (en) Organic-inorganic composite composition and optical component
JP2011063814A (en) Optical material
KR101010089B1 (en) Resin composition and film
JP2691327B2 (en) Manufacturing method of synthetic resin for optical filter
KR101855987B1 (en) Metal oxide organic nano dispersion, film and optic member for display comprising the same
JPH11302308A (en) Production of copper compound-containing resin composition
JP2014080487A (en) Resin composition and near infrared ray cutting filter
KR20170003450A (en) Polymeric beads, process for preparing polymeric beads and optical film using the same
JP2016188316A (en) Resin composition and application thereof
JP5345302B2 (en) Organic-inorganic composite composition and optical component
KR20130035737A (en) Polymer powder and preparation method thereof
JP2009137774A (en) Zirconia particle, its producing method, zirconia transparent dispersion liquid, transparent complex and its producing method
JP6560136B2 (en) Hydroxide mineral dispersion and method for producing the same
US20120270977A1 (en) Titanium dioxide dispersion liquid, method for manufacturing titanium dioxide dispersion liquid, and organic optical element
JP2009179770A (en) Organic and inorganic composite material and optical article
WO1999027397A1 (en) Optical filter, and device, heat-ray absorbing filter, optical fiber and eye-glasses each provided with the optical filter
JP2019066646A (en) Near-infrared absorbing filter and method for producing near-infrared absorbing filter
WO2014038035A1 (en) Method for producing near-infrared ray absorbent fluid dispersion and use of near-infrared ray absorbent fluid dispersion
JP5279306B2 (en) Organic-inorganic composite composition, molded body and optical component
KR102731631B1 (en) Spherical polymeric powder having a good thermal stability and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R150 Certificate of patent or registration of utility model

Ref document number: 5611631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250