WO2014038035A1 - Method for producing near-infrared ray absorbent fluid dispersion and use of near-infrared ray absorbent fluid dispersion - Google Patents
Method for producing near-infrared ray absorbent fluid dispersion and use of near-infrared ray absorbent fluid dispersion Download PDFInfo
- Publication number
- WO2014038035A1 WO2014038035A1 PCT/JP2012/072724 JP2012072724W WO2014038035A1 WO 2014038035 A1 WO2014038035 A1 WO 2014038035A1 JP 2012072724 W JP2012072724 W JP 2012072724W WO 2014038035 A1 WO2014038035 A1 WO 2014038035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dispersion
- infrared
- infrared absorber
- solid content
- resin
- Prior art date
Links
- 239000006185 dispersion Substances 0.000 title claims abstract description 93
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 63
- 239000002250 absorbent Substances 0.000 title claims abstract description 47
- 230000002745 absorbent Effects 0.000 title claims abstract description 47
- 239000012530 fluid Substances 0.000 title abstract 3
- -1 phosphonic acid compound Chemical class 0.000 claims abstract description 106
- 239000007787 solid Substances 0.000 claims abstract description 75
- 239000002904 solvent Substances 0.000 claims abstract description 47
- 239000006228 supernatant Substances 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims abstract description 31
- 239000002612 dispersion medium Substances 0.000 claims abstract description 28
- 150000001879 copper Chemical class 0.000 claims abstract description 25
- 239000011541 reaction mixture Substances 0.000 claims abstract description 22
- 238000002156 mixing Methods 0.000 claims abstract description 21
- 238000001035 drying Methods 0.000 claims abstract description 17
- 230000001376 precipitating effect Effects 0.000 claims abstract 3
- 239000006096 absorbing agent Substances 0.000 claims description 113
- 229910019142 PO4 Inorganic materials 0.000 claims description 50
- 239000010452 phosphate Substances 0.000 claims description 50
- 229920005989 resin Polymers 0.000 claims description 45
- 239000011347 resin Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 37
- 239000011342 resin composition Substances 0.000 claims description 33
- 125000004432 carbon atom Chemical group C* 0.000 claims description 30
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 239000004014 plasticizer Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 7
- 238000009210 therapy by ultrasound Methods 0.000 claims description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 4
- 125000005037 alkyl phenyl group Chemical group 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 96
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 54
- 239000000243 solution Substances 0.000 description 54
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- 239000011521 glass Substances 0.000 description 23
- 239000002244 precipitate Substances 0.000 description 21
- 238000003756 stirring Methods 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- 238000010521 absorption reaction Methods 0.000 description 16
- 239000005340 laminated glass Substances 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- NWFNSTOSIVLCJA-UHFFFAOYSA-L copper;diacetate;hydrate Chemical compound O.[Cu+2].CC([O-])=O.CC([O-])=O NWFNSTOSIVLCJA-UHFFFAOYSA-L 0.000 description 15
- 239000002245 particle Substances 0.000 description 14
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 13
- 229910001431 copper ion Inorganic materials 0.000 description 13
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000006227 byproduct Substances 0.000 description 12
- 239000002270 dispersing agent Substances 0.000 description 12
- FRQDZJMEHSJOPU-UHFFFAOYSA-N Triethylene glycol bis(2-ethylhexanoate) Chemical compound CCCCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CCCC FRQDZJMEHSJOPU-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- RRJHFUHAKCSNRY-UHFFFAOYSA-L [Cu+2].[O-]P([O-])=O Chemical compound [Cu+2].[O-]P([O-])=O RRJHFUHAKCSNRY-UHFFFAOYSA-L 0.000 description 9
- 238000004062 sedimentation Methods 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 150000004699 copper complex Chemical class 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 8
- 238000003860 storage Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- 239000005749 Copper compound Substances 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- UOKRBSXOBUKDGE-UHFFFAOYSA-N butylphosphonic acid Chemical compound CCCCP(O)(O)=O UOKRBSXOBUKDGE-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 150000001880 copper compounds Chemical class 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 239000011354 acetal resin Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- YEOCHZFPBYUXMC-UHFFFAOYSA-L copper benzoate Chemical compound [Cu+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 YEOCHZFPBYUXMC-UHFFFAOYSA-L 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 150000005691 triesters Chemical class 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- JEYLQCXBYFQJRO-UHFFFAOYSA-N 2-[2-[2-(2-ethylbutanoyloxy)ethoxy]ethoxy]ethyl 2-ethylbutanoate Chemical compound CCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CC JEYLQCXBYFQJRO-UHFFFAOYSA-N 0.000 description 1
- SSKNCQWPZQCABD-UHFFFAOYSA-N 2-[2-[2-(2-heptanoyloxyethoxy)ethoxy]ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOCCOC(=O)CCCCCC SSKNCQWPZQCABD-UHFFFAOYSA-N 0.000 description 1
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 1
- JXSRRBVHLUJJFC-UHFFFAOYSA-N 7-amino-2-methylsulfanyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitrile Chemical compound N1=CC(C#N)=C(N)N2N=C(SC)N=C21 JXSRRBVHLUJJFC-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- FSRKEDYWZHGEGG-UHFFFAOYSA-N [2-(8-methylnonyl)phenyl] dihydrogen phosphate Chemical compound CC(C)CCCCCCCC1=CC=CC=C1OP(O)(O)=O FSRKEDYWZHGEGG-UHFFFAOYSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- HFDWIMBEIXDNQS-UHFFFAOYSA-L copper;diformate Chemical compound [Cu+2].[O-]C=O.[O-]C=O HFDWIMBEIXDNQS-UHFFFAOYSA-L 0.000 description 1
- WFIPUECTLSDQKU-UHFFFAOYSA-N copper;ethyl 3-oxobutanoate Chemical compound [Cu].CCOC(=O)CC(C)=O WFIPUECTLSDQKU-UHFFFAOYSA-N 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- FWBOFUGDKHMVPI-UHFFFAOYSA-K dicopper;2-oxidopropane-1,2,3-tricarboxylate Chemical compound [Cu+2].[Cu+2].[O-]C(=O)CC([O-])(C([O-])=O)CC([O-])=O FWBOFUGDKHMVPI-UHFFFAOYSA-K 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- OJXOOFXUHZAXLO-UHFFFAOYSA-M magnesium;1-bromo-3-methanidylbenzene;bromide Chemical compound [Mg+2].[Br-].[CH2-]C1=CC=CC(Br)=C1 OJXOOFXUHZAXLO-UHFFFAOYSA-M 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- NJGCRMAPOWGWMW-UHFFFAOYSA-N octylphosphonic acid Chemical compound CCCCCCCCP(O)(O)=O NJGCRMAPOWGWMW-UHFFFAOYSA-N 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005004 perfluoroethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000005005 perfluorohexyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 125000005009 perfluoropropyl group Chemical group FC(C(C(F)(F)F)(F)F)(F)* 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
- C07F9/3804—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
- C07F9/3808—Acyclic saturated acids which can have further substituents on alkyl
Definitions
- the present invention relates to a method for producing a near-infrared absorbent dispersion and uses of the near-infrared absorbent dispersion.
- Patent Documents 1 to 4 disclose an optical material containing a phosphate ester copper compound formed from a specific phosphate ester compound and a copper compound.
- Patent Document 2 discloses a display front plate formed from a resin composition containing a specific phosphate compound, a copper compound, and a resin.
- Patent Document 3 discloses an optical filter having a near-infrared absorbing layer containing a phosphate ester copper compound formed from a specific phosphate ester compound and a copper compound.
- Patent Document 4 discloses a near-infrared absorbing composition comprising a specific phosphate compound and copper ions.
- Example 3 of Patent Document 5 as a method for producing an optical filter, a process of removing a part of the solvent after the reaction between copper ions, a phosphonic acid compound, and a phosphoric acid compound is described. This process is because impurities that do not react with copper ions bleed out to the interface between the resin filter formed during polymerization of the monomer containing the copper complex in the subsequent process and the glass mold and do not deteriorate the filter surface properties.
- the dispersibility of the near-infrared absorber has not been sufficiently studied, and there is still room for improvement.
- an object of the present invention is to provide a dispersion containing a near-infrared absorber excellent in dispersibility and a method for producing the same.
- the present inventors have found that the near-infrared absorbent dispersion obtained through a specific process is excellent in dispersibility of the near-infrared absorbent. Completed the invention.
- the manufacturing method of the near-infrared absorber of the present invention includes a phosphonic acid compound represented by the following general formula (1), a phosphoric acid ester compound represented by the following general formula (2a), and the following general formula (2b).
- Step A in which at least one phosphate ester compound selected from the phosphate ester compounds represented by formula (I) and a copper salt are mixed in a solvent to obtain a reaction mixture containing a near-infrared absorber, in the reaction mixture Step B1 for sedimenting the solid content and removing the supernatant, Step C for drying the solid content to obtain a purified near-infrared absorber, and dispersing the purified near-infrared absorber in a dispersion medium Step D is included.
- R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
- R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms.
- R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 35, and R 5 is a group having 6 to 6 carbon atoms.
- the step B1 in which the solid content in the reaction mixture is settled and the supernatant liquid is removed is a step in which the reaction mixture is centrifuged to solidify the solid content and the supernatant liquid is removed.
- Step B2 the solid content obtained by removing the supernatant liquid is washed by adding a solvent to the solid content, and then the solid content is settled and the supernatant liquid is removed.
- the step B2 may be performed one or more times.
- the step C is a step of drying the solid content obtained in the step B2 to obtain a purified near infrared absorber.
- R 11 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 2 to 8 carbon atoms.
- step D it is preferable to perform ultrasonic treatment.
- the near-infrared absorbent dispersion of the present invention can be obtained by the above production method.
- the near-infrared absorbent dispersion produced by the production method and a resin are mixed, and the dispersion medium is removed from the obtained mixture. To do.
- the near-infrared absorbent dispersion produced by the production method and the resin solution are mixed, and the dispersion medium and the solvent are removed from the obtained mixture. It is characterized by doing.
- a near-infrared absorbent powder obtained by drying a near-infrared absorbent dispersion produced by the production method is mixed with a resin. It is characterized by that.
- the method for producing a near-infrared absorber-dispersed plasticizer of the present invention is characterized in that a near-infrared absorber dispersion prepared by the above-described production method and a plasticizer are mixed and the dispersion medium is distilled off.
- the near-infrared absorbent-dispersed plasticizer of the present invention is obtained by the above production method.
- the resin composition of the present invention is obtained by the above production method.
- the near-infrared absorber dispersion obtained by the production method of the present invention is excellent in dispersibility of the near-infrared absorber. For this reason, even if it is a case where a near-infrared absorber dispersion liquid is preserve
- the spectral transmittance of the laminated glass manufactured in Example 6 is shown.
- the spectral transmittance of the laminated glass manufactured in Example 7 is shown.
- the spectral transmittance of the laminated glass manufactured in Example 8 is shown.
- the spectral transmittance of the laminated glass manufactured in Comparative Example 5 is shown.
- the manufacturing method of a near-infrared absorber dispersion liquid is represented by the phosphonic acid compound represented by the following general formula (1), the phosphoric acid ester compound represented by the following general formula (2a), and the following general formula (2b).
- Step A in which at least one phosphate ester compound selected from phosphoric acid ester compounds and a copper salt are mixed in a solvent to obtain a reaction mixture containing a near infrared absorber, solid content in the reaction mixture
- Step B1 for removing the supernatant and removing the supernatant
- Step C for drying the solid content to obtain a purified near-infrared absorber
- Step D for dispersing the purified near-infrared absorber in a dispersion medium It is characterized by having.
- R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
- R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms.
- R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 35, and R 5 is a group having 6 to 6 carbon atoms.
- each process of the manufacturing method of the near-infrared absorber dispersion liquid of this invention is demonstrated.
- Step A In the method for producing a near-infrared absorber dispersion of the present invention, first, the phosphonic acid compound represented by the general formula (1), the phosphate compound represented by the general formula (2a), and the general formula ( Step A is performed in which at least one phosphate ester compound selected from the phosphate ester compounds represented by 2b) and a copper salt are mixed in a solvent to obtain a reaction mixture containing a near-infrared absorber.
- the “phosphonic acid compound represented by the general formula (1)” is also referred to as “specific phosphonic acid compound”, and the phosphoric acid ester compound represented by the general formula (2a) and the general formula ( The “at least one phosphate ester compound selected from the phosphate ester compounds represented by 2b)” is also referred to as “specific phosphate ester compound”.
- the near-infrared absorber obtained in Step A is considered to have near-infrared absorption characteristics mainly due to the copper ions of the phosphonic acid copper salt obtained by reacting the specific phosphonic acid compound with the copper salt.
- the phosphonic acid copper salt is considered to be maintained in a very fine state by the specific phosphate ester compound acting as a dispersant.
- the copper phosphonate is represented by the following general formula (3).
- the specific phosphonic acid compound is mainly coordinated with the copper ion in the near-infrared absorber obtained in the step A, and further, the specific phosphoric ester compound is present therearound.
- the said specific phosphate ester compound coordinates to some copper ions. Therefore, the copper ions in the near-infrared absorber are excellent in stability to heat and the like.
- a molded product such as a near-infrared absorption filter containing the near-infrared absorber is not affected by the copper ions and is colored. Less transparency and excellent transparency.
- R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
- R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms. Represents an alkyl group.
- R 11 in the general formulas (1) and (3) is hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl.
- dodecyl group dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, perfluoroethyl group, perfluoropropyl group, perfluoro-n-butyl group, perfluorohexyl group, perfluorooctyl Group, perfluorodecyl group and the like.
- the R 11 in the general formulas (1) and (3) is a group having a large number of carbon atoms or a group having a long molecular chain. Since dispersibility tends to decrease, R 11 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 2 to 8 carbon atoms. It is preferable that R 11 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms because the dispersibility of the near-infrared absorber in the near-infrared absorber dispersion obtained by the production method of the present invention tends to be particularly excellent. . In addition, it is preferable that R 11 is an alkyl group having 2 to 8 carbon atoms because solids tend to settle easily in the later-described Step B1 and Step B2.
- R 21 , R 22 and R 23 is a monovalent group (polyoxyalkyl group) represented by — (CH 2 CH 2 O) n R 5 .
- n is an integer of 4 to 35, and more preferably an integer of 6 to 25.
- n is less than 4
- a molded product such as a near-infrared absorbing filter
- the transparency of the molded product becomes insufficient.
- n exceeds 35, the amount of the phosphoric acid ester compound necessary to obtain a molded article such as a near infrared absorption filter having sufficient transparency increases, resulting in high costs.
- R 5 is an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms, preferably an alkyl group having 6 to 25 carbon atoms, and preferably an alkyl group having 12 to 20 carbon atoms. Is more preferable.
- R 5 is a group having less than 6 carbon atoms, the transparency of a molded product such as a near infrared absorption filter becomes insufficient. Further, if R 5 is a group having more than 25 carbon atoms, the amount of the phosphoric acid ester compound required for obtaining a molded article such as a near-infrared absorption filter having sufficient transparency is increased, resulting in high costs. It becomes.
- step A When obtaining a near-infrared absorber in step A, at least one of the phosphoric acid ester compound represented by the general formula (2a) and the phosphoric acid ester compound represented by the general formula (2b) is used. It is preferable to use both the phosphate compound represented by the general formula (2a) and the phosphate compound represented by the general formula (2b).
- the phosphoric acid ester compound represented by the general formula (2a) and the phosphoric acid ester compound represented by the general formula (2b) are used, the transparency and heat resistance of a molded article such as a near infrared absorption filter tend to be excellent. Is preferable.
- the phosphate compound represented by the general formula (2a) When both the phosphate compound represented by the general formula (2a) and the phosphate compound represented by the general formula (2b) are used, the phosphate compound represented by the general formula (2a)
- the ratio of the phosphoric acid ester compound represented by the general formula (2b) is not particularly limited, but is usually 10:90 to 90:10 in molar ratio ((2a) :( 2b)).
- a phosphate ester compound represented by the said General formula (2a) it may be used individually by 1 type, or 2 or more types may be used, As a phosphate ester compound represented by the said General formula (2b) May be used alone or in combination of two or more.
- phosphorus compounds such as a phosphoric acid triester may be further used.
- phosphate ester compound selected from the phosphate ester compound represented by the general formula (2a) and the phosphate ester compound represented by the general formula (2b), commercially available phosphoric acid An ester compound can also be used.
- the copper salt a copper salt capable of supplying divalent copper ions is usually used.
- the copper salt what is necessary is just copper salts other than the phosphonic acid copper salt represented by the said General formula (3).
- the copper salt include copper of organic acids such as anhydrous copper acetate, anhydrous copper formate, anhydrous copper stearate, anhydrous copper benzoate, anhydrous ethyl acetoacetate copper, anhydrous pyrophosphate, anhydrous naphthenic acid copper, and anhydrous copper citrate.
- Salt, hydrate or hydrate of copper salt of organic acid copper salt of inorganic acid such as copper oxide, copper chloride, copper sulfate, copper nitrate, basic copper carbonate, hydrate of copper salt of inorganic acid Or a hydrate; copper hydroxide is mentioned.
- copper salt you may use individually by 1 type, or may use 2 or more types.
- anhydrous copper acetate and copper acetate monohydrate are preferably used from the viewpoint of solubility and removal of by-products.
- the near-infrared absorber obtained in step A is represented by the phosphonic acid compound represented by the general formula (1), the phosphate compound represented by the general formula (2a), and the general formula (2b). It is obtained from at least one phosphate ester compound selected from phosphoric acid ester compounds and a copper salt.
- the near-infrared absorber obtained in the step A it is considered that the phosphonic acid copper salt obtained by reacting the specific phosphonic acid compound and the copper salt exists, and further the specific phosphate ester compound is present therearound. Further, it is considered that there is also a phosphonic acid copper salt in which a part of the specific phosphonic acid compound constituting the phosphonic acid copper salt is replaced with the specific phosphoric acid ester compound.
- the average particle size of the near-infrared absorber obtained in the step A is preferably 10 to 150 nm, more preferably 20 to 120 nm.
- the amount of each component used in step A is as follows.
- the specific phosphonic acid compound is preferably used in an amount of 5 mol or more, more preferably 8 to 100 mol, and particularly preferably 10 to 80 mol, per 1 mol of the specific phosphate compound.
- the amount is less than 5 mol, the near infrared absorption characteristics of a molded article such as a near infrared absorption filter may deteriorate, or the heat resistance may decrease.
- the specific phosphonic acid compound is preferably 0.4 mol or more, more preferably 0.5 to 1.5 mol, and more preferably 0.7 to 1 mol per mol of copper in the copper salt. Particularly preferred is 2 moles. Within the said range, since transparency and heat resistance of molded objects, such as a near-infrared absorption filter, are especially excellent, it is preferable.
- step A as described above, the specific phosphonic acid compound, the specific phosphoric acid ester compound, and the copper salt are mixed in a solvent to obtain a reaction mixture containing a near-infrared absorber.
- the following method can be used.
- the specific phosphonic acid compound reacts with the copper salt mainly in the presence of the specific phosphoric ester compound, and by the reaction, particulate copper phosphonate that does not dissolve in the solvent A salt is formed. Since the phosphoric ester compound can act as a good dispersant during the reaction, the phosphonic acid copper salt can be kept highly dispersible and can suppress aggregation.
- Step A not only the reaction between the specific phosphonic acid compound and the copper salt, but also the specific phosphate compound and the copper salt may react, for example.
- the specific phosphonic acid compound, the specific phosphate ester compound, and a part of the copper salt may remain without reacting.
- Step A examples of the solvent used in Step A include alcohols such as methanol and ethanol, tetrahydrofuran (THF), dimethylformamide (DMF), water, and the like, and ethanol, THF, or DMF is preferable from the viewpoint of satisfactory reaction.
- the reaction step is preferably performed at room temperature to 60 ° C., more preferably 20 to 40 ° C., preferably 0.5 to 5 hours, more preferably 1 to 3 hours.
- reaction mixture containing a near infrared absorber is obtained.
- the reaction mixture contains a by-product that depends on the solvent and the raw material used.
- Step B1 In the manufacturing method of the near-infrared absorber dispersion of the present invention, after performing the step A, the step B1 is performed in which the solid content in the reaction mixture is settled and the supernatant is removed.
- step B1 the solid content in the reaction mixture obtained in step A is precipitated.
- the sedimentation method include a method in which the solid content is settled by allowing the reaction mixture to stand, and a method in which the solid content is sedimented by centrifuging the reaction mixture.
- natural sedimentation is preferable from the viewpoint of cost.
- the particle size of the near-infrared absorbing agent is small, natural sedimentation may be difficult, or natural sedimentation may be required for a long time.
- productivity is deteriorated, and therefore centrifugation capable of quickly sedimenting the near-infrared absorbent is preferable.
- Step B1 after the solid content is settled, the supernatant liquid is removed.
- the solid content can be obtained by removing the supernatant.
- the method for removing the supernatant liquid varies depending on the scale for carrying out the present invention, and examples thereof include a method for removing the supernatant liquid using a Pasteur pipette, a dropper and the like, and a method for removing the supernatant liquid by decantation.
- Step B1 the solid content from which the solvent in the reaction mixture and the by-products soluble in the solvent are removed can be obtained by removing the sediment and the supernatant liquid.
- the present inventors have obtained a by-product that is soluble in the solvent by performing Step B1. It was estimated that this contributed to the improvement of the dispersibility of the near-infrared absorbent dispersion.
- step C may be performed using the solid content obtained in step B1, or step B2 may be performed using the solid content obtained in step B1.
- Step B2 In the manufacturing method of the near-infrared absorber dispersion liquid of the present invention, the solid content is obtained by adding a solvent to the solid content obtained by removing the supernatant liquid between Step B1 and Step C and stirring. You may perform 1 time or more of process B2 which wash
- step B2 the solid content obtained in B1 is first washed with a solvent. Washing is usually performed by mixing the solid content and a solvent and stirring. When there is a by-product that is soluble in the solvent that could not be removed in Step B1, the by-product can be dissolved in the solvent.
- the amount ratio of the solid content and the solvent at the time of washing is not particularly limited, but an amount that can be suitably washed by stirring or the like is preferable.
- the solid content is 100 parts by mass.
- the solvent is preferably 300 to 10000 parts by mass, more preferably 500 to 5000 parts by mass.
- the solvent may be a mixed solvent composed of a plurality of components.
- step B2 the washed solid is settled.
- a method of settling it can carry out similarly to the method as described in process B1.
- step B2 after the solid content is settled, the supernatant liquid is removed.
- a method for removing the supernatant it can be carried out in the same manner as in the method described in Step B1.
- step B2 when the by-product soluble in the solvent is present in the solid content, the solid content from which the by-product has been removed is obtained by performing washing, sedimentation, and removal of the supernatant. be able to.
- process B2 may be performed once and may be performed in multiple times. By performing Step B2 a plurality of times, it is possible to further reduce the by-products in the solid content.
- performing Step B2 twice means that the solid content obtained in Step B1 is subjected to washing, sedimentation, and removal of the supernatant liquid, and using the obtained solid content, the washing, sedimentation, and supernatant liquid are again used. Means removal.
- it is preferable to perform step B2 it is preferable to perform step B2, and it is preferable to perform step B2 1 to 6 times, more preferably 1 to 4 times.
- Step C In the manufacturing method of the near-infrared absorber dispersion liquid of this invention, the process C which dries the said solid content and obtains the refined near-infrared absorber is performed.
- the solid content used in the step C means the solid content obtained in the step B1 when the step B2 is not performed, and the solid content obtained in the step B2 when the step B2 is performed. means.
- step C the solid content is dried to obtain a purified near-infrared absorber.
- the solid content obtained in Step B1 or Step B2 is generally in a slurry state wetted with a solvent or the like. By drying the solid content in Step C, a purified near-infrared absorber is obtained.
- step C the solid content is usually heated to remove the solvent and the like attached to the solid content, but the heating conditions are usually room temperature to 70 ° C., preferably room temperature to 60 ° C.
- the step C may be performed under normal pressure or under reduced pressure. When step C is performed under reduced pressure, heating may not be performed or the heating temperature may be low.
- the solvent used at this time is not particularly limited, and examples thereof include alcohols such as methanol, ethanol and 2-propanol, esters such as ethyl acetate, ethers such as diethyl ether, tetrahydrofuran and dioxane.
- the solvent may be a mixed solvent composed of a plurality of components.
- the near-infrared absorbent powder may be put into the solvent, stirred to dissolve impurities, and then filtered to obtain a near-infrared absorbent powder, or separated from the solvent by centrifugation. .
- a purified near-infrared absorber can be obtained.
- the drying conditions are usually from room temperature to 70 ° C., preferably from room temperature to 60 ° C., as described above.
- the drying may be performed under normal pressure or under reduced pressure. When drying under reduced pressure, heating may not be performed or the heating temperature may be low.
- Step D In the manufacturing method of the near-infrared absorber dispersion liquid of the present invention, Step D of dispersing the purified near-infrared absorber in a dispersion medium is performed.
- the purified near-infrared absorber obtained in the step C is dispersed in a dispersion medium.
- the dispersion medium include toluene, xylene, tetrahydrofuran (THF), dimethylformamide (DMF), methylene chloride, chloroform, triethylene glycol bis (2-ethylhexanoate), and the like.
- the method for dispersing the purified near-infrared absorber in the dispersion medium is not particularly limited.
- the amount of the dispersion medium used in the step D is not particularly limited, but from the viewpoint of the size of the production equipment, usually, the dispersion medium is 300 to 50000 parts by mass when the purified near-infrared absorber is 100 parts by mass. Used.
- the purified near infrared absorber may be dispersed in a dispersion medium in the presence of a dispersant to obtain a dispersion.
- a dispersant used in Step D, the dispersant described in Step A, that is, a specific phosphate compound can be used. If a dispersant is used in step D, the dispersibility of the obtained near-infrared absorbent dispersion may be further improved.
- the amount of the dispersant used in the step D is not particularly limited. However, when the specific phosphate compound is used as the dispersant, the amount of the near-infrared absorber is 100 parts by mass. Preferably there is.
- the specific phosphate ester compound used in step A and the specific phosphate ester compound used in step D may be the same compound or different compounds.
- Step D when performing the process D in presence of a dispersing agent, you may add a dispersing agent to a dispersion medium, and what mixed the near-infrared absorber refine
- additives may be added to the dispersion medium.
- Other additives include plasticizers (eg, 3GO (triethylene glycol bis (2-ethylhexanoate))), antioxidants, UV absorbers, light stabilizers, dehydrating agents, adhesion modifiers, silanes A coupling agent, a pigment, etc. are mentioned.
- Step D a near-infrared absorber dispersion liquid in which the purified near-infrared absorber is dispersed in a dispersion medium can be obtained.
- the near-infrared absorber dispersion obtained by the production method of the present invention is excellent in dispersibility of the near-infrared absorber contained in the dispersion. For this reason, the near-infrared absorber dispersion liquid of the present invention can be used for each application without precipitation of the near-infrared absorber even when stored at room temperature for a long time (for example, one month).
- the average particle size of the near-infrared absorbent dispersed in the near-infrared absorbent dispersion obtained by the production method of the present invention is preferably 10 to 150 nm, more preferably 20 to 120 nm.
- a resin composition having a near-infrared absorbing ability can be produced using the near-infrared absorbent dispersion and resin obtained by the production method of the present invention.
- Examples of the method for producing the resin composition include a method of obtaining a resin composition by mixing the near-infrared absorber dispersion and a resin, and removing a dispersion medium from the obtained mixture, and the near-infrared absorption.
- a method of obtaining a resin composition by mixing an agent dispersion and a resin solution, and removing a dispersion medium and a solvent from the obtained mixture, a near infrared ray obtained by drying a near infrared absorber dispersion The method of obtaining a resin composition by mixing absorbent powder and resin is mentioned.
- the resin composition may contain components other than the near-infrared absorber and the resin, for example, additives such as a plasticizer.
- the removal method is not particularly limited, but is usually performed by drying such as vacuum drying.
- the method for drying and solidifying the near-infrared ship dispersant is not particularly limited, but is usually performed by drying such as vacuum drying.
- molded object which consists of this resin composition
- a molded body may be obtained by molding into a shape of, and after obtaining the resin composition as a master batch such as pellets, the master batch and the resin are used to perform various processes such as extrusion molding, cast molding, injection molding, etc.
- examples of the molded body other than the near-infrared absorption filter include a near-infrared absorption film for display, a visibility correction filter disposed in a light-receiving portion such as a photodiode, and the like.
- the resin is at least selected from polyvinyl acetal resin, ethylene-vinyl acetate copolymer, (meth) acrylic acid resin, polyester resin, polyurethane resin, vinyl chloride resin, polyolefin resin, polycarbonate resin, and norbornene resin. It is preferable that one type of resin can disperse the near-infrared absorber well and is excellent in visible light transmittance.
- the resin is more preferably at least one resin selected from polyvinyl acetal resin and ethylene-vinyl acetate copolymer, and selected from polyvinyl butyral resin (PVB) and ethylene-vinyl acetate copolymer. Particularly preferred is at least one resin selected from the group consisting of polyvinyl butyral resin and ethylene-vinyl acetate copolymer.
- the resin solution can be obtained by dissolving the above resin in a solvent.
- the solvent is not particularly limited as long as it can dissolve the resin, and examples thereof include toluene and ethanol.
- As the solvent one kind may be used alone, or two or more kinds may be used.
- a near-infrared absorbent-dispersed plasticizer can be produced using the near-infrared absorbent dispersion and the plasticizer obtained by the production method of the present invention.
- Examples of the method for producing the near-infrared absorbent-dispersed plasticizer include a method of obtaining the near-infrared absorbent-dispersed plasticizer by mixing the near-infrared absorbent dispersion and the plasticizer and distilling off the dispersion medium. It is done.
- the resin (resin composition) in which the near infrared absorbent is dispersed can be easily obtained by mixing the near infrared absorbent dispersed plasticizer and the resin by kneading or the like.
- the plasticizer is not particularly limited.
- triethylene glycol-di-2-ethylhexanoate triethylene glycol-di-2-ethylbutyrate, tetraethylene glycol-di-2-ethylhexanoate
- examples include tetraethylene glycol diheptanoate, dihexyl adipate, tributoxyethyl phosphate, and isodecylphenyl phosphate.
- a polyvinyl butyral resin is preferable as the resin kneaded with the near-infrared absorbent-dispersed plasticizer.
- a butyral resin can be obtained.
- the polyvinyl butyral resin in which the near infrared absorber is dispersed can be used as a material for an interlayer film of laminated glass.
- the resin composition is usually used for applications where it is desired to absorb near infrared rays.
- the resin film formed from the resin composition is excellent in near-infrared absorption ability and is suitably used as an intermediate film for structural materials such as an interlayer film for laminated glass because coloring during heating, that is, yellowing is suppressed. Is possible.
- Example 1 A solution (a1) obtained by dissolving 0.70 g (3.5 ⁇ 10 ⁇ 3 mol) of copper acetate monohydrate in 35 g of ethanol, and equimolar decylphosphonic acid 0 with respect to copper acetate monohydrate A solution (b1) prepared by dissolving 0.78 g and 0.5 g of the following phosphate ester compound (A) in 5 g of ethanol was prepared.
- the phosphate ester compound (A) includes a phosphate ester compound (monoester) represented by the general formula (2a) and a phosphate ester compound (diester) represented by the general formula (2b). And a triester in which the hydrogen atom of the hydroxyl group in the general formula (2b) is further substituted with the same group, wherein n is 25, and R 21 , R 22 and R 23 are It is an alkyl group having 13 to 15 carbon atoms.
- the abundance ratio (molar ratio) of the monoester, the diester, and the triester in the phosphoric ester compound (A) is approximately 1: 1: 1.
- Toluene near-infrared absorbent dispersion liquid in which the obtained solid substance and 20 g of toluene were added to a glass container, and the near-infrared absorbent was dispersed by placing the whole glass container in an ultrasonic cleaner for 2 hours and carrying out a dispersion treatment.
- the near-infrared absorber (copper complex) in this dispersion had an average particle size of 46 nm, and no precipitation was observed even after storage at room temperature for 1 month.
- the average particle size was determined using ELSZ-2 manufactured by Otsuka Electronics Co., Ltd.
- Example 2 A solution (a1) obtained by dissolving 0.70 g (3.5 ⁇ 10 ⁇ 3 mol) of copper acetate monohydrate in 35 g of ethanol, and equimolar decylphosphonic acid 0 with respect to copper acetate monohydrate A solution (b1) in which 0.58 g of the same phosphate ester compound (A) as used in Example 1 was dissolved in 5 g of ethanol was prepared.
- the precipitate was dried under reduced pressure at 50 ° C. to obtain 1.15 g of a solid (near infrared absorber).
- a near-infrared absorber is obtained by adding 20 g of the obtained solid substance, toluene, and 0.10 g of the phosphoric acid ester compound (A) to a glass container, and dispersing the whole glass container in an ultrasonic cleaner for 5 hours. Of toluene (near-infrared absorbent dispersion) was obtained. The near-infrared absorber (copper complex) in this dispersion had an average particle size of 64 nm, and no precipitation was observed even after storage at room temperature for 1 month.
- the obtained solid and 20 g of toluene were added to a glass container, and the whole glass container was placed in an ultrasonic cleaner for 2 hours to attempt a dispersion treatment, but the particle diameter was 88 nm.
- ultrasonic treatment was performed for about 3 hours and dispersion was attempted.
- agar was formed on the way, and a stable dispersion could not be obtained.
- Example 3 A solution (a2) obtained by dissolving 1.56 g (7.8 ⁇ 10 ⁇ 3 mol) of copper acetate monohydrate in 80 g of ethanol, and equimolar octylphosphonic acid 1 with respect to copper acetate monohydrate A solution (b2) in which 1.02 g of the same phosphate ester compound (A) used in Example 1 was dissolved in 10 g of ethanol was prepared.
- Methylene chloride in which near-infrared absorber is dispersed by adding the obtained solid substance, 30 g of methylene chloride to a glass vessel, and putting the whole glass vessel in an ultrasonic cleaner for 10 hours to perform dispersion treatment. Dispersion) was obtained.
- the average particle size of the near-infrared absorber (copper complex) in this dispersion was 70 nm, and no precipitation was observed even after storage at room temperature for 1 month.
- Example 4 A solution (a2) obtained by dissolving 1.17 g (5.8 ⁇ 10 ⁇ 3 mol) of copper acetate monohydrate in 55 g of ethanol, and equimolar ethylphosphonic acid 0 with respect to copper acetate monohydrate .64 g and a solution (b2) in which 0.15 g of the same phosphoric ester compound (A) used in Example 1 was dissolved in 5 g of ethanol were prepared.
- a near-infrared absorber is obtained by adding 20 g of the obtained solid substance, toluene, and 0.10 g of the phosphoric acid ester compound (A) to a glass container, and placing the glass container in an ultrasonic cleaner for 10 hours for dispersion treatment. Of toluene (near-infrared absorbent dispersion) was obtained. The average particle size of the near-infrared absorber (copper complex) in this dispersion was 50 nm, and no precipitation was observed even after storage at room temperature for 1 month.
- Example 5 A solution (a2) obtained by dissolving 2.00 g (10.0 ⁇ 10 ⁇ 3 mol) of copper acetate monohydrate in 110 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate .38 g and a solution (b2) prepared by dissolving 0.50 g of the same phosphate ester compound (A) as used in Example 1 in 7 g of ethanol were prepared.
- Toluene near-infrared absorber dispersion liquid in which near-infrared absorber was dispersed by adding 20 g of the obtained solid substance and toluene to a glass vessel, and placing the whole glass vessel in an ultrasonic cleaner for 10 hours for dispersion treatment.
- the average particle size of the near-infrared absorber (copper complex) in this dispersion was 52 nm, and no precipitation was observed even after storage at room temperature for 1 month.
- the obtained solid and 20 g of toluene were added to a glass container, and the whole glass container was placed in an ultrasonic cleaner for 10 hours for dispersion treatment.
- the average of near-infrared absorber (copper complex) in this dispersion was Since the particle diameter was as large as 69 nm, dispersion treatment was further performed with an ultrasonic cleaner for 10 hours to obtain a near-infrared absorbent dispersion having an average particle diameter of 63 nm. This dispersion was stable, and no precipitation was observed even after storage at room temperature for 1 month.
- Comparative Example 4 was found to require a longer time for dispersion than the Examples, and to be inferior in dispersibility.
- Example 6 After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved.
- the spectrum of the measurement sample was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.) in the wavelength range of 250 to 2500 nm.
- a C light source tristimulus values (X, Y, Z) were calculated, and YI was calculated from the following equation.
- YI (128X-106Z) / Y
- Example 7 After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution, 4.65 g of the near-infrared absorber toluene dispersion prepared in Example 4 was added, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat. The spectral transmittance is shown in FIG.
- Example 8 After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution was added 5.59 g of the near-infrared absorber toluene dispersion prepared in Example 5, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat. The spectral transmittance is shown in FIG.
- Example 9 A solution (a2) obtained by dissolving 2.00 g (10.0 ⁇ 10 ⁇ 3 mol) of copper acetate monohydrate in 110 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate .38 g and a solution (b2) prepared by dissolving 0.50 g of the same phosphate ester compound (A) as used in Example 1 in 7 g of ethanol were prepared.
- reaction solution and precipitate were dried under reduced pressure at 40 ° C. to obtain 2.38 g of a solid.
- a near-infrared absorber is obtained by adding 0.10 g of the obtained solid substance, the phosphoric acid ester compound (A) and 20 g of toluene to a glass container, and dispersing the glass container in an ultrasonic cleaner for 10 hours. Of toluene (near-infrared absorbent dispersion) was obtained. The average particle size of the near-infrared absorber (copper complex) in this dispersion was 52 nm, and no precipitation was observed even after storage at room temperature for 1 month.
- Example 10 To 16.7 g of triethylene glycol bis (2-ethylhexanoate) was added 18.6 g of a near-infrared absorbent toluene dispersion prepared in the same manner as in Example 4, and after stirring and mixing, toluene was removed using an evaporator. was distilled to prepare 17.7 g of a triethylene glycol bis (2-ethylhexanoate) dispersion (near infrared absorber dispersion plasticizer) of a near infrared absorber.
- a triethylene glycol bis (2-ethylhexanoate) dispersion near infrared absorber dispersion plasticizer
- this near infrared absorbent triethylene glycol bis (2-ethylhexanoate) dispersion was mixed with 44 g of polyvinyl butyral resin powder, and then supplied to a plastograph (manufactured by Brabender) at 190 ° C.
- the mixture was melt-kneaded for 10 minutes at a screw speed of 30 rpm to obtain a polyvinyl butyral resin composition containing a near-infrared absorber.
- This resin composition was pre-heated at 120 ° C. and 3 MPa for 1 minute using a 0.8 mm thick formwork and a compression molding machine manufactured by Shinto Metal Industry Co., Ltd., and then pressed at 15 MPa for 3 minutes.
- a resin sheet having a thickness of 30 mm ⁇ 80 mm ⁇ 0.8 mm was obtained. Both sides of the resin sheet were sandwiched between slide glasses (thickness 1.2 to 1.5 mm), and heated and cooled at 130 ° C. for 30 minutes under a pressure of 15 MPa using an autoclave to produce a laminated glass.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Optical Filters (AREA)
Abstract
The objective of the present invention is to provide a dispersion liquid containing a near-infrared ray absorbent which has excellent dispersibility and a use thereof. This method for producing a near-infrared ray absorbent fluid dispersion comprises: a step (A) of mixing in a solvent a phosphonic acid compound represented by general formula (1), at least one type of a phosphoric ester compound selected from a phosphoric ester compound represented by general formula (2a) and a phosphoric ester compound represented by general formula (2b), and a copper salt in order to obtain a reaction mixture containing a near-infrared absorbent; a step (B1) of precipitating the solid content of the reaction mixture and removing the supernatant liquid; a step (C) of drying the solid content and obtaining a purified near-infrared absorbent; and a step (D) of dispersing the purified near-infrared absorbent in a dispersion medium.
Description
本発明は、近赤外線吸収剤分散液の製造方法および近赤外線吸収剤分散液の用途に関する。
The present invention relates to a method for producing a near-infrared absorbent dispersion and uses of the near-infrared absorbent dispersion.
銅イオンは、近赤外領域の光(以下、「近赤外線」ともいう)の吸収特性に優れており、銅イオンが有する近赤外線の吸収特性を利用した光学材料が従来から提案されている(例えば、特許文献1~4参照)。特許文献1には、特定のリン酸エステル化合物と銅化合物とから形成されるリン酸エステル銅化合物を含有する光学材料が開示されている。特許文献2には、特定のリン酸エステル化合物、銅化合物および樹脂を含有する樹脂組成物から形成されたディスプレイ前面板が開示されている。特許文献3には、特定のリン酸エステル化合物と、銅化合物とから形成されるリン酸エステル銅化合物を含有する近赤外線吸収層を有する光学フィルターが開示されている。また、特許文献4には、特定のリン酸エステル化合物と、銅イオンとを含有してなる近赤外線吸収性組成物が開示されている。
Copper ions are excellent in absorption characteristics of light in the near-infrared region (hereinafter also referred to as “near-infrared rays”), and optical materials using the near-infrared absorption characteristics of copper ions have been proposed ( For example, see Patent Documents 1 to 4). Patent Document 1 discloses an optical material containing a phosphate ester copper compound formed from a specific phosphate ester compound and a copper compound. Patent Document 2 discloses a display front plate formed from a resin composition containing a specific phosphate compound, a copper compound, and a resin. Patent Document 3 discloses an optical filter having a near-infrared absorbing layer containing a phosphate ester copper compound formed from a specific phosphate ester compound and a copper compound. Patent Document 4 discloses a near-infrared absorbing composition comprising a specific phosphate compound and copper ions.
また特許文献5の実施例3には、光学フィルターの製造方法として銅イオンとホスホン酸化合物、リン酸化合物との反応後に溶媒の一部を除去するという工程が記されている。該工程は、銅イオンと反応しない不純物が後工程の銅錯体を含むモノマーの重合の時に成形した樹脂製フィルターとガラス型の界面にブリードアウトしてフィルター表面性を悪化させないためである。
In Example 3 of Patent Document 5, as a method for producing an optical filter, a process of removing a part of the solvent after the reaction between copper ions, a phosphonic acid compound, and a phosphoric acid compound is described. This process is because impurities that do not react with copper ions bleed out to the interface between the resin filter formed during polymerization of the monomer containing the copper complex in the subsequent process and the glass mold and do not deteriorate the filter surface properties.
従来から提案されている銅イオンを含む近赤外線吸収剤を含有する光学材料は、重合用セルに、近赤外線吸収剤およびモノマーを充填し、重合を行うことにより製造されていた。しかしながら、重合用セルを用いた光学材料の製造方法は、サイズの大きな光学材料を得ることが困難であり、また製造コストが大きくなる傾向があった。
Conventionally proposed optical materials containing near-infrared absorbers containing copper ions were produced by filling a polymerization cell with a near-infrared absorber and a monomer and performing polymerization. However, in the method for producing an optical material using the polymerization cell, it is difficult to obtain a large-sized optical material, and the production cost tends to increase.
また、従来の銅イオンを含む近赤外線吸収剤を含有する光学材料においては、近赤外線吸収剤の分散性については充分に検討されておらず、未だ改良の余地があった。
Further, in the conventional optical material containing a near-infrared absorber containing copper ions, the dispersibility of the near-infrared absorber has not been sufficiently studied, and there is still room for improvement.
本発明は、上記背景技術に鑑み、分散性に優れた近赤外線吸収剤を含む分散液およびその製造方法を提供することを目的とする。
In view of the above background art, an object of the present invention is to provide a dispersion containing a near-infrared absorber excellent in dispersibility and a method for producing the same.
本発明者らは、前記課題を解決するために鋭意検討を行った結果、特定の工程を経て得られた近赤外線吸収剤分散液は、近赤外線吸収剤の分散性に優れることを見出し、本発明を完成させた。
As a result of intensive studies to solve the above problems, the present inventors have found that the near-infrared absorbent dispersion obtained through a specific process is excellent in dispersibility of the near-infrared absorbent. Completed the invention.
すなわち、本発明の近赤外線吸収剤の製造方法は、下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して近赤外線吸収剤を含む反応混合物を得る工程A、前記反応混合物中の固形分を沈降させ、上澄み液を除去する工程B1、前記固形分を乾燥させ、精製された近赤外線吸収剤を得る工程Cおよび、前記精製された近赤外線吸収剤を分散媒中に分散する工程Dを有することを特徴とする。
That is, the manufacturing method of the near-infrared absorber of the present invention includes a phosphonic acid compound represented by the following general formula (1), a phosphoric acid ester compound represented by the following general formula (2a), and the following general formula (2b). Step A, in which at least one phosphate ester compound selected from the phosphate ester compounds represented by formula (I) and a copper salt are mixed in a solvent to obtain a reaction mixture containing a near-infrared absorber, in the reaction mixture Step B1 for sedimenting the solid content and removing the supernatant, Step C for drying the solid content to obtain a purified near-infrared absorber, and dispersing the purified near-infrared absorber in a dispersion medium Step D is included.
[式中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。R21、R22およびR23は、-(CH2CH2O)nR5で表される1価の基であり、nは4~35の整数であり、R5は、炭素数6~25のアルキル基又は炭素数6~25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
前記反応混合物中の固形分を沈降させ、上澄み液を除去する工程B1が、反応混合物を遠心分離し、固形分を沈降させ、上澄み液を除去する工程であることが好ましい。 [Wherein R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms. Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 35, and R 5 is a group having 6 to 6 carbon atoms. A 25 alkyl group or an alkylphenyl group having 6 to 25 carbon atoms; However, R 21 , R 22 and R 23 may be the same or different. ]
It is preferable that the step B1 in which the solid content in the reaction mixture is settled and the supernatant liquid is removed is a step in which the reaction mixture is centrifuged to solidify the solid content and the supernatant liquid is removed.
前記反応混合物中の固形分を沈降させ、上澄み液を除去する工程B1が、反応混合物を遠心分離し、固形分を沈降させ、上澄み液を除去する工程であることが好ましい。 [Wherein R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms. Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 35, and R 5 is a group having 6 to 6 carbon atoms. A 25 alkyl group or an alkylphenyl group having 6 to 25 carbon atoms; However, R 21 , R 22 and R 23 may be the same or different. ]
It is preferable that the step B1 in which the solid content in the reaction mixture is settled and the supernatant liquid is removed is a step in which the reaction mixture is centrifuged to solidify the solid content and the supernatant liquid is removed.
前記工程B1と工程Cとの間に、上澄み液を除去することにより得られた固形分に、溶媒を加えて攪拌することにより固形分を洗浄し、その後固形分を沈降させ、上澄み液を除去する工程B2を1回以上行ってもよく、工程B2を行う場合には前記工程Cは、工程B2で得られた固形分を乾燥させ、精製された近赤外線吸収剤を得る工程である。
Between Step B1 and Step C, the solid content obtained by removing the supernatant liquid is washed by adding a solvent to the solid content, and then the solid content is settled and the supernatant liquid is removed. The step B2 may be performed one or more times. When the step B2 is performed, the step C is a step of drying the solid content obtained in the step B2 to obtain a purified near infrared absorber.
また、前記R11が水素原子または炭素数1~10のアルキル基であることが好ましく、炭素数2~8のアルキル基であることがより好ましい。
R 11 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 2 to 8 carbon atoms.
前記工程Dにおいて、超音波処理を行うことが好ましい。
In the step D, it is preferable to perform ultrasonic treatment.
本発明の近赤外線吸収剤分散液は、前記製造方法によって得られる。
The near-infrared absorbent dispersion of the present invention can be obtained by the above production method.
本発明の樹脂組成物の製造方法の一態様としては、前記製造方法で作製された近赤外線吸収剤分散液と、樹脂とを混合し、得られた混合物から分散媒を除去することを特徴とする。
As one aspect of the method for producing a resin composition of the present invention, the near-infrared absorbent dispersion produced by the production method and a resin are mixed, and the dispersion medium is removed from the obtained mixture. To do.
本発明の樹脂組成物の製造方法の別の態様としては、前記製造方法で作製された近赤外線吸収剤分散液と、樹脂の溶液とを混合し、得られた混合物から分散媒および溶媒を除去することを特徴とする。
As another aspect of the method for producing the resin composition of the present invention, the near-infrared absorbent dispersion produced by the production method and the resin solution are mixed, and the dispersion medium and the solvent are removed from the obtained mixture. It is characterized by doing.
本発明の樹脂組成物の製造方法の、また別の態様としては、前記製造方法で作製された近赤外線吸収剤分散液を乾固して得られる近赤外線吸収剤粉末と、樹脂とを混合することを特徴とする。
As another aspect of the method for producing a resin composition of the present invention, a near-infrared absorbent powder obtained by drying a near-infrared absorbent dispersion produced by the production method is mixed with a resin. It is characterized by that.
本発明の近赤外線吸収剤分散可塑剤の製造方法は、前記製造方法で作製された近赤外線吸収剤分散液と、可塑剤とを混合し、分散媒を留去することを特徴とする。
The method for producing a near-infrared absorber-dispersed plasticizer of the present invention is characterized in that a near-infrared absorber dispersion prepared by the above-described production method and a plasticizer are mixed and the dispersion medium is distilled off.
本発明の近赤外線吸収剤分散可塑剤は、前記製造方法によって得られる。
The near-infrared absorbent-dispersed plasticizer of the present invention is obtained by the above production method.
本発明の樹脂組成物の製造方法の、さらに別の態様としては、前記製造方法で作製された近赤外線吸収剤分散可塑剤と、樹脂とを混合することを特徴とする。
Further another aspect of the method for producing a resin composition of the present invention is characterized in that a near-infrared absorbent-dispersed plasticizer produced by the production method is mixed with a resin.
本発明の樹脂組成物は、前記製造方法によって得られる。
The resin composition of the present invention is obtained by the above production method.
本発明の製造方法で得られた近赤外線吸収剤分散液は、近赤外線吸収剤の分散性に優れている。このため例えば近赤外線吸収剤分散液を長期間保存した場合であっても、近赤外線吸収剤が沈殿することがない。また、本発明の製造方法で得られた近赤外線吸収剤分散液から作製された樹脂組成物は耐熱性に優れる。
The near-infrared absorber dispersion obtained by the production method of the present invention is excellent in dispersibility of the near-infrared absorber. For this reason, even if it is a case where a near-infrared absorber dispersion liquid is preserve | saved for a long period of time, a near-infrared absorber does not precipitate, for example. Moreover, the resin composition produced from the near-infrared absorber dispersion obtained by the production method of the present invention is excellent in heat resistance.
次に本発明について具体的に説明する。
Next, the present invention will be specifically described.
近赤外線吸収剤分散液の製造方法は、下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して近赤外線吸収剤を含む反応混合物を得る工程A、前記反応混合物中の固形分を沈降させ、上澄み液を除去する工程B1、前記固形分を乾燥させ、精製された近赤外線吸収剤を得る工程Cおよび、前記精製された近赤外線吸収剤を分散媒中に分散する工程Dを有することを特徴とする。
The manufacturing method of a near-infrared absorber dispersion liquid is represented by the phosphonic acid compound represented by the following general formula (1), the phosphoric acid ester compound represented by the following general formula (2a), and the following general formula (2b). Step A in which at least one phosphate ester compound selected from phosphoric acid ester compounds and a copper salt are mixed in a solvent to obtain a reaction mixture containing a near infrared absorber, solid content in the reaction mixture Step B1 for removing the supernatant and removing the supernatant, Step C for drying the solid content to obtain a purified near-infrared absorber, and Step D for dispersing the purified near-infrared absorber in a dispersion medium It is characterized by having.
[式中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。R21、R22およびR23は、-(CH2CH2O)nR5で表される1価の基であり、nは4~35の整数であり、R5は、炭素数6~25のアルキル基又は炭素数6~25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
以下、本発明の近赤外線吸収剤分散液の製造方法の各工程について説明する。 [Wherein R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms. Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 35, and R 5 is a group having 6 to 6 carbon atoms. A 25 alkyl group or an alkylphenyl group having 6 to 25 carbon atoms; However, R 21 , R 22 and R 23 may be the same or different. ]
Hereinafter, each process of the manufacturing method of the near-infrared absorber dispersion liquid of this invention is demonstrated.
以下、本発明の近赤外線吸収剤分散液の製造方法の各工程について説明する。 [Wherein R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms. Represents an alkyl group. R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 5 , n is an integer of 4 to 35, and R 5 is a group having 6 to 6 carbon atoms. A 25 alkyl group or an alkylphenyl group having 6 to 25 carbon atoms; However, R 21 , R 22 and R 23 may be the same or different. ]
Hereinafter, each process of the manufacturing method of the near-infrared absorber dispersion liquid of this invention is demonstrated.
[工程A]
本発明の近赤外線吸収剤分散液の製造方法では、まず、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して近赤外線吸収剤を含む反応混合物を得る工程Aを行う。 [Step A]
In the method for producing a near-infrared absorber dispersion of the present invention, first, the phosphonic acid compound represented by the general formula (1), the phosphate compound represented by the general formula (2a), and the general formula ( Step A is performed in which at least one phosphate ester compound selected from the phosphate ester compounds represented by 2b) and a copper salt are mixed in a solvent to obtain a reaction mixture containing a near-infrared absorber.
本発明の近赤外線吸収剤分散液の製造方法では、まず、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して近赤外線吸収剤を含む反応混合物を得る工程Aを行う。 [Step A]
In the method for producing a near-infrared absorber dispersion of the present invention, first, the phosphonic acid compound represented by the general formula (1), the phosphate compound represented by the general formula (2a), and the general formula ( Step A is performed in which at least one phosphate ester compound selected from the phosphate ester compounds represented by 2b) and a copper salt are mixed in a solvent to obtain a reaction mixture containing a near-infrared absorber.
なお、本発明において、「一般式(1)で表されるホスホン酸化合物」を、「特定のホスホン酸化合物」とも記し、「一般式(2a)で表されるリン酸エステル化合物および一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物」を、「特定のリン酸エステル化合物」とも記す。
In the present invention, the “phosphonic acid compound represented by the general formula (1)” is also referred to as “specific phosphonic acid compound”, and the phosphoric acid ester compound represented by the general formula (2a) and the general formula ( The “at least one phosphate ester compound selected from the phosphate ester compounds represented by 2b)” is also referred to as “specific phosphate ester compound”.
工程Aで得られる近赤外線吸収剤は、主として前記特定のホスホン酸化合物と銅塩とが反応したホスホン酸銅塩が有する銅イオンによって近赤外線吸収特性を有すると考えられる。前記ホスホン酸銅塩は、分散剤として作用する前記特定のリン酸エステル化合物によって、極めて微細な状態で維持されると考えられる。なお、該ホスホン酸銅塩は、下記一般式(3)で表わされる。
The near-infrared absorber obtained in Step A is considered to have near-infrared absorption characteristics mainly due to the copper ions of the phosphonic acid copper salt obtained by reacting the specific phosphonic acid compound with the copper salt. The phosphonic acid copper salt is considered to be maintained in a very fine state by the specific phosphate ester compound acting as a dispersant. The copper phosphonate is represented by the following general formula (3).
また、工程Aで得られる近赤外線吸収剤は、銅イオンに対して主として前記特定のホスホン酸化合物が配位し、さらにその周りに前記特定のリン酸エステル化合物が存在すると考えられる。また、銅イオンの一部には、前記特定のリン酸エステル化合物が配位していると考えられる。このため、近赤外線吸収剤中の銅イオンは、熱等に対する安定性に優れ、例えば該近赤外線吸収剤を含有する近赤外線吸収フィルター等の成形体は、銅イオンの影響を受けず、着色が少なく透明性に優れる。
In addition, it is considered that the specific phosphonic acid compound is mainly coordinated with the copper ion in the near-infrared absorber obtained in the step A, and further, the specific phosphoric ester compound is present therearound. Moreover, it is thought that the said specific phosphate ester compound coordinates to some copper ions. Therefore, the copper ions in the near-infrared absorber are excellent in stability to heat and the like. For example, a molded product such as a near-infrared absorption filter containing the near-infrared absorber is not affected by the copper ions and is colored. Less transparency and excellent transparency.
[式中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
前記一般式(1)および(3)におけるR11としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロ-n-ブチル基、パーフルオロへキシル基、パーフルオロオクチル基、パーフルオロデシル基等が挙げられる。 [Wherein R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms. Represents an alkyl group. ]
R 11 in the general formulas (1) and (3) is hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl. Group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, perfluoroethyl group, perfluoropropyl group, perfluoro-n-butyl group, perfluorohexyl group, perfluorooctyl Group, perfluorodecyl group and the like.
前記一般式(1)および(3)におけるR11としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロ-n-ブチル基、パーフルオロへキシル基、パーフルオロオクチル基、パーフルオロデシル基等が挙げられる。 [Wherein R 1 is a monovalent group represented by —CH 2 CH 2 —R 11 , and R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or fluorine having 1 to 20 carbon atoms. Represents an alkyl group. ]
R 11 in the general formulas (1) and (3) is hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl. Group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, perfluoroethyl group, perfluoropropyl group, perfluoro-n-butyl group, perfluorohexyl group, perfluorooctyl Group, perfluorodecyl group and the like.
また、工程Aにより近赤外線吸収剤を含む反応混合物を製造する際には、前記一般式(1)および(3)における前記R11が炭素数の大きな基、分子鎖の長い基であると、分散性が低下する傾向があるため、R11としては、水素原子または炭素数が1~10のアルキル基であることが好ましく、炭素数が2~8のアルキル基であることがより好ましい。R11が、水素原子または炭素数が1~10のアルキル基であると、本発明の製造方法で得られる近赤外線吸収剤分散液中の近赤外線吸収剤の分散性が特に優れる傾向があり好ましい。また、R11が、炭素数が2~8のアルキル基であると、後述の工程B1や工程B2において固形分の沈降が容易な傾向があり好ましい。
Further, when producing a reaction mixture containing a near-infrared absorber in step A, the R 11 in the general formulas (1) and (3) is a group having a large number of carbon atoms or a group having a long molecular chain. Since dispersibility tends to decrease, R 11 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 2 to 8 carbon atoms. It is preferable that R 11 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms because the dispersibility of the near-infrared absorber in the near-infrared absorber dispersion obtained by the production method of the present invention tends to be particularly excellent. . In addition, it is preferable that R 11 is an alkyl group having 2 to 8 carbon atoms because solids tend to settle easily in the later-described Step B1 and Step B2.
前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物において、R21、R22およびR23は、-(CH2CH2O)nR5で表される1価の基(ポリオキシアルキル基)である。nは4~35の整数であり、6~25の整数であるとより好ましい。nが4未満である場合には、本発明の近赤外線吸収剤分散液を用いて、近赤外線吸収フィルター等の成形体を製造した際に、該成形体の透明性が不充分となる。また、nが35を超えると、充分な透明性を有する近赤外線吸収フィルター等の成形体を得るために必要な、リン酸エステル化合物の量が増え、コスト高の原因となる。
In at least one phosphate ester compound selected from the phosphate ester compound represented by the general formula (2a) and the phosphate ester compound represented by the general formula (2b), R 21 , R 22 and R 23 is a monovalent group (polyoxyalkyl group) represented by — (CH 2 CH 2 O) n R 5 . n is an integer of 4 to 35, and more preferably an integer of 6 to 25. When n is less than 4, when a molded product such as a near-infrared absorbing filter is produced using the near-infrared absorbent dispersion of the present invention, the transparency of the molded product becomes insufficient. On the other hand, when n exceeds 35, the amount of the phosphoric acid ester compound necessary to obtain a molded article such as a near infrared absorption filter having sufficient transparency increases, resulting in high costs.
また、R5は、炭素数6~25のアルキル基または炭素数6~25のアルキルフェニル基であり、炭素数6~25のアルキル基であることが好ましく、12~20のアルキル基であることがより好ましい。R5が、炭素数6未満の基であると、近赤外線吸収フィルター等の成形体の透明性が不充分となる。また、R5が、炭素数25を超える基であると、充分な透明性を有する近赤外線吸収フィルター等の成形体を得るために必要な、リン酸エステル化合物の量が増え、コスト高の原因となる。
R 5 is an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms, preferably an alkyl group having 6 to 25 carbon atoms, and preferably an alkyl group having 12 to 20 carbon atoms. Is more preferable. When R 5 is a group having less than 6 carbon atoms, the transparency of a molded product such as a near infrared absorption filter becomes insufficient. Further, if R 5 is a group having more than 25 carbon atoms, the amount of the phosphoric acid ester compound required for obtaining a molded article such as a near-infrared absorption filter having sufficient transparency is increased, resulting in high costs. It becomes.
工程Aにおいて近赤外線吸収剤を得る際には、前記一般式(2a)で表されるリン酸エステル化合物、前記一般式(2b)で表されるリン酸エステル化合物の少なくとも一方が用いられるが、前記一般式(2a)で表されるリン酸エステル化合物、前記一般式(2b)で表されるリン酸エステル化合物の両方を用いることが好ましい。前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物を用いると、近赤外線吸収フィルター等の成形体の透明性、耐熱性に優れる傾向があり好ましい。前記一般式(2a)で表されるリン酸エステル化合物、前記一般式(2b)で表されるリン酸エステル化合物の両方を用いる場合には、一般式(2a)で表されるリン酸エステル化合物と、一般式(2b)で表されるリン酸エステル化合物との割合は、特に限定されないが、通常はモル比((2a):(2b))で10:90~90:10である。
When obtaining a near-infrared absorber in step A, at least one of the phosphoric acid ester compound represented by the general formula (2a) and the phosphoric acid ester compound represented by the general formula (2b) is used. It is preferable to use both the phosphate compound represented by the general formula (2a) and the phosphate compound represented by the general formula (2b). When the phosphoric acid ester compound represented by the general formula (2a) and the phosphoric acid ester compound represented by the general formula (2b) are used, the transparency and heat resistance of a molded article such as a near infrared absorption filter tend to be excellent. Is preferable. When both the phosphate compound represented by the general formula (2a) and the phosphate compound represented by the general formula (2b) are used, the phosphate compound represented by the general formula (2a) The ratio of the phosphoric acid ester compound represented by the general formula (2b) is not particularly limited, but is usually 10:90 to 90:10 in molar ratio ((2a) :( 2b)).
また、前記一般式(2a)で表されるリン酸エステル化合物としては、一種単独で用いても、二種以上を用いてもよく、前記一般式(2b)で表されるリン酸エステル化合物としては、一種単独で用いても、二種以上を用いてもよい。
Moreover, as a phosphate ester compound represented by the said General formula (2a), it may be used individually by 1 type, or 2 or more types may be used, As a phosphate ester compound represented by the said General formula (2b) May be used alone or in combination of two or more.
また、工程Aにおいて近赤外線吸収剤を得る際には、その他のリン系化合物、例えばリン酸トリエステルをさらに用いてもよい。
Further, when obtaining a near infrared absorber in the step A, other phosphorus compounds such as a phosphoric acid triester may be further used.
前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物としては、市販されているリン酸エステル化合物を用いることもできる。
As at least one phosphate ester compound selected from the phosphate ester compound represented by the general formula (2a) and the phosphate ester compound represented by the general formula (2b), commercially available phosphoric acid An ester compound can also be used.
前記銅塩としては、2価の銅イオンを供給することが可能な銅塩が通常用いられる。前記銅塩としては、前記一般式(3)で表わされるホスホン酸銅塩以外の銅塩であればよい。前記銅塩としては例えば、無水酢酸銅、無水蟻酸銅、無水ステアリン酸銅、無水安息香酸銅、無水エチルアセト酢酸銅、無水ピロリン酸銅、無水ナフテン酸銅、無水クエン酸銅等の有機酸の銅塩、該有機酸の銅塩の水和物もしくは水化物;酸化銅、塩化銅、硫酸銅、硝酸銅、塩基性炭酸銅等の無機酸の銅塩、該無機酸の銅塩の水和物もしくは水化物;水酸化銅が挙げられる。なお、銅塩としては、一種単独で用いても、二種以上を用いてもよい。
As the copper salt, a copper salt capable of supplying divalent copper ions is usually used. As said copper salt, what is necessary is just copper salts other than the phosphonic acid copper salt represented by the said General formula (3). Examples of the copper salt include copper of organic acids such as anhydrous copper acetate, anhydrous copper formate, anhydrous copper stearate, anhydrous copper benzoate, anhydrous ethyl acetoacetate copper, anhydrous pyrophosphate, anhydrous naphthenic acid copper, and anhydrous copper citrate. Salt, hydrate or hydrate of copper salt of organic acid; copper salt of inorganic acid such as copper oxide, copper chloride, copper sulfate, copper nitrate, basic copper carbonate, hydrate of copper salt of inorganic acid Or a hydrate; copper hydroxide is mentioned. In addition, as a copper salt, you may use individually by 1 type, or may use 2 or more types.
銅塩としては、無水酢酸銅、酢酸銅1水和物が、溶解性や副生成物の除去の点から好ましく用いられる。
As the copper salt, anhydrous copper acetate and copper acetate monohydrate are preferably used from the viewpoint of solubility and removal of by-products.
工程Aで得られる近赤外線吸収剤は、前記一般式(1)で表されるホスホン酸化合物と、前記一般式(2a)で表されるリン酸エステル化合物および前記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とから得られる。工程Aで得られる近赤外線吸収剤としては、前記特定のホスホン酸化合物と銅塩とが反応したホスホン酸銅塩が存在し、さらにその周りに前記特定のリン酸エステル化合物が存在すると考えられる。また、前記ホスホン酸銅塩を構成する前記特定のホスホン酸化合物の一部が、前記特定のリン酸エステル化合物で置き換わったホスホン酸銅塩も存在すると考えられる。
The near-infrared absorber obtained in step A is represented by the phosphonic acid compound represented by the general formula (1), the phosphate compound represented by the general formula (2a), and the general formula (2b). It is obtained from at least one phosphate ester compound selected from phosphoric acid ester compounds and a copper salt. As the near-infrared absorber obtained in the step A, it is considered that the phosphonic acid copper salt obtained by reacting the specific phosphonic acid compound and the copper salt exists, and further the specific phosphate ester compound is present therearound. Further, it is considered that there is also a phosphonic acid copper salt in which a part of the specific phosphonic acid compound constituting the phosphonic acid copper salt is replaced with the specific phosphoric acid ester compound.
また、工程Aで得られる近赤外線吸収剤の平均粒子径は、好ましくは10~150nmであり、より好ましくは20~120nmである。
Further, the average particle size of the near-infrared absorber obtained in the step A is preferably 10 to 150 nm, more preferably 20 to 120 nm.
また、工程Aで用いる前記各成分の量は以下のとおりである。前記特定のホスホン酸化合物は、前記特定のリン酸エステル化合物1モルあたり、5モル以上用いることが好ましく、8~100モル用いることがより好ましく、10~80モル用いることが特に好ましい。5モルを下回ると、近赤外線吸収フィルター等の成形体の、近赤外線の吸収特性が悪化する場合や、耐熱性が低下する場合がある。
Moreover, the amount of each component used in step A is as follows. The specific phosphonic acid compound is preferably used in an amount of 5 mol or more, more preferably 8 to 100 mol, and particularly preferably 10 to 80 mol, per 1 mol of the specific phosphate compound. When the amount is less than 5 mol, the near infrared absorption characteristics of a molded article such as a near infrared absorption filter may deteriorate, or the heat resistance may decrease.
また、前記特定のホスホン酸化合物は、銅塩中の銅1モルあたり、0.4モル以上であることが好ましく、0.5~1.5モルであることがより好ましく、0.7~1.2モルであることが特に好ましい。前記範囲内では、近赤外線吸収フィルター等の成形体の透明性、耐熱性が特に優れるため好ましい。
The specific phosphonic acid compound is preferably 0.4 mol or more, more preferably 0.5 to 1.5 mol, and more preferably 0.7 to 1 mol per mol of copper in the copper salt. Particularly preferred is 2 moles. Within the said range, since transparency and heat resistance of molded objects, such as a near-infrared absorption filter, are especially excellent, it is preferable.
工程Aでは前述のように、前記特定のホスホン酸化合物と、前記特定のリン酸エステル化合物と、銅塩とを、溶媒中で混合して近赤外線吸収剤を含む反応混合物を得るが、具体的には以下の方法で行うことができる。
In step A, as described above, the specific phosphonic acid compound, the specific phosphoric acid ester compound, and the copper salt are mixed in a solvent to obtain a reaction mixture containing a near-infrared absorber. The following method can be used.
前記工程Aでは、主に前記特定のリン酸エステル化合物の存在下で、前記特定のホスホン酸化合物と、前記銅塩とが反応し、該反応によって、前記溶媒に溶解しない粒子状のホスホン酸銅塩が生成する。前記リン酸エステル化合物は、反応時に良好な分散剤として作用することができるため、前記ホスホン酸銅塩は分散性が高く保たれ、凝集を抑制することができる。
In the step A, the specific phosphonic acid compound reacts with the copper salt mainly in the presence of the specific phosphoric ester compound, and by the reaction, particulate copper phosphonate that does not dissolve in the solvent A salt is formed. Since the phosphoric ester compound can act as a good dispersant during the reaction, the phosphonic acid copper salt can be kept highly dispersible and can suppress aggregation.
なお、前記工程Aでは、前記特定のホスホン酸化合物と銅塩との反応のみではなく、例えば前記特定のリン酸エステル化合物と銅塩とが反応してもよい。また、前記特定のホスホン酸化合物、特定のリン酸エステル化合物、銅塩の一部が反応せずに残存していてもよい。
In Step A, not only the reaction between the specific phosphonic acid compound and the copper salt, but also the specific phosphate compound and the copper salt may react, for example. In addition, the specific phosphonic acid compound, the specific phosphate ester compound, and a part of the copper salt may remain without reacting.
工程Aで用いる溶媒としては、メタノール、エタノール等のアルコール、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、水等が挙げられ、良好に反応を行う観点から、エタノール、THFまたはDMFが好ましい。また、反応工程は、好ましくは室温~60℃、より好ましくは20~40℃の温度条件で、好ましくは0.5~5時間、より好ましくは1~3時間行われる。
Examples of the solvent used in Step A include alcohols such as methanol and ethanol, tetrahydrofuran (THF), dimethylformamide (DMF), water, and the like, and ethanol, THF, or DMF is preferable from the viewpoint of satisfactory reaction. The reaction step is preferably performed at room temperature to 60 ° C., more preferably 20 to 40 ° C., preferably 0.5 to 5 hours, more preferably 1 to 3 hours.
該反応によって、近赤外線吸収剤を含む反応混合物が得られる。反応混合物には、近赤外線吸収剤以外に、溶媒、用いる原料に依存する副生成物等が含まれている。
By this reaction, a reaction mixture containing a near infrared absorber is obtained. In addition to the near-infrared absorber, the reaction mixture contains a by-product that depends on the solvent and the raw material used.
[工程B1]
本発明の近赤外線吸収剤分散液の製造方法では、前記工程Aを行った後に、前記反応混合物中の固形分を沈降させ、上澄み液を除去する工程B1を行う。 [Step B1]
In the manufacturing method of the near-infrared absorber dispersion of the present invention, after performing the step A, the step B1 is performed in which the solid content in the reaction mixture is settled and the supernatant is removed.
本発明の近赤外線吸収剤分散液の製造方法では、前記工程Aを行った後に、前記反応混合物中の固形分を沈降させ、上澄み液を除去する工程B1を行う。 [Step B1]
In the manufacturing method of the near-infrared absorber dispersion of the present invention, after performing the step A, the step B1 is performed in which the solid content in the reaction mixture is settled and the supernatant is removed.
工程B1では、工程Aで得られた反応混合物中の固形分を沈降させる。沈降させる方法としては、反応混合物を静置することにより固形分を沈降させる方法や、反応混合物を遠心分離し、固形分を沈降させる方法が挙げられる。
In step B1, the solid content in the reaction mixture obtained in step A is precipitated. Examples of the sedimentation method include a method in which the solid content is settled by allowing the reaction mixture to stand, and a method in which the solid content is sedimented by centrifuging the reaction mixture.
なお、沈降させる方法としては、コストの観点からは自然沈降が好ましい。しかしながら、近赤外線吸収剤の粒径が小さい場合には、自然沈降が困難な場合や、自然沈降に長時間必要な場合がある。自然沈降に長時間要すると生産性を悪化させるため、近赤外線吸収剤を速やかに沈降させることが可能な遠心分離が好ましい。
In addition, as a method of sedimentation, natural sedimentation is preferable from the viewpoint of cost. However, when the particle size of the near-infrared absorbing agent is small, natural sedimentation may be difficult, or natural sedimentation may be required for a long time. When natural sedimentation takes a long time, productivity is deteriorated, and therefore centrifugation capable of quickly sedimenting the near-infrared absorbent is preferable.
また、工程B1では前記固形分を沈降させた後に、上澄み液の除去を行う。工程B1では、上澄み液の除去を行うことにより固形分を得ることができる。上澄み液の除去方法としては、本発明を行うスケールによっても異なるが、例えば上澄み液をパスツールピペット、スポイト等を用いて除去する方法や、上澄み液をデカンテーションにより除去する方法等が挙げられる。
In Step B1, after the solid content is settled, the supernatant liquid is removed. In step B1, the solid content can be obtained by removing the supernatant. The method for removing the supernatant liquid varies depending on the scale for carrying out the present invention, and examples thereof include a method for removing the supernatant liquid using a Pasteur pipette, a dropper and the like, and a method for removing the supernatant liquid by decantation.
工程B1では、前記沈降、上澄み液の除去を行うことにより、前記反応混合物中の溶媒や、前記溶媒に可溶な副生成物が除去された固形分を得ることができる。
In Step B1, the solid content from which the solvent in the reaction mixture and the by-products soluble in the solvent are removed can be obtained by removing the sediment and the supernatant liquid.
本発明の製造方法で得られた近赤外線吸収剤分散液が分散性に優れる理由は明らかではないが、本発明者らは、工程B1を行うことにより、前記溶媒に可溶な副生成物が除去され、このことが、近赤外線吸収剤分散液の分散性の向上に寄与すると推測した。
Although the reason why the near-infrared absorbent dispersion obtained by the production method of the present invention is excellent in dispersibility is not clear, the present inventors have obtained a by-product that is soluble in the solvent by performing Step B1. It was estimated that this contributed to the improvement of the dispersibility of the near-infrared absorbent dispersion.
また、本発明の製造方法では、工程B1で得られた固形分を用いて工程Cを行ってもよく、工程B1で得られた固形分を用いて工程B2を行ってもよい。
In the production method of the present invention, step C may be performed using the solid content obtained in step B1, or step B2 may be performed using the solid content obtained in step B1.
[工程B2]
本発明の近赤外線吸収剤分散液の製造方法では、前記工程B1と工程Cとの間に、上澄み液を除去することにより得られた固形分に、溶媒を加えて攪拌することにより固形分を洗浄し、その後固形分を沈降させ、上澄み液を除去する工程B2を1回以上行ってもよい。 [Step B2]
In the manufacturing method of the near-infrared absorber dispersion liquid of the present invention, the solid content is obtained by adding a solvent to the solid content obtained by removing the supernatant liquid between Step B1 and Step C and stirring. You may perform 1 time or more of process B2 which wash | cleans and solidifies a solid content after that and removes a supernatant liquid.
本発明の近赤外線吸収剤分散液の製造方法では、前記工程B1と工程Cとの間に、上澄み液を除去することにより得られた固形分に、溶媒を加えて攪拌することにより固形分を洗浄し、その後固形分を沈降させ、上澄み液を除去する工程B2を1回以上行ってもよい。 [Step B2]
In the manufacturing method of the near-infrared absorber dispersion liquid of the present invention, the solid content is obtained by adding a solvent to the solid content obtained by removing the supernatant liquid between Step B1 and Step C and stirring. You may perform 1 time or more of process B2 which wash | cleans and solidifies a solid content after that and removes a supernatant liquid.
工程B2では、まず前記B1で得られた固形分を溶媒で洗浄する。洗浄は、通常前記固形分と、溶媒とを混合し、攪拌することにより行われる。該洗浄により、前記工程B1で除去しきれなかった溶媒に可溶な副生成物が存在する場合には該副生成物を、溶媒に溶解することが可能である。なお、洗浄を行う際の前記固形分と溶媒との量比としては特に限定はないが、好適に攪拌等により洗浄を行うことが可能な量が好ましく、具体的には前記固形分100質量部に対して溶媒が300~10000質量部であることが好ましく、500~5000質量部であることがより好ましい。
In step B2, the solid content obtained in B1 is first washed with a solvent. Washing is usually performed by mixing the solid content and a solvent and stirring. When there is a by-product that is soluble in the solvent that could not be removed in Step B1, the by-product can be dissolved in the solvent. In addition, the amount ratio of the solid content and the solvent at the time of washing is not particularly limited, but an amount that can be suitably washed by stirring or the like is preferable. Specifically, the solid content is 100 parts by mass. The solvent is preferably 300 to 10000 parts by mass, more preferably 500 to 5000 parts by mass.
なお、溶媒としては、原料(前記銅塩、特定のホスホン酸化合物、特定のリン酸エステル化合物)を溶解可能であればよく、例えばメタノール、エタノール、2-プロパノール等が挙げられ、エタノールが好ましい。また、溶媒は複数の成分からなる混合溶媒であってもよい。
In addition, as a solvent, what is necessary is just to be able to melt | dissolve a raw material (The said copper salt, a specific phosphonic acid compound, a specific phosphoric acid ester compound), For example, methanol, ethanol, 2-propanol etc. are mentioned, Ethanol is preferable. The solvent may be a mixed solvent composed of a plurality of components.
工程B2では、前記洗浄を行った固形分を沈降させる。沈降させる方法としては、工程B1に記載の方法と同様に行うことができる。
In step B2, the washed solid is settled. As a method of settling, it can carry out similarly to the method as described in process B1.
また、工程B2では前記固形分を沈降させた後に、上澄み液の除去を行う。上澄み液の除去方法としては、工程B1に記載の方法と同様に行うことができる。
Further, in step B2, after the solid content is settled, the supernatant liquid is removed. As a method for removing the supernatant, it can be carried out in the same manner as in the method described in Step B1.
工程B2では、前記洗浄、沈降、上澄み液の除去を行うことにより、前記固形分中に溶媒に可溶な副生成物が存在する場合には、該副生成物が除去された固形分を得ることができる。
In step B2, when the by-product soluble in the solvent is present in the solid content, the solid content from which the by-product has been removed is obtained by performing washing, sedimentation, and removal of the supernatant. be able to.
また、工程B2を行う場合には、工程B2は1回行ってもよく、複数回行ってもよい。工程B2を複数回行うことにより、固形分中の副生成物をより低減することが可能である。なお、例えば工程B2を2回行うとは、工程B1で得られた固形分に、前記洗浄、沈降、上澄み液の除去を行い、得られた固形分を用い再度前記洗浄、沈降、上澄み液の除去を行うことを意味する。なお、本発明の近赤外線吸収剤分散液の製造方法では、工程B2を行うことが好ましく、工程B2は、1~6回行うことが好ましく、1~4回行うことがより好ましい。
Moreover, when performing process B2, process B2 may be performed once and may be performed in multiple times. By performing Step B2 a plurality of times, it is possible to further reduce the by-products in the solid content. For example, performing Step B2 twice means that the solid content obtained in Step B1 is subjected to washing, sedimentation, and removal of the supernatant liquid, and using the obtained solid content, the washing, sedimentation, and supernatant liquid are again used. Means removal. In the method for producing a near-infrared absorbent dispersion of the present invention, it is preferable to perform step B2, and it is preferable to perform step B2 1 to 6 times, more preferably 1 to 4 times.
[工程C]
本発明の近赤外線吸収剤分散液の製造方法では、前記固形分を乾燥させ、精製された近赤外線吸収剤を得る工程Cを行う。 [Step C]
In the manufacturing method of the near-infrared absorber dispersion liquid of this invention, the process C which dries the said solid content and obtains the refined near-infrared absorber is performed.
本発明の近赤外線吸収剤分散液の製造方法では、前記固形分を乾燥させ、精製された近赤外線吸収剤を得る工程Cを行う。 [Step C]
In the manufacturing method of the near-infrared absorber dispersion liquid of this invention, the process C which dries the said solid content and obtains the refined near-infrared absorber is performed.
工程Cで用いる固形分は、前記工程B2が行われない場合には、工程B1で得られた固形分を意味し、前記工程B2が行われる場合には、工程B2で得られた固形分を意味する。
The solid content used in the step C means the solid content obtained in the step B1 when the step B2 is not performed, and the solid content obtained in the step B2 when the step B2 is performed. means.
前記工程Cでは、前記固形分を乾燥させ、精製された近赤外線吸収剤を得る。前記工程B1または工程B2で得られた固形分は、一般に溶媒等で濡れたスラリー状態にある。該固形分を工程Cで乾燥することにより、精製された近赤外線吸収剤が得られる。
In step C, the solid content is dried to obtain a purified near-infrared absorber. The solid content obtained in Step B1 or Step B2 is generally in a slurry state wetted with a solvent or the like. By drying the solid content in Step C, a purified near-infrared absorber is obtained.
前記工程Cでは、通常固形分を加熱することにより、固形分に付着した溶媒等を除去するが加熱条件は、通常、室温~70℃であり、好ましくは室温~60℃である。また、前記工程Cは、常圧下で行ってもよく、減圧下で行ってもよい。減圧下で工程Cを行う場合には、加熱を行わなくてもよい場合や、加熱温度が低くてもよい場合がある。
In step C, the solid content is usually heated to remove the solvent and the like attached to the solid content, but the heating conditions are usually room temperature to 70 ° C., preferably room temperature to 60 ° C. The step C may be performed under normal pressure or under reduced pressure. When step C is performed under reduced pressure, heating may not be performed or the heating temperature may be low.
工程Cで得られた近赤外線吸収剤粉末を、工程Dで用いる前に、更に溶媒で洗浄する工程(洗浄工程)を行い、不純物を除去、精製することも可能である。この時に使用する溶媒は特に限定しないが、例えばメタノール、エタノール、2-プロパノール等のアルコール類、酢酸エチルなどのエステル類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類等が挙げられる。また、溶媒は複数の成分からなる混合溶媒であってもよい。
Before the near-infrared absorber powder obtained in the step C is used in the step D, it is also possible to perform a step of washing with a solvent (washing step) to remove and purify impurities. The solvent used at this time is not particularly limited, and examples thereof include alcohols such as methanol, ethanol and 2-propanol, esters such as ethyl acetate, ethers such as diethyl ether, tetrahydrofuran and dioxane. The solvent may be a mixed solvent composed of a plurality of components.
前記洗浄工程では近赤外線吸収剤粉末を前記溶媒に入れ、攪拌して不純物を溶解した後にろ別を行うことにより近赤外線吸収剤粉末を得てもよいし、遠心分離によって溶媒と分けてもよい。該洗浄工程の後に乾燥することにより、精製した近赤外線吸収剤を得ることができる。この乾燥条件は前述同様、通常、室温~70℃であり、好ましくは室温~60℃である。また、前記乾燥は、常圧下で行ってもよく、減圧下で行ってもよい。減圧下で乾燥を行う場合には、加熱を行わなくてもよい場合や、加熱温度が低くてもよい場合がある。
In the washing step, the near-infrared absorbent powder may be put into the solvent, stirred to dissolve impurities, and then filtered to obtain a near-infrared absorbent powder, or separated from the solvent by centrifugation. . By drying after the washing step, a purified near-infrared absorber can be obtained. The drying conditions are usually from room temperature to 70 ° C., preferably from room temperature to 60 ° C., as described above. The drying may be performed under normal pressure or under reduced pressure. When drying under reduced pressure, heating may not be performed or the heating temperature may be low.
[工程D]
本発明の近赤外線吸収剤分散液の製造方法では、前記精製された近赤外線吸収剤を分散媒中に分散する工程Dを行う。 [Step D]
In the manufacturing method of the near-infrared absorber dispersion liquid of the present invention, Step D of dispersing the purified near-infrared absorber in a dispersion medium is performed.
本発明の近赤外線吸収剤分散液の製造方法では、前記精製された近赤外線吸収剤を分散媒中に分散する工程Dを行う。 [Step D]
In the manufacturing method of the near-infrared absorber dispersion liquid of the present invention, Step D of dispersing the purified near-infrared absorber in a dispersion medium is performed.
前記工程Dでは、前記工程Cで得られた精製された近赤外線吸収剤を分散媒に分散する。分散媒としては、トルエン、キシレン、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、塩化メチレン、クロロホルム、トリエチレングリコールビス(2-エチルヘキサノエート)等が挙げられる。
In the step D, the purified near-infrared absorber obtained in the step C is dispersed in a dispersion medium. Examples of the dispersion medium include toluene, xylene, tetrahydrofuran (THF), dimethylformamide (DMF), methylene chloride, chloroform, triethylene glycol bis (2-ethylhexanoate), and the like.
精製された近赤外線吸収剤を分散媒に分散させる方法としては、特に限定はなく、分散媒に精製された近赤外線吸収剤を加え、超音波処理により分散させる方法(超音波を照射して分散させる方法)、分散媒に精製された近赤外線吸収剤を加え、攪拌することにより分散させる方法、分散媒に精製された近赤外線吸収剤を加え、ボールミルで粉砕して分散する方法等が挙げられる。
The method for dispersing the purified near-infrared absorber in the dispersion medium is not particularly limited. A method in which the purified near-infrared absorber is added to the dispersion medium and dispersed by ultrasonic treatment (dispersed by irradiating with ultrasonic waves) And a method of adding a purified near-infrared absorber to the dispersion medium and stirring to disperse, a method of adding the purified near-infrared absorber to the dispersion medium, and pulverizing and dispersing with a ball mill. .
工程Dで用いる分散媒の量としては、特に限定はないが、製造設備のサイズの観点から、通常は、精製された近赤外線吸収剤を100質量部とすると、分散媒は300~50000質量部用いられる。
The amount of the dispersion medium used in the step D is not particularly limited, but from the viewpoint of the size of the production equipment, usually, the dispersion medium is 300 to 50000 parts by mass when the purified near-infrared absorber is 100 parts by mass. Used.
なお、工程Dでは、前記精製された近赤外線吸収剤を、分散剤存在下で分散媒中に分散し、分散液を得てもよい。工程Dで用いる分散剤としては、前記工程Aで説明した分散剤、すなわち特定のリン酸エステル化合物を用いることができる。工程Dにおいて分散剤を用いると、得られる近赤外線吸収剤分散液の分散性がさらに向上する場合がある。
In Step D, the purified near infrared absorber may be dispersed in a dispersion medium in the presence of a dispersant to obtain a dispersion. As the dispersant used in Step D, the dispersant described in Step A, that is, a specific phosphate compound can be used. If a dispersant is used in step D, the dispersibility of the obtained near-infrared absorbent dispersion may be further improved.
工程Dで用いる分散剤の量としては、特に限定はないが、分散剤として前記特定のリン酸エステル化合物を用いる場合には、近赤外線吸収剤を100質量部とすると、1~200質量部であることが好ましい。なお、工程Aで用いる特定のリン酸エステル化合物と、工程Dで用いる特定のリン酸エステル化合物とは、同じ化合物を用いてもよく、別の化合物を用いてもよい。
The amount of the dispersant used in the step D is not particularly limited. However, when the specific phosphate compound is used as the dispersant, the amount of the near-infrared absorber is 100 parts by mass. Preferably there is. The specific phosphate ester compound used in step A and the specific phosphate ester compound used in step D may be the same compound or different compounds.
なお、工程Dを分散剤存在下で行う場合には、分散媒に分散剤を添加してもよく、予め工程Cで得られた精製された近赤外線吸収剤と分散剤とを混合したものを、工程Dに用いてもよい。
In addition, when performing the process D in presence of a dispersing agent, you may add a dispersing agent to a dispersion medium, and what mixed the near-infrared absorber refine | purified previously and the dispersing agent obtained by the process C previously. , It may be used in Step D.
また、該工程Dにおいては、他の添加剤を分散媒に加えてもよい。他の添加剤としては、可塑剤(例えば、3GO(トリエチレングリコールビス(2-エチルヘキサノエート)))、酸化防止剤、紫外線吸収剤、光安定剤、脱水剤、接着力調整剤、シランカップリング剤、顔料等が挙げられる。
Further, in the step D, other additives may be added to the dispersion medium. Other additives include plasticizers (eg, 3GO (triethylene glycol bis (2-ethylhexanoate))), antioxidants, UV absorbers, light stabilizers, dehydrating agents, adhesion modifiers, silanes A coupling agent, a pigment, etc. are mentioned.
工程Dによって、前記精製された近赤外線吸収剤が分散媒に分散した、近赤外線吸収剤分散液を得ることができる。
By Step D, a near-infrared absorber dispersion liquid in which the purified near-infrared absorber is dispersed in a dispersion medium can be obtained.
[近赤外線吸収剤分散液]
本発明の製造方法で得られる、近赤外線吸収剤分散液は、該分散液に含まれる近赤外線吸収剤の分散性に優れている。このため本発明の近赤外線吸収剤分散液は、長期間(例えば1ケ月)室温で保存した場合であっても、近赤外線吸収剤が沈殿することがなく、各用途に用いることができる。 [Near-infrared absorber dispersion]
The near-infrared absorber dispersion obtained by the production method of the present invention is excellent in dispersibility of the near-infrared absorber contained in the dispersion. For this reason, the near-infrared absorber dispersion liquid of the present invention can be used for each application without precipitation of the near-infrared absorber even when stored at room temperature for a long time (for example, one month).
本発明の製造方法で得られる、近赤外線吸収剤分散液は、該分散液に含まれる近赤外線吸収剤の分散性に優れている。このため本発明の近赤外線吸収剤分散液は、長期間(例えば1ケ月)室温で保存した場合であっても、近赤外線吸収剤が沈殿することがなく、各用途に用いることができる。 [Near-infrared absorber dispersion]
The near-infrared absorber dispersion obtained by the production method of the present invention is excellent in dispersibility of the near-infrared absorber contained in the dispersion. For this reason, the near-infrared absorber dispersion liquid of the present invention can be used for each application without precipitation of the near-infrared absorber even when stored at room temperature for a long time (for example, one month).
本発明の製造方法で得られる近赤外線吸収剤分散液に分散している近赤外線吸収剤の平均粒子径は、好ましくは10~150nmであり、より好ましくは20~120nmである。
The average particle size of the near-infrared absorbent dispersed in the near-infrared absorbent dispersion obtained by the production method of the present invention is preferably 10 to 150 nm, more preferably 20 to 120 nm.
[樹脂組成物]
本発明の製造方法で得られる近赤外線吸収剤分散液および樹脂を用いて近赤外線吸収能を有する樹脂組成物を製造することができる。 [Resin composition]
A resin composition having a near-infrared absorbing ability can be produced using the near-infrared absorbent dispersion and resin obtained by the production method of the present invention.
本発明の製造方法で得られる近赤外線吸収剤分散液および樹脂を用いて近赤外線吸収能を有する樹脂組成物を製造することができる。 [Resin composition]
A resin composition having a near-infrared absorbing ability can be produced using the near-infrared absorbent dispersion and resin obtained by the production method of the present invention.
該樹脂組成物の製造方法としては例えば、前記近赤外線吸収剤分散液と、樹脂とを混合し、得られた混合物から分散媒を除去することにより、樹脂組成物を得る方法、前記近赤外線吸収剤分散液と、樹脂の溶液とを混合し、得られた混合物から分散媒および溶媒を除去することにより、樹脂組成物を得る方法、近赤外線吸収剤分散液を乾固して得られる近赤外線吸収剤粉末と、樹脂とを混合することにより樹脂組成物を得る方法が挙げられる。
Examples of the method for producing the resin composition include a method of obtaining a resin composition by mixing the near-infrared absorber dispersion and a resin, and removing a dispersion medium from the obtained mixture, and the near-infrared absorption. A method of obtaining a resin composition by mixing an agent dispersion and a resin solution, and removing a dispersion medium and a solvent from the obtained mixture, a near infrared ray obtained by drying a near infrared absorber dispersion The method of obtaining a resin composition by mixing absorbent powder and resin is mentioned.
なお、該樹脂組成物には、近赤外線吸収剤および樹脂以外の成分、例えば可塑剤等の添加剤が含まれていてもよい。
The resin composition may contain components other than the near-infrared absorber and the resin, for example, additives such as a plasticizer.
前記分散媒の除去や、分散媒および溶媒の除去を行う際には、その除去方法としては特に限定はないが、通常は真空乾燥等の乾燥により行われる。また、前記近赤外船分散剤の乾固を行う際の方法としては特に限定はないが、通常は真空乾燥等の乾燥により行われる。
When removing the dispersion medium or removing the dispersion medium and the solvent, the removal method is not particularly limited, but is usually performed by drying such as vacuum drying. The method for drying and solidifying the near-infrared ship dispersant is not particularly limited, but is usually performed by drying such as vacuum drying.
なお、該樹脂組成物からなる成形体を得る場合には、該樹脂組成物の製造と成形を同時に行うことにより成形体を得てもよく、該樹脂組成物をペレット等として製造した後に、所望の形状に成形することにより、成形体を得てもよく、樹脂組成物をペレット等のマスターバッチとして得た後に、該マスターバッチおよび樹脂を用い、押出成形、キャスト成形、射出成形等の様々な成形法により、近赤外線吸収フィルター等の成形体を得てもよい。
In addition, when obtaining the molded object which consists of this resin composition, you may obtain a molded object by performing manufacture and shaping | molding of this resin composition simultaneously, and after manufacturing this resin composition as a pellet etc., desired A molded body may be obtained by molding into a shape of, and after obtaining the resin composition as a master batch such as pellets, the master batch and the resin are used to perform various processes such as extrusion molding, cast molding, injection molding, etc. You may obtain molded objects, such as a near-infrared absorption filter, by a shaping | molding method.
なお、近赤外線吸収フィルター以外の成形体としては、ディスプレイ用の近赤外線吸収フィルム、フォトダイオード等の受光部等に配置される視感度補正フィルター等が挙げられる。
In addition, examples of the molded body other than the near-infrared absorption filter include a near-infrared absorption film for display, a visibility correction filter disposed in a light-receiving portion such as a photodiode, and the like.
なお、前記樹脂としては、ポリビニルアセタール樹脂、エチレン‐酢酸ビニル共重合体、(メタ)アクリル酸樹脂、ポリエステル樹脂、ポリウレタン樹脂、塩化ビニル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、およびノルボルネン樹脂から選択される少なくとも1種の樹脂が、近赤外線吸収剤を良好に分散することが可能であり、かつ可視光の透過性に優れることが好ましい。
The resin is at least selected from polyvinyl acetal resin, ethylene-vinyl acetate copolymer, (meth) acrylic acid resin, polyester resin, polyurethane resin, vinyl chloride resin, polyolefin resin, polycarbonate resin, and norbornene resin. It is preferable that one type of resin can disperse the near-infrared absorber well and is excellent in visible light transmittance.
前記樹脂としては、ポリビニルアセタール樹脂、およびエチレン‐酢酸ビニル共重合体から選択される少なくとも1種の樹脂であることがより好ましく、ポリビニルブチラール樹脂(PVB)、およびエチレン‐酢酸ビニル共重合体から選択される少なくとも1種の樹脂であることが特に好ましく、ポリビニルブチラール樹脂、またはエチレン‐酢酸ビニル共重合体が最も好ましい。
The resin is more preferably at least one resin selected from polyvinyl acetal resin and ethylene-vinyl acetate copolymer, and selected from polyvinyl butyral resin (PVB) and ethylene-vinyl acetate copolymer. Particularly preferred is at least one resin selected from the group consisting of polyvinyl butyral resin and ethylene-vinyl acetate copolymer.
なお、前記樹脂の溶液は、前述の樹脂を溶媒に溶解することにより得ることができる。溶媒としては樹脂を溶解できればよく、特に限定はないが例えばトルエン、エタノール等が挙げられる。溶媒としては一種単独でも、二種以上を用いてもよい。
The resin solution can be obtained by dissolving the above resin in a solvent. The solvent is not particularly limited as long as it can dissolve the resin, and examples thereof include toluene and ethanol. As the solvent, one kind may be used alone, or two or more kinds may be used.
本発明の製造方法で得られる近赤外線吸収剤分散液および可塑剤を用いて近赤外線吸剤分散可塑剤を製造することができる。
A near-infrared absorbent-dispersed plasticizer can be produced using the near-infrared absorbent dispersion and the plasticizer obtained by the production method of the present invention.
該近赤外線吸剤分散可塑剤の製造方法としては、前記近赤外線吸収剤分散液と、可塑剤とを混合し、分散媒を留去することにより近赤外線吸収剤分散可塑剤を得る方法が挙げられる。
Examples of the method for producing the near-infrared absorbent-dispersed plasticizer include a method of obtaining the near-infrared absorbent-dispersed plasticizer by mixing the near-infrared absorbent dispersion and the plasticizer and distilling off the dispersion medium. It is done.
該近赤外線吸剤分散可塑剤と樹脂とを混練等により混合することにより、近赤外線吸収剤が分散した樹脂(樹脂組成物)を容易に得ることができる。
The resin (resin composition) in which the near infrared absorbent is dispersed can be easily obtained by mixing the near infrared absorbent dispersed plasticizer and the resin by kneading or the like.
前記可塑剤としては特に限定はないが、例えばトリエチレングリコール-ジ-2-エチルヘキサノエート、トリエチレングリコール-ジ-2-エチルブチラート、テトラエチレングリコール-ジ-2-エチルヘキサノエート、テトラエチレングリコールジヘプタノエート、ジヘキシルアジペート、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート等が挙げられる。
The plasticizer is not particularly limited. For example, triethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-2-ethylbutyrate, tetraethylene glycol-di-2-ethylhexanoate, Examples include tetraethylene glycol diheptanoate, dihexyl adipate, tributoxyethyl phosphate, and isodecylphenyl phosphate.
前記近赤外線吸剤分散可塑剤と混練される樹脂としては、例えばポリビニルブチラール樹脂が好ましく、前記近赤外線吸剤分散可塑剤を、ポリビニルブチラール樹脂と混練することにより、近赤外線吸収剤が分散したポリビニルブチラール樹脂を得ることができる。ぱた、該近赤外線吸収剤が分散したポリビニルブチラール樹脂は、合わせガラスの中間膜等の材料として使用することができる。
As the resin kneaded with the near-infrared absorbent-dispersed plasticizer, for example, a polyvinyl butyral resin is preferable. A butyral resin can be obtained. The polyvinyl butyral resin in which the near infrared absorber is dispersed can be used as a material for an interlayer film of laminated glass.
また、前記樹脂組成物は、近赤外線を吸収することが望まれる用途に通常は用いられる。前記樹脂組成物から形成される樹脂膜は、近赤外線吸収能に優れ、加熱時の着色、すなわち黄変が抑制されているため合わせガラス用中間膜等の構造材料用中間膜として好適に用いることが可能である。
The resin composition is usually used for applications where it is desired to absorb near infrared rays. The resin film formed from the resin composition is excellent in near-infrared absorption ability and is suitably used as an intermediate film for structural materials such as an interlayer film for laminated glass because coloring during heating, that is, yellowing is suppressed. Is possible.
次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
〔実施例1〕
酢酸銅1水和物0.70g(3.5×10-3mol)を、エタノール35gに溶解させた溶液(a1)、並びに、酢酸銅1水和物に対して等モルのデシルホスホン酸0.78gおよび下記リン酸エステル化合物(A)0.5gを、エタノール5gに溶解させた溶液(b1)をそれぞれ準備した。 [Example 1]
A solution (a1) obtained by dissolving 0.70 g (3.5 × 10 −3 mol) of copper acetate monohydrate in 35 g of ethanol, and equimolardecylphosphonic acid 0 with respect to copper acetate monohydrate A solution (b1) prepared by dissolving 0.78 g and 0.5 g of the following phosphate ester compound (A) in 5 g of ethanol was prepared.
酢酸銅1水和物0.70g(3.5×10-3mol)を、エタノール35gに溶解させた溶液(a1)、並びに、酢酸銅1水和物に対して等モルのデシルホスホン酸0.78gおよび下記リン酸エステル化合物(A)0.5gを、エタノール5gに溶解させた溶液(b1)をそれぞれ準備した。 [Example 1]
A solution (a1) obtained by dissolving 0.70 g (3.5 × 10 −3 mol) of copper acetate monohydrate in 35 g of ethanol, and equimolar
なお、前記リン酸エステル化合物(A)は、前記一般式(2a)で表されるリン酸エステル化合物(モノエステル)と、前記一般式(2b)で表されるリン酸エステル化合物(ジエステル)と、前記一般式(2b)中のヒドロキシル基の水素原子が同様の基でさらに置換されたトリエステルとの混合物であり、前記式中におけるnが25であり、R21、R22、R23が炭素数13~15のアルキル基であるものである。なお、リン酸エステル化合物(A)中のモノエステルとジエステルとトリエステルとの存在比(モル比)は、ほぼ1:1:1である。
The phosphate ester compound (A) includes a phosphate ester compound (monoester) represented by the general formula (2a) and a phosphate ester compound (diester) represented by the general formula (2b). And a triester in which the hydrogen atom of the hydroxyl group in the general formula (2b) is further substituted with the same group, wherein n is 25, and R 21 , R 22 and R 23 are It is an alkyl group having 13 to 15 carbon atoms. In addition, the abundance ratio (molar ratio) of the monoester, the diester, and the triester in the phosphoric ester compound (A) is approximately 1: 1: 1.
次いで、上記で得られた溶液(a1)と溶液(b1)とを混合し、室温下で2時間攪拌して反応させた。
Next, the solution (a1) and the solution (b1) obtained above were mixed and reacted by stirring at room temperature for 2 hours.
反応後、静置すると沈殿ができるので上澄みの透明部分を、スポイトを用いて取り除いた。
After the reaction, the precipitate formed when left standing, so the transparent portion of the supernatant was removed using a dropper.
残った沈殿を50℃にて減圧乾固して1.39gの固形物(近赤外線吸収剤)を得た。
The remaining precipitate was dried at 50 ° C. under reduced pressure to obtain 1.39 g of a solid (near infrared absorber).
ガラス容器に、得られた固形物、トルエン20gを添加し、2時間超音波洗浄機にガラス容器ごと入れて分散処理を行う事により近赤外線吸収剤を分散させたトルエン(近赤外線吸収剤分散液)を得た。この分散液中の近赤外線吸収剤(銅錯体)の、平均粒子径は46nmであり、その後1ヶ月にわたって室温で保管しても沈殿の発生が見られなかった。なお、平均粒子径は大塚電子株式会社製ELSZ-2を用いて求めた。
Toluene (near-infrared absorbent dispersion liquid) in which the obtained solid substance and 20 g of toluene were added to a glass container, and the near-infrared absorbent was dispersed by placing the whole glass container in an ultrasonic cleaner for 2 hours and carrying out a dispersion treatment. ) The near-infrared absorber (copper complex) in this dispersion had an average particle size of 46 nm, and no precipitation was observed even after storage at room temperature for 1 month. The average particle size was determined using ELSZ-2 manufactured by Otsuka Electronics Co., Ltd.
〔実施例2〕
酢酸銅1水和物0.70g(3.5×10-3mol)を、エタノール35gに溶解させた溶液(a1)、並びに、酢酸銅1水和物に対して等モルのデシルホスホン酸0.78gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.5gを、エタノール5gに溶解させた溶液(b1)をそれぞれ準備した。 [Example 2]
A solution (a1) obtained by dissolving 0.70 g (3.5 × 10 −3 mol) of copper acetate monohydrate in 35 g of ethanol, and equimolardecylphosphonic acid 0 with respect to copper acetate monohydrate A solution (b1) in which 0.58 g of the same phosphate ester compound (A) as used in Example 1 was dissolved in 5 g of ethanol was prepared.
酢酸銅1水和物0.70g(3.5×10-3mol)を、エタノール35gに溶解させた溶液(a1)、並びに、酢酸銅1水和物に対して等モルのデシルホスホン酸0.78gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.5gを、エタノール5gに溶解させた溶液(b1)をそれぞれ準備した。 [Example 2]
A solution (a1) obtained by dissolving 0.70 g (3.5 × 10 −3 mol) of copper acetate monohydrate in 35 g of ethanol, and equimolar
次いで、上記で得られた溶液(a1)と溶液(b1)とを混合し、室温下で2時間攪拌して反応させた。
Next, the solution (a1) and the solution (b1) obtained above were mixed and reacted by stirring at room temperature for 2 hours.
反応後、静置すると沈殿ができるので上澄みの透明部分を、スポイトを用いて取り除いた。
After the reaction, the precipitate formed when left standing, so the transparent portion of the supernatant was removed using a dropper.
沈殿の入っている容器にエタノール50gを加えて10分間攪拌を行い、静置により得られる上澄みを、スポイトを用いて除去し、沈殿を得た。
50 g of ethanol was added to the container containing the precipitate, stirred for 10 minutes, and the supernatant obtained by standing was removed using a dropper to obtain a precipitate.
次いで、沈殿の入っている容器にエタノール50gを加えて10分間攪拌を行い、静置により得られる上澄みを、スポイトを用いて除去し、沈殿を得た。
Next, 50 g of ethanol was added to the container containing the precipitate, stirred for 10 minutes, and the supernatant obtained by standing was removed using a dropper to obtain a precipitate.
再度、沈殿の入っている容器にエタノール50gを加えて10分間攪拌を行い、静置により得られる上澄みを、スポイトを用いて除去し、沈殿を得た。
Again, 50 g of ethanol was added to the container containing the precipitate and stirred for 10 minutes, and the supernatant obtained by standing was removed using a dropper to obtain a precipitate.
沈殿を50℃にて減圧乾固して1.15gの固形物(近赤外線吸収剤)を得た。
The precipitate was dried under reduced pressure at 50 ° C. to obtain 1.15 g of a solid (near infrared absorber).
ガラス容器に、得られた固形物、トルエン20g、前記リン酸エステル化合物(A)0.10gを添加し、5時間超音波洗浄機にガラス容器ごと入れて分散処理を行う事により近赤外線吸収剤を分散させたトルエン(近赤外線吸収剤分散液)を得た。この分散液中の近赤外線吸収剤(銅錯体)の、平均粒子径は64nmであり、その後1ヶ月にわたって室温で保管しても沈殿の発生が見られなかった。
A near-infrared absorber is obtained by adding 20 g of the obtained solid substance, toluene, and 0.10 g of the phosphoric acid ester compound (A) to a glass container, and dispersing the whole glass container in an ultrasonic cleaner for 5 hours. Of toluene (near-infrared absorbent dispersion) was obtained. The near-infrared absorber (copper complex) in this dispersion had an average particle size of 64 nm, and no precipitation was observed even after storage at room temperature for 1 month.
〔比較例1〕
実施例1と同様の溶液(a1)と溶液(b1)とを混合し、室温下で2時間攪拌して反応させた。 [Comparative Example 1]
The same solution (a1) and solution (b1) as in Example 1 were mixed and reacted by stirring at room temperature for 2 hours.
実施例1と同様の溶液(a1)と溶液(b1)とを混合し、室温下で2時間攪拌して反応させた。 [Comparative Example 1]
The same solution (a1) and solution (b1) as in Example 1 were mixed and reacted by stirring at room temperature for 2 hours.
反応後、溶媒および副生成物の酢酸を50℃、減圧下で除去することにより、1.5gの固形物(近赤外線吸収剤)を得た。
After the reaction, 1.5 g of a solid (near-infrared absorber) was obtained by removing the solvent and the by-product acetic acid at 50 ° C. under reduced pressure.
ガラス容器に、得られた固形物、トルエン20gを添加し、2時間超音波洗浄機にガラス容器ごと入れて分散処理を試みたが、粒径88nmとなった。更に小さくする為に3時間ほど超音波処理を行い、分散を試みたが途中で寒天状となり、安定な分散液を得ることができなかった。
The obtained solid and 20 g of toluene were added to a glass container, and the whole glass container was placed in an ultrasonic cleaner for 2 hours to attempt a dispersion treatment, but the particle diameter was 88 nm. In order to further reduce the size, ultrasonic treatment was performed for about 3 hours and dispersion was attempted. However, agar was formed on the way, and a stable dispersion could not be obtained.
〔比較例2〕
実施例1と同様の溶液(a1)と溶液(b1)とを混合し、室温下で2時間攪拌して反応させた。 [Comparative Example 2]
The same solution (a1) and solution (b1) as in Example 1 were mixed and reacted by stirring at room temperature for 2 hours.
実施例1と同様の溶液(a1)と溶液(b1)とを混合し、室温下で2時間攪拌して反応させた。 [Comparative Example 2]
The same solution (a1) and solution (b1) as in Example 1 were mixed and reacted by stirring at room temperature for 2 hours.
反応後、溶媒および副生成物の酢酸を50℃、減圧下で除去することにより、1.5gの固形物(近赤外線吸収剤)を得た。
After the reaction, 1.5 g of a solid (near-infrared absorber) was obtained by removing the solvent and the by-product acetic acid at 50 ° C. under reduced pressure.
ガラス容器に、得られた固形物、トルエン20g、前記リン酸エステル化合物(A)0.10gを添加し、2時間超音波洗浄機にガラス容器ごと入れて分散処理を試みたが、粒径85nmとなった。更に小さくする為に3時間ほど超音波処理を行い、分散を試みたが比較例1同様、途中で寒天状となり、安定な分散液を得ることができなかった。
The obtained solid, 20 g of toluene, and 0.10 g of the phosphoric acid ester compound (A) were added to a glass container, and the whole glass container was placed in an ultrasonic cleaner for 2 hours to attempt a dispersion treatment. It became. In order to further reduce the size, ultrasonic treatment was performed for about 3 hours and dispersion was attempted. However, as in Comparative Example 1, it became agar-like on the way, and a stable dispersion could not be obtained.
〔実施例3〕
酢酸銅1水和物1.56g(7.8×10-3mol)を、エタノール80gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのオクチルホスホン酸1.52gおよび実施例1で使用したものと同じリン酸エステル化合物(A)1.0gを、エタノール10gに溶解させた溶液(b2)をそれぞれ準備した。 Example 3
A solution (a2) obtained by dissolving 1.56 g (7.8 × 10 −3 mol) of copper acetate monohydrate in 80 g of ethanol, and equimolar octylphosphonic acid 1 with respect to copper acetate monohydrate A solution (b2) in which 1.02 g of the same phosphate ester compound (A) used in Example 1 was dissolved in 10 g of ethanol was prepared.
酢酸銅1水和物1.56g(7.8×10-3mol)を、エタノール80gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのオクチルホスホン酸1.52gおよび実施例1で使用したものと同じリン酸エステル化合物(A)1.0gを、エタノール10gに溶解させた溶液(b2)をそれぞれ準備した。 Example 3
A solution (a2) obtained by dissolving 1.56 g (7.8 × 10 −3 mol) of copper acetate monohydrate in 80 g of ethanol, and equimolar octylphosphonic acid 1 with respect to copper acetate monohydrate A solution (b2) in which 1.02 g of the same phosphate ester compound (A) used in Example 1 was dissolved in 10 g of ethanol was prepared.
次いで、上記で得られた溶液(a2)と溶液(b2)とを混合し、室温下で2時間攪拌して反応させた。
Next, the solution (a2) and the solution (b2) obtained above were mixed and reacted by stirring at room temperature for 2 hours.
反応後、静置すると沈殿ができるので上澄みの透明部分を取り除いた。
After the reaction, if the solution was allowed to stand, a precipitate was formed, so the transparent portion of the supernatant was removed.
残った沈殿を50℃にて減圧乾固して2.45gの固形物(近赤外線吸収剤)を得た。
The remaining precipitate was dried at 50 ° C. under reduced pressure to obtain 2.45 g of a solid (near infrared absorber).
ガラス容器に、得られた固形物、塩化メチレン30gを添加し、10時間超音波洗浄機にガラス容器ごと入れて分散処理を行う事により近赤外線吸収剤を分散させた塩化メチレン(近赤外線吸収剤分散液)を得た。この分散液中の近赤外線吸収剤(銅錯体)の平均粒子径は70nmであり、その後1ヶ月にわたって室温で保管しても沈殿の発生が見られなかった。
Methylene chloride (near-infrared absorber) in which near-infrared absorber is dispersed by adding the obtained solid substance, 30 g of methylene chloride to a glass vessel, and putting the whole glass vessel in an ultrasonic cleaner for 10 hours to perform dispersion treatment. Dispersion) was obtained. The average particle size of the near-infrared absorber (copper complex) in this dispersion was 70 nm, and no precipitation was observed even after storage at room temperature for 1 month.
〔比較例3〕
実施例3と同様の溶液(a2)と溶液(b2)とを混合し、室温下で2時間攪拌して反応させた。 [Comparative Example 3]
The same solution (a2) and solution (b2) as in Example 3 were mixed and reacted by stirring at room temperature for 2 hours.
実施例3と同様の溶液(a2)と溶液(b2)とを混合し、室温下で2時間攪拌して反応させた。 [Comparative Example 3]
The same solution (a2) and solution (b2) as in Example 3 were mixed and reacted by stirring at room temperature for 2 hours.
反応後、溶媒および副生成物の酢酸を50℃、減圧下で除去することにより、3.0gの固形物(近赤外線吸収剤)を得た。
After the reaction, the solvent and the by-product acetic acid were removed at 50 ° C. under reduced pressure to obtain 3.0 g of a solid (near infrared absorber).
ガラス容器に、得られた固形物、塩化メチレン30gを添加し、10時間超音波洗浄機にガラス容器ごと入れて分散処理を試みるとたが、粒径104nmまでしか小さくならなかった。この分散液を室温にて1ヶ月保管すると沈殿物が見られた。
When the obtained solid substance and 30 g of methylene chloride were added to a glass container and the whole glass container was placed in an ultrasonic cleaner for 10 hours to attempt dispersion treatment, the particle size was reduced only to 104 nm. When this dispersion was stored at room temperature for 1 month, a precipitate was observed.
〔実施例4〕
酢酸銅1水和物1.17g(5.8×10-3mol)を、エタノール55gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのエチルホスホン酸0.64gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.15gを、エタノール5gに溶解させた溶液(b2)をそれぞれ準備した。 Example 4
A solution (a2) obtained by dissolving 1.17 g (5.8 × 10 −3 mol) of copper acetate monohydrate in 55 g of ethanol, and equimolarethylphosphonic acid 0 with respect to copper acetate monohydrate .64 g and a solution (b2) in which 0.15 g of the same phosphoric ester compound (A) used in Example 1 was dissolved in 5 g of ethanol were prepared.
酢酸銅1水和物1.17g(5.8×10-3mol)を、エタノール55gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのエチルホスホン酸0.64gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.15gを、エタノール5gに溶解させた溶液(b2)をそれぞれ準備した。 Example 4
A solution (a2) obtained by dissolving 1.17 g (5.8 × 10 −3 mol) of copper acetate monohydrate in 55 g of ethanol, and equimolar
次いで、上記で得られた溶液(a2)と溶液(b2)とを混合し、室温下で2時間攪拌して反応させた。
Next, the solution (a2) and the solution (b2) obtained above were mixed and reacted by stirring at room temperature for 2 hours.
反応後、溶液を遠心分離機(3500rpm 10分)にかけると沈殿ができたので上澄みの透明部分を取り除いた。
After the reaction, when the solution was centrifuged (3500 rpm, 10 minutes), a precipitate was formed, and thus the transparent portion of the supernatant was removed.
残った沈殿を50℃にて減圧乾固して1.03gの固形物(近赤外線吸収剤)を得た。
The remaining precipitate was dried under reduced pressure at 50 ° C. to obtain 1.03 g of a solid (near infrared absorber).
ガラス容器に、得られた固形物、トルエン20g、前記リン酸エステル化合物(A)0.10gを添加し、10時間超音波洗浄機にガラス容器ごと入れて分散処理を行う事により近赤外線吸収剤を分散させたトルエン(近赤外線吸収剤分散液)を得た。この分散液中の近赤外線吸収剤(銅錯体)の平均粒子径は50nmであり、その後1ヶ月にわたって室温で保管しても沈殿の発生が見られなかった。
A near-infrared absorber is obtained by adding 20 g of the obtained solid substance, toluene, and 0.10 g of the phosphoric acid ester compound (A) to a glass container, and placing the glass container in an ultrasonic cleaner for 10 hours for dispersion treatment. Of toluene (near-infrared absorbent dispersion) was obtained. The average particle size of the near-infrared absorber (copper complex) in this dispersion was 50 nm, and no precipitation was observed even after storage at room temperature for 1 month.
〔実施例5〕
酢酸銅1水和物2.00g(10.0×10-3mol)を、エタノール110gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのブチルホスホン酸1.38gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.50gを、エタノール7gに溶解させた溶液(b2)をそれぞれ準備した。 Example 5
A solution (a2) obtained by dissolving 2.00 g (10.0 × 10 −3 mol) of copper acetate monohydrate in 110 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate .38 g and a solution (b2) prepared by dissolving 0.50 g of the same phosphate ester compound (A) as used in Example 1 in 7 g of ethanol were prepared.
酢酸銅1水和物2.00g(10.0×10-3mol)を、エタノール110gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのブチルホスホン酸1.38gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.50gを、エタノール7gに溶解させた溶液(b2)をそれぞれ準備した。 Example 5
A solution (a2) obtained by dissolving 2.00 g (10.0 × 10 −3 mol) of copper acetate monohydrate in 110 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate .38 g and a solution (b2) prepared by dissolving 0.50 g of the same phosphate ester compound (A) as used in Example 1 in 7 g of ethanol were prepared.
次いで、上記の溶液(a2)を攪拌しているところに溶液(b2)を2時間かけて滴下し、滴下後更に室温下で1時間攪拌して反応させた。
Next, the solution (b2) was added dropwise over 2 hours while stirring the solution (a2), and after the addition, the mixture was further stirred at room temperature for 1 hour to be reacted.
反応後、溶液を静置すると青白色の沈殿が出来たので上澄みを取り除いた。
After the reaction, when the solution was allowed to stand, a pale white precipitate was formed, and the supernatant was removed.
残った反応溶液及び沈殿を40℃にて減圧乾固して2.38gの固形物(近赤外線吸収剤)を得た。
The remaining reaction solution and precipitate were dried under reduced pressure at 40 ° C. to obtain 2.38 g of a solid (near infrared absorber).
ガラス容器に、得られた固形物、トルエン20gを添加し、10時間超音波洗浄機にガラス容器ごと入れて分散処理を行う事により近赤外線吸収剤を分散させたトルエン(近赤外線吸収剤分散液)を得た。この分散液中の近赤外線吸収剤(銅錯体)の平均粒子径は52nmであり、その後1ヶ月にわたって室温で保管しても沈殿の発生が見られなかった。
Toluene (near-infrared absorber dispersion liquid) in which near-infrared absorber was dispersed by adding 20 g of the obtained solid substance and toluene to a glass vessel, and placing the whole glass vessel in an ultrasonic cleaner for 10 hours for dispersion treatment. ) The average particle size of the near-infrared absorber (copper complex) in this dispersion was 52 nm, and no precipitation was observed even after storage at room temperature for 1 month.
〔比較例4〕
酢酸銅1水和物2.00g(10.0×10-3mol)を、エタノール110gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのブチルホスホン酸1.38gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.50gを、エタノール7gに溶解させた溶液(b2)をそれぞれ準備した。 [Comparative Example 4]
A solution (a2) obtained by dissolving 2.00 g (10.0 × 10 −3 mol) of copper acetate monohydrate in 110 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate .38 g and a solution (b2) prepared by dissolving 0.50 g of the same phosphate ester compound (A) as used in Example 1 in 7 g of ethanol were prepared.
酢酸銅1水和物2.00g(10.0×10-3mol)を、エタノール110gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのブチルホスホン酸1.38gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.50gを、エタノール7gに溶解させた溶液(b2)をそれぞれ準備した。 [Comparative Example 4]
A solution (a2) obtained by dissolving 2.00 g (10.0 × 10 −3 mol) of copper acetate monohydrate in 110 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate .38 g and a solution (b2) prepared by dissolving 0.50 g of the same phosphate ester compound (A) as used in Example 1 in 7 g of ethanol were prepared.
次いで、上記の溶液(a2)を攪拌しているところに溶液(b2)を2時間かけて滴下し、滴下後更に室温下で1時間攪拌して反応させた。
Next, the solution (b2) was added dropwise over 2 hours while stirring the solution (a2), and after the addition, the mixture was further stirred at room temperature for 1 hour to be reacted.
反応後、溶液を40℃にて減圧乾固して2.50gの固形物(近赤外線吸収剤)を得た。
After the reaction, the solution was dried under reduced pressure at 40 ° C. to obtain 2.50 g of a solid (near infrared absorber).
ガラス容器に、得られた固形物、トルエン20gを添加し、10時間超音波洗浄機にガラス容器ごと入れて分散処理を行ったが、この分散液中の近赤外線吸収剤(銅錯体)の平均粒子径は69nmと大きかったために更に10時間超音波洗浄機にて分散処理を行うことにより、平均粒子径が63nmの近赤外線吸収剤分散液を得た。この分散液は安定であり、その後1ヶ月にわたって室温で保管しても沈殿の発生が見られなかった。
The obtained solid and 20 g of toluene were added to a glass container, and the whole glass container was placed in an ultrasonic cleaner for 10 hours for dispersion treatment. The average of near-infrared absorber (copper complex) in this dispersion was Since the particle diameter was as large as 69 nm, dispersion treatment was further performed with an ultrasonic cleaner for 10 hours to obtain a near-infrared absorbent dispersion having an average particle diameter of 63 nm. This dispersion was stable, and no precipitation was observed even after storage at room temperature for 1 month.
比較例4では、実施例と比べて分散に長時間を要し、分散性に劣ることが分かった。
Comparative Example 4 was found to require a longer time for dispersion than the Examples, and to be inferior in dispersibility.
〔実施例6〕
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後に、ポリビニルブチラール樹脂11.0gを溶解した。 Example 6
After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved.
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後に、ポリビニルブチラール樹脂11.0gを溶解した。 Example 6
After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved.
この溶液に、実施例1で作製した近赤外線吸収剤トルエン分散液7.70gを添加、攪拌混合を行った後に、溶液をテフロン(登録商標)コーティングのバットに入れ、真空乾燥機にて溶媒のトルエンとメタノールを除去した。バットに貼りついた樹脂組成物を取り出し、厚さ0.8mmの型枠および(株)神藤金属工業所製の圧縮成形機を用い、120℃、3MPaで予熱1分間を行った後、15MPaで3分間プレスし、30mm×80mm×0.8mm厚さの樹脂シートを得た。前記樹脂シートの両面を、スライドガラス(厚み1.2~1.5mm)で挟み、オートクレーブを用いて15MPaの加圧状態で130℃30分間加熱、冷却後取り出して合せガラスを作製した。この合せガラスの分光透過率を図1に示す。
To this solution, 7.70 g of the near-infrared absorber toluene dispersion prepared in Example 1 was added, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. The resin composition attached to the bat was taken out, and after preheating for 1 minute at 120 ° C. and 3 MPa using a 0.8 mm-thick mold and a compression molding machine manufactured by Shinfuji Metal Industry Co., Ltd., 15 MPa Pressing for 3 minutes gave a resin sheet having a thickness of 30 mm × 80 mm × 0.8 mm. Both sides of the resin sheet were sandwiched between slide glasses (thickness 1.2 to 1.5 mm), and heated and cooled at 130 ° C. for 30 minutes under a pressure of 15 MPa using an autoclave to produce a laminated glass. The spectral transmittance of this laminated glass is shown in FIG.
該測定サンプルの分光は、250~2500nmの波長範囲で、分光光度計(U-4000形、(株)日立製作所製)を使用して測定した。C光源を使用し、三刺激値(X,Y,Z)の値を計算し、下記式よりYIを算出した。
The spectrum of the measurement sample was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.) in the wavelength range of 250 to 2500 nm. Using a C light source, tristimulus values (X, Y, Z) were calculated, and YI was calculated from the following equation.
YI=(128X-106Z)/Y
〔実施例7〕
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後にポリビニルブチラール樹脂11.0gを溶解した。この溶液に、実施例4で作製した近赤外線吸収剤トルエン分散液4.65gを添加、攪拌混合を行った後に、溶液をテフロン(登録商標)コーティングのバットに入れ、真空乾燥機にて溶媒のトルエン及びメタノールを除去した。バットに貼りついた樹脂組成物を用いて実施例6同様に合せガラスを作製した。分光透過率を図2に示す。 YI = (128X-106Z) / Y
Example 7
After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution, 4.65 g of the near-infrared absorber toluene dispersion prepared in Example 4 was added, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat. The spectral transmittance is shown in FIG.
〔実施例7〕
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後にポリビニルブチラール樹脂11.0gを溶解した。この溶液に、実施例4で作製した近赤外線吸収剤トルエン分散液4.65gを添加、攪拌混合を行った後に、溶液をテフロン(登録商標)コーティングのバットに入れ、真空乾燥機にて溶媒のトルエン及びメタノールを除去した。バットに貼りついた樹脂組成物を用いて実施例6同様に合せガラスを作製した。分光透過率を図2に示す。 YI = (128X-106Z) / Y
Example 7
After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution, 4.65 g of the near-infrared absorber toluene dispersion prepared in Example 4 was added, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat. The spectral transmittance is shown in FIG.
〔実施例8〕
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後にポリビニルブチラール樹脂11.0gを溶解した。この溶液に、実施例5で作製した近赤外線吸収剤トルエン分散液5.59gを添加、攪拌混合を行った後に、溶液をテフロン(登録商標)コーティングのバットに入れ、真空乾燥機にて溶媒のトルエン及びメタノールを除去した。バットに貼りついた樹脂組成物を用いて実施例6同様に合せガラスを作製した。分光透過率を図3に示す。 Example 8
After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution was added 5.59 g of the near-infrared absorber toluene dispersion prepared in Example 5, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat. The spectral transmittance is shown in FIG.
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後にポリビニルブチラール樹脂11.0gを溶解した。この溶液に、実施例5で作製した近赤外線吸収剤トルエン分散液5.59gを添加、攪拌混合を行った後に、溶液をテフロン(登録商標)コーティングのバットに入れ、真空乾燥機にて溶媒のトルエン及びメタノールを除去した。バットに貼りついた樹脂組成物を用いて実施例6同様に合せガラスを作製した。分光透過率を図3に示す。 Example 8
After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution was added 5.59 g of the near-infrared absorber toluene dispersion prepared in Example 5, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat. The spectral transmittance is shown in FIG.
〔比較例5〕
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後にポリビニルブチラール樹脂11.0gを溶解した。この溶液に、比較例4で作製した近赤外線吸収剤トルエン分散液5.62gを添加、攪拌混合を行った後に、溶液をテフロン(登録商標)コーティングのバットに入れ、真空乾燥機にて溶媒のトルエン及びメタノールを除去した。バットに貼りついた樹脂組成物を用いて実施例6同様に合せガラスを作製した。分光透過率を図4に示す。 [Comparative Example 5]
After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution was added 5.62 g of the near-infrared absorber toluene dispersion prepared in Comparative Example 4, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat. The spectral transmittance is shown in FIG.
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後にポリビニルブチラール樹脂11.0gを溶解した。この溶液に、比較例4で作製した近赤外線吸収剤トルエン分散液5.62gを添加、攪拌混合を行った後に、溶液をテフロン(登録商標)コーティングのバットに入れ、真空乾燥機にて溶媒のトルエン及びメタノールを除去した。バットに貼りついた樹脂組成物を用いて実施例6同様に合せガラスを作製した。分光透過率を図4に示す。 [Comparative Example 5]
After mixing 200 g of toluene, 60 g of methanol and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution was added 5.62 g of the near-infrared absorber toluene dispersion prepared in Comparative Example 4, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat. The spectral transmittance is shown in FIG.
〔実施例9〕
酢酸銅1水和物2.00g(10.0×10-3mol)を、エタノール110gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのブチルホスホン酸1.38gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.50gを、エタノール7gに溶解させた溶液(b2)をそれぞれ準備した。 Example 9
A solution (a2) obtained by dissolving 2.00 g (10.0 × 10 −3 mol) of copper acetate monohydrate in 110 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate .38 g and a solution (b2) prepared by dissolving 0.50 g of the same phosphate ester compound (A) as used in Example 1 in 7 g of ethanol were prepared.
酢酸銅1水和物2.00g(10.0×10-3mol)を、エタノール110gに溶解させた溶液(a2)、並びに、酢酸銅1水和物に対して等モルのブチルホスホン酸1.38gおよび実施例1で使用したものと同じリン酸エステル化合物(A)0.50gを、エタノール7gに溶解させた溶液(b2)をそれぞれ準備した。 Example 9
A solution (a2) obtained by dissolving 2.00 g (10.0 × 10 −3 mol) of copper acetate monohydrate in 110 g of ethanol, and equimolar butylphosphonic acid 1 with respect to copper acetate monohydrate .38 g and a solution (b2) prepared by dissolving 0.50 g of the same phosphate ester compound (A) as used in Example 1 in 7 g of ethanol were prepared.
次いで、上記の溶液(a2)を攪拌しているところに溶液(b2)を2時間かけて滴下し、滴下後更に室温下で1時間攪拌して反応させた。
Next, the solution (b2) was added dropwise over 2 hours while stirring the solution (a2), and after the addition, the mixture was further stirred at room temperature for 1 hour to be reacted.
反応後、溶液を静置すると青白色の沈殿が出来たので上澄みを取り除いた。
After the reaction, when the solution was allowed to stand, a pale white precipitate was formed, and the supernatant was removed.
残った反応溶液及び沈殿を40℃にて減圧乾固して2.38gの固形物を得た。
The remaining reaction solution and precipitate were dried under reduced pressure at 40 ° C. to obtain 2.38 g of a solid.
次いでこの乾固した固形物にエタノール 20gを入れ、30分間攪拌を行った後、遠心分離機(3500rpm 10分)にかけると沈殿ができたので上澄みの透明部分を取り除いた。再度エタノール20gを入れ、同様に30分間攪拌を行った後に遠心分離機(3500rpm 10分)によって沈殿させて上澄み液を除いた。こうして得た沈殿を減圧乾固して2.25gの固形物(近赤外線吸収剤)を得た。
Next, 20 g of ethanol was added to the dried solid, stirred for 30 minutes, and then subjected to a centrifuge (3500 rpm, 10 minutes). As a result of precipitation, the transparent portion of the supernatant was removed. 20 g of ethanol was added again, and the mixture was stirred for 30 minutes in the same manner, followed by precipitation with a centrifuge (3500 rpm, 10 minutes) to remove the supernatant. The precipitate thus obtained was dried under reduced pressure to obtain 2.25 g of a solid (near infrared absorber).
ガラス容器に、得られた固形物、前記リン酸エステル化合物(A)0.10gおよびトルエン20gを添加し、10時間超音波洗浄機にガラス容器ごと入れて分散処理を行う事により近赤外線吸収剤を分散させたトルエン(近赤外線吸収剤分散液)を得た。この分散液中の近赤外線吸収剤(銅錯体)の平均粒子径は52nmであり、その後1ヶ月にわたって室温で保管しても沈殿の発生が見られなかった。
A near-infrared absorber is obtained by adding 0.10 g of the obtained solid substance, the phosphoric acid ester compound (A) and 20 g of toluene to a glass container, and dispersing the glass container in an ultrasonic cleaner for 10 hours. Of toluene (near-infrared absorbent dispersion) was obtained. The average particle size of the near-infrared absorber (copper complex) in this dispersion was 52 nm, and no precipitation was observed even after storage at room temperature for 1 month.
トルエン200g、メタノール60g、トリエチレングリコールビス(2-エチルヘキサノエート)4.18gを混合した後にポリビニルブチラール樹脂11.0gを溶解した。この溶液に、本実施例で作製した近赤外線吸収剤トルエン分散液5.69gを添加、攪拌混合を行った後に、溶液をテフロン(登録商標)コーティングのバットに入れ、真空乾燥機にて溶媒のトルエン及びメタノールを除去した。バットに貼りついた樹脂組成物を用いて実施例6同様に合せガラスを作製した。
After mixing 200 g of toluene, 60 g of methanol, and 4.18 g of triethylene glycol bis (2-ethylhexanoate), 11.0 g of polyvinyl butyral resin was dissolved. To this solution was added 5.69 g of the near-infrared absorbent toluene dispersion prepared in this example, and after stirring and mixing, the solution was placed in a Teflon (registered trademark) -coated vat and the solvent was removed using a vacuum dryer. Toluene and methanol were removed. A laminated glass was produced in the same manner as in Example 6 using the resin composition attached to the bat.
<耐熱性の評価>
前記合せガラスを100℃のオーブンに入れて、加熱保管における合せガラスのYI(黄色度指数)の測定を行った。実施例6~9および比較例5で得られた合わせガラスの初期YI及び100℃500時間経過後のYIおよびその差(δYI)を表1に示す。 <Evaluation of heat resistance>
The laminated glass was put in an oven at 100 ° C., and the YI (yellowness index) of the laminated glass in heat storage was measured. Table 1 shows the initial YI of the laminated glasses obtained in Examples 6 to 9 and Comparative Example 5, the YI after 100 hours at 100 ° C., and the difference (δYI).
前記合せガラスを100℃のオーブンに入れて、加熱保管における合せガラスのYI(黄色度指数)の測定を行った。実施例6~9および比較例5で得られた合わせガラスの初期YI及び100℃500時間経過後のYIおよびその差(δYI)を表1に示す。 <Evaluation of heat resistance>
The laminated glass was put in an oven at 100 ° C., and the YI (yellowness index) of the laminated glass in heat storage was measured. Table 1 shows the initial YI of the laminated glasses obtained in Examples 6 to 9 and Comparative Example 5, the YI after 100 hours at 100 ° C., and the difference (δYI).
〔実施例10〕
トリエチレングリコールビス(2-エチルヘキサノエート)16.7gに実施例4と同様の方法で作製した近赤外線吸収剤トルエン分散液18.6gを添加、攪拌混合を行った後に、エバポレーターにてトルエンを溜去して近赤外線吸収剤のトリエチレングリコールビス(2-エチルヘキサノエート)分散液(近赤外線吸収剤分散可塑剤)17.7gを作製した。 Example 10
To 16.7 g of triethylene glycol bis (2-ethylhexanoate) was added 18.6 g of a near-infrared absorbent toluene dispersion prepared in the same manner as in Example 4, and after stirring and mixing, toluene was removed using an evaporator. Was distilled to prepare 17.7 g of a triethylene glycol bis (2-ethylhexanoate) dispersion (near infrared absorber dispersion plasticizer) of a near infrared absorber.
トリエチレングリコールビス(2-エチルヘキサノエート)16.7gに実施例4と同様の方法で作製した近赤外線吸収剤トルエン分散液18.6gを添加、攪拌混合を行った後に、エバポレーターにてトルエンを溜去して近赤外線吸収剤のトリエチレングリコールビス(2-エチルヘキサノエート)分散液(近赤外線吸収剤分散可塑剤)17.7gを作製した。 Example 10
To 16.7 g of triethylene glycol bis (2-ethylhexanoate) was added 18.6 g of a near-infrared absorbent toluene dispersion prepared in the same manner as in Example 4, and after stirring and mixing, toluene was removed using an evaporator. Was distilled to prepare 17.7 g of a triethylene glycol bis (2-ethylhexanoate) dispersion (near infrared absorber dispersion plasticizer) of a near infrared absorber.
次いでポリビニルブチラール樹脂の粉末44gにこの近赤外線吸収剤のトリエチレングリコールビス(2-エチルヘキサノエート)分散液17.7gを混ぜたのちにプラストグラフ(ブラベンダー社製)に供給し、190℃、スクリュー回転数30rpmで10分間溶融混練し、近赤外線吸収剤を含むポリビニルブチラール樹脂組成物を得た。この樹脂組成物を、厚さ0.8mmの型枠および(株)神藤金属工業所製の圧縮成形機を用い、120℃、3MPaで予熱1分間を行った後、15MPaで3分間プレスし、30mm×80mm×0.8mm厚さの樹脂シートを得た。前記樹脂シートの両面を、スライドガラス(厚み1.2~1.5mm)で挟み、オートクレーブを用いて15MPaの加圧状態で130℃30分間加熱、冷却後取り出して合せガラスを作製した。
Next, 17.7 g of this near infrared absorbent triethylene glycol bis (2-ethylhexanoate) dispersion was mixed with 44 g of polyvinyl butyral resin powder, and then supplied to a plastograph (manufactured by Brabender) at 190 ° C. The mixture was melt-kneaded for 10 minutes at a screw speed of 30 rpm to obtain a polyvinyl butyral resin composition containing a near-infrared absorber. This resin composition was pre-heated at 120 ° C. and 3 MPa for 1 minute using a 0.8 mm thick formwork and a compression molding machine manufactured by Shinto Metal Industry Co., Ltd., and then pressed at 15 MPa for 3 minutes. A resin sheet having a thickness of 30 mm × 80 mm × 0.8 mm was obtained. Both sides of the resin sheet were sandwiched between slide glasses (thickness 1.2 to 1.5 mm), and heated and cooled at 130 ° C. for 30 minutes under a pressure of 15 MPa using an autoclave to produce a laminated glass.
Claims (15)
- 下記一般式(1)で表されるホスホン酸化合物と、下記一般式(2a)で表されるリン酸エステル化合物および下記一般式(2b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩とを、溶媒中で混合して近赤外線吸収剤を含む反応混合物を得る工程A、
前記反応混合物中の固形分を沈降させ、上澄み液を除去する工程B1、
前記固形分を乾燥させ、精製された近赤外線吸収剤を得る工程Cおよび、
前記精製された近赤外線吸収剤を分散媒中に分散する工程Dを有することを特徴とする近赤外線吸収剤分散液の製造方法。
Step B1 for precipitating solids in the reaction mixture and removing the supernatant.
Step C for drying the solid content to obtain a purified near infrared absorber, and
The manufacturing method of the near-infrared absorber dispersion liquid which has the process D which disperse | distributes the said refined near-infrared absorber in a dispersion medium.
- 前記反応混合物中の固形分を沈降させ、上澄み液を除去する工程B1が、反応混合物を遠心分離し、固形分を沈降させ、上澄み液を除去する工程である、請求項1に記載の近赤外線吸収剤分散液の製造方法。 The near-infrared ray according to claim 1, wherein the step B1 of precipitating the solid content in the reaction mixture and removing the supernatant liquid is a step of centrifuging the reaction mixture to precipitate the solid content and remove the supernatant liquid. Method for producing absorbent dispersion.
- 前記工程B1と工程Cとの間に、上澄み液を除去することにより得られた固形分に、溶媒を加えて攪拌することにより固形分を洗浄し、その後固形分を沈降させ、上澄み液を除去する工程B2を1回以上行い、
前記工程Cが、工程B2で得られた固形分を乾燥させ、精製された近赤外線吸収剤を得る工程である請求項1または2に記載の近赤外線吸収剤分散液の製造方法。 Between Step B1 and Step C, the solid content obtained by removing the supernatant liquid is washed by adding a solvent to the solid content, and then the solid content is settled and the supernatant liquid is removed. Performing step B2 at least once,
The method for producing a near-infrared absorber dispersion according to claim 1 or 2, wherein the step C is a step of obtaining a purified near-infrared absorber by drying the solid content obtained in the step B2. - 前記R11が水素原子または炭素数1~10のアルキル基である請求項1~3のいずれか一項に記載の近赤外線吸収剤分散液の製造方法。 The method for producing a near-infrared absorber dispersion according to any one of claims 1 to 3, wherein R 11 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- 前記R11が炭素数2~8のアルキル基である請求項1~3のいずれか一項に記載の近赤外線吸収剤分散液の製造方法。 The method for producing a near-infrared absorbent dispersion according to any one of claims 1 to 3, wherein R 11 is an alkyl group having 2 to 8 carbon atoms.
- 前記工程Dにおいて、超音波処理を行うことを特徴とする請求項1~5のいずれか一項に記載の近赤外線吸収剤分散液の製造方法。 6. The method for producing a near-infrared absorbent dispersion according to claim 1, wherein ultrasonic treatment is performed in the step D.
- 請求項1~6のいずれか一項に記載の製造方法によって得られる近赤外線吸収剤分散液。 A near-infrared absorbent dispersion obtained by the production method according to any one of claims 1 to 6.
- 請求項1~6のいずれか一項に記載の製造方法で作製された近赤外線吸収剤分散液と、樹脂とを混合し、得られた混合物から分散媒を除去することを特徴とする樹脂組成物の製造方法。 A resin composition comprising: mixing a near-infrared absorber dispersion prepared by the production method according to any one of claims 1 to 6 with a resin, and removing the dispersion medium from the obtained mixture. Manufacturing method.
- 請求項1~6のいずれか一項に記載の製造方法で作製された近赤外線吸収剤分散液と、樹脂の溶液とを混合し、得られた混合物から分散媒および溶媒を除去することを特徴とする樹脂組成物の製造方法。 A near-infrared absorber dispersion prepared by the production method according to any one of claims 1 to 6 is mixed with a resin solution, and the dispersion medium and the solvent are removed from the obtained mixture. A method for producing a resin composition.
- 請求項1~6のいずれか一項に記載の製造方法で作製された近赤外線吸収剤分散液を乾固して得られる近赤外線吸収剤粉末と、樹脂とを混合することを特徴とする樹脂組成物の製造方法。 A resin comprising a near-infrared absorbent powder obtained by drying a near-infrared absorbent dispersion produced by the production method according to any one of claims 1 to 6 and a resin. A method for producing the composition.
- 請求項8~10のいずれか一項に記載の製造方法によって得られる樹脂組成物。 A resin composition obtained by the production method according to any one of claims 8 to 10.
- 請求項1~6のいずれか一項に記載の製造方法で作製された近赤外線吸収剤分散液と、可塑剤とを混合し、分散媒を留去することを特徴とする近赤外線吸収剤分散可塑剤の製造方法。 A near-infrared absorber dispersion characterized by mixing a near-infrared absorber dispersion prepared by the production method according to any one of claims 1 to 6 with a plasticizer and distilling off the dispersion medium. A method for producing a plasticizer.
- 請求項12に記載の製造方法によって得られる近赤外線吸収剤分散可塑剤。 A near-infrared absorbent-dispersed plasticizer obtained by the production method according to claim 12.
- 請求項12に記載の製造方法で作製された近赤外線吸収剤分散可塑剤と、樹脂とを混合することを特徴とする樹脂組成物の製造方法。 A method for producing a resin composition, comprising mixing a near-infrared absorbent-dispersed plasticizer produced by the production method according to claim 12 and a resin.
- 請求項14に記載の製造方法によって得られる樹脂組成物。 A resin composition obtained by the production method according to claim 14.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/072724 WO2014038035A1 (en) | 2012-09-06 | 2012-09-06 | Method for producing near-infrared ray absorbent fluid dispersion and use of near-infrared ray absorbent fluid dispersion |
JP2014534101A JPWO2014038035A1 (en) | 2012-09-06 | 2012-09-06 | Method for producing near-infrared absorber dispersion and use of near-infrared absorber dispersion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/072724 WO2014038035A1 (en) | 2012-09-06 | 2012-09-06 | Method for producing near-infrared ray absorbent fluid dispersion and use of near-infrared ray absorbent fluid dispersion |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038035A1 true WO2014038035A1 (en) | 2014-03-13 |
Family
ID=50236686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/072724 WO2014038035A1 (en) | 2012-09-06 | 2012-09-06 | Method for producing near-infrared ray absorbent fluid dispersion and use of near-infrared ray absorbent fluid dispersion |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014038035A1 (en) |
WO (1) | WO2014038035A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019081896A (en) * | 2017-10-31 | 2019-05-30 | コニカミノルタ株式会社 | Near-infrared absorbing composition, near-infrared absorbing film, and image sensor for solid-state imaging element |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011099038A (en) * | 2009-11-05 | 2011-05-19 | Kureha Corp | Near-infrared ray absorber, method for producing the same and optical material |
JP2012087243A (en) * | 2010-10-21 | 2012-05-10 | Kureha Corp | Method for producing copper salt particle dispersion resin, copper salt particle dispersion resin, and master batch |
JP2012185385A (en) * | 2011-03-07 | 2012-09-27 | Kureha Corp | Manufacturing method of near-infrared ray absorbent fluid dispersion |
JP2012201865A (en) * | 2011-03-28 | 2012-10-22 | Kureha Corp | Method for producing copper salt fine particle dispersion resin and copper salt fine particle dispersion resin |
-
2012
- 2012-09-06 JP JP2014534101A patent/JPWO2014038035A1/en active Pending
- 2012-09-06 WO PCT/JP2012/072724 patent/WO2014038035A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011099038A (en) * | 2009-11-05 | 2011-05-19 | Kureha Corp | Near-infrared ray absorber, method for producing the same and optical material |
JP2012087243A (en) * | 2010-10-21 | 2012-05-10 | Kureha Corp | Method for producing copper salt particle dispersion resin, copper salt particle dispersion resin, and master batch |
JP2012185385A (en) * | 2011-03-07 | 2012-09-27 | Kureha Corp | Manufacturing method of near-infrared ray absorbent fluid dispersion |
JP2012201865A (en) * | 2011-03-28 | 2012-10-22 | Kureha Corp | Method for producing copper salt fine particle dispersion resin and copper salt fine particle dispersion resin |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019081896A (en) * | 2017-10-31 | 2019-05-30 | コニカミノルタ株式会社 | Near-infrared absorbing composition, near-infrared absorbing film, and image sensor for solid-state imaging element |
JP7099251B2 (en) | 2017-10-31 | 2022-07-12 | コニカミノルタ株式会社 | Image sensor for near-infrared absorbing composition, near-infrared absorbing film and solid-state image sensor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014038035A1 (en) | 2016-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5738014B2 (en) | Manufacturing method of near-infrared absorber dispersion | |
JP5611631B2 (en) | Near-infrared absorbing filter and manufacturing method thereof | |
JP5738031B2 (en) | Method for producing copper salt fine particle dispersed resin, and copper salt fine particle dispersed resin | |
JP5096013B2 (en) | Organic-inorganic composite composition, method for producing the same, molded product, and optical component | |
JP5096014B2 (en) | Organic-inorganic composite composition, method for producing the same, molded product, and optical component | |
US20070295244A1 (en) | Titanuim Dioxide Pigments, Process For The Production Thereof,And Resin Compostions Containing The Pigments | |
JP2007211164A (en) | Organic-inorganic composite composition and optical component | |
KR20110122132A (en) | Dispersion of particles of rutile titanium oxide, process for producing the same, and use of the same | |
US20100092761A1 (en) | Nanoparticles | |
JP5037393B2 (en) | Metal oxide fine particle dispersion and molded body | |
JP5766218B2 (en) | Resin composition and use thereof | |
JP2016124903A (en) | Production method of fine particle dispersion of near-infrared absorber, fine particle dispersion of near-infrared absorber, and application thereof | |
JP5345295B2 (en) | Organic-inorganic composite composition, method for producing the same, molded product, and optical component | |
JP2009242486A (en) | Organic-inorganic composite composition and method for producing the same, shaped article, and optical component | |
WO2014038035A1 (en) | Method for producing near-infrared ray absorbent fluid dispersion and use of near-infrared ray absorbent fluid dispersion | |
KR102490028B1 (en) | Organic-inorganic hybrid composition, and article and optical component including the same | |
WO2014119618A1 (en) | Method for producing near-infrared absorbent, near-infrared absorbent and use of same | |
JP2010052985A (en) | Dispersion liquid of metal oxide fine particle, and molding | |
JP2010195636A (en) | Metal oxide fine particle, metal oxide fine particle dispersion liquid, and molded body | |
JP2015134893A (en) | Method for manufacturing near-infrared absorber dispersion, near-infrared absorber dispersion and use thereof | |
JP2012087243A (en) | Method for producing copper salt particle dispersion resin, copper salt particle dispersion resin, and master batch | |
JP2009029941A (en) | Organic-inorganic composite composition and optical part | |
WO2014027639A1 (en) | Resin composition and application therefor | |
JP2016060903A (en) | Manufacturing method of near infrared absorber fine particle dispersion, near infrared absorber fine particle dispersion and use thereof | |
WO2014171215A1 (en) | Resin composition and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12884270 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014534101 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12884270 Country of ref document: EP Kind code of ref document: A1 |