[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011203201A - Metal defect detection method - Google Patents

Metal defect detection method Download PDF

Info

Publication number
JP2011203201A
JP2011203201A JP2010072920A JP2010072920A JP2011203201A JP 2011203201 A JP2011203201 A JP 2011203201A JP 2010072920 A JP2010072920 A JP 2010072920A JP 2010072920 A JP2010072920 A JP 2010072920A JP 2011203201 A JP2011203201 A JP 2011203201A
Authority
JP
Japan
Prior art keywords
inspection surface
light source
defect
linear light
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010072920A
Other languages
Japanese (ja)
Other versions
JP5234038B2 (en
Inventor
Masahiro Tani
雅弘 谷
Shinichi Fukunaga
新一 福永
Akifumi Seze
昌文 瀬々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010072920A priority Critical patent/JP5234038B2/en
Publication of JP2011203201A publication Critical patent/JP2011203201A/en
Application granted granted Critical
Publication of JP5234038B2 publication Critical patent/JP5234038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal defect detection method capable of highlighting defect through etching treatment of the inspection surface of a metal sample, while when detection of the defect is carried out by imaging the inspection surface with an imaging device, brightness of non-defect parts on the imagery of inspection surface is made to be homogenized and brightened, leading clear defection of defect part.SOLUTION: An inspection surface 2 of a metal sample 1 is polished unidirectionally, by etching treatment of the metal sample 1, defect in metal material is highlighted, linearly continuous light sources or a light source (a linear light source 4) a plurality of point light source arranged linearly are used as irradiating light source, a linearly direction 17 of the linear light source 4 and the polished direction 11 are presumed to be a same direction, the inspection surface 2 is irradiated by the linear light source 4 from a perpendicular direction to the polished direction 11, and the inspection surface 2 is imaged by an imaging device 3. Thereby, brightness of the non-defect parts in the inspection imaged imageries is to be homogenized and brightened, making the defect part 6 to be detectable clearly.

Description

本発明は、金属試料の検査面に現出する欠陥の検出方法に関するものである。   The present invention relates to a method for detecting a defect appearing on an inspection surface of a metal sample.

金属材料、特に鋼片や鋳片内部の割れや偏析といった欠陥部の検出と評価は、鋳片の品質管理及び鋳片の製造プロセスの適正化と操業管理を行う上で不可欠である。金属材料内部の品質評価方法として、従来はサルファプリント法やエッチプリント法が用いられてきた。いずれも、金属材料から試料を切り出し、金属材料の断面を検査面として研磨し、評価を行う。   Detection and evaluation of defects such as cracks and segregation in metal materials, particularly steel slabs and slabs, are indispensable for quality control of slabs and optimization and operation management of slab manufacturing processes. Conventionally, a sulfur printing method or an etch printing method has been used as a quality evaluation method inside a metal material. In any case, a sample is cut out from the metal material, the cross section of the metal material is polished as an inspection surface, and evaluation is performed.

サルファプリント法は、臭化銀を含む転写用印画紙に硫酸水溶液を浸して検査面に貼りつけ、試料中の硫黄の偏析状況を印画紙上に現出するものである。鋳片の中心偏析部や割れ部に硫黄が偏析する性質を利用し、鋳片の中心偏析や内部割れの評価を行う。金属材料中の硫黄濃度が高い材料に対して用いられるものであり、硫黄濃度が低い極低硫鋼などではサルファプリント法を適用することができない。   In the sulfur printing method, an aqueous sulfuric acid solution is immersed in a transfer printing paper containing silver bromide and attached to an inspection surface, and the segregation state of sulfur in a sample appears on the printing paper. The center segregation and internal cracks of the slab are evaluated by utilizing the property that sulfur segregates at the center segregation and cracks of the slab. The sulfur printing method cannot be applied to ultra-low sulfur steels having a low sulfur concentration, which are used for materials having a high sulfur concentration in metal materials.

エッチプリント法は、検査面の中心偏析部や割れ部に元素が偏析する性質を利用し、検査面をエッチングして元素の偏析部を現出し、試料にワセリンを塗り込んだ上で再研磨することにより、偏析、割れを可視化する技術であり、硫黄濃度が低い材料に対しても用いることができる。   The etch print method uses the property that elements are segregated at the center segregation and cracks on the inspection surface. The inspection surface is etched to reveal the element segregation, and the sample is coated with petroleum jelly and then re-polished. This is a technique for visualizing segregation and cracking, and can also be used for materials having a low sulfur concentration.

近年の金属材料の高品質化、高純度化にともない、金属材料の欠陥検出のさらなる高精度化が求められている。サルファプリント法については、使用する印画紙の安定供給に問題が生じており、そもそも極低硫鋼にはサルファプリント法が適用できない。エッチプリント法については、作業全体に数時間を要し、欠陥検出の迅速化が求められている。   With the recent improvement in quality and purity of metal materials, there has been a demand for higher accuracy in detecting defects in metal materials. Regarding the sulfur printing method, there is a problem in the stable supply of photographic paper to be used, and the sulfur printing method cannot be applied to extremely low-sulfur steel in the first place. The etch printing method requires several hours for the entire operation, and speeding up of defect detection is required.

金属材料の検査面にエッチングを施した上で、検査面を直接カメラ等の撮像装置で撮像して画像として記録する方法が知られている。検査面をエッチング(マクロ腐食)し、検査面を撮像装置で撮像するに際し、照明として自然光やライト照明で撮像したのでは、無欠陥部の明度が低いために欠陥部と無欠陥部との明度コントラストが小さいという問題がある。これに対し特許文献1においては、検査面の撮像位置に対して両側から、入射角50°〜70°で照明用光を照射して撮像する方法が開示されている。「図1(b)に示すように、反射鏡5、6の設置方向に研磨目が平行になるようにセットし」と記載されていることから、検査面において研磨方向を1方向とし、撮像位置に対して研磨方向の両側から照明用光を照射している(図1(b))。これにより、金属材料の偏析部の大きさや程度が明瞭に判定できるとしている。   A method is known in which an inspection surface of a metal material is etched and then the inspection surface is directly imaged by an imaging device such as a camera and recorded as an image. When the inspection surface is etched (macro-corrosion) and the inspection surface is imaged with an imaging device, the brightness of the defect portion and the defect-free portion is low because the lightness of the defect-free portion is low. There is a problem that the contrast is small. On the other hand, Patent Document 1 discloses a method of imaging by irradiating illumination light at an incident angle of 50 ° to 70 ° from both sides with respect to the imaging position of the inspection surface. “As shown in FIG. 1B, set so that the polishing eyes are parallel to the installation direction of the reflecting mirrors 5 and 6”. Illumination light is applied to the position from both sides in the polishing direction (FIG. 1B). Thereby, the size and degree of the segregation part of the metal material can be clearly determined.

特開平7−306161号公報JP-A-7-306161

特許文献1に具体的に開示された方法において、撮像装置としてCCDリニアセンサ等を用いたカメラが採用され、図1によると撮像範囲は研磨方向に直角な方向に長い線状範囲であり、この線状の撮像範囲の両側から反射鏡を用いて照明用光が照射されている。従って、検査面全体を撮像するためには、線状の撮像範囲を移動させつつ撮像を行う必要がある。もし特許文献1に記載の方法を拡張し、検査面全体を1回で撮像しようとすると、照明用光を検査面から離れた位置から照射する必要がある。この場合、検査面上の非欠陥部から撮像装置方向に反射する光が場所によって均一ではなく、非欠陥部からの反射光が少ない部分においては、欠陥部と非欠陥部との明度コントラストが少なすぎて欠陥検出精度が不充分であるという問題があった。   In the method specifically disclosed in Patent Document 1, a camera using a CCD linear sensor or the like is employed as an imaging device. According to FIG. 1, the imaging range is a linear range that is long in a direction perpendicular to the polishing direction. Illumination light is irradiated from both sides of the linear imaging range using reflecting mirrors. Therefore, in order to image the entire inspection surface, it is necessary to perform imaging while moving the linear imaging range. If the method described in Patent Document 1 is expanded and the entire inspection surface is to be imaged at once, it is necessary to irradiate illumination light from a position away from the inspection surface. In this case, the light reflected from the non-defect portion on the inspection surface toward the imaging device is not uniform depending on the location, and the brightness contrast between the defect portion and the non-defect portion is small in the portion where the reflected light from the non-defect portion is small. There is a problem that the defect detection accuracy is insufficient.

本発明は、金属試料の検査面をエッチング処理して欠陥を現出させ、撮像装置によって検査面を撮像することにより欠陥を検出するに際し、検査面撮像画像における非欠陥部の明度を均一かつ明るくすることにより、欠陥部を明瞭に検出することのできる金属の欠陥検出方法を提供することを目的とする。   In the present invention, when the inspection surface of a metal sample is etched to reveal a defect and the defect is detected by imaging the inspection surface with an imaging device, the brightness of the non-defect portion in the inspection surface captured image is uniform and bright. It is an object of the present invention to provide a metal defect detection method capable of clearly detecting a defect portion.

即ち、本発明の要旨とするところは以下のとおりである。
(1)金属試料1の検査面2をJIS R6252に規定する100番〜1000番の粗さを有する研磨手段を用いて一方向に研磨し、金属試料1にエッチング処理を行って金属試料中の欠陥を現出させ、線状に連続した光源4a又は複数の点光源4bを線状に配置した光源(以下総称して「線状光源4」という。)を準備し、前記複数の点光源を線状に配置した光源においては隣り合う点光源間の距離が金属試料の検査面2の研磨方向長さ(以下「試料研磨方向長さ15」という。)の30%以下であり、検査面2を垂直上方から見て、検査面2の研磨方向両端から研磨方向に直角な線(以下「両端直角線16」という。)を描いたとき、前記線状光源は、前記2本の両端直角線の間の少なくとも60%の領域を占めており、2本の両端直角線16の間の少なくとも60%の領域において、線状光源4上の任意の点を含み研磨方向11に垂直な面を描いたとき、当該面上で、線状光源4と検査面上の任意の点を結ぶ線が検査面2の法線となす角度θ2が、
15°≦θ2≦80°
の関係にあり、線状光源4と検査面2との間の最小距離Lminを1000mm以下とし、検査面2を撮像する撮像装置3を配置し、線状光源4からの光を検査面2に照射しつつ、撮像装置3によって検査面2を撮像することを特徴とする金属の欠陥検出方法。
(2)線状光源4の線状方向17と検査面2の研磨方向11との間の角度θ1が、
|θ1|≦35°
の関係にあることを特徴とする上記(1)に記載の金属の欠陥検出方法。
(3)撮像装置3と検査面上の任意の点を結ぶ線が検査面の法線となす角度θ3が、
θ3≦60°
の関係にあることを特徴とする上記(1)又は(2)に記載の金属の欠陥検出方法。
That is, the gist of the present invention is as follows.
(1) The inspection surface 2 of the metal sample 1 is polished in one direction using a polishing means having a roughness of No. 100 to No. 1000 specified in JIS R6252, and the metal sample 1 is subjected to an etching treatment to cause the A light source (hereinafter collectively referred to as “linear light source 4”) in which a defect appears and a linearly continuous light source 4a or a plurality of point light sources 4b is linearly arranged is prepared. In a linearly arranged light source, the distance between adjacent point light sources is 30% or less of the length in the polishing direction of the metal sample inspection surface 2 (hereinafter referred to as “sample polishing direction length 15”). When a line perpendicular to the polishing direction is drawn from both ends in the polishing direction of the inspection surface 2 (hereinafter referred to as “both-end perpendicular line 16”), the linear light source emits the two right-angle lines at both ends. Occupies at least 60% of the area between the two right angles When a plane perpendicular to the polishing direction 11 including an arbitrary point on the linear light source 4 is drawn in an area of at least 60% between the lines 16, the linear light source 4 and an arbitrary surface on the inspection surface are drawn on the surface. The angle θ 2 between the line connecting the points and the normal of the inspection surface 2 is
15 ° ≦ θ 2 ≦ 80 °
The minimum distance Lmin between the linear light source 4 and the inspection surface 2 is set to 1000 mm or less, and an imaging device 3 that images the inspection surface 2 is disposed, and the light from the linear light source 4 is applied to the inspection surface 2. A method for detecting a defect in a metal, wherein the inspection surface 2 is imaged by the imaging device 3 while irradiating.
(2) The angle θ 1 between the linear direction 17 of the linear light source 4 and the polishing direction 11 of the inspection surface 2 is
| Θ 1 | ≦ 35 °
The metal defect detection method according to the above (1), characterized in that:
(3) The angle θ 3 formed by the line connecting the imaging device 3 and an arbitrary point on the inspection surface with the normal of the inspection surface is
θ 3 ≦ 60 °
The metal defect detection method according to the above (1) or (2), characterized in that:

本発明は、金属試料の検査面に現出する欠陥の検出方法において、金属試料の検査面を一方向に研磨し、当該金属試料にエッチング処理を行って金属試料中の欠陥を現出させ、線状に連続した光源又は複数の点光源を線状に配置した光源(線状光源)を用いて所定の配置位置から検査面を照射し、撮像装置によって検査面を撮像することにより、検査面撮像画像における非欠陥部の明度を均一かつ明るくし、欠陥部を明瞭に検出することが可能となる。   The present invention is a method for detecting defects appearing on the inspection surface of a metal sample, polishing the inspection surface of the metal sample in one direction, and performing an etching process on the metal sample to reveal defects in the metal sample, By inspecting the inspection surface from a predetermined arrangement position using a linearly continuous light source or a light source (linear light source) in which a plurality of point light sources are linearly arranged, and imaging the inspection surface by an imaging device, the inspection surface The brightness of the non-defect portion in the captured image can be made uniform and bright, and the defect portion can be detected clearly.

本発明の欠陥検出方法を示す斜視概念図であり、(a)は線状光源として線状に連続した光源を用いた場合、(b)は線状光源として複数の点光源を線状に配置した場合である。It is a perspective conceptual diagram which shows the defect detection method of this invention, When (a) uses the linear continuous light source as a linear light source, (b) arrange | positions several point light sources linearly as a linear light source This is the case. 本発明の欠陥検出方法を示す平面図である。It is a top view which shows the defect detection method of this invention. 本発明の欠陥検出方法を示す図であり、(a)は斜視図、(b)は正面図である。It is a figure which shows the defect detection method of this invention, (a) is a perspective view, (b) is a front view. 本発明の欠陥検出方法を示す斜視概念図である。It is a perspective conceptual diagram which shows the defect detection method of this invention. 本発明の欠陥検出方法を示す斜視概念図である。It is a perspective conceptual diagram which shows the defect detection method of this invention. 本発明の欠陥検出方法を示す斜視概念図である。It is a perspective conceptual diagram which shows the defect detection method of this invention. (a)は照射光が反射する状況を示す断面図であり、(b)は検査面における研磨目の状況を示す図である。(A) is sectional drawing which shows the condition where irradiation light reflects, (b) is a figure which shows the condition of the polishing eye in a test | inspection surface. 照射光の反射状況を示す斜視図であり、(a)は研磨方向に平行な方向から照射した場合、(b)は研磨方向に直角の方向から照射した場合である。It is a perspective view which shows the reflective condition of irradiated light, (a) is a case where it irradiates from a direction parallel to a grinding | polishing direction, (b) is a case where it irradiates from a direction orthogonal to a grinding | polishing direction. 点光源を用いた場合を示す斜視概念図である。It is a perspective conceptual diagram which shows the case where a point light source is used. 本発明の実施例について説明する斜視概念図である。It is a perspective conceptual diagram explaining the Example of this invention. 本発明の実施例について説明する平面図である。It is a top view explaining the Example of this invention.

検査面を研磨した後にエッチングを行い、欠陥部を現出させる。欠陥部については、例えば割れ部は凹部を形成し、偏析部については腐食による凹部の形成もしくは偏析部の濃色化(例えば黒色化)を生じさせる。図7(a)に示すようにこの検査面2に照明光12を照射すると、欠陥部6については凹部又は濃色部であるために上方への反射光13が少なくなる。欠陥部以外の非欠陥部7から上方への反射光13が多くかつ均一であれば、撮像画像として、欠陥部6が暗部(黒色部)として認識されることとなる。   Etching is performed after polishing the inspection surface to reveal the defective portion. As for the defect portion, for example, the crack portion forms a recess, and the segregation portion causes formation of a recess due to corrosion or darkening of the segregation portion (for example, blackening). As shown in FIG. 7A, when the inspection surface 2 is irradiated with the illumination light 12, the defect portion 6 is a concave portion or a dark color portion, and therefore the upward reflected light 13 is reduced. If the reflected light 13 upward from the non-defect portion 7 other than the defect portion is large and uniform, the defect portion 6 is recognized as a dark portion (black portion) as a captured image.

金属材料を切断して金属試料とし、金属試料の検査面である断面を研磨するに際し、研磨方向に平行に研磨目が形成される。即ち、研磨方向に平行な方向に粗度を測定すると粗度が小さく、研磨方向に直角の方向に粗度を測定すると粗度が大きいという状況となる。そして、研磨機が最後に接触した際の研磨方向に平行な研磨目が現れる。鋳片のような大きな金属材料の断面を検査面とする場合、図7(b)に示すように、検査面の小さな領域ごとに研磨方向11が異なり、種々の研磨目の方向を持った小さな領域がモザイクのように配置されている。   When the metal material is cut into a metal sample and the cross section, which is the inspection surface of the metal sample, is polished, polishing marks are formed parallel to the polishing direction. That is, when the roughness is measured in a direction parallel to the polishing direction, the roughness is small, and when the roughness is measured in a direction perpendicular to the polishing direction, the roughness is large. Then, polishing marks parallel to the polishing direction when the polishing machine comes into contact lastly appear. When a cross section of a large metal material such as a slab is used as the inspection surface, as shown in FIG. 7B, the polishing direction 11 is different for each small area of the inspection surface, and the direction having various polishing eye directions is small. The areas are arranged like a mosaic.

検査面の斜め上方から検査面に照明光を照射する場合、図8(a)に示すように研磨方向11に平行な方角から照射された照射光12は、検査面で反射するに際し、入射角と反射角が等しくなる正反射成分13aが比較的強く、あらゆる方向に反射する乱反射成分13bが比較的少ないという傾向を有する。そのため、検査面上の任意の点のうち、たまたま正反射方向が撮像装置方向と一致する点P1については撮像画像において非欠陥部が明るく輝き、正反射方向が撮像装置方向と一致しない点P2(検査面の大部分の領域)については非欠陥部の明度が低いという、画面全体で明度が不均一な撮像画像が得られる。非欠陥部の明度が低いと、欠陥部とのコントラストが少なく欠陥検出精度が低くなる。 When illuminating the inspection surface obliquely from above the inspection surface, the irradiation light 12 irradiated from the direction parallel to the polishing direction 11 as shown in FIG. The regular reflection component 13a having the same reflection angle is relatively strong, and the irregular reflection component 13b reflected in all directions tends to be relatively small. Therefore, among the arbitrary points on the inspection surface, at the point P 1 where the specular reflection direction coincides with the imaging device direction, the non-defective part in the captured image shines brightly, and the regular reflection direction does not coincide with the imaging device direction. For 2 (most area of the inspection surface), a captured image with non-uniform brightness over the entire screen is obtained in which the brightness of the non-defect portion is low. If the brightness of the non-defect portion is low, the contrast with the defect portion is small and the defect detection accuracy is low.

一方、検査面の斜め上方から検査面に照射する照射光のうち、図8(b)に示すように研磨方向11に直角な方向から照射された照射光12は、検査面で反射するに際し、正反射成分13aが比較的少なく、乱反射成分13bが比較的多いという傾向を有する。そのため、検査面のいずれの部分についても、非欠陥部は比較的強い乱反射光によって明度が高く、また明度が均一であるという性質を有する。   On the other hand, the irradiation light 12 irradiated from the direction perpendicular to the polishing direction 11 as shown in FIG. 8B among the irradiation light irradiated obliquely above the inspection surface when reflected on the inspection surface, There is a tendency that the regular reflection component 13a is relatively small and the irregular reflection component 13b is relatively large. Therefore, in any part of the inspection surface, the non-defect portion has a property that the brightness is high and the brightness is uniform due to relatively strong irregular reflection light.

そこで、検査面2において研磨方向11を一方向とし、照射光12が研磨方向11と直角の方角から検査面を照射するように光源を配置すれば、検査面全体の非欠陥部において撮像装置には乱反射光が入射するので、非欠陥部が全体として明度が高くかつ明度が均一に保たれるので、明度が低い欠陥部との明度コントラストが大きくなり、欠陥検出精度を上げることが可能となる。ここで、研磨方向を一方向にするとは、検査面の全体で同一の方向である場合のほか、若干であれば角度が変化してもかまわない。例えば、研磨目が大きな曲率半径の円弧を描いてもかまわない。この場合、研磨方向の変化が、検査面内で15°以下程度であればよい。10°以下であればより好ましい。   Therefore, if the light source is arranged so that the polishing direction 11 is one direction on the inspection surface 2 and the irradiation light 12 irradiates the inspection surface from a direction perpendicular to the polishing direction 11, the non-defective portion of the entire inspection surface is placed on the imaging device. Since irregularly reflected light is incident, the non-defect portion has a high brightness as a whole and the brightness is kept uniform. Therefore, the brightness contrast with the defect portion having a low brightness is increased, and the defect detection accuracy can be increased. . Here, the direction of polishing is set to one direction, in addition to the case where the entire inspection surface is the same direction, the angle may be changed as long as it is slightly. For example, an arc having a large curvature radius may be drawn in the polishing eye. In this case, the change in the polishing direction may be about 15 ° or less in the inspection surface. More preferably, it is 10 ° or less.

本発明において、検査面における非欠陥部からの拡散反射(乱反射)成分を大きくし、欠陥部の検出精度を高めるための検査面の研磨方法について説明する。検査面を一方向に研磨するに際し、研磨方向に直角な方向における検査面の算術平均粗さRaに好適範囲が存在する。算術平均粗さRaの測定方法は、JIS B0601及びJIS B0633に規定する方法によって行う。当該Raが小さすぎると、非欠陥部における拡散反射(乱反射)成分は小さく、拡散反射(乱反射)成分中の撮像装置方向へ反射する成分も小さいため、欠陥部の検出精度が低くなる。本発明において、前記Raが0.1μm以上であれば、拡散反射(乱反射)成分を十分に大きくすることができる。一方、前記Raが大きすぎると、非欠陥部と欠陥部の識別が難しくなり、欠陥部の検出精度は低い。本発明において、前記Raが50μm以下であれば、非欠陥部と欠陥部の識別を良好に行うことができる。研磨方向に直角な方向における検査面の算術平均粗さRaを0.1μm以上とするためには、検査面をJIS R6252に規定する1000番以下の粗さを有する研磨手段を用いて研磨を行えばよい。また、前記Raを50μm以下とするためには、同100番以上の粗さを有する研磨手段を用いて研磨を行えばよい。研磨手段として、研磨紙、研磨布、研磨材のいずれを用いても良い。   In the present invention, a method of polishing the inspection surface for increasing the diffuse reflection (diffuse reflection) component from the non-defect portion on the inspection surface and improving the detection accuracy of the defect portion will be described. When the inspection surface is polished in one direction, there is a preferable range for the arithmetic average roughness Ra of the inspection surface in a direction perpendicular to the polishing direction. The arithmetic average roughness Ra is measured by a method defined in JIS B0601 and JIS B0633. If the Ra is too small, the diffuse reflection (diffuse reflection) component in the non-defect portion is small, and the component reflected in the diffuse reflection (diffuse reflection) component toward the imaging device is also small, so that the detection accuracy of the defective portion is low. In the present invention, if the Ra is 0.1 μm or more, the diffuse reflection (irregular reflection) component can be sufficiently increased. On the other hand, if the Ra is too large, it becomes difficult to distinguish between a non-defect portion and a defect portion, and the detection accuracy of the defect portion is low. In the present invention, when the Ra is 50 μm or less, the non-defective portion and the defective portion can be distinguished well. In order to set the arithmetic average roughness Ra of the inspection surface in a direction perpendicular to the polishing direction to 0.1 μm or more, the inspection surface is polished using polishing means having a roughness of 1000 or less as defined in JIS R6252. Just do it. Further, in order to set the Ra to 50 μm or less, polishing may be performed using a polishing means having the roughness of 100 or more. As the polishing means, any of polishing paper, polishing cloth, and polishing material may be used.

次に本発明は照射光の光源として、線状に連続した光源4a又は複数の点光源4bを線状に配置した光源(総称して線状光源4)を用いることを特徴とする。照射光源が単なる点光源である場合、研磨方向と直角の方向に光源を配置したとしても、以下のような問題を有する。即ち、図9において、点光源5と撮像装置3を含み検査面2に垂直な面F1を考える。当該面F1と検査面2とが交差する線21上においては、いずれの部位においても非欠陥部7の明度が高くなる。しかし、検査面上のそれ以外の部分については、以下に示すように非欠陥部の明度が低くなる。検査面上において、上記線21から外れる任意の点P3に対して、研磨方向11と直角あるいは直角に近い方向の斜め上方の点光源5から光が照射された場合、乱反射成分が比較的多いとはいえ、当該点P3を通る検査面の法線と点光源5が含まれる面F3に沿った方向に乱反射成分が多くなる傾向があり、当該面F3から離れる方向に向かう乱反射成分が少なくなる。従って点P3のように、撮像装置3方向が当該面F3から離れる方向に配置されていれば、撮像装置3から見たとき、当該点P3付近は非欠陥部の明度が低く観察されるのである。 Next, the present invention is characterized in that a linearly continuous light source 4a or a light source in which a plurality of point light sources 4b are linearly arranged (collectively, a linear light source 4) is used as a light source of irradiation light. In the case where the irradiation light source is a simple point light source, even if the light source is arranged in a direction perpendicular to the polishing direction, there are the following problems. That is, in FIG. 9, a plane F 1 including the point light source 5 and the imaging device 3 and perpendicular to the inspection surface 2 is considered. On the line 21 where the surface F 1 and the inspection surface 2 intersect, the brightness of the non-defect portion 7 is high in any part. However, the lightness of the non-defect portion is lowered as shown below for the other portions on the inspection surface. On the inspection surface, when an arbitrary point P 3 deviating from the line 21 is irradiated with light from the point light source 5 obliquely above in a direction perpendicular to or close to the polishing direction 11, the diffuse reflection component is relatively large. However, the irregular reflection component tends to increase in the direction along the normal of the inspection surface passing through the point P 3 and the surface F 3 including the point light source 5, and the irregular reflection component toward the direction away from the surface F 3. Less. Therefore, if the direction of the imaging device 3 is arranged in a direction away from the surface F 3 like the point P 3 , the brightness of the non-defective part is observed near the point P 3 when viewed from the imaging device 3. It is.

本発明においては、図1に示すように、線状に連続した光源4a(図1(a))又は複数の点光源4bを線状に配置した光源(図1(b))(総称して「線状光源4」)を光源として用いることにより、この問題を解決した。線状光源4であれば、検査面上の任意の点P4を通る検査面の法線と線状光源上の適当な部分(この場合は4c)が含まれる面F4を考えたとき、当該面F4あるいは当該面F4から大きく角度が離れない位置に撮像装置3が存在することになり、撮像装置3から見たとき、検査面上の点P4からの拡散反射成分を十分な強度で受けることができる。結果として、検査面上のすべての点について非欠陥部の明度が高くかつ均一に保持される。 In the present invention, as shown in FIG. 1, a linear light source 4a (FIG. 1 (a)) or a light source (FIG. 1 (b)) in which a plurality of point light sources 4b are linearly arranged (generically referred to). This problem was solved by using “linear light source 4”) as the light source. In the case of the linear light source 4, when considering the surface F 4 including the normal of the inspection surface passing through an arbitrary point P 4 on the inspection surface and an appropriate portion (4c in this case) on the linear light source, The imaging device 3 exists at a position where the angle is not greatly separated from the surface F 4 or the surface F 4. When viewed from the imaging device 3, the diffuse reflection component from the point P 4 on the inspection surface is sufficient. Can be received with strength. As a result, the brightness of the non-defect portion is kept high and uniform for all points on the inspection surface.

ここで、図2に示すように、前記検査面を垂直上方から見て、検査面2の研磨方向両端14をとおり研磨方向11に直角な線を以下「両端直角線16」という。線状光源4を用いて上記のような効果を発揮させるためには、線状光源が占める領域18が、前記2本の両端直角線の間(その長さは試料研磨方向長さ15と等しくなる)のできるだけ広い領域を占めることが必要である。図2(a)に示すように線状光源4の線状方向が研磨方向11と一致する場合、図2(b)のように線状光源4の線状方向が研磨方向11に対して角度をもつ場合のいずれについても同様である。本発明においては、線状光源が占める領域18が2本の両端直角線間距離の少なくとも60%の領域を占めることにより、検査面から撮像装置への反射光を明度高くかつ均一に保持することができる。以下、2本の両端直角線間距離に占める線状光源の領域を、「光源カバー比CR(%)」ともいう。光源カバー比CRが70%以上であればより好ましい。80%以上であればさらに好ましい。 Here, as shown in FIG. 2, a line perpendicular to the polishing direction 11 passing through both ends 14 in the polishing direction of the inspection surface 2 when viewed from above is referred to as “a right-angle line 16 at both ends”. In order to exhibit the above effects using the linear light source 4, the area 18 occupied by the linear light source is between the two right-angled lines (the length is equal to the sample polishing direction length 15). It is necessary to occupy as wide an area as possible. When the linear direction of the linear light source 4 coincides with the polishing direction 11 as shown in FIG. 2A, the linear direction of the linear light source 4 is an angle with respect to the polishing direction 11 as shown in FIG. The same applies to any of the cases having. In the present invention, the area 18 occupied by the linear light source occupies an area that is at least 60% of the distance between the two right-angled lines, so that the reflected light from the inspection surface to the imaging device can be maintained with high brightness and uniformity. Can do. Hereinafter, the area of the linear light source that occupies the distance between the two right-angle lines is also referred to as “light source cover ratio C R (%)”. More preferably, the light source cover ratio CR is 70% or more. More preferably, it is 80% or more.

線状光源4として、図1(a)に示すような線状に連続した光源4aであると好ましい。例えば直管式蛍光灯がこのような光源に該当する。連続していなくても、図1(b)に示すように複数の点光源4bを線状に配置した光源を用いることができる。但しこの場合、隣り合う点光源間の距離が遠すぎると、撮像装置から見たときの検査面からの反射光を均一に保持することが難しくなる。本発明において、隣り合う点光源間の距離が金属試料の検査面の研磨方向長さ(試料研磨方向長さ15)の30%以下であれば、検査面からの明度を均一に保持することができる。隣り合う点光源間の距離が試料研磨方向長さ15の15%以下であればより好ましい。多数のLEDを短い間隔で線状に並べた光源を好適に用いることができる。   The linear light source 4 is preferably a linear light source 4a as shown in FIG. For example, a straight tube fluorescent lamp corresponds to such a light source. Even if they are not continuous, a light source in which a plurality of point light sources 4b are linearly arranged as shown in FIG. 1B can be used. However, in this case, if the distance between the adjacent point light sources is too long, it becomes difficult to uniformly hold the reflected light from the inspection surface when viewed from the imaging device. In the present invention, if the distance between adjacent point light sources is 30% or less of the polishing direction length (sample polishing direction length 15) of the inspection surface of the metal sample, the brightness from the inspection surface can be kept uniform. it can. It is more preferable if the distance between adjacent point light sources is 15% or less of the sample polishing direction length 15. A light source in which a large number of LEDs are linearly arranged at short intervals can be suitably used.

線状光源4を準備し、線状光源が両端直角線の間の60%以上の領域を占めるように配置したとしても、線状光源から検査面上の任意の点に対する照射角度が大きすぎたり小さすぎたりすると良好な欠陥検出ができない。ここで図3(a)に示すように、線状光源上の任意の点4cを含み研磨方向11に垂直な面F5を描いたとき、当該面F5上で、線状光源4と検査面上の任意の点を結ぶ線が検査面の法線となす角度θ2とおく。θ2が小さすぎると、即ち検査面2に垂直に近い方向から照射光12を照射すると、欠陥部が凹部であって、凹部の深さが小さい場合、欠陥部から反射して撮像装置方向に向かう反射光が大きくなり、結果として欠陥部の明度が高くなるので、欠陥部と非欠陥部との明度の差が小さくなり、欠陥部の検出精度が低下する。θ2が15°以上であれば、このような問題を発生させることなく欠陥検出を行うことができる。一方、θ2が大きすぎると、即ち検査面2に低い角度から照射光12を照射した場合、検査面の非欠陥部からの拡散反射(乱反射)成分中の撮像装置方向に反射する成分が小さくなり、非欠陥部の明度が不十分なため、欠陥部と非欠陥部の明度の差異が小さく、欠陥部の検出精度が低下する。θ2が80°以下であれば、このような問題を発生させることなく欠陥検出を行うことができる。そこで本発明において、線状光源上の任意の点を含み研磨方向に垂直な面を描いたとき、当該面上で、線状光源と検査面上の任意の点を結ぶ線が検査面の法線となす角度θ2を、
15°≦θ2≦80°
とする。図3(b)は検査面の研磨方向11に垂直な方向から見た図である。前記面F5と検査面とが交差する検査面上のいずれの点においてもθ2が上記関係を保持するためには、当該面F5と交差する位置における線状光源の位置が、図3(b)にハッチングで示す領域内に存在することが必要である。図3(b)にハッチングで示す左右両方の領域にそれぞれ線状光源を配置すれば、検査面上の明度の均一性が向上するので好ましいが、左右いずれか一方の領域のみに線状光源を配置した場合も、欠陥検査を行う上で十分に均一な明度を得ることができる。
Even if the linear light source 4 is prepared and arranged so that the linear light source occupies an area of 60% or more between the right-angle lines at both ends, the irradiation angle from the linear light source to an arbitrary point on the inspection surface is too large. If it is too small, good defect detection cannot be performed. Here, as shown in FIG. 3A, when a surface F 5 including an arbitrary point 4c on the linear light source and perpendicular to the polishing direction 11 is drawn, the linear light source 4 and the inspection are inspected on the surface F 5. The angle θ 2 between the line connecting arbitrary points on the surface and the normal of the inspection surface is set. When θ 2 is too small, that is, when the irradiation light 12 is irradiated from a direction perpendicular to the inspection surface 2, if the defect portion is a recess and the depth of the recess is small, the defect is reflected from the defect portion in the direction of the imaging device. The reflected light toward the surface increases, and as a result, the lightness of the defective portion increases, so that the difference in lightness between the defective portion and the non-defective portion decreases, and the detection accuracy of the defective portion decreases. If θ 2 is 15 ° or more, defect detection can be performed without causing such a problem. On the other hand, when θ 2 is too large, that is, when the irradiation surface 12 is irradiated with the irradiation light 12 from a low angle, the component reflected in the direction of the imaging device in the diffuse reflection (diffuse reflection) component from the non-defect portion on the inspection surface is small. Thus, since the brightness of the non-defect portion is insufficient, the difference in brightness between the defect portion and the non-defect portion is small, and the detection accuracy of the defect portion is reduced. If θ 2 is 80 ° or less, defect detection can be performed without causing such a problem. Therefore, in the present invention, when a surface that includes an arbitrary point on the linear light source and is perpendicular to the polishing direction is drawn, the line connecting the linear light source and the arbitrary point on the inspection surface is the inspection surface method. The angle θ 2 made with the line is
15 ° ≦ θ 2 ≦ 80 °
And FIG. 3B is a view as seen from a direction perpendicular to the polishing direction 11 of the inspection surface. In order for θ 2 to maintain the above relationship at any point on the inspection surface where the surface F 5 and the inspection surface intersect, the position of the linear light source at the position where the surface F 5 intersects is shown in FIG. It is necessary to exist in the area indicated by hatching in (b). It is preferable to dispose the linear light sources in both the left and right areas shown by hatching in FIG. 3B because the uniformity of the brightness on the inspection surface is improved. However, the linear light sources are applied only to either the left or right area. Even when they are arranged, sufficiently uniform brightness can be obtained for defect inspection.

一方、線状光源上のすべての光源において、θ2が上記関係を保持していることまでは必要としない。2本の両端直角線の間の少なくとも60%の領域において、線状光源上の光源の位置が上記θ2の関係を有していればよい。 On the other hand, it is not necessary until θ 2 holds the above relationship in all light sources on the linear light source. It is only necessary that the position of the light source on the linear light source has the above θ 2 relationship in an area of at least 60% between the two right angle lines.

また図4において、線状光源4と検査面2との間の最短距離Lminが遠すぎると、光源の出力を上げなければならず、また欠陥検出装置の全体寸法が大きくなりすぎる。Lminが1000mm以下であれば、このような問題を発生させずに欠陥検出を行うことができる。一方、線状光源4と検査面2との間の最短距離Lminが近すぎると、線状光源4に近い検査面の非欠陥部における拡散反射(乱反射)成分中の撮像装置方向へ反射する成分が大きくなりすぎ、検査面のうちで光源に近い部分の明度が高くなり明度不均一が発生することがあり得るが、Lminが金属試料の検査面における研磨方向に直角方向の長さの半分より長ければこのような問題が発生せず好ましい。例えば金属試料の検査面における研磨方向に直角方向の長さが100mmであれば、Lminが50mm以上であると好ましい。通常は、θ2が前述の関係を有することにより、この問題の発生を回避することができる。 In FIG. 4, if the shortest distance Lmin between the linear light source 4 and the inspection surface 2 is too long, the output of the light source must be increased, and the overall size of the defect detection device becomes too large. If Lmin is 1000 mm or less, defect detection can be performed without causing such a problem. On the other hand, when the shortest distance Lmin between the linear light source 4 and the inspection surface 2 is too close, the component that reflects toward the imaging device in the diffuse reflection (diffuse reflection) component in the non-defect portion of the inspection surface close to the linear light source 4 The brightness of the portion near the light source in the inspection surface becomes high and unevenness in brightness may occur, but Lmin may be more than half of the length perpendicular to the polishing direction on the inspection surface of the metal sample. If it is long, such a problem does not occur and it is preferable. For example, if the length in the direction perpendicular to the polishing direction on the inspection surface of the metal sample is 100 mm, Lmin is preferably 50 mm or more. Usually, the occurrence of this problem can be avoided when θ 2 has the above-described relationship.

以上のように、金属試料の検査面を所定の粗さを有する研磨手段を用いて一方向に研磨し、エッチング処理によって金属試料中の欠陥を現出させた上で、上記所定の線状光源4を配置するとともに、検査面2を撮像する撮像装置3を配置し、線状光源4からの光を検査面2に照射しつつ、撮像装置3によって検査面を撮像する。これにより、検査面2の非欠陥部7の明度は明るくかつ均一であり、欠陥部6の明度は暗く、その結果として欠陥部6と非欠陥部7の明度差を明瞭にして、欠陥部6を良好に検出することのできる画像を撮像することができる。   As described above, the inspection surface of the metal sample is polished in one direction using a polishing means having a predetermined roughness, and defects in the metal sample are revealed by an etching process. 4 and an imaging device 3 that images the inspection surface 2 are disposed, and the inspection surface 2 is imaged by the imaging device 3 while irradiating the inspection surface 2 with light from the linear light source 4. Thereby, the brightness of the non-defect portion 7 on the inspection surface 2 is bright and uniform, the brightness of the defect portion 6 is dark, and as a result, the brightness difference between the defect portion 6 and the non-defect portion 7 is clarified. It is possible to capture an image that can be detected satisfactorily.

撮像装置3としては、検査面を撮像できる撮像装置であれば、フィルムカメラ、デジタルカメラのいずれも使用可能である。半導体撮像素子などを用いた撮像装置を用いれば、撮像画像データを画像処理装置に取り込んで欠陥部の画像解析を行うことができるので好ましい。   As the imaging device 3, any film camera or digital camera can be used as long as the imaging device can image the inspection surface. It is preferable to use an imaging device using a semiconductor imaging device or the like because captured image data can be taken into an image processing device and image analysis of a defective portion can be performed.

次に、本発明の線状光源4及び撮像装置3の好ましい配置形態について説明する。   Next, a preferred arrangement form of the linear light source 4 and the imaging device 3 of the present invention will be described.

図5に示すように、線状光源4の線状方向17と検査面2の研磨方向11との間の角度をθ1とおく。θ1が小さいほど、線状光源4の線状方向17と検査面2の研磨方向11が平行に近くなり、検査面2のいずれの部位においても撮像装置3からみた明度が均一化するので好ましい。そして、
|θ1|≦35°
の関係とすれば、検査面上の明度の均一性を十分に保持することができる。もちろん、この範囲を外れ、若干の明度の不均一が存在するとしても、十分に欠陥検出を行うことができる。
As shown in FIG. 5, an angle between the linear direction 17 of the linear light source 4 and the polishing direction 11 of the inspection surface 2 is set to θ 1 . A smaller θ 1 is preferable because the linear direction 17 of the linear light source 4 and the polishing direction 11 of the inspection surface 2 are nearly parallel, and the brightness viewed from the imaging device 3 is uniform in any part of the inspection surface 2. . And
| Θ 1 | ≦ 35 °
With this relationship, the uniformity of the brightness on the inspection surface can be sufficiently maintained. Of course, even if it is out of this range and there is some non-uniformity in brightness, it is possible to sufficiently detect defects.

撮像装置3は、検査面2の中心直上から検査面に正対して撮像する位置に配置すると好ましい。図6に示すように、検査面上の任意の点と撮像装置を結ぶ線が当該任意の点の法線となす角度をθ3とする。θ3が大きすぎると、線状光源からの照射光による拡散反射成分が十分ではなくなり、検査面の非欠陥部の明度が低下することとなって好ましくない。本発明においては、検査面上のいずれの部位についても、
θ3≦60°
の関係を保持するように撮像装置3を配置すれば、検査面2の非欠陥部の明度が均一に保持されるので好ましい。通常の焦点距離を有するカメラを用いて、検査面の中心直上から検査面に正対して撮像装置を配置すれば、θ3を上記好ましい範囲とすることができる。
It is preferable that the imaging device 3 is arranged at a position where an image is captured directly above the center of the inspection surface 2 and facing the inspection surface. As shown in FIG. 6, an angle between a line connecting an arbitrary point on the inspection surface and the imaging apparatus and a normal line of the arbitrary point is θ 3 . If θ 3 is too large, the diffuse reflection component due to the irradiation light from the linear light source is not sufficient, and the brightness of the non-defect portion on the inspection surface is undesirably lowered. In the present invention, for any part on the inspection surface,
θ 3 ≦ 60 °
It is preferable to arrange the imaging device 3 so as to maintain the above relationship, since the brightness of the non-defect portion of the inspection surface 2 is uniformly maintained. If an imaging device is arranged directly on the inspection surface from directly above the center of the inspection surface using a camera having a normal focal length, θ 3 can be set to the above preferable range.

金属試料中の欠陥を現出させるためのエッチングに関しては、割れ部における凹凸の現出、もしくは偏析部における腐食による凹凸の生成、もしくは偏析部の濃色化(例えば黒色化)を生じさせる方法として、通常に用いられているエッチング方法を採用することができる。例えば、過硫酸アンモニウム水溶液や、ピクリン酸と塩酸を用いた方法などが好適に用いられる。この他、欠陥部を現出、つまり、割れ部における凹凸の現出、もしくは偏析部における腐食による凹凸の生成、もしくは偏析部の濃色化(例えば黒色化)を生じさせる方法であれば、いずれの方法を用いても良い。   For etching to reveal defects in metal samples, as a method of generating irregularities in cracks, generating irregularities due to corrosion in segregating parts, or darkening segregated parts (for example, blackening). A commonly used etching method can be employed. For example, an aqueous solution of ammonium persulfate or a method using picric acid and hydrochloric acid is preferably used. In addition, any method may be used as long as the defect portion appears, that is, the appearance of unevenness in the cracked portion, the generation of unevenness due to corrosion in the segregated portion, or the darkening of the segregated portion (for example, blackening). The method may be used.

中炭アルミキルド鋼の連続鋳造鋳片(幅1200mm、厚み250mm)を、長さ方向に垂直に切断して長さ方向50mmの金属試料1を切り出し、切断面を検査面2とした。検査面について種々の方法で研磨を行い、過硫酸アンモニウム水溶液を用いてエッチング処理を行った後、種々の照明条件のもとで検査面の画像撮像を行った。撮像装置としてはデジタル一眼レフカメラ(撮像画面サイズ:22.3mm×14.9mm、有効画素:約1510万画素)とレンズ(焦点距離28mm)を用いた。表1に処理条件と評価結果を示す。本発明範囲から外れる数値にアンダーラインを付している。   A continuous cast slab (width: 1200 mm, thickness: 250 mm) of medium-carbon aluminum killed steel was cut perpendicularly to the length direction to cut out a metal sample 1 having a length direction of 50 mm, and the cut surface was used as an inspection surface 2. The inspection surface was polished by various methods, etched using an aqueous ammonium persulfate solution, and then imaged on the inspection surface under various illumination conditions. As the imaging device, a digital single lens reflex camera (imaging screen size: 22.3 mm × 14.9 mm, effective pixels: about 15.1 million pixels) and a lens (focal length 28 mm) were used. Table 1 shows processing conditions and evaluation results. Numerical values that fall outside the scope of the present invention are underlined.

Figure 2011203201
Figure 2011203201

検査面の研磨方法として、実施例1〜15、比較例1〜5、7〜12については、図10に示すように鋳片の幅方向22と一致する一方向を研磨方向11として、研磨紙を用いて研磨を行った。比較例6については、幅1200mmの片側600mmの部分を鋳片の幅方向22と一致する一方向を研磨方向11として研磨紙を用いて研磨を行った後に、残りの片側600mmの部分を鋳片の幅方向と直交する一方向(鋳片の厚み方向23)を研磨方向11として研磨紙を用いて研磨を行った。研磨紙の番手は表1に示す。   As Examples 1-15 and Comparative Examples 1-5, 7-12, as the polishing method of the inspection surface, as shown in FIG. Polishing was performed using For Comparative Example 6, after polishing a portion of 600 mm on one side with a width of 22 mm on one side with the polishing direction 11 as one direction coinciding with the width direction 22 of the slab, the remaining 600 mm on one side was cast into the slab. Polishing was performed using polishing paper with the one direction (thickness direction 23 of the slab) perpendicular to the width direction as the polishing direction 11. The count of the abrasive paper is shown in Table 1.

光源として、実施例1〜13、比較例1〜11については、長さ630mm、定格消費電力30Wの直管式蛍光灯を、図10(a)に示すように一方向あたり2個ずつ、二方向で合計4個用いてそれぞれ線状光源4とした。実施例14における光源は、長さ630mm、底角消費電力30Wの直管式蛍光灯を、一方向のみに2個用いた。実施例15における光源は、150mmピッチで直線状に配置した定格消費電力7WのLEDを点光源4bとし、一方向あたり9個ずつ、二方向で合計18個用いて線状光源4とした。比較例12における光源は、定格消費電力500Wの電球を点光源5として図10(c)に示すように2個配置した。   As for the light source, for Examples 1 to 13 and Comparative Examples 1 to 11, two straight tube fluorescent lamps each having a length of 630 mm and a rated power consumption of 30 W are provided in each direction, as shown in FIG. A total of four light sources in each direction were used as the linear light sources 4. As a light source in Example 14, two straight tube fluorescent lamps having a length of 630 mm and a bottom angle power consumption of 30 W were used in only one direction. As the light source in Example 15, LEDs with a rated power consumption of 7 W arranged in a straight line at a pitch of 150 mm were used as the point light source 4b, and the linear light source 4 was formed by using nine LEDs in one direction and a total of 18 in two directions. As the light source in Comparative Example 12, two light bulbs with a rated power consumption of 500 W were disposed as point light sources 5 as shown in FIG.

各検査水準について撮像装置3で撮像した撮像画像を画像解析し、検査面2における欠陥個数をカウントした。次いで、実施例3で検出した欠陥個数で規格化し、各条件における欠陥個数NNLを算出した。このNNLから、下記判断基準に従って検査状況を評価し、表1に記入した。
0.95≦NNL ・・・かなり良い
0.90≦NNL<0.95 ・・・良い
0.85≦NNL<0.90 ・・・良いが少し劣る
0.55≦NNL<0.80 ・・・少し劣る
0.30≦NNL<0.55 ・・・劣る
NL<0.30 ・・・かなり劣る
For each inspection level, the captured image captured by the imaging device 3 was subjected to image analysis, and the number of defects on the inspection surface 2 was counted. Next, normalization was performed using the number of defects detected in Example 3, and the number of defects N NL under each condition was calculated. From this N NL , the test status was evaluated according to the following criteria and entered in Table 1.
0.95 ≦ N NL・ ・ ・ pretty good 0.90 ≦ N NL <0.95 ・ ・ ・ good 0.85 ≦ N NL <0.90 ・ ・ ・ good but slightly inferior 0.55 ≦ N NL <0 .80 ... slightly inferior 0.30 ≦ N NL <0.55 ... inferior
N NL <0.30 ... considerably inferior

実施例1〜5、比較例1〜3については、図10(a)図11(a)に示す実施例3を基準とし、線状光源の配置方向を図11(b)(実施例1)、図11(c)(比較例1)のように変化させたものである。図11(a)(実施例3)に対する線状光源の位置の変化角度をθ4とすると、実施例1はθ4=−35°、比較例1はθ4=−90°となる。各水準について、2本の両端直角線間距離に占める線状光源の領域を光源カバー比CR(%)として表1に示した。 For Examples 1 to 5 and Comparative Examples 1 to 3, the arrangement direction of the linear light source is shown in FIG. 11B (Example 1) with reference to Example 3 shown in FIGS. 10 (a) and 11 (a). 11 (c) (Comparative Example 1). When FIG. 11 (a) changes angular position of the linear light source relative to (Example 3) θ 4, Example 1 is θ 4 = -35 °, Comparative Example 1 becomes θ 4 = -90 °. For each level, the area of the linear light source occupying the distance between the two perpendicular lines is shown in Table 1 as the light source cover ratio C R (%).

実施例6〜8、比較例4、5は研磨紙の番手を変化させたものである。実施例9、10、比較例8は、線状光源の配置形態を実施例3と同様とし、Lminのみを変化させたものである。実施例11、12、比較例9、10は、線状光源の配置形態を実施例3と同様とし、角度θ2のみを変化させたものである。実施例13は、線状光源の配置形態を実施例3と同様とし、撮像装置に関する角度θ3のみを変化させたものである。 In Examples 6 to 8 and Comparative Examples 4 and 5, the count of the abrasive paper was changed. In Examples 9 and 10 and Comparative Example 8, the arrangement of the linear light sources is the same as that in Example 3, and only Lmin is changed. In Examples 11 and 12, and Comparative Examples 9 and 10, the arrangement of the linear light sources is the same as that in Example 3, and only the angle θ 2 is changed. In the thirteenth embodiment, the arrangement of the linear light sources is the same as that of the third embodiment, and only the angle θ 3 related to the imaging device is changed.

表1において、基準となる実施例3については、比較を容易にするために各実施例群について重複して掲載している。   In Table 1, Example 3 serving as a reference is duplicated for each example group for easy comparison.

表1において、本発明例はいずれも評価結果が「かなり良い」から「良いが少し劣る」の範囲に入っていることがわかった。   In Table 1, it was found that all of the examples of the present invention were in the range of “very good” to “good but slightly inferior”.

なお、本発明は、前述の実施の形態及び実施例に具体的に記載された形態に限定されるものではなく、特許請求の範囲に規定する範囲内での変更は可能であり、例えば、前記したそれぞれの実施の形態、実施例や変形例の一例又は全部を組み合わせて、本発明の金属中、特に鋼片中の欠陥部を、高精度かつ迅速に検出する方法を構成する場合も本発明の権利範囲に含まれる。   The present invention is not limited to the embodiments specifically described in the above-described embodiments and examples, and can be modified within the scope defined in the claims. For example, The present invention is also applicable to the case of configuring a method for detecting a defective portion in a metal of the present invention, in particular, a steel piece, with high accuracy and speed by combining one or all of the above embodiments, examples and modifications. Is included in the scope of rights.

1 金属試料
2 検査面
3 撮像装置
4 線状光源
4a 線状に連続した光源
4b 点光源
5 点光源
6 欠陥部
7 非欠陥部
11 研磨方向
12 照射光
13 反射光
13a 正反射成分
13b 乱反射成分
14 研磨方向両端
15 試料研磨方向長さ
16 両端直角線
17 線状方向
18 線状光源が占める領域
21 線
22 幅方向
23 厚み方向
DESCRIPTION OF SYMBOLS 1 Metal sample 2 Inspection surface 3 Imaging device 4 Linear light source 4a Linear continuous light source 4b Point light source 5 Point light source 6 Defect part 7 Non-defect part 11 Polishing direction 12 Irradiation light 13 Reflected light 13a Regular reflection component 13b Diffuse reflection component 14 Polishing direction both ends 15 Sample polishing direction length 16 Both ends perpendicular line 17 Linear direction 18 Area occupied by linear light source 21 Line 22 Width direction 23 Thickness direction

Claims (3)

金属試料の検査面をJIS R6252に規定する100番〜1000番の粗さを有する研磨手段を用いて一方向に研磨し、当該金属試料にエッチング処理を行って金属試料中の欠陥を現出させ、
線状に連続した光源又は複数の点光源を線状に配置した光源(以下総称して「線状光源」という。)を準備し、前記複数の点光源を線状に配置した光源においては隣り合う点光源間の距離が前記金属試料の検査面の研磨方向長さ(以下「試料研磨方向長さ」という。)の30%以下であり、
前記検査面を垂直上方から見て、検査面の研磨方向両端から研磨方向に直角な線(以下「両端直角線」という。)を描いたとき、前記線状光源は、前記2本の両端直角線の間の少なくとも60%の領域を占めており、
2本の両端直角線の間の少なくとも60%の領域において、前記線状光源上の任意の点を含み研磨方向に垂直な面を描いたとき、当該面上で、線状光源と検査面上の任意の点を結ぶ線が検査面の法線となす角度θ2が、
15°≦θ2≦80°
の関係にあり、
前記線状光源と前記検査面との間の最小距離Lminを1000mm以下とし、
前記検査面を撮像する撮像装置を配置し、
前記線状光源からの光を検査面に照射しつつ、前記撮像装置によって検査面を撮像することを特徴とする金属の欠陥検出方法。
The inspection surface of the metal sample is polished in one direction using a polishing means having a roughness of No. 100 to No. 1000 specified in JIS R6252, and the metal sample is etched to reveal defects in the metal sample. ,
A linear light source or a light source in which a plurality of point light sources are arranged in a line (hereinafter collectively referred to as a “linear light source”) is prepared, and the light sources in which the plurality of point light sources are arranged in a line are adjacent. The distance between the matching point light sources is 30% or less of the polishing direction length (hereinafter referred to as “sample polishing direction length”) of the inspection surface of the metal sample,
When the inspection surface is viewed from vertically above and a line perpendicular to the polishing direction is drawn from both ends of the inspection surface in the polishing direction (hereinafter referred to as “both ends perpendicular line”), the linear light source is perpendicular to the two ends. Occupies at least 60% of the area between the lines,
When at least 60% of the area between the two right-angled lines and a plane perpendicular to the polishing direction including any point on the linear light source is drawn on the linear light source and the inspection surface The angle θ 2 between the line connecting any point of and the normal of the inspection surface is
15 ° ≦ θ 2 ≦ 80 °
In relation to
The minimum distance Lmin between the linear light source and the inspection surface is 1000 mm or less,
Arranging an imaging device for imaging the inspection surface,
A metal defect detection method, wherein the inspection surface is imaged by the imaging device while irradiating the inspection surface with light from the linear light source.
前記線状光源の線状方向と検査面の研磨方向との間の角度θ1が、
|θ1|≦35°
の関係にあることを特徴とする請求項1に記載の金属の欠陥検出方法。
The angle θ 1 between the linear direction of the linear light source and the polishing direction of the inspection surface is
| Θ 1 | ≦ 35 °
The metal defect detection method according to claim 1, wherein:
該撮像装置と検査面上の任意の点を結ぶ線が検査面の法線となす角度θ3が、
θ3≦60°
の関係にあることを特徴とする請求項1又は2に記載の金属の欠陥検出方法。
An angle θ 3 formed between a line connecting the imaging device and an arbitrary point on the inspection surface and a normal line of the inspection surface is
θ 3 ≦ 60 °
The metal defect detection method according to claim 1 or 2, wherein
JP2010072920A 2010-03-26 2010-03-26 Metal defect detection method Active JP5234038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072920A JP5234038B2 (en) 2010-03-26 2010-03-26 Metal defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072920A JP5234038B2 (en) 2010-03-26 2010-03-26 Metal defect detection method

Publications (2)

Publication Number Publication Date
JP2011203201A true JP2011203201A (en) 2011-10-13
JP5234038B2 JP5234038B2 (en) 2013-07-10

Family

ID=44879989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072920A Active JP5234038B2 (en) 2010-03-26 2010-03-26 Metal defect detection method

Country Status (1)

Country Link
JP (1) JP5234038B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217657A (en) * 2012-04-04 2013-10-24 Nippon Steel & Sumitomo Metal Defect detection method of metal
JP5904304B2 (en) * 2013-04-17 2016-04-13 新日鐵住金株式会社 Metal defect detection method
CN107462520A (en) * 2017-07-25 2017-12-12 杭州电子科技大学 Towards stainless steel plate on-line measuring device of the confined space based on machine vision
CN116818785B (en) * 2023-08-30 2023-12-01 杭州百子尖科技股份有限公司 Defect detection method, system and medium based on machine vision

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306161A (en) * 1994-05-11 1995-11-21 Nippon Steel Corp Method for detecting segregation of metallic material
JPH08304300A (en) * 1995-05-15 1996-11-22 Matsushita Electric Works Ltd Method for equipment for inspecting pattern of printed board and production of printed board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306161A (en) * 1994-05-11 1995-11-21 Nippon Steel Corp Method for detecting segregation of metallic material
JPH08304300A (en) * 1995-05-15 1996-11-22 Matsushita Electric Works Ltd Method for equipment for inspecting pattern of printed board and production of printed board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217657A (en) * 2012-04-04 2013-10-24 Nippon Steel & Sumitomo Metal Defect detection method of metal
JP5904304B2 (en) * 2013-04-17 2016-04-13 新日鐵住金株式会社 Metal defect detection method
CN107462520A (en) * 2017-07-25 2017-12-12 杭州电子科技大学 Towards stainless steel plate on-line measuring device of the confined space based on machine vision
CN107462520B (en) * 2017-07-25 2023-11-28 杭州电子科技大学 Stainless steel plate on-line detection device based on machine vision and oriented to limited space
CN116818785B (en) * 2023-08-30 2023-12-01 杭州百子尖科技股份有限公司 Defect detection method, system and medium based on machine vision

Also Published As

Publication number Publication date
JP5234038B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5540849B2 (en) Metal defect detection method and defect detection apparatus
JP5234038B2 (en) Metal defect detection method
JP2017146302A (en) Surface defect inspection device and surface defect inspection method
JP4511978B2 (en) Surface flaw inspection device
JP2008275424A (en) Surface inspection device
JP2004309287A (en) Defect detection device and defect detection method
WO2014171361A1 (en) Metal defect detection method
JP5803788B2 (en) Metal defect detection method
JPH11316195A (en) Surface defect detecting device of transparent plate
JP2012247343A (en) Defect inspection method of antireflection film and defect inspection apparatus
JP5948974B2 (en) Surface defect inspection equipment
JP3932812B2 (en) Strip metal processing surface inspection equipment
JP2004125396A (en) Inspection method of drive transmission belt
JP5415162B2 (en) Cylindrical surface inspection equipment
JP2005351825A (en) Defect inspection device
JP5201014B2 (en) Scale remaining inspection equipment for pickled steel sheet
JP5471157B2 (en) Method and apparatus for detecting adhering matter on glass plate surface
JP2013044635A (en) Defect detecting device
JP2007114125A (en) Method for inspecting film thickness irregularities
JP2009042076A (en) Surface inspection device of separation membrane and surface inspection method of separation membrane
JP7493163B2 (en) Defect inspection device
JP2002014058A (en) Method and apparatus for checking
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JP2012141322A (en) Surface defect inspection device
JP6086277B2 (en) Pattern inspection apparatus and illumination optical system used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5234038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350