[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012247343A - Defect inspection method of antireflection film and defect inspection apparatus - Google Patents

Defect inspection method of antireflection film and defect inspection apparatus Download PDF

Info

Publication number
JP2012247343A
JP2012247343A JP2011120236A JP2011120236A JP2012247343A JP 2012247343 A JP2012247343 A JP 2012247343A JP 2011120236 A JP2011120236 A JP 2011120236A JP 2011120236 A JP2011120236 A JP 2011120236A JP 2012247343 A JP2012247343 A JP 2012247343A
Authority
JP
Japan
Prior art keywords
defect
imaging optical
optical system
film
film substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011120236A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kawashima
佳彦 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011120236A priority Critical patent/JP2012247343A/en
Publication of JP2012247343A publication Critical patent/JP2012247343A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a defect inspection method of an antireflection film substrate with which a standing-wave phenomenon of a simple film substrate that is not accompanied with a foreign substance is prevented from being recognized erroneously as a defect.SOLUTION: A defect inspection method of an antireflection film substrate 5 is provided. The method is characterized in that first reflection imaging optical systems 7 and 10 and second transmission imaging optical systems 6 and 9 are provided. The first reflection imaging optical systems 7 and 10 receive light reflected in an oblique direction in irradiation light that irradiates the film substrate 5. The second transmission imaging optical systems 6 and 9 receive light transmitted in a vertical direction in the irradiation light that irradiates the film substrate 5. If any defect is detected by the first reflection imaging optical systems, only in the case where a defect is also detected at the same position on the film substrate by the second transmission imaging optical systems, it is determined that there is a defect in that portion.

Description

本発明は、画像表示用ディスプレイ画面の表面に貼り付けて外光反射を低減してディスプレイ画面を見やすくするための反射防止フィルムに係わり、特には反射防止フィルムを製造する際に巻き込まれる異物に起因する欠陥と基材フィルムの単なる波うちを光学的に識別するための検査方法とそのための装置に関する。   The present invention relates to an antireflection film that is attached to the surface of a display screen for image display to reduce external light reflection and make the display screen easier to see, and in particular, is caused by foreign matter involved in manufacturing the antireflection film. The present invention relates to an inspection method for optically identifying a defect to be detected and a mere wave of a base film, and an apparatus therefor.

液晶ディスプレイやプラズマディスプレイ等の表示デバイスでは、“見易さ”は最も重要な品質特性の一つであり、当該品質を達成する目的で表示画面上には、表示画面保護や防塵とともに外部からの光の映りこみを防止するため、透明フィルム(以下、フィルム基材あるいは単にフィルムとも記す。)にハードコート層や反射防止層をコーティングにより形成して製造される反射防止フィルムが貼られている。   In display devices such as liquid crystal displays and plasma displays, “ease of viewing” is one of the most important quality characteristics. To achieve the quality, the display screen is protected from the outside with display screen protection and dust prevention. In order to prevent reflection of light, an antireflection film manufactured by forming a hard coat layer or an antireflection layer by coating on a transparent film (hereinafter also referred to as a film substrate or simply a film) is attached.

反射防止フィルムの製造は、長尺帯状の透光性のフィルム基材に対し、主に金属酸化物からなるゾルゲル溶液を塗工・乾燥する工程を単数または複数回行い、所定の厚みの光学膜を形成している。反射防止フィルムの製造工程で顕在化する欠陥には、異物の付着や異物混入に起因する膜厚の変動ムラや色相の変化などによる光学的に検地可能な欠陥が存在する。   The production of the antireflection film is carried out by applying the sol-gel solution mainly composed of a metal oxide to a long belt-like light-transmitting film substrate one or more times and drying the optical film having a predetermined thickness. Is forming. Defects that are manifested in the manufacturing process of the antireflection film include defects that can be optically detected due to variations in film thickness or changes in hue due to adhesion of foreign matter or contamination.

したがって、反射防止フィルムの製造工程には欠陥の検出を行うために欠陥検査装置画導入設置されている。図1は、本発明に係る反射防止フィルムのインラインの欠陥検出装置構成の一例を示す概略図であるが、ほぼ同一の構成が一般的に使用されている。   Therefore, a defect inspection apparatus is introduced and installed in the antireflection film manufacturing process in order to detect defects. FIG. 1 is a schematic view showing an example of the configuration of an in-line defect detection device for an antireflection film according to the present invention, but generally the same configuration is generally used.

ここでは、複数のローラ1〜ローラ4からなる搬送ユニット(ローラの回転による搬送)により基材5を搬送し、LED、蛍光灯、ハロゲンランプ、キセノンランプ等を用いた照明光源6及び照明光源7によってフィルム基材の全幅を照明する。   Here, the substrate 5 is conveyed by a conveyance unit (conveyance by rotation of rollers) composed of a plurality of rollers 1 to 4, and an illumination light source 6 and an illumination light source 7 using an LED, a fluorescent lamp, a halogen lamp, a xenon lamp, or the like. Illuminates the entire width of the film substrate.

フィルム基材5を矢印8で示す方向に搬送しながら基材の幅方向を全走査できるよう複数のラインCCDカメラ9及びCCDカメラ10を配置し、基材5の搬送距離に応じた信号をロータリーエンコーダ13より取得しつつ、一定の搬送距離毎に前記ラインCCDカメラ9及び10によって基材表面を複数の所定の方向から撮像する。   A plurality of line CCD cameras 9 and CCD cameras 10 are arranged so that the width direction of the substrate can be fully scanned while the film substrate 5 is conveyed in the direction indicated by the arrow 8, and a signal corresponding to the conveyance distance of the substrate 5 is rotated. While acquiring from the encoder 13, the surface of the base material is imaged from a plurality of predetermined directions by the line CCD cameras 9 and 10 for every predetermined transport distance.

撮像した画像は画像処理装置11及び12でデジタル画像処理され、欠陥部分の抽出および判定が行われ、欠陥と判定された部位については、当該欠陥の属性を示すデータ(欠陥の位置を示す座標、ラインCCDカメラの画素数、濃度値)が、記憶機構のデータベースに保存され制御装置14系を通じてアクセスできるようになっている。   The captured image is subjected to digital image processing by the image processing apparatuses 11 and 12, extraction and determination of a defective portion are performed, and for a portion determined as a defect, data indicating the attribute of the defect (coordinates indicating the position of the defect, The number of pixels and the density value of the line CCD camera are stored in a database of a storage mechanism and can be accessed through the control device 14 system.

画像データを取得する撮像系には、照明光源6、ラインCCDカメラ9、画像処理装置11の組み合わせた透過光学系、照明光源7、ラインCCDカメラ10、画像処理装置12を組み合わせを反射光学系のいずれかまたは両方を備えることが可能である。図3に上記の検査フローを示すが、透過光学系・反射光学系とも画像処理等は同じアルゴリズムが採用されている。   The imaging system for acquiring the image data includes a transmission optical system in which the illumination light source 6, the line CCD camera 9 and the image processing device 11 are combined, and a combination of the illumination light source 7, the line CCD camera 10 and the image processing device 12 in the reflection optical system. Either or both can be provided. FIG. 3 shows the above inspection flow. The same algorithm is used for image processing and the like in both the transmission optical system and the reflection optical system.

一般に、欠陥の抽出処理は撮像された画像に対し、予め設定した閾値で二値化処理を行い、欠陥の検出を行う。図2は欠陥の抽出処理を説明するための図で、図2(a)はアナログ撮像画像21を示し、図2(b)は撮像画像の線分22に沿ったの画像信号の強度分布23を示す。図2(a)に示すアナログ撮像画像21を予め設定した閾値で二値化処理
すると、図2(c)に示すデジタル化された二値化画像25を得る。図2(d)は、図2(c)のデジタル画像信号23を同じ線分22上で二値化処理した信号強度26を示し階段状となる。
In general, in the defect extraction process, a binarization process is performed on a captured image with a preset threshold value to detect a defect. 2A and 2B are diagrams for explaining the defect extraction processing. FIG. 2A shows an analog captured image 21 and FIG. 2B shows an intensity distribution 23 of an image signal along a line segment 22 of the captured image. Indicates. When binarization processing is performed on the analog captured image 21 illustrated in FIG. 2A with a preset threshold, a digitized binarized image 25 illustrated in FIG. 2C is obtained. FIG. 2D shows a signal intensity 26 obtained by binarizing the digital image signal 23 of FIG.

上記反射防止フィルムの製造工程においては、長尺帯状の透光性のフィルム基材に対し、塗工・乾燥を1回ないし複数回行って、所望の光学特性を有する光学膜を形成する。基材に異物が付着した状態で塗工を行ったり、塗工液中に異物が混入したりした場合に異物を巻き込まれると、図4に模式的に示すように、当該異物41を中心として、クレーター状に膜厚変動部42を伴った欠陥が発生する。(以下、クレーター42と記す。)
製品の特性上、膜厚変動部は、その大きさにもよるが反射防止フィルムの反射防止機能に影響を及ぼすため、製品の出荷規格としては、中心の異物41の位置検出だけではなくクレーター42全体の面積で欠陥判定を行う必要がある。
In the production process of the antireflection film, coating and drying are performed once or a plurality of times on a long belt-like translucent film base material to form an optical film having desired optical characteristics. When coating is performed with foreign matter adhering to the base material, or when foreign matter is involved when foreign matter is mixed into the coating liquid, as shown schematically in FIG. Then, a defect accompanied by the film thickness variation portion 42 is generated in a crater shape. (Hereafter referred to as crater 42)
Due to the characteristics of the product, the film thickness variation part affects the antireflection function of the antireflection film, although it depends on its size. Therefore, as a product shipping standard, not only the position detection of the central foreign matter 41 but also the crater 42 It is necessary to perform defect determination with the entire area.

クレーター42の膜厚変動について、紫外光の300から400nmの波長域の光源を用いた反射検査を行う事で検出可能なことが知られており、また可視波長領域の透過検査を使用することで、クレーター42中心に生じる異物を検出可能であることが知られている(特許文献3参照)。   It is known that the film thickness variation of the crater 42 can be detected by performing a reflection inspection using an ultraviolet light source having a wavelength range of 300 to 400 nm, and by using a transmission inspection in the visible wavelength region. It is known that foreign matter generated at the center of the crater 42 can be detected (see Patent Document 3).

特開2009−16654号公報JP 2009-16654 A 特開2010−34382号公報JP 2010-34382 A 特開2006−038728号公報JP 2006-038728 A

欠陥検査装置の概略構成例を図 1に示したが、欠陥検査は、フィルム基材1が搬送ローラ2と搬送ローラ3の間を移動する際にCCDカメラ10でフィルム基材表面を撮像しデジタル画像処理して行われる。しかしながら、フィルム基材1の搬送時にローラ2とローラ3の間でフィルム基材に振動が発生しフィルムの面が暴れて波打ちが生じると波打ちを欠陥として認識・検出してしまうという不具合が生じることがある。
そこで本発明は、異物を伴わない単なるフィルム基材の波打ち現象を欠陥と誤認識することのない欠陥検査方法を提供することを課題とした。
An example of a schematic configuration of the defect inspection apparatus is shown in FIG. This is done by image processing. However, when the film substrate 1 is transported, the film substrate vibrates between the roller 2 and the roller 3, and if the surface of the film is violated and the undulation is generated, the undulation is recognized and detected as a defect. There is.
Accordingly, an object of the present invention is to provide a defect inspection method that does not misrecognize the undulation phenomenon of a film base material without foreign matter as a defect.

上記課題を達成するための請求項1に記載の発明は、フィルム基材に照射された照射光のうち斜め方向に反射する光を受光する第一の撮像光学系とフィルム基材に照射された照射光のうち垂直方向に透過する光を受光する第二の撮像光学系とを備え、第一の撮像光学系が欠陥を検出した場合、第二の撮像光学系もフィルム基材上の同じ位置に欠陥を検出していた場合に限り、当該部位に欠陥があると判定することを特徴とする反射防止フィルムの欠陥検査方法としたものである。
請求項2に記載の発明は、フィルム基材に照射された照射光のうち斜め方向に反射する光を受光する第一の撮像光学系と、フィルム基材に照射された照射光のうち垂直方向に透過する光を受光する第二の撮像光学系と、第一の撮像光学系と第二の撮像光学系から得られる欠陥パターンをデジタル的に比較照合するための画像処理装置と、を備えることを特徴とする反射防止フィルムの欠陥検査装置としたものである。
In order to achieve the above-mentioned object, the invention according to claim 1 irradiates the film substrate with the first imaging optical system that receives light reflected in an oblique direction among the irradiation light irradiated on the film substrate. A second imaging optical system that receives light that passes through in the vertical direction of the irradiation light, and when the first imaging optical system detects a defect, the second imaging optical system also has the same position on the film substrate. Only when a defect has been detected, the defect inspection method for an antireflection film is characterized in that it is determined that the part has a defect.
The invention according to claim 2 is a first imaging optical system that receives light reflected in an oblique direction among irradiation light irradiated on the film substrate, and a vertical direction among irradiation light irradiated on the film substrate. A second imaging optical system that receives the light transmitted through the first imaging optical system, and an image processing device for digitally comparing and collating defect patterns obtained from the first imaging optical system and the second imaging optical system. It is set as the defect inspection apparatus of the antireflection film characterized by these.

本発明になる欠陥検査装置を使用する欠陥判定方法によれば、欠陥検査装置がフィルム基材搬送時に発生する異物源を伴わない純粋なフィルム基材の波うち現象を「欠陥」と誤
認識することがない。したがって、効率的な欠陥検査が可能となる。
According to the defect determination method using the defect inspection apparatus according to the present invention, the defect inspection apparatus misrecognizes a wave phenomenon of a pure film base material that does not involve a foreign material source generated when the film base material is transported as a “defect”. There is nothing. Therefore, efficient defect inspection is possible.

本発明になる欠陥検査装置の概略構成を説明する概念図である。It is a conceptual diagram explaining schematic structure of the defect inspection apparatus which becomes this invention. (a)〜(d)欠陥のアナログパターンをある閾値でデジタル化する様子を説明する図面である。(A)-(d) It is drawing explaining a mode that the analog pattern of a defect is digitized with a certain threshold value. 欠陥判定のアルゴリズムを説明するフロー図である。It is a flowchart explaining the algorithm of a defect determination. フィルム基材上の欠陥の有り様を模式的に説明する断面視の図である。It is a figure of the cross-sectional view which illustrates typically the presence of the defect on a film base material. フィルム基材の波うち部分からの反射光と透過光の挙動を模式的に説明する図である。(a)反射光、(b)透過光。It is a figure which illustrates typically the behavior of the reflected light and the transmitted light from the wave part of a film base material. (A) reflected light, (b) transmitted light. 反射撮像系と透過撮像系の画像比較のアルゴリズムを説明するフロー図である。It is a flowchart explaining the algorithm of the image comparison of a reflective imaging system and a transmissive imaging system.

以下、本発明を図面を用いて説明する。   Hereinafter, the present invention will be described with reference to the drawings.

図1は、本発明になる反射防止フィルムのインライン欠陥検出装置の構成の概略図である。   FIG. 1 is a schematic view of the configuration of an inline defect detection device for an antireflection film according to the present invention.

フィルム基材5は、複数のローラ1〜ローラ4からなる搬送ユニット(ローラの回転による搬送)によりを矢印方向8に搬送され、LED、蛍光灯、ハロゲンランプ、キセノンランプ等を用いた照明光源6及び照明光源7によって基材の全幅が照明される。   The film base 5 is transported in a direction indicated by an arrow 8 by a transport unit composed of a plurality of rollers 1 to 4 (transport by rotation of rollers), and an illumination light source 6 using an LED, a fluorescent lamp, a halogen lamp, a xenon lamp, or the like. And the entire width of the substrate is illuminated by the illumination light source 7.

フィルム基材5の表面状態を撮像する光学系として、少なくとも2系統を備えており、一方は反射像を捉える第一の撮像光学系(以下、反射撮像光学系)、他方は透過像を撮像する第二の撮像光学系(以下、透過撮像光学系)である。第一の撮像光学系は、第一の光源7、ラインCCDカメラ10、画像処理装置12を備え、第二の光学系は、第二の光源6、CCDカメラ9、画像処理装置11とを備えている。基材5の搬送距離に応じた信号をロータリーエンコーダ13より取得しつつ、一定の搬送距離毎に前記ラインCCDカメラ9及び10によって基材表面を複数の所定の方向から撮像する。   As an optical system for imaging the surface state of the film substrate 5, at least two systems are provided, one of which is a first imaging optical system (hereinafter referred to as a reflection imaging optical system) that captures a reflected image, and the other that is used to capture a transmission image. This is a second imaging optical system (hereinafter referred to as a transmission imaging optical system). The first imaging optical system includes a first light source 7, a line CCD camera 10, and an image processing device 12. The second optical system includes a second light source 6, a CCD camera 9, and an image processing device 11. ing. While the signal corresponding to the transport distance of the base material 5 is acquired from the rotary encoder 13, the surface of the base material is imaged from a plurality of predetermined directions by the line CCD cameras 9 and 10 at every constant transport distance.

第一のラインCCDカメラ10と第二のラインCCDカメラ9のフィルム基材5上の焦点は同じ位置であることが望ましいが、CCDカメラ装置の配置の関係上困難な場合もあり絶対条件ではない。ロータリーエンコーダによる搬送距離の算出から異なるタイミングで取得された同じ位置の位置合わせも電子的に行えるからである。   It is desirable that the focal points of the first line CCD camera 10 and the second line CCD camera 9 on the film base 5 are the same position, but this is not an absolute requirement because it may be difficult due to the arrangement of the CCD camera device. . This is because the same position acquired at different timings from the calculation of the transport distance by the rotary encoder can be electronically performed.

撮像した画像は第一の画像処理装置11及び第二の画像処理装置12でデジタル画像処理され、第一の画像処理で欠陥部分の抽出および判定が行われ、欠陥と判定された部位については、第二の画像処理装置における当該部位の画像データとの比較が制御装置14またはいずれかの画像処理装置11,12で行われる。第二の画像処理装置においても欠陥と判定されていればこれは真正の欠陥と判定される。判定されていなければフィルム基材の波うちを誤認識したものと判断される。   The captured image is subjected to digital image processing by the first image processing device 11 and the second image processing device 12, extraction and determination of a defective part is performed in the first image processing, and a portion determined to be a defect is The comparison with the image data of the part in the second image processing apparatus is performed by the control apparatus 14 or any one of the image processing apparatuses 11 and 12. If it is also determined as a defect in the second image processing apparatus, it is determined as a genuine defect. If it is not judged, it is judged that the wave of the film base material was mistakenly recognized.

欠陥判定のアルゴリズムの一例は図3に記載したが、CCDカメラの分解能や異物の大きさ、外観形状、再現性など幾つかの条件を満たすものが欠陥と判定され、その点から実用上問題が無いものは欠陥とは判定されない。   An example of an algorithm for defect determination is shown in FIG. 3, but those satisfying several conditions such as the resolution of the CCD camera, the size of the foreign matter, the appearance shape, and the reproducibility are determined to be defects. None are not determined to be defective.

反射撮像光学系と透過撮像光学系の撮像効果の違いは、反射撮像系ついては図5(a)で示すとおり、フィルムの波打ちが生じた箇所では反射光の一部がCCDカメラ方向に反射されず、検出される反射光強度が低減して欠陥として誤検出されてしまう可能性がある。アナログデータからデジタル化する閾値については、フィルム基材と反射防止層の屈折率と厚みを考慮して純粋な波うち部分の反射光の挙動を予めシミュレーションして設定しておく必要がある。   As shown in FIG. 5A, the difference in imaging effect between the reflective imaging optical system and the transmissive imaging optical system is that, as shown in FIG. The detected reflected light intensity may be reduced and erroneously detected as a defect. Regarding the threshold value to be digitized from analog data, it is necessary to set in advance the simulation of the behavior of the reflected light of the pure wave portion in consideration of the refractive index and thickness of the film substrate and the antireflection layer.

一方透過撮像光学系では、図5(b)に示すとおり、波打ちの影響は受けにくく、一部CCDカメラに到達する光量が若干低下するのが見られるが反射光学系ほどではない。斜めに入射して斜め方向に反射する光の方が直進光よりもフィルム基材の波うちの影響を受けやすいからと推察している。したがって、反射撮像系と透過撮像系の両方で欠陥と判定されない部位については波打ちに起因する誤判定とし、欠陥とは判定されない。   On the other hand, in the transmissive imaging optical system, as shown in FIG. 5B, it is difficult to be affected by undulations, and the amount of light reaching a part of the CCD camera is slightly reduced, but not as high as that of the reflective optical system. It is presumed that the light incident obliquely and reflected obliquely is more susceptible to the wave of the film substrate than the straight light. Therefore, a portion that is not determined to be a defect in both the reflection imaging system and the transmission imaging system is determined as an erroneous determination due to undulations, and is not determined as a defect.

上記のアルゴリズムの概要を図6に示した。透過撮像光学系で検出した欠陥情報及び反射撮像光学系で検出した欠陥情報を高速で比較照合する機能を持った検査装置とする必要がある。デジタル化された画像データの照合比較処理は、制御装置14で行ってもよいし、いずれかの画像処理装置でもよいし、別途特別な処理装置を設けてもよい。   An outline of the above algorithm is shown in FIG. It is necessary to provide an inspection apparatus having a function of comparing and collating defect information detected by the transmission imaging optical system and defect information detected by the reflection imaging optical system at high speed. The collation / comparison processing of the digitized image data may be performed by the control device 14, may be any image processing device, or may be provided with a special processing device.

検査装置において透過光学系及び反射光学系を用いて通常通り検査を行い、欠陥として検出された箇所の座標等の欠陥情報を保存する。   In the inspection apparatus, inspection is performed as usual using a transmission optical system and a reflection optical system, and defect information such as coordinates of a portion detected as a defect is stored.

透過の光学系で検出した欠陥について、欠陥座標を用いて、反射光学系にて欠陥として検出されていないか確認を行い、透過・反射光学系双方で検出した欠陥のみ、欠陥として出力するということである。   For defects detected by the transmission optical system, use the defect coordinates to check whether they are detected as defects by the reflection optical system, and output only defects detected by both the transmission and reflection optical systems as defects. It is.

1、2,3,4、搬送ローラ
5、フィルム基材
6、第二の光源
7、第一の光源
8、洗浄ユニット(拭き取り)
9、CCDカメラ(第二)
10、CCDカメラ(第一)
11、画像処理装置(第二)
12、画像処理装置(第一)
13、ロータリーエンコーダ
21、欠陥領域のアナログ画像
22、断面視図の基準面
23、アナログ信号の強度分布(のピーク値)
24、デジタル化の閾値
25、欠陥領域のデジタル画像
26、デジタル信号の強度分布
41、異物
42、膜厚変動部
43、フィルム基材
44、クレータ
1, 2, 3, 4, transport roller 5, film base 6, second light source 7, first light source 8, cleaning unit (wiping)
9. CCD camera (second)
10. CCD camera (first)
11. Image processing device (second)
12. Image processing device (first)
13, rotary encoder 21, analog image 22 of defect area, reference plane 23 of sectional view, intensity distribution of analog signal (peak value thereof)
24, digitization threshold 25, digital image 26 of defect area, digital signal intensity distribution 41, foreign matter 42, film thickness variation portion 43, film substrate 44, crater

Claims (2)

フィルム基材に照射された照射光のうち斜め方向に反射する光を受光する第一の撮像光学系とフィルム基材に照射された照射光のうち垂直方向に透過する光を受光する第二の撮像光学系とを備え、第一の撮像光学系が欠陥を検出した場合、第二の撮像光学系もフィルム基材上の同じ位置に欠陥を検出していた場合に限り、当該部位に欠陥があると判定することを特徴とする反射防止フィルムの欠陥検査方法。   A first imaging optical system that receives light reflected in an oblique direction among irradiation light irradiated on the film base and a second that receives light transmitted in the vertical direction among irradiation light irradiated on the film base An imaging optical system, and when the first imaging optical system detects a defect, the second imaging optical system detects a defect at the same position on the film substrate only when the defect is detected at the site. A method for inspecting a defect of an antireflection film, characterized by determining that there is. フィルム基材に照射された照射光のうち斜め方向に反射する光を受光する第一の撮像光学系と、フィルム基材に照射された照射光のうち垂直方向に透過する光を受光する第二の撮像光学系と、第一の撮像光学系と第二の撮像光学系から得られる欠陥パターンをデジタル的に比較照合するための画像処理装置と、を備えることを特徴とする反射防止フィルムの欠陥検査装置。   A first imaging optical system that receives light reflected in an oblique direction out of irradiation light irradiated on the film base, and a second that receives light transmitted in the vertical direction among irradiation light irradiated on the film base And an image processing apparatus for digitally comparing and comparing defect patterns obtained from the first imaging optical system and the second imaging optical system. Inspection device.
JP2011120236A 2011-05-30 2011-05-30 Defect inspection method of antireflection film and defect inspection apparatus Withdrawn JP2012247343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120236A JP2012247343A (en) 2011-05-30 2011-05-30 Defect inspection method of antireflection film and defect inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120236A JP2012247343A (en) 2011-05-30 2011-05-30 Defect inspection method of antireflection film and defect inspection apparatus

Publications (1)

Publication Number Publication Date
JP2012247343A true JP2012247343A (en) 2012-12-13

Family

ID=47467900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120236A Withdrawn JP2012247343A (en) 2011-05-30 2011-05-30 Defect inspection method of antireflection film and defect inspection apparatus

Country Status (1)

Country Link
JP (1) JP2012247343A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172519A (en) * 2014-03-12 2015-10-01 オムロン株式会社 Sheet inspection device
KR20170055137A (en) * 2015-11-11 2017-05-19 엘지디스플레이 주식회사 Anti reflection film inspection apparatus and inspection methode for anti reflection film
CN111693546A (en) * 2020-06-16 2020-09-22 湖南大学 Defect detection system, method and image acquisition system
CN115436387A (en) * 2022-10-08 2022-12-06 山东中为电子科技有限公司 Appearance marking device for ceramic membrane belt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172519A (en) * 2014-03-12 2015-10-01 オムロン株式会社 Sheet inspection device
KR20170055137A (en) * 2015-11-11 2017-05-19 엘지디스플레이 주식회사 Anti reflection film inspection apparatus and inspection methode for anti reflection film
KR102401092B1 (en) * 2015-11-11 2022-05-20 엘지디스플레이 주식회사 Anti reflection film inspection apparatus and inspection methode for anti reflection film
CN111693546A (en) * 2020-06-16 2020-09-22 湖南大学 Defect detection system, method and image acquisition system
CN115436387A (en) * 2022-10-08 2022-12-06 山东中为电子科技有限公司 Appearance marking device for ceramic membrane belt

Similar Documents

Publication Publication Date Title
JP5521377B2 (en) Glass plate defect identification method and apparatus
JP4132046B2 (en) Device for inspecting defects of sheet-like transparent body
EP1943502B1 (en) Apparatus and methods for inspecting a composite structure for defects
JP2012078144A (en) Surface defect inspection device for transparent body sheet-like material
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
JP2011085520A (en) Defect discrimination device, defect discrimination method, and sheet-like material
US20120133761A1 (en) Uneven area inspection system
JP2012247343A (en) Defect inspection method of antireflection film and defect inspection apparatus
JP2001201429A (en) Method and device for inspecting defect in inspected base body
JP4930748B2 (en) Film inspection apparatus and method
JP2004309287A (en) Defect detection device and defect detection method
JP2013205091A (en) Film inspection system, and film inspection method
JP2008145428A (en) Rod lens array inspection device and method
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JP2011203201A (en) Metal defect detection method
JP2009222683A (en) Method and apparatus for surface inspection
JP2005351825A (en) Defect inspection device
JP2008076223A (en) Inspection method of cylindrical transparent body, and inspection apparatus used for it
JP2015200544A (en) Surface irregularity inspection device and surface irregularity inspection method
JP5471157B2 (en) Method and apparatus for detecting adhering matter on glass plate surface
JP2018040792A (en) Inspection system, inspection method, method of manufacturing films
JP5231779B2 (en) Appearance inspection device
JP2007114125A (en) Method for inspecting film thickness irregularities
JP3986534B2 (en) Empty bottle inspection system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805