[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011136402A - Polishing particle dispersion liquid comprising aggregate of organic particle and silica particle, and method for manufacturing the same - Google Patents

Polishing particle dispersion liquid comprising aggregate of organic particle and silica particle, and method for manufacturing the same Download PDF

Info

Publication number
JP2011136402A
JP2011136402A JP2009298601A JP2009298601A JP2011136402A JP 2011136402 A JP2011136402 A JP 2011136402A JP 2009298601 A JP2009298601 A JP 2009298601A JP 2009298601 A JP2009298601 A JP 2009298601A JP 2011136402 A JP2011136402 A JP 2011136402A
Authority
JP
Japan
Prior art keywords
polishing
particles
silica
particle dispersion
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009298601A
Other languages
Japanese (ja)
Other versions
JP5574702B2 (en
Inventor
Hiroyasu Nishida
広泰 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2009298601A priority Critical patent/JP5574702B2/en
Publication of JP2011136402A publication Critical patent/JP2011136402A/en
Application granted granted Critical
Publication of JP5574702B2 publication Critical patent/JP5574702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing particle used for polishing a semiconductor wafer, a glass hard disk, an alumina hard disk or the like and capable of reducing generation of scratch on a surface to be polished when it is used at a practical polishing speed. <P>SOLUTION: The polishing particle is made to a polishing particle by preparing a composite particle (hetero-aggregate) of an organic particle and an inorganic particle having the size equal or more to that of the organic particle. In the polishing particle, the particle is deformed when a polishing pressure becomes high, generation of scratch is suppressed by maintaining the polishing speed, and sufficient polishing performance can be exhibited. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体ウエハ、ガラス製ハードデイスク、アルミナ製ハードデイスクなどを研磨するために好適な研磨用粒子分散液およびその製造方法に関するものである。   The present invention relates to a polishing particle dispersion suitable for polishing semiconductor wafers, glass hard disks, alumina hard disks, and the like, and a method for producing the same.

半導体ウエハ、ガラス製ハードデイスク、アルミナ製ハードデイスクなどを研磨するために用いられる研磨剤として、従来からシリカゾル又はアルミナゾル等の無機系粒子を含む水系分散体が使用されている。しかし、この無機系粒子を含む水系分散体は、凝集塊などの原因により、被研磨面に線状痕(以下、「スクラッチ」ともいう。)が発生することがある。この問題を解決するため、水系分散体に界面活性剤を配合する、フィルタによって粗大粒子を除去する等、各種の方法が提案されている。しかし、これらの方法は研磨剤そのものの改良ではないうえ、研磨速度の低下、金属イオンによる被研磨面の汚損等の問題を生じる場合があった。   Conventionally, aqueous dispersions containing inorganic particles such as silica sol or alumina sol have been used as polishing agents used for polishing semiconductor wafers, glass hard disks, alumina hard disks, and the like. However, the aqueous dispersion containing the inorganic particles may cause a linear mark (hereinafter also referred to as “scratch”) on the surface to be polished due to an agglomerate or the like. In order to solve this problem, various methods have been proposed such as adding a surfactant to the aqueous dispersion and removing coarse particles with a filter. However, these methods do not improve the polishing agent itself, and may cause problems such as a reduction in polishing rate and contamination of the surface to be polished by metal ions.

更に、特許文献1(特開平7−86216号公報)には、無機粒子ではなく、有機高分子化合物等を主成分とする研磨粒子を含む研磨剤により半導体装置の被加工膜を研磨する方法が開示されている。この方法によれば、研磨後、被研磨面に残留する研磨粒子を燃焼させ、除去することができ、残留する粒子による半導体装置等、製品の不良の発生を抑えることができる。しかし、有機高分子化合物からなる粒子は、シリカ、アルミナ等の無機粒子に比べて硬度が低いため、研磨速度を増大させ難いという問題がある。   Further, Patent Document 1 (Japanese Patent Laid-Open No. 7-86216) discloses a method of polishing a film to be processed of a semiconductor device with an abrasive containing not only inorganic particles but also abrasive particles mainly composed of an organic polymer compound or the like. It is disclosed. According to this method, after polishing, the abrasive particles remaining on the surface to be polished can be burned and removed, and the occurrence of defects in products such as semiconductor devices due to the remaining particles can be suppressed. However, since the particles made of an organic polymer compound have a lower hardness than inorganic particles such as silica and alumina, there is a problem that it is difficult to increase the polishing rate.

特許文献2(特公平6−40951号公報)には、ゼータ電位が逆符号である粒子を混合することにより複合粒子を製造する方法が開示されている。しかし、この方法では、各粒子は静電的な力のみで付着しているため、複合粒子に大きな剪断応力が加わった場合など、粒子が分離してしまう可能性がある。   Patent Document 2 (Japanese Patent Publication No. 6-40951) discloses a method of producing composite particles by mixing particles whose zeta potential has an opposite sign. However, in this method, since each particle adheres only by electrostatic force, there is a possibility that the particle is separated when a large shear stress is applied to the composite particle.

特許文献3(特開2001−152135号公報)には、重合体粒子の水系分散体Aと無機粒子の水系分散体Bとを、上記重合体粒子のゼータ電位と上記無機粒子のゼータ電位とが同符号となるpH域で混合して、上記重合体粒子及び上記無機粒子を含有する水系分散体Cを調製した後、上記水系分散体CのpHを、上記重合体粒子のゼータ電位と上記無機粒子のゼータ電位とが逆符号となるように変化させ、上記重合体粒子と上記無機粒子とからなる複合粒子を形成することを特徴とする化学機械研磨用水系分散体の製造方法が開示されている。この製造方法で得られる研磨用粒子は、重合体粒子表面に多数の無機粒子が付着し、被覆層が形成されることを目的とするものであり、無機粒子が重合体粒子より大きい場合は、スクラッチが発生しやすくなるなど、好ましくない旨の記載がある。   Patent Document 3 (Japanese Patent Laid-Open No. 2001-152135) describes an aqueous dispersion A of polymer particles and an aqueous dispersion B of inorganic particles, wherein the zeta potential of the polymer particles and the zeta potential of the inorganic particles are as follows. After mixing in the pH range having the same sign to prepare an aqueous dispersion C containing the polymer particles and the inorganic particles, the pH of the aqueous dispersion C is changed to the zeta potential of the polymer particles and the inorganic particles. Disclosed is a method for producing an aqueous dispersion for chemical mechanical polishing, wherein the composite particles comprising the polymer particles and the inorganic particles are formed by changing the zeta potential of the particles to have an opposite sign. Yes. The abrasive particles obtained by this production method are intended to form a coating layer with a large number of inorganic particles adhering to the surface of the polymer particles. When the inorganic particles are larger than the polymer particles, There is a description that it is not preferable such that scratches are likely to occur.

特許文献4(特開平11−114808号公報)には、母粒子の表面に子粒子が担持さ
れた複合研磨材を砥粒として添加しスラリーとして分散させた研磨材を用いることにより、ガラス素材や半導体デバイスなどの研磨に関し、汚染物質を含まず、現行のシリカ研磨材と同等の表面加工状態を維持し、且つシリカ研磨材より、研磨速度を向上させることが出来る旨が記載されている。この研磨材は、有機樹脂からなる母粒子にシリカなどの子粒子が付着してなる構造をとるものである。
In Patent Document 4 (Japanese Patent Laid-Open No. 11-114808), by using an abrasive in which a composite abrasive in which child particles are supported on the surface of mother particles is added as abrasive grains and dispersed as a slurry, a glass material or Regarding polishing of semiconductor devices and the like, it is described that it does not contain contaminants, maintains a surface processing state equivalent to that of current silica abrasives, and can improve the polishing rate over silica abrasives. This abrasive has a structure in which child particles such as silica adhere to mother particles made of an organic resin.

特許文献5(特開2002−97456号公報)には、母粒子、及びこの母粒子の表面に複数付着固定した子粒子、から成る研磨粒子であって、母粒子として、弾性を有する平均粒径1〜100μmの球状ポリマー粒子が使用され、子粒子として、母粒子の平均粒径の1/500〜1/10の平均粒径の硬質の粒子から選択されるシリカなどが使用される研磨粒子に関する発明が開示されている。この研磨粒子も、特許文献4と同様に有機樹脂からなる母粒子にシリカなどの子粒子が付着してなる構造をとるものである。   Patent Document 5 (Japanese Patent Application Laid-Open No. 2002-97456) discloses abrasive particles composed of mother particles and a plurality of child particles fixedly attached to the surface of the mother particles, and has an average particle diameter having elasticity as the mother particles. The present invention relates to abrasive particles in which spherical polymer particles of 1 to 100 μm are used, and silica or the like selected from hard particles having an average particle diameter of 1/500 to 1/10 of an average particle diameter of mother particles is used as a child particle. The invention is disclosed. The abrasive particles also have a structure in which child particles such as silica adhere to mother particles made of an organic resin, as in Patent Document 4.

以上の特許文献にあるような研磨用粒子が提案されてきたものの、更にスクラッチの発生を抑止できる研磨用粒子が求められていた。   Although abrasive particles as described in the above patent documents have been proposed, there has been a demand for abrasive particles that can further suppress the occurrence of scratches.

特開平7−86216号JP-A-7-86216 特公平6−40951号Japanese Patent Publication No. 6-40951 特開2001−152135号JP 2001-152135 A 特開平11−114808号Japanese Patent Laid-Open No. 11-114808 特開2002−97456号JP 2002-97456 A

本発明は、上記の従来の問題を解決するものであり、有機系粒子と、該有機粒子と同等以上の大きさのシリカ粒子からなる凝集体が分散媒に分散してなる研磨用粒子分散液を提供することを目的とする。   The present invention solves the above-described conventional problems, and is a polishing particle dispersion in which an aggregate composed of organic particles and silica particles having a size equal to or larger than the organic particles is dispersed in a dispersion medium. The purpose is to provide.

本出願に係る第1の発明は、シリカ粒子と有機系粒子の凝集体からなる平均粒子径(Dm)10〜300nmの研磨用粒子が分散媒に分散してなる研磨用粒子分散液であって、次の条件を満たすことを特徴とするものである。
(1)前記シリカ粒子の平均粒子径(Da)が15〜240nmの範囲
(2)前記有機系粒子の平均粒子径(Db)が5〜80nmの範囲
(3)(Da)/(Db)の値が1.0〜3.0の範囲
A first invention according to the present application is a polishing particle dispersion in which polishing particles having an average particle diameter (Dm) of 10 to 300 nm made of an aggregate of silica particles and organic particles are dispersed in a dispersion medium. The following conditions are satisfied.
(1) The average particle diameter (Da) of the silica particles is in the range of 15 to 240 nm (2) The average particle diameter (Db) of the organic particles is in the range of 5 to 80 nm (3) (Da) / (Db) Values range from 1.0 to 3.0

本出願における第2の発明は、前記研磨用粒子におけるシリカ粒子と有機系粒子の質量比が100:1〜100:50の範囲である前記研磨用粒子分散液である。   2nd invention in this application is the said particle | grain dispersion liquid whose mass ratio of the silica particle in the said particle | grain for polishing and organic type particle | grains is the range of 100: 1-100: 50.

本出願に係る第3の発明は、前記有機系粒子が、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、アミド系樹脂またはこれらの共重合体から選ばれるものである前記研磨用粒子分散液である。   According to a third invention of the present application, the organic particles are selected from acrylic resins, epoxy resins, urethane resins, polyester resins, amide resins, or copolymers thereof. It is a particle dispersion.

本出願に係る第4の発明は、前記研磨用粒子分散液と、研磨促進剤、界面活性剤、複素環化合物、pH調整剤およびpH緩衝剤からなる群より選ばれる添加剤1種以上、とを含む研磨剤組成物である。   According to a fourth aspect of the present application, the polishing particle dispersion and at least one additive selected from the group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster, and a pH buffer, and It is an abrasive | polishing agent composition containing this.

本出願に係る第5の発明は、下記(a)のシリカ粒子分散液100質量部(固形分換算)と、下記(b)の有機系粒子分散液1〜50質量部(固形分換算)とを、それぞれのゼータ電位の差が10mV以上になるpH範囲にて混合し、5〜70℃の範囲で保持することにより、ヘテロ凝集させてなる研磨用粒子分散液の製造方法である。
(a)平均粒子径(Da)が15〜240nmの範囲にあり、ゼータ電位(Za)が−20〜−60mVの範囲にあるシリカ粒子が分散媒に分散してなるシリカ粒子分散液(固形分濃度10〜40質量%)
(b)平均粒子径(Db)が5〜80nmの範囲にあり、ゼータ電位(Zb)が−3〜−30mVの範囲にある有機系粒子が分散媒に分散してなる有機系粒子分散液(固形分濃度1〜20質量%)(ただし、(Da)/(Db)=1.0〜3.0の範囲に限る)
5th invention which concerns on this application is 100 mass parts (solid content conversion) of the silica particle dispersion of the following (a), 1-50 mass parts (solid content conversion) of the organic type particle dispersion of the following (b), Are mixed in a pH range in which the difference between the zeta potentials is 10 mV or more, and maintained in a range of 5 to 70 ° C., thereby producing a polishing particle dispersion liquid that is heteroaggregated.
(A) A silica particle dispersion (solid content) in which silica particles having an average particle diameter (Da) in the range of 15 to 240 nm and a zeta potential (Za) in the range of −20 to −60 mV are dispersed in a dispersion medium. (Concentration 10-40% by mass)
(B) An organic particle dispersion in which organic particles having an average particle diameter (Db) in the range of 5 to 80 nm and a zeta potential (Zb) in the range of −3 to −30 mV are dispersed in a dispersion medium ( (Solid content concentration of 1 to 20% by mass) (however, (Da) / (Db) = limited to a range of 1.0 to 3.0)

本発明に係る研磨用粒子分散液においては、研磨用粒子が有機系粒子と該有機系粒子と同等以上の大きさの無機粒子との凝集体(ヘテロ凝集体)のために、研磨圧が高くなると粒子が変形し、研磨速度を維持して、スクラッチ発生が抑制され、良好な研磨性能を示すことができる。   In the polishing particle dispersion according to the present invention, the polishing pressure is high because the polishing particles are aggregates (heteroaggregates) of organic particles and inorganic particles having a size equal to or larger than the organic particles. Then, the particles are deformed, the polishing rate is maintained, the generation of scratches is suppressed, and good polishing performance can be exhibited.

(1)研磨用粒子分散液
本発明に係る研磨用粒子分散液は、有機系粒子と、該有機系粒子と同等以上の大きさのシリカ粒子との凝集体(ヘテロ凝集体)が分散媒に分散してなるものであり、より具体的には、シリカ粒子と有機系粒子の凝集体からなる平均粒子径(Dm)10〜300nmの研磨用粒子が分散媒に分散してなる研磨用粒子分散液であって、次の条件を満たすことを特徴とするものである。
(1)前記シリカ粒子の平均粒子径(Da)が15〜240nmの範囲
(2)前記有機系粒子の平均粒子径(Db)が5〜80nmの範囲
(3)(Da)/(Db)の値が1.0〜3.0の範囲
(1) Polishing particle dispersion The polishing particle dispersion according to the present invention uses, as a dispersion medium, an aggregate (heteroaggregate) of organic particles and silica particles having a size equal to or larger than the organic particles. More specifically, an abrasive particle dispersion in which abrasive particles having an average particle diameter (Dm) of 10 to 300 nm composed of an aggregate of silica particles and organic particles are dispersed in a dispersion medium. The liquid is characterized by satisfying the following conditions.
(1) The average particle diameter (Da) of the silica particles is in the range of 15 to 240 nm (2) The average particle diameter (Db) of the organic particles is in the range of 5 to 80 nm (3) (Da) / (Db) Values range from 1.0 to 3.0

前記研磨用粒子の平均粒子径は、画像解析法により測定された平均粒子径が10〜300nmの範囲であることが望ましい。平均粒子径が10nm未満の場合は、実用的な研磨速度が得られない場合がある。平均粒子径が300nmを超える場合については、本発明に係る製造方法によって調製することが容易ではない場合がある。前記研磨用粒子径の平均粒子径は、好適には50〜290nm、更に好適には70〜260nmの範囲が推奨される。   The average particle diameter of the abrasive particles is preferably in the range of 10 to 300 nm as measured by an image analysis method. When the average particle size is less than 10 nm, a practical polishing rate may not be obtained. When the average particle diameter exceeds 300 nm, it may not be easy to prepare by the production method according to the present invention. The average particle diameter of the abrasive particle diameter is preferably 50 to 290 nm, and more preferably 70 to 260 nm.

前記シリカ粒子と有機系粒子の大きさの関係については、前記(1)、(2)及び(3)の関係を満たしていることが必要となる。特に有機系粒子はシリカ粒子と同等以上、3倍以内の範囲にあることが望ましい。この範囲にある場合は、前記研磨用粒子が研磨処理時に、研磨布などから受ける荷重により変形するため、被研磨面でのスクラッチ発生を抑止することができる。ただし、(Da)/(Db)の値が3.0を超える場合は、シリカ粒子の割合が過剰となり、本発明の効果が生じ難くなる傾向がある。前記(Da)/(Db)の範囲としては、1.5〜2.5の範囲がより好ましく、さらに1.6〜2.0の範囲がより好ましい。1.0を下回る場合には目的とする研磨性能が得られない。   Regarding the relationship between the size of the silica particles and the organic particles, it is necessary to satisfy the relationships (1), (2), and (3). In particular, it is desirable that the organic particles are in a range equal to or more than three times that of the silica particles. When in this range, the abrasive particles are deformed by the load received from the polishing cloth or the like during the polishing process, and thus the generation of scratches on the surface to be polished can be suppressed. However, when the value of (Da) / (Db) exceeds 3.0, the ratio of silica particles becomes excessive, and the effect of the present invention tends to be difficult to occur. The range of (Da) / (Db) is more preferably in the range of 1.5 to 2.5, and still more preferably in the range of 1.6 to 2.0. If it is less than 1.0, the desired polishing performance cannot be obtained.

前記シリカ粒子の平均粒子径(Da)の範囲(15〜240nm)と(2)前記有機系粒子の平均粒子径(Db)の範囲(5〜80nm)は、前記(Da)/(Db)の範囲(1.0〜3.0)及び研磨用粒子の平均粒子径範囲(10〜300nm)に見合ために必要とされるものである。シリカ粒子の平均粒子径(Da)が15nm未満の場合は、そのような研磨用粒子を使用した場合、研磨速度が低下する傾向がある。同じく(Da)が240nmを超える場合は、そのような研磨用粒子を使用した場合、被研磨面でのスクラッチ発生が増大する傾向がある。   The range of the average particle size (Da) of the silica particles (15 to 240 nm) and (2) the range of the average particle size (Db) of the organic particles (5 to 80 nm) are the values of (Da) / (Db). It is required to meet the range (1.0 to 3.0) and the average particle size range (10 to 300 nm) of the abrasive particles. When the average particle diameter (Da) of the silica particles is less than 15 nm, the polishing rate tends to decrease when such polishing particles are used. Similarly, when (Da) exceeds 240 nm, when such abrasive particles are used, the occurrence of scratches on the polished surface tends to increase.

有機系粒子の平均粒子径(Db)が5nm未満の場合、そのような研磨用粒子は、実用的な研磨速度が得にくい傾向がある。同じく(Db)が80nmを超える場合は、ヘテロ凝集が生じ難い場合がある。   When the average particle diameter (Db) of the organic particles is less than 5 nm, such polishing particles tend to have difficulty in obtaining a practical polishing rate. Similarly, when (Db) exceeds 80 nm, heteroaggregation may hardly occur.

前記研磨用粒子においては、シリカ粒子と有機系粒子との質量比が100:1〜100:50の範囲にあることが望ましい。後記する本発明に係る研磨用粒子分散液の製造方法においては、原料として使用されるシリカ粒子と有機系粒子は、ゼータ電位の差が10mV以上となるようなpH範囲で混合されるので、投入した全量がヘテロ凝集により凝集体を形成することができる。前記研磨用粒子においては、シリカ粒子100質量部に対する、有機系粒子との質量比が1質量部未満の場合は、凝集体の生成は極めて僅かであり、研磨速度及びスクラッチ発生抑止に関する性能改善は見られない。シリカ粒子100質量部に対する、有機系粒子との質量比が50質量部を超える場合は、シリカに対して、比重の大きい有機系粒子の割合が過剰となり、研磨速度が低下する傾向となる。シリカ粒子と有機系粒子との質量比は、好適には100:15〜100:45の範囲がより好ましく、100:20〜100:40の範囲がさらに好ましい。
本発明に係る研磨用粒子分散液の固形分濃度は、格別に制限されるものではないが、通常は、0.5〜50質量%の範囲が推奨される。研磨処理の効率を重視した場合は、3〜30質量%の範囲が推奨される。
In the polishing particles, the mass ratio of silica particles to organic particles is preferably in the range of 100: 1 to 100: 50. In the method for producing a polishing particle dispersion according to the present invention described later, silica particles and organic particles used as raw materials are mixed in a pH range such that the difference in zeta potential is 10 mV or more. The total amount formed can form aggregates by heteroaggregation. In the polishing particles, when the mass ratio of the organic particles to 100 parts by mass of the silica particles is less than 1 part by mass, the formation of aggregates is extremely small, and the performance improvement regarding the polishing rate and the scratch generation suppression is can not see. When the mass ratio of the organic particles with respect to 100 parts by mass of the silica particles exceeds 50 parts by mass, the ratio of the organic particles having a large specific gravity with respect to the silica becomes excessive, and the polishing rate tends to decrease. The mass ratio between the silica particles and the organic particles is preferably in the range of 100: 15 to 100: 45, more preferably in the range of 100: 20 to 100: 40.
The solid content concentration of the abrasive particle dispersion according to the present invention is not particularly limited, but a range of 0.5 to 50% by mass is usually recommended. When importance is attached to the efficiency of the polishing treatment, a range of 3 to 30% by mass is recommended.

シリカ粒子
本発明に使用されるシリカ粒子としては、画像解析法により測定される平均粒子径が15〜240nmの範囲の公知のシリカ粒子を使用することができる。該シリカ粒子は、本発明に係る製造方法においては、シリカ濃度1〜50質量%の範囲のシリカ粒子分散液として使用される。このようなシリカ粒子分散液の調製方法としては、次の(1)〜(4)の製造方法を挙げることができるが、これらに限定されるものではない。
Silica Particles As the silica particles used in the present invention, known silica particles having an average particle diameter measured by an image analysis method in the range of 15 to 240 nm can be used. In the production method according to the present invention, the silica particles are used as a silica particle dispersion having a silica concentration of 1 to 50% by mass. Examples of the method for preparing such a silica particle dispersion include the following production methods (1) to (4), but are not limited thereto.

(1)アルカリ金属珪酸塩、第3級アンモニウム珪酸塩、第4級アンモニウム珪酸塩またはグアニジン珪酸塩から選ばれる水溶性珪酸塩を、脱アルカリすることにより得られる珪酸液をアルカリ存在下で加熱することにより珪酸を重合する工程を含むシリカゾルの製造方法
この製造方法の例としては、珪酸アルカリ水溶液をシリカ濃度3〜10重量%に水で希釈し、次いでH型強酸性陽イオン交換樹脂に接触させて脱アルカリし、必要に応じてOH型強塩基性陰イオン交換樹脂に接触させて脱アニオンし、活性珪酸を調製する。pHが8以上となるようアルカリ物質を加え、50℃以上に加熱することにより平均粒子径60nm以下のシリカゾルを製造する方法を挙げることができる。
(1) A silicic acid solution obtained by dealkalizing a water-soluble silicate selected from alkali metal silicate, tertiary ammonium silicate, quaternary ammonium silicate or guanidine silicate is heated in the presence of alkali. A method for producing a silica sol comprising a step of polymerizing silicic acid as an example of this production method includes diluting an alkali silicate aqueous solution with water to a silica concentration of 3 to 10% by weight, and then bringing it into contact with an H-type strongly acidic cation exchange resin. Then, it is dealkalized and, if necessary, brought into contact with an OH type strongly basic anion exchange resin to deanion to prepare active silicic acid. An example is a method for producing a silica sol having an average particle diameter of 60 nm or less by adding an alkaline substance so that the pH is 8 or more and heating to 50 ° C. or more.

(2)核粒子分散液に酸性珪酸液を添加することにより、核粒子の粒子成長を行うシリカゾルの製造方法
この製造方法において、核粒子分散液としては、核粒子として機能すれば特に制限はなく従来公知のシリカ、アルミナ、ジルコニア、セリア、チタニア、シリカ−アルミナ、シリカ−ジルコニア、シリカ−セリア、シリカ−チタニア等の微粒子の分散液を用いることができる。なかでも、本願出願人による特開平5−132309号公報、特開平7−105522号公報等に開示したシリカゾル、シリカ系複合酸化物ゾルは粒子径分布が均一であり、均一な粒子径分布の研磨用シリカ粒子が得られるので好ましい。
(2) Manufacturing method of silica sol for growing core particles by adding acidic silicic acid solution to the core particle dispersion In this manufacturing method, the core particle dispersion is not particularly limited as long as it functions as core particles. Conventionally known fine particle dispersions such as silica, alumina, zirconia, ceria, titania, silica-alumina, silica-zirconia, silica-ceria, silica-titania can be used. Among them, the silica sol and the silica-based composite oxide sol disclosed in Japanese Patent Application Laid-Open Nos. 5-132309 and 7-105522 by the applicant of the present application have a uniform particle size distribution, and polishing with a uniform particle size distribution. Since silica particles for use are obtained, it is preferable.

核粒子分散液には酸性珪酸液の添加前に珪酸アルカリが加えられていることが好ましい。珪酸アルカリが添加されていると、次に粒子成長用の酸性珪酸液を加える際に、分散媒中に溶解したSiO濃度が予め高くされているので核粒子への珪酸の析出が早く起こり、また分散液のpHを概ね8〜12、好ましくは9.5〜11.5に調整することができる。此処で用いる珪酸アルカリとしては、ケイ酸カリウム(カリ水硝子)等、ケイ酸ナトリウム(ナトリウム水硝子)以外の珪酸アルカリあるいは4級アミンなど有機塩基にシリカを溶解した溶液を用いることが好ましい。また、必要に応じてNaOH以外のアルカリ金属水酸化物、アンモニウム、4級アンモニウムハイドライドを添加することができる。さらにMg(OH)、Ca(OH)、Sr(OH)、Ba(OH)等のアルカリ金属水酸化物なども好適に用いることができる。 It is preferable that an alkali silicate is added to the core particle dispersion before addition of the acidic silicate solution. When the alkali silicate is added, when the acidic silicate solution for particle growth is added next, the SiO 2 concentration dissolved in the dispersion medium is increased in advance, so that precipitation of silicic acid on the core particles occurs quickly, The pH of the dispersion can be adjusted to about 8 to 12, preferably 9.5 to 11.5. As the alkali silicate used here, it is preferable to use a solution in which silica is dissolved in an organic base such as potassium silicate (potassium water glass), silicate alkali other than sodium silicate (sodium water glass), or quaternary amine. Moreover, alkali metal hydroxides other than NaOH, ammonium, and quaternary ammonium hydride can be added as needed. Furthermore, alkali metal hydroxides such as Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 , and Ba (OH) 2 can be preferably used.

予め核粒子が分散していなくても、珪酸アルカリ水溶液に後述する酸性珪酸液を加えていくとシリカ濃度が高くなったところで核粒子が発生するので、このような核粒子分散液も好適に用いることができる。核粒子分散液の濃度は核粒子の大きさによっても異なるが、SiOとして0.005〜20重量%、さらには0.01〜10重量%の範囲にあることが好ましい。 Even if the core particles are not dispersed in advance, the core particles are generated when the silica concentration is increased when an acidic silicic acid solution described later is added to the alkali silicate aqueous solution. Therefore, such a core particle dispersion is also preferably used. be able to. The concentration of the core particle dispersion varies depending on the size of the core particles, but is preferably in the range of 0.005 to 20 wt%, more preferably 0.01 to 10 wt% as SiO 2 .

核粒子の濃度が0.005重量%未満の場合は、粒子成長を行うために温度を高めた場合核粒子の一部または全部が溶解することがあり、核粒子の全部が溶解すると核粒子分散液を用いる効果が得られず、核粒子の一部が溶解した場合は得られるシリカ粒子の粒子径が不均一になる傾向があり、同様に核粒子分散液を用いる効果が得られないことがある。一方、核粒子の濃度が20重量%を越えると、核粒子当たりの酸性珪酸液の添加割合を低濃度の場合と同一にするには珪酸液の添加速度を速めることになるが、この場合、酸性珪酸液の核粒子表面への析出が追随できず、酸性珪酸液がゲル化することがある。
核粒子の平均粒子径は前記したシリカ粒子が得られれば、特に制限はない。
When the concentration of the core particles is less than 0.005% by weight, some or all of the core particles may be dissolved when the temperature is increased to perform particle growth. If the effect of using the liquid is not obtained, and part of the core particles is dissolved, the particle diameter of the silica particles obtained tends to be non-uniform, and the effect of using the core particle dispersion may not be obtained is there. On the other hand, when the concentration of the core particles exceeds 20% by weight, the addition rate of the silicic acid solution is increased in order to make the addition ratio of the acidic silicic acid solution per core particle the same as the low concentration. Precipitation of the acidic silicic acid solution on the surface of the core particles cannot follow, and the acidic silicic acid solution may gel.
The average particle diameter of the core particles is not particularly limited as long as the silica particles described above can be obtained.

(3)珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加した後、加熱することによりシリカヒドロゲルを解膠する工程を含むシリカゾルの製造方法
この製造方法は解膠法と呼ばれるもので、通常は、珪酸塩の水溶液を酸で中和して、シリカヒドロゲルを調製し、化学的手段または機械的な手段にて、シリカヒドロゲルをスラリー状ないしは分散溶液にする方法として知られている。
ここで、化学的手段としては、シリカヒドロゲルにアルカリを添加し、所望により加熱する方法が挙げられる。また、機械的手段としては、攪拌器などの装置を使用する方法を挙げることができる。これらの化学的手段と機械的な手段は併用されても差し支えない。
(3) A method for producing a silica sol comprising a step of washing a silica hydrogel obtained by neutralizing a silicate with an acid, removing salts, adding an alkali, and heating the silica hydrogel by heating. The production method is called a peptization method. Usually, a silica hydrogel is prepared by neutralizing an aqueous solution of silicate with an acid, and the silica hydrogel is slurried or dispersed by chemical or mechanical means. It is known as a method of making a solution.
Here, as a chemical means, the method of adding an alkali to a silica hydrogel and heating as desired is mentioned. Moreover, as a mechanical means, the method of using apparatuses, such as a stirrer, can be mentioned. These chemical means and mechanical means may be used in combination.

具体的には、珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加し、60〜200℃の範囲に加熱することにより、シリカヒドロゲルを解膠して、シリカゾルを調製する。
この製造方法で原料として使用する珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましい。アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
Specifically, silica hydrogel obtained by neutralizing silicate with acid is washed, salts are removed, alkali is added, and the silica hydrogel is peptized by heating in the range of 60 to 200 ° C. Then, a silica sol is prepared.
The silicate used as a raw material in this production method is preferably one or more silicates selected from alkali metal silicates, ammonium silicates, and organic base silicates. Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, amines such as monoethanolamine, diethanolamine, and triethanolamine. In addition, the ammonium silicate or the organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound, or the like to a silicic acid solution.

(4)加水分解性基を有する珪素化合物を加水分解して、得られた珪酸を重合する工程を含むシリカゾルの製造方法
この製造方法の例としては、シ−ド粒子が分散された水−有機溶媒系分散液にテトラエトキシシランを添加して該テトラエトキシシランを加水分解し、前記シ−ド粒子上にシリカを付着させて粒子成長を行わせて単分散したシリカ粒子を製造する方法などが知られている。
原料となるシリカ系ゾルの固形分濃度については、10〜50質量%の範囲のものが使用される。
また、シリカ系ゾルについては単分散状態にあるものが、後の工程で粒子径を均一化させる上で好ましい。なお、原料として市販のシリカゾルを適用することも勿論可能である。その場合、市販品はシリカ濃度20〜50%の高濃度のものを使用するのが経済的である。また、使用前に、所望により、イオン交換、濾過、濃度調整などを行っても良い。
(4) Method for producing silica sol comprising the step of hydrolyzing a silicon compound having a hydrolyzable group and polymerizing the resulting silicic acid As an example of this production method, water-organic in which seed particles are dispersed A method of producing monodispersed silica particles by adding tetraethoxysilane to a solvent-based dispersion, hydrolyzing the tetraethoxysilane, attaching silica onto the seed particles, and performing particle growth. Are known.
About the solid content density | concentration of the silica type sol used as a raw material, the thing of the range of 10-50 mass% is used.
Further, a silica-based sol is preferably in a monodispersed state in order to make the particle diameter uniform in a later step. Of course, a commercially available silica sol can be applied as a raw material. In that case, it is economical to use a commercially available product having a high silica concentration of 20 to 50%. Further, before use, ion exchange, filtration, concentration adjustment, etc. may be performed as desired.

有機系粒子
本発明に使用される有機系粒子は、画像解析法による平均粒子径が5〜80nmの範囲の有機系樹脂からなる粒子である。有機系樹脂の種類については、格別に制限されるものではないが、通常は、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、アミド系樹脂またはこれらの共重合体から選ばれるものが好適に使用される。
Organic Particles The organic particles used in the present invention are particles made of an organic resin having an average particle diameter in the range of 5 to 80 nm by an image analysis method. The type of organic resin is not particularly limited, but is usually selected from acrylic resins, epoxy resins, urethane resins, polyester resins, amide resins, or copolymers thereof. Are preferably used.

製造方法
本発明に係る研磨用粒子分散液の製造方法は、下記(a)のシリカ粒子分散液100質量部(固形分換算)と、下記(b)の有機系粒子分散液1〜50質量部(固形分換算)とを、それぞれのゼータ電位の差が10mV以上になるpH範囲にて混合し、5〜70℃の範囲で保持することにより、ヘテロ凝集させることを特徴とする。
(a)平均粒子径(Da)が15〜240nmの範囲にあり、ゼータ電位(Za)が−20〜−60mVの範囲にあるシリカ粒子が分散媒に分散してなるシリカ粒子分散液(固形分濃度10〜40質量%)
(b)平均粒子径(Db)が5〜80nmの範囲にあり、ゼータ電位(Zb)が−3〜−30mVの範囲にある有機系粒子が分散媒に分散してなる有機系粒子分散液(固形分濃度1〜20質量%)(ただし、(Da)/(Db)=1.0〜3.0の範囲に限る)
Production Method The production method of the abrasive particle dispersion according to the present invention comprises 100 parts by mass (in terms of solid content) of silica particle dispersion (a) below, and 1 to 50 parts by mass of organic particle dispersion (b) below. (In terms of solid content) are mixed in a pH range in which the difference in zeta potential is 10 mV or more, and held in a range of 5 to 70 ° C. to cause heteroaggregation.
(A) A silica particle dispersion (solid content) in which silica particles having an average particle diameter (Da) in the range of 15 to 240 nm and a zeta potential (Za) in the range of −20 to −60 mV are dispersed in a dispersion medium. (Concentration 10-40% by mass)
(B) An organic particle dispersion in which organic particles having an average particle diameter (Db) in the range of 5 to 80 nm and a zeta potential (Zb) in the range of −3 to −30 mV are dispersed in a dispersion medium ( (Solid content concentration of 1 to 20% by mass) (however, (Da) / (Db) = limited to a range of 1.0 to 3.0)

具体的には、シリカ濃度1〜50質量%のシリカ粒子分散液を必要に応じてイオン交換水又は純水で希釈し、シリカ濃度を10質量%以下に調整する。また、固形分濃度1〜50質量%の有機系粒子分散液を必要に応じてイオン交換水又は純水で希釈し、シリカ濃度を10質量%以下に調整する。   Specifically, a silica particle dispersion having a silica concentration of 1 to 50% by mass is diluted with ion-exchanged water or pure water as necessary to adjust the silica concentration to 10% by mass or less. Further, an organic particle dispersion having a solid concentration of 1 to 50% by mass is diluted with ion-exchanged water or pure water as necessary, and the silica concentration is adjusted to 10% by mass or less.

次に希釈したシリカ粒子分散液及び有機系粒子分散液のpHを変えて、それぞれゼータ電位を測定し、同じpH値において、両分散液のゼータ電位の差が10mV以上となるpHを見出す。そして、シリカ粒子分散液及び有機系粒子分散液それぞれのpHをゼータ電位差が10mV以上となるように調整する。pH調整には、酸又は塩基を使用するが、通常、酸性側に調整するため、塩酸を使用することが好ましい。   Next, the pH of the diluted silica particle dispersion and the organic particle dispersion is changed, and the zeta potential is measured, respectively. At the same pH value, the pH at which the difference between the zeta potentials of both dispersions is 10 mV or more is found. Then, the pH of each of the silica particle dispersion and the organic particle dispersion is adjusted so that the zeta potential difference is 10 mV or more. An acid or a base is used for pH adjustment, but it is usually preferable to use hydrochloric acid in order to adjust to the acidic side.

pH調整を行ったシリカ粒子分散液及び有機系粒子分散液を5〜70℃に保持し、両分散液を混合する。混合操作については、急激な混合よりは、徐々に混合することが好ましい。通常は、10分〜60分かけて混合することが望ましい。この操作により、シリカ粒子と有機系粒子のヘテロ凝集が生じ、本発明に係る研磨用粒子分散液が生成する。
なお、シリカ粒子分散液と有機系粒子分散液の配合割合は、本質的に目的とする研磨用粒子分散液中のそれぞれの成分割合に対応するものである。
前記シリカ粒子分散液のゼータ電位範囲については、通常のシリカ粒子分散液のゼータ電位範囲が対応するものといえる。また、前記有機系粒子分散液のゼータ電位範囲についても、通常の有機系粒子分散液のゼータ電位範囲が対応するものといえる。
The silica particle dispersion and the organic particle dispersion whose pH has been adjusted are maintained at 5 to 70 ° C., and both dispersions are mixed. About mixing operation, it is preferable to mix gradually rather than rapid mixing. Usually, it is desirable to mix for 10 minutes to 60 minutes. By this operation, hetero-aggregation of silica particles and organic particles occurs, and the polishing particle dispersion according to the present invention is generated.
The blending ratio of the silica particle dispersion and the organic particle dispersion essentially corresponds to the respective component ratios in the intended polishing particle dispersion.
Regarding the zeta potential range of the silica particle dispersion, it can be said that the zeta potential range of a normal silica particle dispersion corresponds. Moreover, it can be said that the zeta potential range of the normal organic particle dispersion also corresponds to the zeta potential range of the organic particle dispersion.

研磨剤組成物
本発明に係る研磨用粒子分散液は、それ自体で研摩剤として使用可能なものであるが、所望により、添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤およびpH緩衝剤からなる群より選ばれる添加剤1種以上を添加して使用しても構わない。前記研磨用粒子分散液にこれらの成分を添加して得られる混合物を本発明においては、「研磨用組成物」と呼称する。
Abrasive Composition The abrasive particle dispersion according to the present invention can be used as an abrasive by itself, but if desired, as an additive, a polishing accelerator, a surfactant, a heterocyclic compound, pH adjustment One or more additives selected from the group consisting of an agent and a pH buffer may be added and used. In the present invention, a mixture obtained by adding these components to the polishing particle dispersion is referred to as “polishing composition”.

研磨促進剤
本発明に係る研磨剤組成物には、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素などおよびこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
Polishing Accelerator The abrasive composition according to the present invention may be a conventionally known polishing accelerator, if necessary, depending on the type of material to be polished. Examples of such include hydrogen peroxide, peracetic acid, urea peroxide and mixtures thereof. When such an abrasive composition containing a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is a metal.

研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩およびこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。   As another example of the polishing accelerator, there can be mentioned acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid and hydrofluoric acid, or sodium salts, potassium salts, ammonium salts and mixtures thereof. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished consisting of composite components, the polishing rate is accelerated for a specific component of the material to be polished, thereby finally achieving flat polishing. You can get a plane.

本発明に係る研磨剤組成物が研磨促進剤を含有する場合、その含有量としては、0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。界面活性剤及び/又は親水性化合物研磨用組成物の分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤または親水性化合物を添加することができる。   When the abrasive composition according to the present invention contains a polishing accelerator, the content thereof is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass. In order to improve the dispersibility and stability of the surfactant and / or hydrophilic compound polishing composition, a cationic, anionic, nonionic or amphoteric surfactant or hydrophilic compound can be added.

界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。   Both the surfactant and the hydrophilic compound have an action of reducing a contact angle to the surface to be polished and an action of promoting uniform polishing. As the surfactant and / or the hydrophilic compound, for example, those selected from the following groups can be used.

陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。   Examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt and phosphate ester salt. As the carboxylate salt, soap, N-acyl amino acid salt, polyoxyethylene or polyoxypropylene alkyl ether carboxyl Acid salt, acylated peptide; as sulfonate, alkyl sulfonate, alkyl benzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate; sulfate ester Salts include sulfated oil, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; phosphate ester salts such as alkyl phosphates, polyoxyethylene or polyoxy B pyrene alkyl allyl ether phosphate can be exemplified.

陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。   As cationic surfactant, aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium chloride salt, benzethonium chloride, pyridinium salt, imidazolinium salt; as amphoteric surfactant, carboxybetaine type, sulfobetaine type, Mention may be made of aminocarboxylates, imidazolinium betaines, lecithins, alkylamine oxides.

非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキルおよびアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノ
ールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。
Nonionic surfactants include ether type, ether ester type, ester type and nitrogen-containing type. Ether type includes polyoxyethylene alkyl and alkylphenyl ether, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene poly Examples include oxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ether, ether ester type, glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester polyoxyethylene ether, ester type, Polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester Le, sucrose esters, nitrogen-containing type, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amide, and the like. In addition, a fluorine-type surfactant etc. are mentioned.

界面活性剤としては陰イオン界面活性剤もしくはノ非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩およびカリウム塩が好ましい。   As the surfactant, an anionic surfactant or a non-ionic surfactant is preferable, and as the salt, ammonium salt, potassium salt, sodium salt and the like can be mentioned, and ammonium salt and potassium salt are particularly preferable.

さらに、親水性化合物等としては、グリセリンエステル、ソルビタンエステルおよびアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。   Furthermore, as hydrophilic compounds, esters such as glycerin ester, sorbitan ester and alanine ethyl ester; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl polyethylene glycol, alkyl polyethylene glycol Alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene glycol, alkyl Polyethers such as polypropylene glycol alkyl ethers, alkyl polypropylene glycol alkenyl ethers, alkenyl polypropylene glycols; polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; polyaspartic acid , Polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyacrylic acid, Polyacrylamide, aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polyamic acid, poly Polycarboxylic acids and salts thereof such as ammonium ammonium mate, sodium polyamic acid and polyglyoxylic acid; vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and polyacrolein; ammonium methyl taurate, sodium methyl taurate, methyl sulfate Sodium salt, ethylammonium sulfate salt, butylammonium sulfate salt, vinylsulfonic acid sodium salt, 1-allylsulfonic acid sodium salt, 2-allylsulfonic acid sodium salt, methoxymethylsulfonic acid sodium salt, ethoxymethylsulfonic acid ammonium salt, 3 -Sulfonic acids such as ethoxypropyl sulfonic acid sodium salt and salts thereof; amides such as propionamide, acrylamide, methylurea, nicotinamide, succinic acid amide and sulfanilamide And the like.

なお、適用する被研磨基材がガラス基板等である場合は何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属またはハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。   In addition, when the substrate to be polished is a glass substrate or the like, any surfactant can be suitably used. However, in the case of a silicon substrate for a semiconductor integrated circuit or the like, alkali metal, alkaline earth When the influence of contamination by metals or halides is disliked, it is desirable to use an acid or an ammonium salt surfactant.

本発明に係る研磨用組成物が界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用組成物の1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。   When the polishing composition according to the present invention contains a surfactant and / or a hydrophilic compound, the total content is preferably 0.001 to 10 g in 1 L of the polishing composition, It is more preferably 0.01 to 5 g, and particularly preferably 0.1 to 3 g.

界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用組成物の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。
界面活性剤または親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。
In order to obtain a sufficient effect, the content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 L of the polishing composition, and preferably 10 g or less from the viewpoint of preventing the polishing rate from being lowered.
Only one type of surfactant or hydrophilic compound may be used, two or more types may be used, and different types may be used in combination.

複素環化合物
本発明の研磨剤組成物については、被研磨基材に金属が含まれる場合に、金属に不動態層または溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
Heterocyclic Compound For the abrasive composition of the present invention, when a metal is contained in the substrate to be polished, the metal is formed with a passivating layer or a dissolution suppressing layer to suppress erosion of the substrate to be polished. A heterocyclic compound may be contained. Here, the “heterocyclic compound” is a compound having a heterocyclic ring containing one or more heteroatoms. A hetero atom means an atom other than a carbon atom or a hydrogen atom. A heterocycle means a cyclic compound having at least one heteroatom. A heteroatom means only those atoms that form part of a heterocyclic ring system, either external to the ring system, separated from the ring system by at least one non-conjugated single bond, Atoms that are part of a further substituent of are not meant. Preferred examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. As examples of the heterocyclic compound, imidazole, benzotriazole, benzothiazole, tetrazole, and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino1,2,4-triazole, 3,5 -Diamino-1,2,4-triazole can be mentioned, but is not limited thereto.

本発明に係る研磨剤組成物に複素環化合物を配合する場合の含有量については、0.001〜1.0質量%であることが好ましく、0.001〜0.7質量%であることがより好ましく、0.002〜0.4質量%であることがさらに好ましい。   About content in the case of mix | blending a heterocyclic compound with the abrasive | polishing agent composition which concerns on this invention, it is preferable that it is 0.001-1.0 mass%, and it is 0.001-0.7 mass%. More preferably, the content is 0.002 to 0.4% by mass.

pH調整剤
上記各添加剤の効果を高めるためなどに必要に応じて酸または塩基を添加して研磨用組成物のpHを調節することができる。
pH adjuster In order to enhance the effect of each of the above additives, an acid or a base can be added as necessary to adjust the pH of the polishing composition.

研磨剤組成物をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。   When adjusting the abrasive composition to pH 7 or higher, an alkaline one is used as the pH adjuster. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, tetramethylamine are used.

研磨剤組成物をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類が使用される。   When adjusting the abrasive composition to less than pH 7, an acidic one is used as the pH adjuster. For example, hydroxy acids such as lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.

pH緩衝剤
研磨剤組成物のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和物などのリン酸塩及びホウ酸塩または有機酸などを使用することができる。
pH buffering agent A pH buffering agent may be used to maintain a constant pH value of the polishing composition. Examples of pH buffering agents that can be used include phosphates and borates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium tetraborate tetrahydrate, and organic acids.

溶媒
本発明に係る研磨剤組成物については、必要に応じて溶媒を用いることができる。溶媒としては通常、水を用いるが、必要に応じてメチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類を用いることができ、他にエーテル類、エステル類、ケトン類など水溶性の有機溶媒を用いることができる。また、水と有機溶媒からなる混合溶媒であっても構わない。
Solvent About the abrasive | polishing agent composition which concerns on this invention, a solvent can be used as needed. As the solvent, water is usually used, but alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol can be used as necessary, and water-soluble organic solvents such as ethers, esters, and ketones are also used. be able to. Further, it may be a mixed solvent composed of water and an organic solvent.

研磨用粒子の濃度
研磨剤組成物中の研磨用粒子の濃度は2〜50重量%、さらには5〜30重量%の範囲にあることが好ましい。濃度が2重量%未満の場合は、基材や絶縁膜の種類によっては濃度が低すぎて研磨速度が遅く生産性が問題となることがある。シリカ粒子の濃度が50重量%を越えると研磨材の安定性が不充分となり、研磨速度や研磨効率がさらに向上することもなく、また研磨処理のために分散液を供給する工程で乾燥物が生成して付着することがあり傷(スクラッチ)発生の原因となることがある。
Concentration of abrasive particles The concentration of abrasive particles in the abrasive composition is preferably in the range of 2 to 50 wt%, more preferably 5 to 30 wt%. If the concentration is less than 2% by weight, the concentration may be too low depending on the type of substrate or insulating film, resulting in a slow polishing rate and productivity. If the concentration of silica particles exceeds 50% by weight, the stability of the abrasive will be insufficient, the polishing rate and the polishing efficiency will not be further improved, and the dried product will be removed in the step of supplying the dispersion for polishing treatment. It may be generated and attached, which may cause scratches.

本発明の実施例および比較例に適用した測定方法または算定方法を以下に記す。
[1]画像解析による平均粒子径の測定方法
透過型電子顕微鏡(株式会社日立製作所製、H−800)により、シリカ微粒子分散液、有機系微粒子分散液又は有機無機凝集粒子分散液を倍率25万倍で写真撮影して得られる写真投影図における、任意の50個の粒子について、その最大径を測定し、その平均値を平均粒子径とした。
本明細書においては、シリカ微粒子分散液におけるシリカ微粒子の平均粒子径をDa、有機系微粒子分散液における有機系微粒子の平均粒子径をDb、研磨用粒子分散液における研磨用粒子の平均粒子径をDmとした。
The measurement method or calculation method applied to the examples and comparative examples of the present invention will be described below.
[1] Method for measuring average particle diameter by image analysis Using a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.), a silica fine particle dispersion, an organic fine particle dispersion, or an organic-inorganic aggregated particle dispersion is multiplied by 250,000. The maximum diameter of any 50 particles in a photographic projection obtained by taking a photograph at a magnification was measured, and the average value was taken as the average particle diameter.
In this specification, the average particle diameter of silica fine particles in the silica fine particle dispersion is Da, the average particle diameter of organic fine particles in the organic fine particle dispersion is Db, and the average particle diameter of abrasive particles in the abrasive particle dispersion is Dm.

[2]ゼーター電位測定
超音波方式ゼータ電位測定装置(MAtec社製、ESA8000)にて測定した。測定条件としては、予め希釈塩酸水溶液でシリカ微粒子分散液、有機系微粒子分散液又は有機無機凝集粒子分散液のpHを5に調整し、各分散液の固形分濃度を5質量%、温度を25℃にして、ゼータ電位を測定した。
[2] Zeta potential measurement The zeta potential measurement was performed with an ultrasonic zeta potential measurement device (manufactured by MAtec, ESA8000). As measurement conditions, the pH of the silica fine particle dispersion, organic fine particle dispersion or organic inorganic aggregated particle dispersion is adjusted to 5 in advance with a diluted hydrochloric acid aqueous solution, the solid content concentration of each dispersion is 5 mass%, and the temperature is 25. The zeta potential was measured at 0 ° C.

[3]pH測定
pHの測定については、pH4、7および9の標準液で更正が完了した株式会社堀場製
作所製のpHメータF22のガラス電極を挿入して、室温にて実施した。
[3] pH measurement The pH was measured at room temperature by inserting a glass electrode of a pH meter F22 manufactured by Horiba, Ltd., which had been corrected with standard solutions of pH 4, 7, and 9.

[4]質量比測定
研磨用粒子におけるシリカ粒子と有機系粒子の質量比は、研磨用粒子分散液(固形分30質量%)100gを用意し、200℃で2時間乾燥させ、測定用試料とした。この測定用試料の質量(a)を秤量した後、電気炉にて600℃で2時間焼成して、有機樹脂成分を除去し、冷却後に残った試料の質量(b)を測定した。(a)/(b)×100の値を算定し、この値を研磨用粒子中のシリカ粒子の割合(質量%)とし、100−[(a)/(b)×100]を研磨用粒子中の有機系粒子の割合(質量%)とした。
[4] Mass ratio measurement The mass ratio of the silica particles to the organic particles in the polishing particles is 100 g of a polishing particle dispersion (solid content 30% by mass), dried at 200 ° C. for 2 hours, did. After the mass (a) of this measurement sample was weighed, it was baked in an electric furnace at 600 ° C. for 2 hours to remove the organic resin component, and the mass (b) of the sample remaining after cooling was measured. The value of (a) / (b) × 100 is calculated, this value is defined as the ratio (mass%) of silica particles in the abrasive particles, and 100 − [(a) / (b) × 100] is the abrasive particles. It was made into the ratio (mass%) of the organic type particle | grains in.

[5]研磨特性の評価方法
研磨用組成物
各実施例および各比較例で得た有機無機凝集粒子分散液の固形分濃度を12質量%に調整し、10%水酸化カリウム水溶液を添加して、pHを10に調整し、研磨用組成物とした。
被研磨基板
被研磨基板として、アルミニウムデイスク用基板を使用した。このアルミニウムデイスク用基板は、アルミニウム基板にNi−Pを10μmの厚さに無電解メッキ(Ni88%とP12%の組成の硬質Ni−Pメッキ層)をした基板(95mmΦ/25mmΦ−1.27mmt)である。なお、この基板は一次研磨済みで、表面粗さ(RA)は0.17nmであった。
研磨試験
上記被研磨基板を研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッド(ロデール社製「アポロン」)を使用し、基板荷重0.05MPA、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度で5分間供給して研磨を行った。
研磨前後の被研磨基材の重量変化を求めて研磨速度〔nm/分〕を計算した。
スクラッチ(線状痕)の測定
スクラッチの発生状況については、アルミニウムディスク用基板を上記と同様に研磨処理した後、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Micro−MAX)を使用し、Zoom15にて全面観察し、65.97cmに相当
する研磨処理された基板表面に存在するスクラッチ(線状痕)の個数を数えて合計した。
[5] Polishing property evaluation method Polishing composition The solid content concentration of the organic-inorganic agglomerated particle dispersion obtained in each Example and each Comparative Example was adjusted to 12% by mass, and a 10% potassium hydroxide aqueous solution was added. The pH was adjusted to 10 to obtain a polishing composition.
Substrate to be polished An aluminum disk substrate was used as the substrate to be polished. This aluminum disk substrate is a substrate (95 mmΦ / 25 mmΦ-1.27 mmt) obtained by electrolessly plating Ni-P to a thickness of 10 μm (a hard Ni-P plating layer having a composition of Ni88% and P12%) on an aluminum substrate. It is. This substrate was first polished and the surface roughness (RA) was 0.17 nm.
Polishing test Set the substrate to be polished in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300) and use a polishing pad ("Apollon" manufactured by Rodel) for polishing at a substrate load of 0.05 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry at a rate of 20 g / min for 5 minutes.
The change in weight of the substrate to be polished before and after polishing was determined to calculate the polishing rate [nm / min].
Scratch (Linear Mark) Measurement Regarding the occurrence of scratches, after polishing an aluminum disk substrate in the same manner as described above, an ultra-fine defect / visualization macro device (product name: Micro-MAX) manufactured by VISION PSYTEC Co., Ltd. was used. The entire surface was observed with a Zoom 15, and the number of scratches (linear traces) present on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled.

実施例1
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−50mVであった。
三井化学ポリウレタン(株)製のタケラックW−5030(ポリウレタン40%濃度、粒子径:50nm)20gとイオン交換水980gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−20mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は250nmであった。以下、表1に各実施例の、及び表2に各比較例の、各数値及び研磨試験結果を示した。
Example 1
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
20 g of Takelac W-5030 (polyurethane 40% concentration, particle size: 50 nm) manufactured by Mitsui Chemicals Polyurethane Co., Ltd. and 980 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −20 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 250 nm. Hereinafter, Table 1 shows each numerical value and polishing test result of each example, and Table 2 shows each comparative example.

実施例2
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は−50mVであった。
ポリウレタン樹脂製粒子分散液(固形分40%濃度、粒子径:30nm)30gとイオン交換水970gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−20mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は250nmであった。
Example 2
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
30 g of polyurethane resin particle dispersion (solid content 40% concentration, particle size: 30 nm) and 970 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −20 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 250 nm.

実施例3
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−50mVであった。
ポリウレタン樹脂製粒子分散液(固形分40%質量%、粒子径:25nm)20gとイオン交換水980gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−25mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は260nmであった。
Example 3
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
20 g of polyurethane resin particle dispersion (solid content: 40% by mass, particle size: 25 nm) and 980 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −25 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 260 nm.

実施例4
シリカ微粒子分散液(シリカ濃度30質量%、平均粒子径[画像解析法]10nm、カタロイド[登録商標]Si−30、日揮触媒化成株式会社製)133gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−30mVであった。
アクリル樹脂製粒子分散液(固形分40%濃度、粒子径:10nm)20gとイオン交換水980gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−15mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は70nmであった。
Example 4
Silica fine particle dispersion (silica concentration 30% by mass, average particle size [image analysis method] 10 nm, Cataloid [registered trademark] Si-30, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 133 g and ion-exchanged water 900 g at room temperature for 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −30 mV.
20 g of an acrylic resin particle dispersion (solid content 40% concentration, particle size: 10 nm) and 980 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −15 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 70 nm.

実施例5
シリカ微粒子分散液(シリカ濃度40質量%、平均粒子径[画像解析法]30nm、カタロイド[登録商標]Si−50、日揮触媒化成株式会社製)100gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−41mVであった。
ポリウレタン製樹脂粒子分散液(固形分40質量%、粒子径:30nm)20gとイオン交換水980gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−11mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法は120nmであった。
Example 5
Silica fine particle dispersion (silica concentration 40% by mass, average particle size [image analysis method] 30 nm, Cataloid [registered trademark] Si-50, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 100 g and ion-exchanged water 900 g over 30 minutes at room temperature. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was -41 mV.
20 g of polyurethane resin particle dispersion (solid content 40% by mass, particle size: 30 nm) and 980 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was -11 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The resulting dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method was 120 nm.

比較例1
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−50mVであった。
ポリウレタン製樹脂粒子分散液(固形分40質量%、粒子径:5nm)20gとイオン交換水980gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−20mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は65nmであった。比較例1のものは、研磨速度が遅いという難点がある。
Comparative Example 1
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
20 g of polyurethane resin particle dispersion (solid content 40% by mass, particle size: 5 nm) and 980 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −20 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 65 nm. The thing of the comparative example 1 has the difficulty that a grinding | polishing speed | rate is slow.

比較例2
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−50mVであった。
ポリウレタン製樹脂粒子分散液(固形分40質量%、粒子径:250nm)30gとイオン交換水970gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−30mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は280nmであった。比較例2のものを用いた研磨面は線状痕が多く発生する。
Comparative Example 2
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
30 g of polyurethane resin particle dispersion (solid content 40% by mass, particle size: 250 nm) and 970 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −30 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 280 nm. A lot of linear marks are generated on the polished surface using Comparative Example 2.

比較例3
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−50mVであった。
ポリウレタン製樹脂粒子分散液(固形分40質量%、粒子径:50nm)0.01gとイオン交換水999.99gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−30mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は51nmであった。比較例3のものは、研磨速度があまり上がらないうえに線状痕もかなり発生する。
Comparative Example 3
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
Polyurethane resin particle dispersion (solid content 40% by mass, particle size: 50 nm) 0.01 g and ion-exchanged water 999.999 g were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −30 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 51 nm. In Comparative Example 3, the polishing rate does not increase so much, and a considerable amount of linear traces are generated.

比較例4
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−50mVであった。
ポリウレタン製樹脂粒子分散液(固形分40質量%、粒子径:50nm)70gとイオン交換水930gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−30mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は280nmであった。比較例4のものは、研磨速度を上げることができない。
Comparative Example 4
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
70 g of polyurethane resin particle dispersion (solid content 40% by mass, particle size: 50 nm) and 930 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −30 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 280 nm. In Comparative Example 4, the polishing rate cannot be increased.

比較例5
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−50mVであった。
ポリウレタン製樹脂粒子分散液(固形分40質量%、粒子径:50nm)20gとイオン交換水980gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−45mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は50nmであった。比較例5のものは、研磨速度を上げることができない。
Comparative Example 5
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
20 g of polyurethane resin particle dispersion (solid content 40% by mass, particle size: 50 nm) and 980 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −45 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 50 nm. In Comparative Example 5, the polishing rate cannot be increased.

比較例6
シリカ微粒子分散液(シリカ濃度48質量%、平均粒子径[画像解析法]50nm、カタロイド[登録商標]Si−45P、日揮触媒化成株式会社製)83gとイオン交換水900gを室温で30分間かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、A液を調製した。ゼーター電位は、−50mVであった。
ポリウレタン製樹脂粒子分散液(固形分40質量%、粒子径:50nm)20gとイオン交換水980gを室温で30分かけて混合し、混合液を調製した。この混合液のpHが5.0になるように塩酸(濃度5%)を添加して、B液を調製した。ゼーター電位は、−30mVであった。
上記のA液とB液をそれぞれ加温して温度55℃とし、30分間かけて混合して、有機無機複合粒子分散液を調製した。この有機無機複合粒子分散液は、限外濾過膜にて、400gとなるまで濃縮した。得られた分散液の固形分濃度は12質量%で、平均粒子径[画像解析法]は460nmであった。比較例6では線状痕が多数発生した。
Comparative Example 6
Silica fine particle dispersion (silica concentration 48% by mass, average particle size [image analysis method] 50 nm, Cataloid [registered trademark] Si-45P, manufactured by JGC Catalysts & Chemicals Co., Ltd.) 83 g and ion exchange water 900 g at room temperature over 30 minutes. Mixed to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution A. The zeta potential was −50 mV.
20 g of polyurethane resin particle dispersion (solid content 40% by mass, particle size: 50 nm) and 980 g of ion-exchanged water were mixed at room temperature for 30 minutes to prepare a mixed solution. Hydrochloric acid (concentration 5%) was added so that the pH of the mixed solution was 5.0 to prepare solution B. The zeta potential was −30 mV.
The liquid A and liquid B were each heated to a temperature of 55 ° C. and mixed for 30 minutes to prepare an organic-inorganic composite particle dispersion. This organic-inorganic composite particle dispersion was concentrated to 400 g with an ultrafiltration membrane. The obtained dispersion had a solid content concentration of 12% by mass and an average particle size [image analysis method] of 460 nm. In Comparative Example 6, many linear marks were generated.

Figure 2011136402
Figure 2011136402

Figure 2011136402
Figure 2011136402

本発明に係る研磨用粒子分散液または研磨用組成物は、半導体ウエハ、ガラス製ハード
デイスク、アルミナ製ハードデイスクなどの研磨用途に好適に使用することができる。
The polishing particle dispersion or polishing composition according to the present invention can be suitably used for polishing applications such as semiconductor wafers, glass hard disks, and alumina hard disks.

Claims (5)

シリカ粒子と有機系粒子の凝集体からなる平均粒子径(Dm)10〜300nmの研磨用粒子が分散媒に分散してなる研磨用粒子分散液であって、次の(1)〜(3)の条件を満たすことを特徴とする研磨用粒子分散液。
(1)前記シリカ粒子の平均粒子径(Da)が15〜240nmの範囲
(2)前記有機系粒子の平均粒子径(Db)が5〜80nmの範囲
(3)(Da)/(Db)の値が1.0〜3.0の範囲
A polishing particle dispersion in which polishing particles having an average particle diameter (Dm) of 10 to 300 nm composed of an aggregate of silica particles and organic particles are dispersed in a dispersion medium, and the following (1) to (3) A polishing particle dispersion characterized by satisfying the following conditions.
(1) The average particle diameter (Da) of the silica particles is in the range of 15 to 240 nm (2) The average particle diameter (Db) of the organic particles is in the range of 5 to 80 nm (3) (Da) / (Db) Values range from 1.0 to 3.0
前記研磨用粒子におけるシリカ粒子と有機系粒子の質量比が100:1〜100:50の範囲にあることを特徴とする請求項1記載の研磨用粒子分散液。   The polishing particle dispersion according to claim 1, wherein a mass ratio of silica particles to organic particles in the polishing particles is in a range of 100: 1 to 100: 50. 前記有機系粒子が、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂、アミド系樹脂またはこれらの共重合体から選ばれるものであることを特徴とする請求項1又は請求項2記載の研磨用粒子分散液。   The organic particles are selected from an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, an amide resin, or a copolymer thereof. A particle dispersion for polishing. 請求項1、請求項2または請求項3記載の研磨用粒子分散液と、研磨促進剤、界面活性剤、複素環化合物、pH調整剤およびpH緩衝剤からなる群より選ばれる添加剤1種以上、とを含むことを特徴とする研磨剤組成物。   One or more additives selected from the group consisting of the particle dispersion for polishing according to claim 1, claim 2 or claim 3, and a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer. And an abrasive composition comprising: 下記(a)のシリカ粒子分散液100質量部(固形分換算)と、下記(b)の有機系粒子分散液1〜50質量部(固形分換算)とを、それぞれのゼータ電位の差が10mV以上になるpH範囲にて混合し、5〜70℃の範囲で保持することにより、ヘテロ凝集させることを特徴とする研磨用粒子分散液の製造方法。
(a)平均粒子径(Da)が15〜240nmの範囲にあり、ゼータ電位(Za)が−20〜−60mVの範囲にあるシリカ粒子が分散媒に分散してなるシリカ粒子分散液(固形分濃度10〜40質量%)
(b)平均粒子径(Db)が5〜80nmの範囲にあり、ゼータ電位(Zb)が−3〜−30mVの範囲にある有機系粒子が分散媒に分散してなる有機系粒子分散液(固形分濃度1〜20質量%)(ただし、(Da)/(Db)=1.0〜3.0の範囲に限る)
The difference in zeta potential between 10 parts by mass of the following (a) silica particle dispersion 100 parts by mass (in terms of solid content) and 1 to 50 parts by mass (in terms of solids) of the organic particle dispersion in the following (b). A method for producing a polishing particle dispersion, wherein the particles are mixed in a pH range as described above and held in a range of 5 to 70 ° C. to cause heteroaggregation.
(A) A silica particle dispersion (solid content) in which silica particles having an average particle diameter (Da) in the range of 15 to 240 nm and a zeta potential (Za) in the range of −20 to −60 mV are dispersed in a dispersion medium. (Concentration 10-40% by mass)
(B) An organic particle dispersion in which organic particles having an average particle diameter (Db) in the range of 5 to 80 nm and a zeta potential (Zb) in the range of −3 to −30 mV are dispersed in a dispersion medium ( (Solid content concentration of 1 to 20% by mass) (however, (Da) / (Db) = limited to a range of 1.0 to 3.0)
JP2009298601A 2009-12-28 2009-12-28 Polishing particle dispersion comprising aggregates of organic particles and silica particles, and method for producing the same Active JP5574702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009298601A JP5574702B2 (en) 2009-12-28 2009-12-28 Polishing particle dispersion comprising aggregates of organic particles and silica particles, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009298601A JP5574702B2 (en) 2009-12-28 2009-12-28 Polishing particle dispersion comprising aggregates of organic particles and silica particles, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011136402A true JP2011136402A (en) 2011-07-14
JP5574702B2 JP5574702B2 (en) 2014-08-20

Family

ID=44348337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009298601A Active JP5574702B2 (en) 2009-12-28 2009-12-28 Polishing particle dispersion comprising aggregates of organic particles and silica particles, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5574702B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205757A (en) * 2013-04-11 2014-10-30 山口精研工業株式会社 Finish polishing abrasive composition, method for polishing magnetic disk substrate, method for producing magnetic disk substrate, and magnetic disk substrate
WO2015046542A1 (en) * 2013-09-28 2015-04-02 Hoya株式会社 Method for producing glass substrate and method for producing magnetic disk
WO2016017812A1 (en) * 2014-07-31 2016-02-04 Hoya株式会社 Magnetic disk-use glass substrate manufacturing method and magnetic disk manufacturing method
US10068602B2 (en) 2013-06-29 2018-09-04 Hoya Corporation Method for manufacturing glass substrate, method for manufacturing magnetic disk, and polishing liquid composition for glass substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269169A (en) * 1999-03-18 2000-09-29 Toshiba Corp Manufacture of semiconductor device and formation method of buried interconnection
JP2000273311A (en) * 1999-03-18 2000-10-03 Jsr Corp Water-based dispersion
JP2004211013A (en) * 2003-01-08 2004-07-29 Mitsui Chemicals Inc Abrasive and method for producing the same
JP2007266619A (en) * 2002-01-25 2007-10-11 Jsr Corp Chemical-mechanical polishing method of semiconductor substrate, and aqueous dispersion for chemical-mechanical polishing
JP2009279720A (en) * 2008-05-23 2009-12-03 Jgc Catalysts & Chemicals Ltd Particle-dispersed fluid for polishing, and manufacturing method thereof
JP2013511144A (en) * 2009-11-13 2013-03-28 ビーエーエスエフ ソシエタス・ヨーロピア Chemical mechanical polishing (CMP) composition comprising inorganic particles and polymer particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269169A (en) * 1999-03-18 2000-09-29 Toshiba Corp Manufacture of semiconductor device and formation method of buried interconnection
JP2000273311A (en) * 1999-03-18 2000-10-03 Jsr Corp Water-based dispersion
JP2007266619A (en) * 2002-01-25 2007-10-11 Jsr Corp Chemical-mechanical polishing method of semiconductor substrate, and aqueous dispersion for chemical-mechanical polishing
JP2004211013A (en) * 2003-01-08 2004-07-29 Mitsui Chemicals Inc Abrasive and method for producing the same
JP2009279720A (en) * 2008-05-23 2009-12-03 Jgc Catalysts & Chemicals Ltd Particle-dispersed fluid for polishing, and manufacturing method thereof
JP2013511144A (en) * 2009-11-13 2013-03-28 ビーエーエスエフ ソシエタス・ヨーロピア Chemical mechanical polishing (CMP) composition comprising inorganic particles and polymer particles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205757A (en) * 2013-04-11 2014-10-30 山口精研工業株式会社 Finish polishing abrasive composition, method for polishing magnetic disk substrate, method for producing magnetic disk substrate, and magnetic disk substrate
US10068602B2 (en) 2013-06-29 2018-09-04 Hoya Corporation Method for manufacturing glass substrate, method for manufacturing magnetic disk, and polishing liquid composition for glass substrate
WO2015046542A1 (en) * 2013-09-28 2015-04-02 Hoya株式会社 Method for producing glass substrate and method for producing magnetic disk
CN105580078A (en) * 2013-09-28 2016-05-11 Hoya株式会社 Method for producing glass substrate and method for producing magnetic disk
US20160217818A1 (en) * 2013-09-28 2016-07-28 Hoya Corporation Method for manufacturing glass substrate and method for manufacturing magnetic disk
JPWO2015046542A1 (en) * 2013-09-28 2017-03-09 Hoya株式会社 Glass substrate manufacturing method and magnetic disk manufacturing method
US10403321B2 (en) 2013-09-28 2019-09-03 Hoya Corporation Method for manufacturing glass substrate and method for manufacturing magnetic disk
CN105580078B (en) * 2013-09-28 2019-11-05 Hoya株式会社 The manufacturing method of glass substrate and the manufacturing method of disk
WO2016017812A1 (en) * 2014-07-31 2016-02-04 Hoya株式会社 Magnetic disk-use glass substrate manufacturing method and magnetic disk manufacturing method
CN106537505A (en) * 2014-07-31 2017-03-22 Hoya株式会社 Magnetic disk-use glass substrate manufacturing method and magnetic disk manufacturing method
JPWO2016017812A1 (en) * 2014-07-31 2017-04-27 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
CN106537505B (en) * 2014-07-31 2019-12-20 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk

Also Published As

Publication number Publication date
JP5574702B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
JP5615529B2 (en) Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition
JP2003109921A (en) Abrasive silica particle-dispersed fluid, its manufacturing method, and abrasive material
KR101141178B1 (en) Polishing composition and polishing method
CN102190962A (en) Polishing composition and polishing method using the same
US20060218867A1 (en) Polishing composition and polishing method using the same
JP2008273780A (en) Modified silica-based sol and method for preparing the same
JP4963825B2 (en) Polishing silica sol and polishing composition containing the same
WO2011158718A1 (en) Polishing liquid for semiconductor substrate and method for producing semiconductor wafer
KR20100128049A (en) Cmp composition for polishing metal
JP6771484B2 (en) Abrasive liquid composition for magnetic disk substrate
JP5574702B2 (en) Polishing particle dispersion comprising aggregates of organic particles and silica particles, and method for producing the same
JP4156175B2 (en) Precision polishing composition for lithium tantalate / lithium niobate single crystal materials
JP6207345B2 (en) Method for producing silica particles
JP4827805B2 (en) Precision polishing composition for hard and brittle materials
JP2017190363A (en) Polishing liquid composition for sapphire plate
JP5464834B2 (en) Polishing silica sol, polishing composition, and method for producing polishing silica sol
JP2016020294A (en) Colloidal silica and composition for polishing semiconductor wafer containing the same
JP2005262413A (en) Polishing liquid composition
JP2007301721A (en) Polishing liquid composition
TWI808978B (en) Silicon oxide slurry for polishing liquid composition
JP5421006B2 (en) Particle-linked silica sol and method for producing the same
JP2013177617A (en) Silica sol for polishing, and composition for polishing
JP5270303B2 (en) Polishing silica sol and method for producing the same
JP2010024119A (en) Method for producing confetti-like silica sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250