JP5464834B2 - Polishing silica sol, polishing composition, and method for producing polishing silica sol - Google Patents
Polishing silica sol, polishing composition, and method for producing polishing silica sol Download PDFInfo
- Publication number
- JP5464834B2 JP5464834B2 JP2008265335A JP2008265335A JP5464834B2 JP 5464834 B2 JP5464834 B2 JP 5464834B2 JP 2008265335 A JP2008265335 A JP 2008265335A JP 2008265335 A JP2008265335 A JP 2008265335A JP 5464834 B2 JP5464834 B2 JP 5464834B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- silica
- silica sol
- concentration
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005498 polishing Methods 0.000 title claims description 210
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 title claims description 182
- 239000000203 mixture Substances 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 287
- 239000000377 silicon dioxide Substances 0.000 claims description 134
- 239000002245 particle Substances 0.000 claims description 73
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 42
- 239000010419 fine particle Substances 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 22
- 238000001179 sorption measurement Methods 0.000 claims description 17
- 239000004094 surface-active agent Substances 0.000 claims description 14
- 150000002433 hydrophilic molecules Chemical class 0.000 claims description 10
- 238000002296 dynamic light scattering Methods 0.000 claims description 8
- 150000002391 heterocyclic compounds Chemical class 0.000 claims description 5
- 239000003002 pH adjusting agent Substances 0.000 claims description 5
- 239000006179 pH buffering agent Substances 0.000 claims description 5
- -1 silica and alumina Chemical compound 0.000 description 52
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 45
- 239000000243 solution Substances 0.000 description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 28
- 239000000758 substrate Substances 0.000 description 28
- 235000012239 silicon dioxide Nutrition 0.000 description 27
- 239000000523 sample Substances 0.000 description 21
- 239000007771 core particle Substances 0.000 description 20
- 239000002253 acid Substances 0.000 description 19
- 239000007864 aqueous solution Substances 0.000 description 19
- 239000006185 dispersion Substances 0.000 description 18
- 229910004298 SiO 2 Inorganic materials 0.000 description 17
- 239000004115 Sodium Silicate Substances 0.000 description 17
- 229910052911 sodium silicate Inorganic materials 0.000 description 17
- 238000005259 measurement Methods 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- 235000011121 sodium hydroxide Nutrition 0.000 description 15
- 239000012528 membrane Substances 0.000 description 14
- 235000019353 potassium silicate Nutrition 0.000 description 14
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000011734 sodium Substances 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 239000011362 coarse particle Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000002202 Polyethylene glycol Substances 0.000 description 10
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 9
- 238000000108 ultra-filtration Methods 0.000 description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 150000003863 ammonium salts Chemical class 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000017 hydrogel Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229920001451 polypropylene glycol Polymers 0.000 description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 150000005215 alkyl ethers Chemical class 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 159000000000 sodium salts Chemical class 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000008119 colloidal silica Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- 238000004438 BET method Methods 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 229920005575 poly(amic acid) Polymers 0.000 description 4
- 229920000056 polyoxyethylene ether Polymers 0.000 description 4
- 229940051841 polyoxyethylene ether Drugs 0.000 description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004111 Potassium silicate Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 2
- 229910052913 potassium silicate Inorganic materials 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UHFFFAOYSA-N -2,3-Dihydroxypropanoic acid Natural products OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- ULRPISSMEBPJLN-UHFFFAOYSA-N 2h-tetrazol-5-amine Chemical compound NC1=NN=NN1 ULRPISSMEBPJLN-UHFFFAOYSA-N 0.000 description 1
- JSIAIROWMJGMQZ-UHFFFAOYSA-N 2h-triazol-4-amine Chemical compound NC1=CNN=N1 JSIAIROWMJGMQZ-UHFFFAOYSA-N 0.000 description 1
- DQSBZDLZCZUJCJ-UHFFFAOYSA-N 2h-triazole-4,5-diamine Chemical compound NC=1N=NNC=1N DQSBZDLZCZUJCJ-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- IRQWEODKXLDORP-UHFFFAOYSA-N 4-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=C(C=C)C=C1 IRQWEODKXLDORP-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- XZGLNCKSNVGDNX-UHFFFAOYSA-N 5-methyl-2h-tetrazole Chemical compound CC=1N=NNN=1 XZGLNCKSNVGDNX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101100004297 Caenorhabditis elegans bet-1 gene Proteins 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- XGEGHDBEHXKFPX-UHFFFAOYSA-N N-methylthiourea Natural products CNC(N)=O XGEGHDBEHXKFPX-UHFFFAOYSA-N 0.000 description 1
- CSBQTJMUTQBFKZ-UHFFFAOYSA-N OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.O.O.O.O Chemical compound OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.O.O.O.O CSBQTJMUTQBFKZ-UHFFFAOYSA-N 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- FDIWRLNJDKKDHB-UHFFFAOYSA-N azanium;2-aminoacetate Chemical compound [NH4+].NCC([O-])=O FDIWRLNJDKKDHB-UHFFFAOYSA-N 0.000 description 1
- SLXUHJYLQGWQRT-UHFFFAOYSA-N azanium;ethoxymethanesulfonate Chemical class [NH4+].CCOCS([O-])(=O)=O SLXUHJYLQGWQRT-UHFFFAOYSA-N 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical class [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- KCFKHWSNVPJBEP-UHFFFAOYSA-N butylazanium;sulfate Chemical compound CCCCN.CCCCN.OS(O)(=O)=O KCFKHWSNVPJBEP-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- ZGARNLJTTXHQGS-UHFFFAOYSA-N ethanamine;sulfuric acid Chemical compound CCN.CCN.OS(O)(=O)=O ZGARNLJTTXHQGS-UHFFFAOYSA-N 0.000 description 1
- ROBXZHNBBCHEIQ-BYPYZUCNSA-N ethyl (2s)-2-aminopropanoate Chemical compound CCOC(=O)[C@H](C)N ROBXZHNBBCHEIQ-BYPYZUCNSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- ZEKANFGSDXODPD-UHFFFAOYSA-N glyphosate-isopropylammonium Chemical compound CC(C)N.OC(=O)CNCP(O)(O)=O ZEKANFGSDXODPD-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- PKWIYNIDEDLDCJ-UHFFFAOYSA-N guanazole Chemical compound NC1=NNC(N)=N1 PKWIYNIDEDLDCJ-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- XGEGHDBEHXKFPX-NJFSPNSNSA-N methylurea Chemical compound [14CH3]NC(N)=O XGEGHDBEHXKFPX-NJFSPNSNSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- LCLHHZYHLXDRQG-ZNKJPWOQSA-N pectic acid Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)O[C@H](C(O)=O)[C@@H]1OC1[C@H](O)[C@@H](O)[C@@H](OC2[C@@H]([C@@H](O)[C@@H](O)[C@H](O2)C(O)=O)O)[C@@H](C(O)=O)O1 LCLHHZYHLXDRQG-ZNKJPWOQSA-N 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 239000010318 polygalacturonic acid Substances 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- WUWHFEHKUQVYLF-UHFFFAOYSA-M sodium;2-aminoacetate Chemical compound [Na+].NCC([O-])=O WUWHFEHKUQVYLF-UHFFFAOYSA-M 0.000 description 1
- QJEOJNTXXKYIDP-UHFFFAOYSA-M sodium;3-ethoxypropane-1-sulfonate Chemical compound [Na+].CCOCCCS([O-])(=O)=O QJEOJNTXXKYIDP-UHFFFAOYSA-M 0.000 description 1
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 1
- NFOSJIUDGCORCI-UHFFFAOYSA-M sodium;methoxymethanesulfonate Chemical compound [Na+].COCS([O-])(=O)=O NFOSJIUDGCORCI-UHFFFAOYSA-M 0.000 description 1
- DZXBHDRHRFLQCJ-UHFFFAOYSA-M sodium;methyl sulfate Chemical compound [Na+].COS([O-])(=O)=O DZXBHDRHRFLQCJ-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-N succinamic acid Chemical compound NC(=O)CCC(O)=O JDVPQXZIJDEHAN-UHFFFAOYSA-N 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 229940117986 sulfobetaine Drugs 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical group [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical class CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Description
本発明は、研磨用組成物として好適なシリカゾルおよびその製造方法に関するものであり、特には、被研磨面でのスクラッチ(線状痕)発生を抑制できる研磨用シリカゾル、その製造方法および研磨用組成物に関するものである。 The present invention relates to a silica sol suitable as a polishing composition and a method for producing the same, and in particular, a polishing silica sol capable of suppressing the generation of scratches (linear marks) on a surface to be polished, a method for producing the same, and a polishing composition. It is about things.
研磨用組成物の分野においては、半導体の集積回路付基板の製造において、シリコンウェーハ上に銅などの金属で回路を形成する際に凹凸あるいは段差が生じるので、これを研磨して表面の段差がなくなるように回路の金属部分を優先的に除去することが行われている。また、シリコンウェーハ上にアルミ配線を形成し、この上に絶縁膜としてシリカ等の酸化膜を設けると配線による凹凸が生じるので、この酸化膜を研磨して平坦化することが行われている。このような基板の研磨においては、研磨後の表面は段差や凹凸がなく平坦で、さらにミクロな傷等もなく平滑であることが求められており、また研磨速度が速いことも必要である。 In the field of polishing compositions, when manufacturing a circuit with a metal such as copper on a silicon wafer in the manufacture of a substrate with a semiconductor integrated circuit, unevenness or a step is generated. The metal part of the circuit is preferentially removed so as to be eliminated. Further, when an aluminum wiring is formed on a silicon wafer and an oxide film such as silica is provided thereon as an insulating film, irregularities due to the wiring are generated. Therefore, the oxide film is polished and flattened. In the polishing of such a substrate, the surface after polishing is required to be flat with no steps or irregularities, smooth without microscopic scratches, etc., and the polishing rate must be high.
さらに、半導体材料は電気・電子製品の小型化や高性能化に伴い高集積化が進展しているが、例えばトランジスタ分離層にNaやK等の不純物等が残存した場合、性能が発揮されず、不具合の原因となることがある。特に研磨した半導体基板や酸化膜表面にNaが付着すると、Naは拡散性が高く、酸化膜中の欠陥などに捕獲され、半導体基板に回路を形成しても、絶縁不良が生じて、回路が短絡することがあり、また誘電率が低下することがあった。このため使用条件によって、或いは使用が長期にわたった場合に前記不具合を生じることがあるので、NaやKなどの不純物を殆ど含まない研磨用粒子が求められている。 研磨用粒子としては、従来、シリカゾルやヒュームドシリカ、ヒュームドアルミナなどが用いられている。 In addition, semiconductor materials are becoming more highly integrated as electrical and electronic products become smaller and have higher performance. However, if impurities such as Na or K remain in the transistor isolation layer, the performance cannot be demonstrated. May cause malfunctions. In particular, when Na adheres to the polished semiconductor substrate or the oxide film surface, Na is highly diffusive and is captured by defects in the oxide film. There may be a short circuit, and the dielectric constant may decrease. For this reason, since the said malfunction may arise depending on use conditions or when used over a long term, the abrasive | polishing particle | grains which hardly contain impurities, such as Na and K, are calculated | required. Conventionally, silica sol, fumed silica, fumed alumina, or the like is used as the abrasive particles.
CMPで使用される研磨材は、通常、シリカ、アルミナ等の金属シリカからなる平均粒子径が200nm程度の球状の研磨用粒子と、配線・回路用金属の研磨速度を早めるための酸化剤、有機酸等の添加剤及び純水などの溶媒から構成されているが、被研磨材の表面には下地の絶縁膜に形成した配線用の溝パターンに起因した段差(凹凸)が存在するので、主に凸部を研磨除去しながら共面まで研磨し、平坦な研磨面とすることが求められている。しかしながら、従来の球状の研磨用粒子では共面より上の部分を研磨した際に、凹部の下部にあった配線溝内の回路用金属が共面以下まで研磨される問題(ディッシングと呼ばれている。)があった。 The polishing material used in CMP is usually spherical polishing particles having an average particle diameter of about 200 nm made of metal silica such as silica and alumina, and an oxidant and organic for increasing the polishing rate of wiring / circuit metals. It consists of an additive such as an acid and a solvent such as pure water. However, the surface of the material to be polished has a level difference (unevenness) due to the wiring groove pattern formed on the underlying insulating film. In addition, it is required to polish the coplanar surface while polishing and removing the convex portion to obtain a flat polished surface. However, with conventional spherical abrasive particles, when the portion above the coplanar surface is polished, the circuit metal in the wiring trench at the bottom of the recess is polished to below the coplanar surface (called dishing) There was.)
このようなディッシング(過研磨)が起きると配線の厚みが減少することにより、配線抵抗が増加する傾向が増大する。また、この上に形成される絶縁膜の平坦性が低下する等の問題が生じるので、ディッシングを抑制することが求められていた。近年は、研磨速度の向上、被研磨面でのスクラッチ(線状痕)発生の抑制および被研磨面の表面粗さの抑制(表面精度向上)の各特性について、優れた効果を発揮する研磨材が求められている。 When such dishing (overpolishing) occurs, the thickness of the wiring decreases, thereby increasing the tendency for the wiring resistance to increase. In addition, since problems such as a decrease in flatness of the insulating film formed on the insulating film occur, it has been required to suppress dishing. In recent years, abrasives that exhibit excellent effects in terms of improving the polishing rate, suppressing the generation of scratches (linear traces) on the surface to be polished, and suppressing the surface roughness of the surface to be polished (improving surface accuracy) Is required.
特許文献1(特開2002−338951号公報)には、単分散コロイダルシリカと活性珪酸をSiO2とを重量比で1:0.03〜1:0.3の割合で混合し、pH8〜11
の条件で水熱処理(120〜180℃、0.5〜3時間)することを特徴とする研磨剤用コロイダルシリカ及びその製造方法に関する技術が開示されている。このコロイダルシリカは、単分散のシリカ粒子に活性珪酸を高温高圧下で沈着させることにより表面状態が変化したもので、得られる単分散コロイダルシリカは、半導体素子等の電子材料に対する表面研磨加工時の研磨特性が優れていると記載されている。
In Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-338951), monodispersed colloidal silica and active silicic acid are mixed with SiO 2 in a weight ratio of 1: 0.03 to 1: 0.3, and pH is 8 to 11
The technology regarding the colloidal silica for abrasive | polishing agents characterized by performing hydrothermal treatment (120-180 degreeC, 0.5-3 hours) on the conditions of this, and its manufacturing method is disclosed. This colloidal silica has a surface state changed by depositing active silicic acid on monodispersed silica particles under high temperature and high pressure, and the obtained monodispersed colloidal silica is used during surface polishing processing for electronic materials such as semiconductor elements. It is described that the polishing characteristics are excellent.
特許文献2(特開2003−109921号公報)には、平均粒子径が5〜300nmの範囲にあるシリカ粒子が分散した研磨用シリカ粒子分散液であって、該シリカ粒子中のNaイオン含有量が100ppm以下であり、Naイオン以外のイオン含有量が300ppm〜2重量%の範囲にあることを特徴とする研磨用シリカ粒子分散液に関する発明が開示されている。また、この研磨用シリカ粒子分散液の製造方法の一部として、シリカ粒子分散液をオートクレーブにて150℃で11時間水熱処理する例が記載されている。 Patent Document 2 (Japanese Patent Laid-Open No. 2003-109921) discloses a polishing silica particle dispersion in which silica particles having an average particle diameter in the range of 5 to 300 nm are dispersed, and the Na ion content in the silica particles Is disclosed. An invention relating to a silica particle dispersion for polishing is disclosed, wherein the content of ions other than Na ions is in the range of 300 ppm to 2% by weight. In addition, as part of the method for producing the polishing silica particle dispersion, an example is described in which the silica particle dispersion is hydrothermally treated at 150 ° C. for 11 hours in an autoclave.
特許文献1の研磨剤用コロイダルシリカまたは特許文献2の研磨用シリカ粒子分散液によれば、研磨速度および被研磨基材の表面粗さについては、実用的なレベルが見られたものの、被研磨基材上の線状痕の抑制については、充分なレベルに達していなかった。
本発明は、研磨用途に適用して、優れた研磨特性を示すことができる研磨用シリカゾルおよびそれを含む研磨用組成物を提供することを課題とする。具体的には、研磨速度および被研磨面での線状痕の発生の抑止に優れた研磨用シリカゾルおよび研磨用組成物を提供することを課題とする。また、本発明は前記研磨用シリカゾルの製造方法を提供することを課題とする。 An object of the present invention is to provide a polishing silica sol capable of exhibiting excellent polishing characteristics when applied to polishing applications, and a polishing composition containing the same. Specifically, it is an object of the present invention to provide a polishing silica sol and a polishing composition that are excellent in polishing rate and suppression of generation of linear marks on a surface to be polished. Another object of the present invention is to provide a method for producing the polishing silica sol.
前記課題を解決するための第1の発明は、窒素吸着法により測定される比表面積から換算される平均粒子径が3〜100nmであるシリカ微粒子がシリカ濃度1〜50質量%の範囲で溶媒に分散してなるシリカゾルであって、該シリカゾル中に存在する全シリカ成分の質量を(S1)、溶媒中に溶存してなる溶存シリカ成分の質量を(S2)としたとき、(S2)/(S1)[ppm]の値が1000ppm以下であることを特徴とする研磨用シリカゾルである。 1st invention for solving the said subject is silica fine particle whose average particle diameter converted from the specific surface area measured by a nitrogen adsorption method is 3-100 nm in a solvent in the range of 1-50 mass% of silica concentration. When the mass of all the silica components present in the silica sol is (S1) and the mass of the dissolved silica components dissolved in the solvent is (S2), (S2) / ( S1) A polishing silica sol having a value of [ppm] of 1000 ppm or less.
前記課題を解決するための第2の発明は、シリカゾルのシリカ濃度が1質量%のときの動的光散乱法により測定される平均粒子径を(D1)とし、同じく30質量%のときの平
均粒子径を(D30)としたときに、(D1)/(D30)で与えられる平均粒子径の濃度依
存係数が、2.0〜2.8の範囲にあることを特徴とする研磨用シリカゾルである。
In a second invention for solving the above-mentioned problem, the average particle diameter measured by the dynamic light scattering method when the silica concentration of the silica sol is 1% by mass is defined as (D 1 ). When the average particle size is (D 30 ), the concentration dependency coefficient of the average particle size given by (D 1 ) / (D 30 ) is in the range of 2.0 to 2.8. This is a polishing silica sol.
前記課題を解決するための第3の発明は、前記研磨用シリカゾルと、(a)研磨促進剤、(b)界面活性剤、(c)親水性化合物、(d)複素環化合物、(e)pH調整剤および(f)pH緩衝剤からなる群より選ばれる少なくとも1種とを含む研磨用組成物である。 A third invention for solving the above-described problems includes the polishing silica sol, (a) a polishing accelerator, (b) a surfactant, (c) a hydrophilic compound, (d) a heterocyclic compound, (e) A polishing composition comprising a pH adjusting agent and (f) at least one selected from the group consisting of pH buffering agents.
前記課題を解決するための第4の発明は、シリカ微粒子が溶媒に分散してなるシリカゾルを、正のゼータ電位を有するフィルタに通過させることを特徴とする研磨用シリカゾルの製造方法である。 A fourth invention for solving the above problems is a method for producing a polishing silica sol, wherein a silica sol in which silica fine particles are dispersed in a solvent is passed through a filter having a positive zeta potential.
本発明に係る研磨用シリカゾルの製造方法によって得られる研磨用シリカゾルおよび研磨用組成物は、従来の同等の研磨用シリカゾルおよび研磨用組成物に比べ、少なくとも同等の研磨速度を示し、より効果的に線状痕の発生を抑制することができる。 The polishing silica sol and the polishing composition obtained by the method for producing a polishing silica sol according to the present invention exhibit at least an equivalent polishing rate and more effectively than the conventional equivalent silica sol and polishing composition. Generation | occurrence | production of a linear trace can be suppressed.
研磨用シリカゾル
本発明に係る研磨用シリカゾルは、窒素吸着法により測定される比表面積から換算される平均粒子径が3〜100nmであるシリカ微粒子が1〜50質量%の範囲で溶媒に分散してなるシリカゾルであって、該シリカゾル中に存在する全シリカ成分の質量を(S1)、溶存シリカ成分の質量を(S2)としたとき、(S1)に占める(S2)の割合[(S2)/(S1)]が1000ppm以下であることを特徴とする。
Polishing silica sol In the polishing silica sol according to the present invention, silica fine particles having an average particle diameter of 3 to 100 nm converted from a specific surface area measured by a nitrogen adsorption method are dispersed in a solvent in a range of 1 to 50% by mass. When the mass of all the silica components present in the silica sol is (S1) and the mass of the dissolved silica component is (S2), the ratio of (S2) to (S1) [(S2) / (S1)] is 1000 ppm or less.
前記溶存シリカ成分とは、前記平均粒子径範囲の粒子として溶媒中に存在しているシリカ成分以外のシリカ成分を意味する。具体的には、前記溶存シリカ成分とは、分画分子量
が10,000である分離膜を有する分離膜付遠沈管を用いて、遠心力4500Gにて90分間シリカゾルを遠心処理したときに、分離膜を通過して遠沈管下部に移行した分散媒中に存在するシリカ成分を指すものであり、シリカオリゴマーがこれに該当するものと推察される。
The dissolved silica component means a silica component other than the silica component present in the solvent as particles in the average particle size range. Specifically, the dissolved silica component is separated when the silica sol is centrifuged for 90 minutes at a centrifugal force of 4500 G using a centrifuge tube with a separation membrane having a separation membrane having a fractional molecular weight of 10,000. This refers to the silica component present in the dispersion medium that has passed through the membrane and moved to the lower part of the centrifuge tube, and it is assumed that the silica oligomer corresponds to this.
一般にシリカゾル中には、所定の粒径範囲のシリカ微粒子以外に、粒子径が500〜3000nm程度の粗大粒子が存在することが知られている。この粗大粒子は、シリカゾルを研磨用途に適用した場合、線状痕発生の原因となることが知られている。 Generally, it is known that coarse particles having a particle size of about 500 to 3000 nm exist in the silica sol, in addition to silica fine particles having a predetermined particle size range. These coarse particles are known to cause the generation of linear marks when silica sol is applied for polishing.
本発明の発明者らは、前記粗大粒子以外に、前記溶存シリカ成分が線状痕発生の原因となっていることを見出し、本発明を完成するに至った。すなわち、本発明は、前記溶存シリカ成分を一定濃度以下にすることにより、線状痕の発生が顕著に低減されるという効果を奏するものである。 The inventors of the present invention have found that the dissolved silica component causes the generation of linear traces in addition to the coarse particles, and have completed the present invention. That is, the present invention has an effect that the occurrence of linear marks is remarkably reduced by making the dissolved silica component below a certain concentration.
前記溶存シリカ成分がいかなる理由で線状痕発生の原因となっているかは必ずしも明らかではないが、シリカオリゴマーなどの溶存シリカ成分が経時的に凝集することにより、シリカ微粒子の均一性を低下させ、その結果、このシリカゾルを研磨用途に適用した場合に、線状痕発生の原因になると推察される。 Although it is not always clear why the dissolved silica component causes the occurrence of linear traces, the dissolved silica components such as silica oligomers aggregate over time, thereby reducing the uniformity of the silica fine particles, As a result, when this silica sol is applied to a polishing application, it is presumed that it causes a linear mark.
本発明に係る研磨用シリカゾルにおいては、シリカゾル中に存在する全シリカ成分の質量(S1)に占める溶存シリカ成分の質量(S2)の割合が1000ppm以下である。(S1)に占める(S2)の割合[(S2)/(S1)]が1000ppm以下であると、この研磨用シリカゾルを用いて研磨処理を行ったとき、発生する線状痕の数が顕著に少なくなる。(S1)に占める(S2)の割合[(S2)/(S1)]としては、より好ましくは900ppm以下であり、さらに好ましくは850ppm以下である。なお、本発明に係る研磨用シリカゾルにおいては、前記粗大粒子の含有量が少ない方が好ましいのは当然のことである。 In the polishing silica sol according to the present invention, the ratio of the mass (S2) of the dissolved silica component to the mass (S1) of all the silica components present in the silica sol is 1000 ppm or less. When the ratio [(S2) / (S1)] of (S2) to (S1) is 1000 ppm or less, the number of linear traces generated when this polishing silica sol is used for the polishing treatment is remarkable. Less. The ratio of (S2) to (S1) [(S2) / (S1)] is more preferably 900 ppm or less, and even more preferably 850 ppm or less. In the polishing silica sol according to the present invention, it is naturally preferable that the content of the coarse particles is smaller.
前記シリカ微粒子の、窒素吸着法(BET法)により測定される比表面積から換算される平均粒子径は3〜100nmであり、好ましくは5〜50nmであり、さらに好ましくは5〜40nmである。前記平均粒子径が3nmより小さい場合には、研磨レートが低いために研磨材としては不適当となり、100nmより大きい場合は、研磨レートが高い一方でスクラッチ(線状痕)が増加するため研磨基材の表面粗度低下を招く傾向が大きくなる。なお、前記窒素吸着法(BET法)に代えてナトリウム滴定法より測定される比表面積から換算される平均粒子径を使用しても構わない。ナトリウム滴定法よる平均粒子径の測定は、たとえば以下のようにして行うことができる。
1)SiO2として1.5gに相当する試料をビーカーに採取してから、恒温反応槽(2
5℃)に移し、純水を加えて液量を90mlにする。以下の操作は、25℃に保持した恒温反応槽中にて行う。
2)pH3.6〜3.7になるように0.1モル/L塩酸溶液を加える。
3)塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌する。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下して、pH4.0に調整する。
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7〜9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとし、検量線を作る。
6)次の式(2)からSiO21.5g当たりのpH4.0〜9.0までに要する0.1
モル/L水酸化ナトリウム溶液の消費量V(ml)を求め、次の〔a〕または〔b〕に従って比表面積SA[m2/g]を求める。
〔a〕 実験式(3)にて、SAの値を求め、その値が80〜350m2/gの範囲にあ
る場合は、その値をSA1とする。
〔b〕 実験式(3)によるSAの値が350m2/gを超える場合は、改めて実験式(
4)にて、SAを求め、その値をSAとする。 また、平均粒子径D(nm)は、式(5)から求める。
The average particle diameter converted from the specific surface area measured by the nitrogen adsorption method (BET method) of the silica fine particles is 3 to 100 nm, preferably 5 to 50 nm, and more preferably 5 to 40 nm. When the average particle diameter is smaller than 3 nm, the polishing rate is low, so that it is unsuitable as an abrasive. When it is larger than 100 nm, the polishing rate is high while scratches (linear marks) increase, so that the polishing base is increased. There is a greater tendency to reduce the surface roughness of the material. In addition, you may use the average particle diameter converted from the specific surface area measured by the sodium titration method instead of the said nitrogen adsorption method (BET method). The measurement of the average particle diameter by the sodium titration method can be performed, for example, as follows.
1) A sample corresponding to 1.5 g as SiO 2 was collected in a beaker, and then a constant temperature reactor (2
5 ° C.) and add pure water to make the volume 90 ml. The following operation is performed in a constant temperature reaction tank maintained at 25 ° C.
2) A 0.1 mol / L hydrochloric acid solution is added so that the pH is 3.6 to 3.7.
3) Add 30 g of sodium chloride, dilute to 150 ml with pure water and stir for 10 minutes.
4) A pH electrode is set, and 0.1 mol / L sodium hydroxide solution is added dropwise with stirring to adjust the pH to 4.0.
5) The sample adjusted to pH 4.0 was titrated with 0.1 mol / L sodium hydroxide solution, and the titer and pH value in the range of pH 8.7 to 9.3 were recorded at 4 points or more. A calibration curve is prepared by setting the titer of 1 mol / L sodium hydroxide solution to X and the pH value at that time to Y.
6) 0.1 required for pH 4.0 to 9.0 per 1.5 g of SiO 2 from the following formula (2)
The consumption amount V (ml) of the mol / L sodium hydroxide solution is determined, and the specific surface area SA [m 2 / g] is determined according to the following [a] or [b].
[A] In the empirical formula (3), the value of SA is obtained, and when the value is in the range of 80 to 350 m 2 / g, the value is SA1.
[B] When the SA value by the experimental formula (3) exceeds 350 m 2 / g, the experimental formula (
In 4), SA is obtained, and the value is SA. Further, the average particle diameter D (nm) is obtained from the equation (5).
V=(A×f×100×1.5)/(W×C) ・・・ (2)
SA=29.0V−28 ・・・ (3)
SA=31.8V−28 ・・・ (4)
D=6000/(ρ×SA) ・・・ (5) (ρ:試料の密度、シリカでは2.2を用いた。)
但し、上記式(2)における記号の意味は次の通りである。
A:SiO21.5g当たりpH4.0〜9.0までに要する0.1モル/L水酸化ナト
リウム溶液の滴定量(ml)
f :0.1モル/L水酸化ナトリウム溶液の力価
C :試料のSiO2濃度(%)
W :試料採取量(g)
前記シリカ微粒子の形状としては、本発明の目的とする研磨が可能である限り特に制限はなく、例えば、球形、回転楕円形、鎖状、金平糖状、異形状等を挙げることができる。
V = (A × f × 100 × 1.5) / (W × C) (2)
SA = 29.0V-28 (3)
SA = 31.8V-28 (4)
D = 6000 / (ρ × SA) (5) (ρ: density of sample, 2.2 was used for silica)
However, the meanings of the symbols in the above formula (2) are as follows.
A: Titration amount of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 (ml)
f: Potency of 0.1 mol / L sodium hydroxide solution C: SiO 2 concentration of sample (%)
W: Sampling amount (g)
The shape of the silica fine particles is not particularly limited as long as the object of the present invention can be polished, and examples thereof include a spherical shape, a spheroid shape, a chain shape, a confetti shape, and an irregular shape.
本発明に係る研磨用シリカゾルにおけるシリカ微粒子の濃度は、1〜50質量%の範囲であることが好ましく、より好ましくは、20〜40質量%の範囲が推奨される。前記シリカ微粒子の濃度が1質量%未満の場合には、生産性が低いうえに、研磨用組成物(スラリー)を調製するうえでも濃縮工程を必要とするものとなる。50質量%より大きい場合は、粒子の安定性が低下し、凝集する傾向が大きくなる。 The concentration of the silica fine particles in the polishing silica sol according to the present invention is preferably in the range of 1 to 50 mass%, more preferably in the range of 20 to 40 mass%. When the concentration of the silica fine particles is less than 1% by mass, the productivity is low and a concentration step is required for preparing a polishing composition (slurry). When it is larger than 50% by mass, the stability of the particles decreases and the tendency to aggregate increases.
前記溶媒としては、前記微シリカ微粒子を分散でき、研磨処理に供することができれば特に制限はなく、例えば、水、可溶性有機物のアルコ―ル、グリコール等を挙げることができる。 The solvent is not particularly limited as long as the fine silica fine particles can be dispersed and can be subjected to polishing treatment, and examples thereof include water, soluble organic alcohol, glycol and the like.
本発明に係る研磨用シリカゾルにおいては、シリカゾルのシリカ濃度が1質量%のときの動的光散乱法により測定される平均粒子径を(D1)とし、同じく30質量%のときの
平均粒子径を(D30)としたときに、(D1)/(D30)で与えられる平均粒子径の濃度
依存係数が、2.0〜2.8の範囲にある傾向がある。これについては、直接的には溶存シリカ成分が動的光散乱法による測定に影響するものと言える。濃度依存係数がこの範囲にあるシリカゾルは、研磨用途に好適であり、特に線状痕の発生が抑制される。濃度依存係数が2.0未満のシリカゾルを研磨用途に適用した場合、線状痕の発生が顕著となる。実用的なシリカゾルの濃度依存係数は、通常は2.8を超えるものではない。濃度依存係数の好適な範囲としては、2.1〜2.5の範囲が推奨される。
In the polishing silica sol according to the present invention, the average particle size measured by the dynamic light scattering method when the silica concentration of the silica sol is 1% by mass is (D 1 ), and the average particle size is also 30% by mass. When D is (D 30 ), the concentration dependence coefficient of the average particle diameter given by (D 1 ) / (D 30 ) tends to be in the range of 2.0 to 2.8. In this regard, it can be said that the dissolved silica component directly affects the measurement by the dynamic light scattering method. Silica sol having a concentration dependency coefficient in this range is suitable for polishing applications, and particularly the occurrence of linear marks is suppressed. When a silica sol having a concentration dependency coefficient of less than 2.0 is applied to a polishing application, the generation of linear marks becomes remarkable. The concentration dependence coefficient of a practical silica sol usually does not exceed 2.8. As a suitable range of the concentration dependence coefficient, a range of 2.1 to 2.5 is recommended.
上記研磨用シリカゾルは、その製造方法には特に制限はなく、例えば後述の研磨用シリカゾルの製造方法によって製造することができる。
研磨用シリカゾルの製造方法
本発明の研磨用シリカゾルの製造方法は、シリカ微粒子が溶媒に分散してなるシリカゾルを、正のゼータ電位を有するフィルタに通過させることにより調製される。
シリカゾル
前記シリカゾルは、シリカ微粒子が水および/または有機溶媒等の溶媒に分散してなる
。本発明の研磨用シリカゾルの製造方法においては、原料として、公知のシリカゾルを使用することができる。市販品の使用についても何ら問題はない。なお、このシリカゾルは、アルミナ、ジルコニア、セリアまたはチタニアを含有していても構わない。
There is no restriction | limiting in particular in the manufacturing method of the said silica sol for polishing, For example, it can manufacture with the manufacturing method of the silica sol for polishing mentioned later.
Manufacturing method of polishing silica sol The manufacturing method of the polishing silica sol of the present invention is prepared by passing a silica sol in which silica fine particles are dispersed in a solvent through a filter having a positive zeta potential.
Silica sol The silica sol comprises silica fine particles dispersed in a solvent such as water and / or an organic solvent. In the method for producing a polishing silica sol of the present invention, a known silica sol can be used as a raw material. There is no problem with the use of commercial products. This silica sol may contain alumina, zirconia, ceria or titania.
前記シリカゾルの製造方法としては、次の(1)〜(4)の製造方法を挙げることができるが、これらに限定されるものではない。
(1)珪酸液をアルカリ存在下で加熱することにより珪酸を重合する工程を含むシリカゾルの製造方法
この製造方法は、アルカリ金属珪酸塩、第3級アンモニウム珪酸塩、第4級アンモニウム珪酸塩またはグアニジン珪酸塩から選ばれる水溶性珪酸塩を、脱アルカリすることにより得られる珪酸液をアルカリ存在下で加熱することにより珪酸を重合する工程を含むものである。この製造方法の例としては、珪酸アルカリ水溶液をシリカ濃度3〜10質量%に水で希釈し、次いでH型強酸性陽イオン交換樹脂に接触させて脱アルカリし、必要に応じてOH型強塩基性陰イオン交換樹脂に接触させて脱アニオンし、活性珪酸を調製する。pHが8以上となるようアルカリ物質を加え、50℃以上に加熱することにより平均粒子径60nm以下のシリカゾルを製造する方法を挙げることができる。
(2)核粒子分散液に酸性珪酸液を添加することにより、核粒子の粒子成長を行うシリカゾルの製造方法
この製造方法において、核粒子分散液としては、核粒子として機能すれば特に制限はなく従来公知のシリカ、アルミナ、ジルコニア、セリア、チタニア、シリカ−アルミナ、シリカ−ジルコニア、シリカ−セリア、シリカ−チタニア等の微粒子の分散液を用いることができる。なかでも、本願出願人による特開平5−132309号公報、特開平7−105522号公報等に開示したシリカゾル、シリカ複合酸化物ゾルは粒子径分布が均一であり、均一な粒子径分布の研磨用シリカ粒子が得られるので好ましい。ここで、核粒子分散液には酸性珪酸液の添加前に珪酸アルカリが加えられていることが好ましい。珪酸アルカリが添加されていると、次に粒子成長用の酸性珪酸液を加える際に、溶媒中に溶解したSiO2 濃度が予め高くされているので核粒子への珪酸の析出が早く起こり、また分散液のpHを概ね8〜12、好ましくは9.5〜11. 5に調整することができる。此処で用いる
珪酸アルカリとしては、ケイ酸カリウム(カリ水硝子)等、ケイ酸ナトリウム(ナトリウム水硝子)以外の珪酸アルカリあるいは4級アミンなど有機塩基にシリカを溶解した溶液を用いることが好ましい。また、必要に応じてNaOH以外のアルカリ金属水酸化物、アンモニウム、4級アンモニウムハイドライドを添加することができる。さらにMg(OH)2 、Ca(OH)2 、Sr(OH)2 、Ba(OH)2 等のアルカリ金属水酸化物なども好適に用いることができる。予め核粒子が分散していなくても、珪酸アルカリ水溶液に後述する酸性珪酸液を加えていくとシリカ濃度が高くなったところで核粒子が発生するので、このような核粒子分散液も好適に用いることができる。核粒子分散液の濃度は核粒子の大きさによっても異なるが、SiO2 として0. 005〜20質量%、さらには0. 01〜10質量%の範囲にあることが好ましい。
Examples of the method for producing the silica sol include, but are not limited to, the following production methods (1) to (4).
(1) A method for producing a silica sol comprising a step of polymerizing silicic acid by heating a silicic acid solution in the presence of an alkali. This production method comprises alkali metal silicate, tertiary ammonium silicate, quaternary ammonium silicate or guanidine. The method includes a step of polymerizing silicic acid by heating a silicic acid solution obtained by dealkalizing a water-soluble silicate selected from silicates in the presence of an alkali. As an example of this production method, an aqueous alkali silicate solution is diluted with water to a silica concentration of 3 to 10% by mass, and then contacted with an H-type strong acidic cation exchange resin for dealkalization, and if necessary, an OH-type strong base. The active silicic acid is prepared by deanion by contacting with anionic anion exchange resin. An example is a method for producing a silica sol having an average particle diameter of 60 nm or less by adding an alkaline substance so that the pH is 8 or more and heating to 50 ° C. or more.
(2) Silica sol production method for growing core particles by adding an acidic silicic acid solution to the core particle dispersion. In this manufacturing method, the core particle dispersion is not particularly limited as long as it functions as a core particle. Conventionally known fine particle dispersions such as silica, alumina, zirconia, ceria, titania, silica-alumina, silica-zirconia, silica-ceria, silica-titania can be used. Among them, the silica sol and the silica composite oxide sol disclosed in Japanese Patent Application Laid-Open Nos. 5-132309 and 7-105522 by the applicant of the present application have a uniform particle size distribution, and for polishing with a uniform particle size distribution. Since silica particles are obtained, it is preferable. Here, it is preferable that an alkali silicate is added to the core particle dispersion before the addition of the acidic silicate solution. When an alkali silicate is added, the concentration of SiO 2 dissolved in the solvent is increased in advance when the acidic silicic acid solution for particle growth is added next. The pH of the dispersion can be adjusted to approximately 8 to 12, preferably 9.5 to 11.5. As the alkali silicate used here, it is preferable to use a solution in which silica is dissolved in an organic base such as potassium silicate (potassium water glass), silicate alkali other than sodium silicate (sodium water glass), or quaternary amine. Moreover, alkali metal hydroxides other than NaOH, ammonium, and quaternary ammonium hydride can be added as needed. Furthermore, alkali metal hydroxides such as Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 and Ba (OH) 2 can be preferably used. Even if the core particles are not dispersed in advance, the core particles are generated when the silica concentration is increased when an acidic silicic acid solution described later is added to the alkali silicate aqueous solution. Therefore, such a core particle dispersion is also preferably used. be able to. The concentration of the core particle dispersion varies depending on the size of the core particles, but it is preferably in the range of 0.005 to 20% by mass, more preferably 0.01 to 10% by mass as SiO 2 .
核粒子の濃度が0. 005質量%未満の場合は、粒子成長を行うために温度を高めた場合核粒子の一部または全部が溶解することがあり、核粒子の全部が溶解すると核粒子分散液を用いる効果が得られず、核粒子の一部が溶解した場合は得られるシリカ粒子の粒子径が不均一になる傾向があり、同様に核粒子分散液を用いる効果が得られないことがある。一方、核粒子の濃度が20質量%を越えると、核粒子当たりの酸性珪酸液の添加割合を低濃度の場合と同一にするには珪酸液の添加速度を速めることになるが、この場合、酸性珪
酸液の核粒子表面への析出が追随できず、酸性珪酸液がゲル化することがある。核粒子の平均粒子径は前記したシリカ粒子が得られれば、特に制限はない。
(3)シリカヒドロゲルを解膠する工程を含むシリカゾルの製造方法
この製造方法は、珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加した後、加熱することによりシリカヒドロゲルを解膠する工程を含むものである。
When the concentration of the core particles is less than 0.005% by mass, some or all of the core particles may be dissolved when the temperature is increased to perform particle growth. When all the core particles are dissolved, the core particles are dispersed. If the effect of using the liquid is not obtained, and part of the core particles is dissolved, the particle diameter of the silica particles obtained tends to be non-uniform, and the effect of using the core particle dispersion may not be obtained as well. is there. On the other hand, if the concentration of the core particles exceeds 20% by mass, the addition rate of the acid silicate solution per core particle should be increased to increase the rate of addition of the silicate solution in order to make the addition rate of the acid silicate solution low. Precipitation of the acidic silicic acid solution on the surface of the core particles cannot follow, and the acidic silicic acid solution may gel. The average particle diameter of the core particles is not particularly limited as long as the silica particles described above can be obtained.
(3) A method for producing a silica sol comprising a step of peptizing a silica hydrogel. This production method comprises washing a silica hydrogel obtained by neutralizing a silicate with an acid, removing salts, and adding an alkali. It includes a step of peptizing the silica hydrogel by heating.
この製造方法は解膠法と呼ばれるもので、通常は、珪酸塩の水溶液を酸で中和して、シリカヒドロゲルを調製し、化学的手段または機械的な手段にて、シリカヒドロゲルをスラリー状ないしは分散溶液にする方法として知られている。 ここで、化学的手段としては、シリカヒドロゲルにアルカリを添加し、所望により加熱する方法が挙げられる。また、機械的手段としては、攪拌器などの装置を使用する方法を挙げることができる。これらの化学的手段と機械的な手段は併用されても差し支えない。具体的には、珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加し、60〜200℃の範囲に加熱することにより、シリカヒドロゲルを解膠して、シリカゾルを調製する。この製造方法で原料として使用する珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましい。アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムを、有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
(4)加水分解性珪素化合物を加水分解し、得られた珪酸を重合してなる製造方法
この製造方法は、加水分解性基を有する珪素化合物を加水分解して、得られた珪酸を重合する工程を含むものである。この製造方法の例としては、シ−ド粒子が分散された水−有機溶媒系分散液にテトラエトキシシランを添加して該テトラエトキシシランを加水分解し、前記シ−ド粒子上にシリカを付着させて粒子成長を行わせて単分散したシリカ粒子の製造方法などが知られている。
This production method is called a peptization method. Usually, an aqueous solution of silicate is neutralized with an acid to prepare a silica hydrogel, and the silica hydrogel is slurried or mechanically prepared by chemical means or mechanical means. This method is known as a dispersion solution. Here, as a chemical means, the method of adding an alkali to a silica hydrogel and heating as desired is mentioned. Moreover, as a mechanical means, the method of using apparatuses, such as a stirrer, can be mentioned. These chemical means and mechanical means may be used in combination. Specifically, silica hydrogel obtained by neutralizing silicate with acid is washed, salts are removed, alkali is added, and the silica hydrogel is peptized by heating in the range of 60 to 200 ° C. Then, a silica sol is prepared. The silicate used as a raw material in this production method is preferably one or more silicates selected from alkali metal silicates, ammonium silicates, and organic base silicates. Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or organic base silicate includes an alkaline solution in which ammonia, quaternary ammonium hydroxide, an amine compound, or the like is added to the silicic acid solution.
(4) Manufacturing method comprising hydrolyzing a hydrolyzable silicon compound and polymerizing the resulting silicic acid This manufacturing method hydrolyzes a silicon compound having a hydrolyzable group and polymerizes the resulting silicic acid. It includes a process. As an example of this production method, tetraethoxysilane is added to a water-organic solvent dispersion in which seed particles are dispersed to hydrolyze the tetraethoxysilane, and silica is deposited on the seed particles. For example, a method for producing monodispersed silica particles by performing particle growth is known.
前記(1)〜(4)の何れの製造方法により調製されたシリカゾルも本発明に係る研磨用シリカゾルの製造方法に、原料(シリカゾル)として適用することが可能である。
本発明に係る研磨用シリカゾルの製造方法に原料として使用するシリカゾルのシリカ濃度については、通常、1〜50質量%の範囲のものが使用される。また、シリカ微粒子については、窒素吸着法[BET法](またはナトリウム滴定法)により測定された比表面積から換算された平均粒子径が1〜100nmの範囲のシリカ微粒子が好適に用いられる。平均粒子径が1nm未満のシリカ微粒子の調製は、可能であるものの、コスト面で実用的とはいえない。また、研磨用途においては、平均粒子径100nm以下が実用的である。正のゼータ電位を有するフィルタ
本発明者らは、正のゼータ電位を有するフィルタを通過したシリカゾルからなる研磨用シリカゾルを研磨用途に適用した場合、従来の遠心分離処理工程または限外濾過を経て調製されたシリカゾルと比べて、少なくとも同等の研磨速度を確保しながら、より効果的に線状痕の発生が抑制されることを見出し、本発明を完成させた。
The silica sol prepared by any one of the production methods (1) to (4) can be applied as a raw material (silica sol) to the method for producing a polishing silica sol according to the present invention.
About the silica concentration of the silica sol used as a raw material in the method for producing a polishing silica sol according to the present invention, one having a range of 1 to 50% by mass is usually used. As for the silica fine particles, silica fine particles having an average particle diameter in the range of 1 to 100 nm converted from the specific surface area measured by the nitrogen adsorption method [BET method] (or sodium titration method) are preferably used. Although it is possible to prepare silica fine particles having an average particle diameter of less than 1 nm, it is not practical in terms of cost. For polishing applications, an average particle size of 100 nm or less is practical. Filters having a positive zeta potential When the polishing silica sol composed of a silica sol that has passed through a filter having a positive zeta potential is applied to a polishing application, the inventors prepared through a conventional centrifugal separation process or ultrafiltration. The present inventors have found that the generation of linear marks is more effectively suppressed while ensuring at least the same polishing rate as compared with the silica sol thus obtained, and completed the present invention.
前述のとおり、線状痕発生の原因物質としては、前記粗大粒子および溶存シリカ成分等が挙げられる。これらの原因物質のうち、粗大粒子は、従来の遠心分離処理工程または限外濾過等により除去することは可能である。しかし、溶存シリカ成分は、質量または外径がきわめて小さいなどの理由により、従来の遠心分離処理工程等により除去することは困難であった。 As described above, the coarse particles, dissolved silica components, and the like can be cited as the causative substances for generating linear traces. Of these causative substances, coarse particles can be removed by a conventional centrifugal separation process or ultrafiltration. However, it has been difficult to remove the dissolved silica component by a conventional centrifugal separation process or the like because the mass or the outer diameter is extremely small.
これに対して、シリカゾルを、正のゼータ電位を有するフィルタを通過させる本発明に
係る製造方法によると、前記粗大粒子だけでなく、溶存シリカ成分も簡易に、かつ効率良く除去される。このことは、通常の濾過作用によって粗大粒子が分離され、さらに比較的大きいマイナスのゼータ電位を有する溶存シリカ成分を、正のゼータ電位を有するフィルタが吸着することに起因するものと推定される。この結果、シリカゾルを、正のゼータ電位を有するフィルタを通過させて得られた研磨用シリカゾルまたはこれを含む研磨用組成物を研磨用途に適用した場合、遠心分離処理等を行っただけのシリカゾルを研磨用途に適用した場合に比べて、線状痕の発生を抑止しやすい。
On the other hand, according to the production method of the present invention in which silica sol is passed through a filter having a positive zeta potential, not only the coarse particles but also dissolved silica components are easily and efficiently removed. This is presumably due to the fact that coarse particles are separated by a normal filtration action, and the dissolved silica component having a relatively large negative zeta potential is adsorbed by the filter having a positive zeta potential. As a result, when a silica sol obtained by passing a silica sol through a filter having a positive zeta potential or a polishing composition containing the same is applied to a polishing application, a silica sol that has only been subjected to a centrifugal separation process or the like is obtained. Compared to the case of applying to polishing, it is easy to suppress the occurrence of linear marks.
フィルタのゼータ電位は、次のように測定される。フィルタの膜を15mm×35mmの長方形状に切り取り、測定用セルに密着させてゼータ電位・粒径測定システム(大塚電子製 ELSZ-1)および平板試料用セルユニットに設置して測定する。なお、本装置では、セル内に電気泳動させるモニター粒子(ゼータ電位をほぼゼロにしたポリスチレンラテックス粒子)を注入し、セル深さ方向の各レベルでモニター粒子の電気泳動を行い、得られたセル内部の見かけの速度分布を森・岡本式で解析してサンプル表面のゼータ電位を求めるものである。 The zeta potential of the filter is measured as follows. The filter membrane is cut into a 15 mm × 35 mm rectangle, and is placed in close contact with the measurement cell and installed in a zeta potential / particle size measurement system (ELSZ-1 manufactured by Otsuka Electronics Co., Ltd.) and a flat sample cell unit. In this device, the monitor particles (polystyrene latex particles whose zeta potential is made substantially zero) to be electrophoresed are injected into the cell, and the monitor particles are electrophoresed at each level in the cell depth direction. The internal apparent velocity distribution is analyzed using the Mori-Okamoto equation to determine the zeta potential on the sample surface.
フィルタが有する正のゼータ電位の大きさとしては、前記溶存シリカ成分を吸着できる限り特に制限はないが、好ましくは+3〜+60mVであり、さらに好ましくは+5〜+50mVである。フィルタが有するゼータ電位が前記範囲内であると、溶存シリカ成分を効率的に吸着しやすい。なお、正のゼータ電位を有するフィルタは、正の電荷を有するものと言える。 The magnitude of the positive zeta potential of the filter is not particularly limited as long as the dissolved silica component can be adsorbed, but is preferably +3 to +60 mV, and more preferably +5 to +50 mV. When the zeta potential of the filter is within the above range, the dissolved silica component is easily adsorbed efficiently. A filter having a positive zeta potential can be said to have a positive charge.
このような正のゼータ電位を有するフィルタは、例えば、表面ゼータ電位が負の範囲にあるポリウレタンにアクリレートをグラフトさせてなる濾材をカチオン化剤により処理することにより、表面ゼータ電位を正にして、正のゼータ電位を有するフィルタを製造することができる。カチオン化剤としては、中性の溶液中でカチオン性電荷をもつ物質であれば、特に限定されないが、例えば、ポリ塩化アルミニウム、アミノ基を有する塩基性物質等が好ましい。アミノ基を有する塩基性物資の具体例としては、第4級アンモニウムハイドロオキサイド、第3級アミン化合物、第2級アミン化合物などを挙げることができる。具体的な製造方法としては、例えば、ポリ塩化アルミニウムを純水に溶解させた水溶液をカプセルフィルタに満たし、純水で通液して、ポリ塩化アルミニウムを排出した後、フィルタを乾燥させることによって製造することができる。 A filter having such a positive zeta potential is, for example, by treating a filter medium obtained by grafting acrylate onto polyurethane having a negative surface zeta potential with a cationizing agent, thereby making the surface zeta potential positive, Filters with a positive zeta potential can be manufactured. The cationizing agent is not particularly limited as long as it is a substance having a cationic charge in a neutral solution. For example, polyaluminum chloride, a basic substance having an amino group, and the like are preferable. Specific examples of the basic substance having an amino group include quaternary ammonium hydroxide, tertiary amine compound, secondary amine compound and the like. As a specific manufacturing method, for example, it is manufactured by filling a capsule filter with an aqueous solution in which polyaluminum chloride is dissolved in pure water, passing the solution through pure water, discharging the polyaluminum chloride, and then drying the filter. can do.
フィルタの材質については、基材をカチオン化処理して正のゼータ電位を有するフィルタを製造する場合は、カチオン化剤を安定して表面に定着させるために、基材がアニオン性の樹脂または不織布などであることが好ましい。 Regarding the material of the filter, when producing a filter having a positive zeta potential by cationizing the base material, the base material is an anionic resin or non-woven fabric in order to stably fix the cationizing agent on the surface. And the like.
正のゼータ電位を有するフィルタのフィルタ孔径については、0.01〜10μmの範囲が好適である。この範囲であれば、研磨用途において問題となる粗大粒子の除去が可能である。なお、フィルタの孔径については、処理対象となるシリカゾルの平均粒子径等に応じて適宜選択される。 About the filter hole diameter of the filter which has a positive zeta potential, the range of 0.01-10 micrometers is suitable. Within this range, it is possible to remove coarse particles that are problematic in polishing applications. The pore size of the filter is appropriately selected according to the average particle size of the silica sol to be treated.
正のゼータ電位を有するフィルタによる処理
本発明に係る研磨用シリカゾルの製造方法においては、各種製造方法で製造されたシリカゾルを正のゼータ電位を有するフィルタに通過させる。フィルタ処理の態様については、格別に制限されるものではなく、被処理液であるシリカゾルがフィルタにより濾過される操作が行われればよい。また、正のゼータ電位を有するフィルタによる処理は、反復して行っても構わない。
Treatment with a filter having a positive zeta potential In the method for producing a polishing silica sol according to the present invention, the silica sol produced by various production methods is passed through a filter having a positive zeta potential. The mode of the filter treatment is not particularly limited, and an operation of filtering the silica sol that is the liquid to be treated by the filter may be performed. Further, the processing using a filter having a positive zeta potential may be repeated.
また、被処理液であるシリカゾルについては、正のゼータ電位を有するフィルタに通過
させる処理の他に、所望の処理を加えても構わない。この例としては、遠心分離処理を挙げることができる。遠心分離処理によりシリカゾルから粗大粒子を除去し、その後、正のゼータ電位を有するフィルタに通過させる処理を行って得られたシリカゾルを研磨用途に適用した場合、線状痕発生をより効果的に抑制することが可能となる。
Moreover, about the silica sol which is a to-be-processed liquid, you may add a desired process other than the process made to pass through the filter which has a positive zeta potential. An example of this is a centrifugal separation process. When the silica sol obtained by removing coarse particles from the silica sol by centrifugation and then passing it through a filter with a positive zeta potential is applied to polishing, the generation of linear traces is more effectively suppressed. It becomes possible to do.
前述の本発明に係る研磨用シリカゾルを製造するには、例えば、窒素吸着法(またはナトリウム滴定法)により測定される比表面積から換算される平均粒子径が3〜100nmであるシリカ微粒子が1〜50質量%の範囲で分散媒に分散してなるシリカゾルを、上記正のゼータ電位を有するフィルタに通過させればよい。フィルタのゼータ電位の大きさは、シリカゾルに含まれるシリカ微粒子が有するゼータ電位等に応じて適宜決定することができる。フィルタ孔径も、シリカゾルに含まれる粗大粒子の大きさおよびシリカゾルの平均粒子径等に応じて適宜決定することができる。また、フィルタによる処理回数についても、所望の結果が得られるように適宜調整すればよい。 In order to produce the above-described polishing silica sol according to the present invention, for example, silica fine particles having an average particle diameter of 3 to 100 nm converted from a specific surface area measured by a nitrogen adsorption method (or sodium titration method) are 1 to 1. A silica sol dispersed in a dispersion medium in a range of 50% by mass may be passed through the filter having the positive zeta potential. The magnitude of the zeta potential of the filter can be appropriately determined according to the zeta potential of the silica fine particles contained in the silica sol. The filter pore size can also be appropriately determined according to the size of the coarse particles contained in the silica sol, the average particle size of the silica sol, and the like. Further, the number of times of processing by the filter may be appropriately adjusted so that a desired result is obtained.
前記研磨用シリカゾルの製造方法により前述の本発明に係る研磨用シリカゾルを製造した場合、この研磨用シリカゾルにおいては、シリカゾルのシリカ濃度が1質量%のときの動的光散乱法により測定される平均粒子径を(D1)とし、同じく30質量%のときの平
均粒子径を(D30)としたときに、(D1)/(D30)で与えられる平均粒子径の濃度依
存係数が、2.0〜2.8の範囲にある傾向がある。
When the above-mentioned polishing silica sol according to the present invention is manufactured by the above-described polishing silica sol manufacturing method, in this polishing silica sol, the average measured by the dynamic light scattering method when the silica concentration of the silica sol is 1% by mass the particle diameter and (D 1), like-average particle diameter when the 30 mass% is taken as (D 30), the concentration dependence coefficient of the average particle size given by (D 1) / (D 30 ), There is a tendency to be in the range of 2.0 to 2.8.
動的光散乱法により測定される平均粒子径は、一般に測定対象であるシリカゾルの濃度により変動する傾向がある。したがって、測定対象であるシリカゾルの濃度が1質量%の場合と30質量%の場合では、通常得られる平均粒子径が異なる。通常のシリカゾルにおいては、前記濃度依存係数は1.5以上、2.0未満の範囲である。つまり、前記研磨用シリカゾルの製造方法により製造された本発明に係る研磨用シリカゾルは、通常のシリカゾルよりも大きい濃度依存係数を有するという特徴がある。
研磨用組成物
本発明に係る研磨用粒子分散液は、それ自体で研摩剤として使用可能なものであるが、所望により、添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤およびpH緩衝剤からなる群より選ばれる1種以上を添加して使用しても構わない。前記研磨用粒子分散液にこれらの成分を添加して得られる混合物を本発明においては、「研磨用組成物」と呼称する。
研磨促進剤
本発明に係る研磨用組成物には、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素などおよびこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
In general, the average particle diameter measured by the dynamic light scattering method tends to vary depending on the concentration of the silica sol to be measured. Therefore, the average particle diameter usually obtained differs between the case where the concentration of the silica sol to be measured is 1% by mass and 30% by mass. In a normal silica sol, the concentration dependency coefficient is in the range of 1.5 or more and less than 2.0. That is, the polishing silica sol according to the present invention produced by the method for producing a polishing silica sol has a characteristic that it has a concentration dependency coefficient larger than that of a normal silica sol.
Polishing Composition The polishing particle dispersion according to the present invention can be used as an abrasive by itself, but if desired, as an additive, a polishing accelerator, a surfactant, a heterocyclic compound, pH adjustment One or more selected from the group consisting of an agent and a pH buffer may be added and used. In the present invention, a mixture obtained by adding these components to the polishing particle dispersion is referred to as “polishing composition”.
Polishing Accelerator For the polishing composition according to the present invention, a conventionally known polishing accelerator can be used as necessary, although it varies depending on the type of material to be polished. Examples of such include hydrogen peroxide, peracetic acid, urea peroxide and mixtures thereof. When such an abrasive composition containing a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is a metal.
研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩およびこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。 As another example of the polishing accelerator, there can be mentioned acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid and hydrofluoric acid, or sodium salts, potassium salts, ammonium salts and mixtures thereof. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished consisting of composite components, the polishing rate is accelerated for a specific component of the material to be polished, thereby finally achieving flat polishing. You can get a plane.
本発明に係る研磨用組成物が研磨促進剤を含有する場合、その含有量としては、0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。
界面活性剤及び/又は親水性化合物
研磨用組成物の分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤または親水性化合物を添加することができる。界面活性剤と親水
性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
When the polishing composition according to the present invention contains a polishing accelerator, the content thereof is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass.
Surfactant and / or hydrophilic compound In order to improve the dispersibility and stability of the polishing composition, a cationic, anionic, nonionic or amphoteric surfactant or hydrophilic compound can be added. Both the surfactant and the hydrophilic compound have an action of reducing a contact angle to the surface to be polished and an action of promoting uniform polishing. As the surfactant and / or the hydrophilic compound, for example, those selected from the following groups can be used.
陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。 Examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt and phosphate ester salt. As the carboxylate salt, soap, N-acyl amino acid salt, polyoxyethylene or polyoxypropylene alkyl ether carboxyl Acid salt, acylated peptide; as sulfonate, alkyl sulfonate, alkyl benzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate; sulfate ester Salts include sulfated oil, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; phosphate ester salts such as alkyl phosphates, polyoxyethylene or polyoxy B pyrene alkyl allyl ether phosphate can be exemplified.
陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。 As cationic surfactant, aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium chloride salt, benzethonium chloride, pyridinium salt, imidazolinium salt; as amphoteric surfactant, carboxybetaine type, sulfobetaine type, Mention may be made of aminocarboxylates, imidazolinium betaines, lecithins, alkylamine oxides.
非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキルおよびアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示され、その他にフッ素系界面活性剤などが挙げられる。 Nonionic surfactants include ether type, ether ester type, ester type and nitrogen-containing type. Ether type includes polyoxyethylene alkyl and alkylphenyl ether, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene poly Examples include oxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ether, ether ester type, glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester polyoxyethylene ether, ester type, Polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester Le, sucrose esters, nitrogen-containing type, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amide, etc. are exemplified, and other fluorine-based surfactant and the like.
界面活性剤としては陰イオン界面活性剤もしくはノ非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩およびカリウム塩が好ましい。 As the surfactant, an anionic surfactant or a non-ionic surfactant is preferable, and as the salt, ammonium salt, potassium salt, sodium salt and the like can be mentioned, and ammonium salt and potassium salt are particularly preferable.
さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステルおよびアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム
塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。
Further, other surfactants and hydrophilic compounds include esters such as glycerin ester, sorbitan ester and alanine ethyl ester; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl Polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene Ethers such as glycol, alkyl polypropylene glycol alkyl ether, alkyl polypropylene glycol alkenyl ether, alkenyl polypropylene glycol; polysaccharides such as alginic acid, pectic acid, carboxymethyl cellulose, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; Polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), poly Acrylic acid, polyacrylamide, aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt Polycarboxylic acids such as polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt, and polyglyoxylic acid and salts thereof; vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyacrolein; methyl tauric acid ammonium salt, methyl tauric acid sodium salt , Methyl sulfate sodium salt, ethyl ammonium sulfate salt, butyl ammonium sulfate salt, vinyl sulfonic acid sodium salt, 1-allyl sulfonic acid sodium salt, 2-allyl sulfonic acid sodium salt, methoxymethyl sulfonic acid sodium salt, ethoxymethyl sulfonic acid ammonium salt Salts, sulfonic acids such as sodium 3-ethoxypropyl sulfonate and salts thereof; propionamide, acrylamide, methylurea, nicotinamide, succinic acid amide and sulfo Examples thereof include amides such as fanilamide.
なお、適用する被研磨基材がガラス基板等である場合は何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属またはハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。 In addition, when the substrate to be polished is a glass substrate or the like, any surfactant can be suitably used. However, in the case of a silicon substrate for a semiconductor integrated circuit or the like, alkali metal, alkaline earth When the influence of contamination by metals or halides is disliked, it is desirable to use an acid or an ammonium salt surfactant.
本発明に係る研磨用組成物が界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用組成物の1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。 When the polishing composition according to the present invention contains a surfactant and / or a hydrophilic compound, the total content is preferably 0.001 to 10 g in 1 L of the polishing composition, It is more preferably 0.01 to 5 g, and particularly preferably 0.1 to 3 g.
界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用組成物の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。 In order to obtain a sufficient effect, the content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 L of the polishing composition, and preferably 10 g or less from the viewpoint of preventing the polishing rate from being lowered.
界面活性剤または親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。
環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
Only one type of surfactant or hydrophilic compound may be used, two or more types may be used, and different types may be used in combination.
Means only the atoms that form part of the ring system of the ring and is located external to the ring system, separated from the ring system by at least one non-conjugated single bond, or further substituents of the ring system An atom that is part of is not meant. Preferred examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. As examples of the heterocyclic compound, imidazole, benzotriazole, benzothiazole, tetrazole, and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino1,2,4-triazole, 3,5 -Diamino-1,2,4-triazole can be mentioned, but is not limited thereto.
本発明に係る研磨用組成物に複素環化合物を配合する場合の含有量については、0.001〜1.0質量%であることが好ましく、0.001〜0.7質量%であることがより好ましく、0.002〜0.4質量%であることがさらに好ましい。
pH調整剤
上記各添加剤の効果を高めるためなどに必要に応じて酸または塩基を添加して研磨用組成物のpHを調節することができる。
About content in the case of mix | blending a heterocyclic compound with the polishing composition which concerns on this invention, it is preferable that it is 0.001-1.0 mass%, and it is 0.001-0.7 mass%. More preferably, the content is 0.002 to 0.4% by mass.
pH adjuster In order to enhance the effect of each of the above additives, an acid or a base can be added as necessary to adjust the pH of the polishing composition.
研磨用組成物をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルア
ミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。
When adjusting the polishing composition to pH 7 or higher, an alkaline one is used as a pH adjuster. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, tetramethylamine are used.
研磨用組成物をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類が使用される。
pH緩衝剤
研磨用組成物のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水まどのリン酸塩及びホウ酸塩または有機酸などを使用することができる。
溶媒
本発明に係る研磨用組成物については、必要に応じて溶媒を用いることができる。溶媒としては通常、水を用いるが、必要に応じてメチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類を用いることができ、他にエーテル類、エステル類、ケトン類など水溶性の有機溶媒を用いることができる。また、水と有機溶媒からなる混合溶媒であっても構わない。
研磨用粒子の濃度
研磨用組成物中のシリカ微粒子の濃度は、2〜50重量%、さらには5〜30重量%の範囲にあることが好ましい。濃度が2重量%未満の場合は、基材や絶縁膜の種類によっては濃度が低すぎて研磨速度が遅く生産性が問題となることがある。シリカ粒子の濃度が50重量%を越えると研磨材の安定性が不充分となり、研磨速度や研磨効率がさらに向上することもなく、また研磨処理のために分散液を供給する工程で乾燥物が生成して付着することがあり傷(スクラッチ)発生の原因となることがある。
〔実施例〕
実施例および比較例で使用した測定方法等について以下に記す。
[動的光散乱法による平均粒子径の測定方法]
シリカ微粒子の平均粒子径については、シリカゾルを0.58%アンモニア水にて希釈して、シリカ濃度1質量%または30質量%に調整し、下記粒径測定装置を用いて平均粒子径を測定した。
[粒径測定装置]
レーザーパーティクルアナライザー(大塚電子株式会社製、レーザー粒径解析システム:LP−510モデルPAR−III、測定原理:動的光散乱法、測定角度90°、受光素子:光電子倍増管2インチ、測定範囲:3nm〜5μm、光源:He-Neレーザー(5
mW、632.8nm)、温度調整範囲:5〜90℃、温度調整方式:ペルチェ素子(冷
却)、セラミックヒーター(加熱)、セル:10mm角のプラスチックセル、測定対象:コ
ロイド粒子)
[正のゼータ電位を有するフィルタの作製]
ポリ塩化アルミニウムを純水に溶解させた水溶液(ポリ塩化アルミニウム5質量%)を日本ポール株式会社製カプセルフィルタ(品番:DFA4201J012F、ポリプロピレン製、フィルタ孔径1.2μm)に満たし、1時間放置した。
When adjusting the polishing composition to less than pH 7, an acidic one is used as a pH adjuster. For example, hydroxy acids such as lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.
pH buffering agent In order to keep the pH value of the polishing composition constant, a pH buffering agent may be used. As the pH buffering agent, for example, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, tetraborate ammonium tetrahydrate water phosphate and borate or organic acid can be used.
Solvent For the polishing composition according to the present invention, a solvent can be used as necessary. As the solvent, water is usually used, but alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol can be used as necessary, and water-soluble organic solvents such as ethers, esters, and ketones are also used. be able to. Further, it may be a mixed solvent composed of water and an organic solvent.
Concentration of polishing particles The concentration of silica fine particles in the polishing composition is preferably in the range of 2 to 50 wt%, more preferably 5 to 30 wt%. If the concentration is less than 2% by weight, the concentration may be too low depending on the type of substrate or insulating film, resulting in a slow polishing rate and productivity. If the concentration of silica particles exceeds 50% by weight, the stability of the abrasive will be insufficient, the polishing rate and the polishing efficiency will not be further improved, and the dried product will be removed in the step of supplying the dispersion for polishing treatment. It may be generated and attached, which may cause scratches.
〔Example〕
The measurement methods used in Examples and Comparative Examples are described below.
[Measuring method of average particle size by dynamic light scattering method]
Regarding the average particle size of the silica fine particles, silica sol was diluted with 0.58% ammonia water to adjust the silica concentration to 1% by mass or 30% by mass, and the average particle size was measured using the following particle size measuring apparatus. .
[Particle size measuring device]
Laser particle analyzer (manufactured by Otsuka Electronics Co., Ltd., laser particle size analysis system: LP-510 model PAR-III, measurement principle: dynamic light scattering method, measurement angle 90 °, light receiving element: photomultiplier tube 2 inches, measurement range: 3 nm to 5 μm, light source: He—Ne laser (5
mW, 632.8 nm), temperature adjustment range: 5 to 90 ° C., temperature adjustment method: Peltier element (cooling), ceramic heater (heating), cell: 10 mm square plastic cell, measurement object: colloidal particles)
[Preparation of filter with positive zeta potential]
An aqueous solution (polyaluminum chloride 5 mass%) in which polyaluminum chloride was dissolved in pure water was filled in a capsule filter (product number: DFA4201J012F, made of polypropylene, filter pore size 1.2 μm) manufactured by Nippon Pole Co., Ltd., and left for 1 hour.
そして、カプセルフィルタ中の電導度が10μs以下になるまで純水で通液し、残存するポリ塩化アルミニウムを排出させた。ここで、電気伝導度の測定には、電気伝導度計(株式会社堀場製作所製ES-51)を使用した。 Then, it was passed with pure water until the electric conductivity in the capsule filter became 10 μs or less, and the remaining polyaluminum chloride was discharged. Here, an electrical conductivity meter (ES-51 manufactured by Horiba, Ltd.) was used for measuring the electrical conductivity.
純水で洗浄後、カプセルを解体し、フィルタを純水中から取り出し、80℃にて一晩乾燥させた。続いて、フィルタの一部(15mm×35mmの長方形状)を採取し、ゼータ電位・粒径測定システムELSZ-1(大塚電子株式会社製)および平板試料用セルユニ
ット(大塚電子株式会社製)にて、フィルタ表面のゼータ電位を測定したところ、+8m
Vであり、表面がカチオン化されていることを確認した。
After washing with pure water, the capsules were disassembled, and the filter was taken out from the pure water and dried at 80 ° C. overnight. Subsequently, a part of the filter (rectangular shape of 15 mm × 35 mm) was collected and applied to a zeta potential / particle size measurement system ELSZ-1 (manufactured by Otsuka Electronics Co., Ltd.) and a cell unit for flat sample (manufactured by Otsuka Electronics Co., Ltd.) The zeta potential on the filter surface was measured to find + 8m
V and it was confirmed that the surface was cationized.
以下の実施例では、この方法で作成した正のゼータ電位を有するフィルタ(以下、「カチオン化フィルタ」と称する。)を使用した。なお、上記カチオン化処理をする前のフィルタのゼータ電位は−18mVだった。
[シリカゾル中のシリカ含有量測定]
試料シリカゾル10gに50%硫酸水溶液2mlを加え、白金皿上にて蒸発乾固し、得られた固形物を1000℃にて1時間焼成後、冷却して秤量した。次に、秤量した固形物を微量の50%硫酸水溶液に溶かし、更にフッ化水素酸20mlを加えてから、白金皿上にて蒸発乾固し、1000℃にて15分焼成後、冷却して秤量した。これらの重量差より多孔質シリカ粒子中のシリカ含有量を求めた。
[溶存シリカ成分の定量方法]
分離膜付遠沈管(Sartorius Biolab製 VIVASPIN VS200
1:分離膜分画分子量10000)に試料(研磨用シリカゾル)を入れ蓋をした。この遠沈管を遠心分離装置(久保田製作所 KUBOTA6930)に取り付け、遠心力4500Gにて90分遠心処理した。この遠心処理により、溶媒(溶媒に溶解した成分を含む)が、分離膜を通過して遠沈管下部に回収され、シリカゾルから溶媒が分離された。回収された溶媒について、溶存シリカ成分量をモリブデン反応にて定量し、GPCによりその分子量を測定した。また、Na2O量は、後記の原子吸光法にて定量した。
[モリブデン反応による溶存シリカ成分の定量方法]
1)300mlビーカーに水200mlを取りHClでpH=1に合わせた。
2)試料として、前記溶存シリカ成分の定量方法において遠心分離によりシリカゾルから分離された溶媒1gをはかりとり、300mlビーカーに移した。
3)再度pH=1に合わせた。
4)10%モリブデン酸アンモニウム10mlを加えて混合した。
5)250mlメスフラスコに移し、250mlに合わせた。
6)20分放置後、420nm波長にて透過率を測定した。
7)透過率を吸光度に換算し、検量線よりSiO2濃度を求めた。計算式は以下の通りで
ある。
In the following examples, a filter having a positive zeta potential (hereinafter referred to as “cationizing filter”) prepared by this method was used. Note that the zeta potential of the filter before the cationization treatment was −18 mV.
[Measurement of silica content in silica sol]
2 ml of 50% sulfuric acid aqueous solution was added to 10 g of sample silica sol and evaporated to dryness on a platinum pan. The obtained solid was baked at 1000 ° C. for 1 hour, then cooled and weighed. Next, dissolve the weighed solid in a small amount of 50% aqueous sulfuric acid, add 20 ml of hydrofluoric acid, evaporate to dryness on a platinum pan, bake at 1000 ° C. for 15 minutes, and cool. Weighed. The silica content in the porous silica particles was determined from these weight differences.
[Quantification method of dissolved silica component]
Centrifuge tube with separation membrane (VARTASPIN VS200, manufactured by Sartorius Biolab)
1: A sample (polishing silica sol) was placed in a separation membrane fraction molecular weight of 10000), and the sample was covered. This centrifuge tube was attached to a centrifugal separator (KUBOTA 6930, Kubota Seisakusho), and centrifuged at a centrifugal force of 4500 G for 90 minutes. By this centrifugation treatment, the solvent (including components dissolved in the solvent) passed through the separation membrane and was collected in the lower part of the centrifuge tube, and the solvent was separated from the silica sol. About the collect | recovered solvent, the amount of dissolved silica components was quantified by the molybdenum reaction, and the molecular weight was measured by GPC. The amount of Na 2 O was quantified by the atomic absorption method described later.
[Quantification method of dissolved silica component by molybdenum reaction]
1) 200 ml of water was taken in a 300 ml beaker and adjusted to pH = 1 with HCl.
2) As a sample, 1 g of the solvent separated from the silica sol by centrifugation in the method for quantifying the dissolved silica component was weighed and transferred to a 300 ml beaker.
3) Adjusted again to pH = 1.
4) 10 ml of 10% ammonium molybdate was added and mixed.
5) Transfer to a 250 ml volumetric flask and adjust to 250 ml.
6) After being left for 20 minutes, the transmittance was measured at a wavelength of 420 nm.
7) The transmittance was converted to absorbance, and the SiO 2 concentration was determined from the calibration curve. The calculation formula is as follows.
溶存シリカ(SiO2)=SiO2(mg)×1000/試料(g)×1000000(ppm)
8)同様に空試験(試料液に10%モリブデン酸アンモニウムを添加していないもの)を行い、補正した。
[Na2Oの定量方法(原子吸光法)]
1)試料シリカゾル約10gを白金皿に採取し、0.1mgまで秤量した。
2)硝酸5mlと弗化水素酸20mlを加えて、サンドバス上で加熱し、蒸発乾固した。3)液量が少なくなったら、更に弗化水素酸20mlを加えてサンドバス上で加熱し、蒸発乾固した。
4)室温まで冷却後、硝酸2mlと水を約50ml加えて、サンドバス上で加熱溶解した。5)室温まで冷却後、フラスコ(100ml)に入れ、水で100mlに希釈して試料溶液とした。
6)原子吸光分光光度計(株式会社日立製作所製、Z-5300、測定モード:原子吸光、測定波長:190〜900nm、シリカ試料の場合におけるNaの検出波長は589.0nm)にて、試料溶液中に存在する各金属の含有量を測定した。この原子吸光分光光度計は、フレームにより試料を原子蒸気化し、その原子蒸気層に適当な波長の光を照射し、その際の原子によって吸収された光の強さを測定し、これにより試料中の元素濃度を定量するものである。
[窒素吸着法による比表面積測定と平均粒子径の測定]
シリカゾル50mlをHNO3でpH3.5に調整し、1−プロパノール40mlを加
え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いて窒素吸着法(BET法)を用いて、窒素の吸着量から、BET1点法により比表面積を算出した。
Dissolved silica (SiO 2 ) = SiO 2 (mg) × 1000 / sample (g) × 1000000 (ppm)
8) A blank test (in which 10% ammonium molybdate was not added to the sample solution) was similarly performed and corrected.
[Method of quantifying Na 2 O (atomic absorption method)]
1) About 10 g of sample silica sol was collected in a platinum dish and weighed to 0.1 mg.
2) 5 ml of nitric acid and 20 ml of hydrofluoric acid were added, heated on a sand bath, and evaporated to dryness. 3) When the amount of liquid decreased, 20 ml of hydrofluoric acid was further added and heated on a sand bath to evaporate to dryness.
4) After cooling to room temperature, 2 ml of nitric acid and about 50 ml of water were added and dissolved by heating on a sand bath. 5) After cooling to room temperature, it was put into a flask (100 ml) and diluted to 100 ml with water to obtain a sample solution.
6) Atomic absorption spectrophotometer (manufactured by Hitachi, Ltd., Z-5300, measurement mode: atomic absorption, measurement wavelength: 190 to 900 nm, detection wavelength of Na in the case of silica sample is 589.0 nm), sample solution The content of each metal present therein was measured. This atomic absorption spectrophotometer vaporizes a sample with a frame, irradiates the atomic vapor layer with light of an appropriate wavelength, and measures the intensity of light absorbed by the atoms at that time. The elemental concentration of is determined.
[Specific surface area measurement and average particle diameter measurement by nitrogen adsorption method]
A sample prepared by adjusting 50 ml of silica sol to pH 3.5 with HNO 3 , adding 40 ml of 1-propanol, drying at 110 ° C. for 16 hours, pulverizing in a mortar, baking at 500 ° C. for 1 hour in a muffle furnace, and measuring sample It was. And the specific surface area was computed by the BET 1 point method from the adsorption amount of nitrogen using the nitrogen adsorption method (BET method) using the specific surface area measuring apparatus (The product made from Yuasa Ionics, model number multisorb 12).
具体的には、試料0.5gを測定セルに取り、窒素30v%/ヘリウム70v%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、シリカゾルの比表面積を算出した。また、平均粒子径(D)[nm]は、前記式(5)から求める。
[研磨特性の評価方法]
被研磨基板
被研磨基板として、アルミニウムディスク用基板を使用した。このアルミニウムディスク用基板は、アルミニウム基板にNi−Pを10μmの厚さに無電解メッキ(Ni88%とP12%の組成の硬質Ni−Pメッキ層)をした基板(95mmΦ/25mmΦ−1.27mmt)を使用した。なお、この基板は一次研磨済みで、表面粗さ(Ra)は0.17nmであった。
研磨試験
上記被研磨基板を、研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッド(ロデール社製「アポロン」)を使用し、基板荷重0.05MPa、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度で5分間供給して研磨を行った。研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
線状痕の発生
スクラッチの発生については、アルミニウムディスク用基板を上記と同様に研磨処理した後、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製:Micro-MAX)を使用し、Zoom15にて全面観察し、65.97cm2に相当する研磨処理された基板表面の線状痕
(スクラッチ)の個数を数えて合計し、(線状痕)本数/枚で表示した。
研磨速度
研磨前後の基板の重量差(g)を比重(8.4g/cm3)で割り、さらに基板の表面積(65.97cm2)と研磨時間で割ることにより、単位時間当たりの研磨量(nm/min)を算出し
た。
濃縮安定性
シリカゾル200g(シリカ濃度30質量%)を500mlナスフラスコにいれ、ロータリーエバポレーターに設置した。バス温度60℃に設定した後、真空度−740mmHgにて濃縮を行った。ナスフラスコ内壁面にゲル状物が見られた時点で濃縮を止めてシリカゾルを回収し、そのSiO2濃度を測定した。(濃縮安定性の良いものほど高濃度化が可能であり、高濃度になってもゲル状物の発生がない。)
Specifically, 0.5 g of a sample is taken in a measurement cell, degassed for 20 minutes at 300 ° C. in a mixed gas stream of nitrogen 30 v% / helium 70 v%, and then the sample is liquidized in the mixed gas stream. Keep nitrogen temperature and allow nitrogen to equilibrate to sample. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area of the silica sol was calculated using a calibration curve prepared in advance. The average particle diameter (D) [nm] is obtained from the above formula (5).
[Evaluation method of polishing characteristics]
Polishing Substrate An aluminum disk substrate was used as the polishing substrate. This aluminum disk substrate is a substrate (95 mmΦ / 25 mmΦ-1.27 mmt) obtained by electrolessly plating Ni-P to a thickness of 10 μm (a hard Ni-P plating layer having a composition of Ni88% and P12%) on an aluminum substrate. It was used. This substrate was first polished and the surface roughness (Ra) was 0.17 nm.
Polishing test The above substrate to be polished is set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), and a polishing pad (“Apollon” manufactured by Rodel) is used and polished at a substrate load of 0.05 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 5 minutes at a rate of 20 g / min. The polishing rate was calculated by determining the weight change of the substrate to be polished before and after polishing.
Regarding the occurrence of scratches on the linear traces, after polishing the substrate for the aluminum disk in the same manner as described above, the entire surface with Zoom 15 using an ultra-fine defect / visualization macro device (VISION PSYTEC: Micro-MAX) The number of linear marks (scratches) on the surface of the polished substrate corresponding to 65.97 cm 2 was counted and totaled, and displayed as the number of (linear marks) / sheet.
Polishing rate By dividing the weight difference (g) of the substrate before and after polishing by the specific gravity (8.4 g / cm 3 ), and further dividing by the substrate surface area (65.97 cm 2 ) and the polishing time, the polishing amount per unit time ( nm / min) was calculated.
200 g of concentrated stable silica sol (silica concentration: 30% by mass) was placed in a 500 ml eggplant flask and placed on a rotary evaporator. After setting the bath temperature to 60 ° C., concentration was performed at a vacuum degree of −740 mmHg. When a gel-like substance was found on the inner wall surface of the eggplant flask, the concentration was stopped and the silica sol was recovered, and the SiO 2 concentration was measured. (The higher the concentration stability, the higher the concentration is possible, and no gel-like material is generated even when the concentration is high.)
〔珪酸液の調製〕
7%濃度の珪酸ナトリウム(3号水硝子)の7,000gを限外モジュール(旭化成社製SIP−1013)に通液し濾水を回収し精製水硝子を得た。この精製水硝子のシリカ濃度
が5%になるように純水を添加した。そして、このシリカ濃度5%の水硝子6,500g
を強酸性陽イオン交換樹脂SK1BH(三菱化学社製)2.2Lに空間速度3.1で通液させることで珪酸液6,650gを得た。
得られた珪酸液のシリカ濃度は4.7%であった。
〔シリカゾルの調製〕
珪酸ナトリウム(3号水硝子SiO2 濃度24.31重量%)80.1gに純水1217
.8gを添加してシリカ濃度1.5質量%の珪酸ナトリウム水溶液を1297.9g調製
した。ついでシリカ濃度4.7質量%の珪酸液20.1gを添加して攪拌した後、82℃に昇温した。この温度のまま82℃で30分保持し、さらにシリカ濃度4.7重量%の珪酸液11064.8gを15時間かけて添加した。添加終了後さらに82℃のまま1時間保ち、その後室温まで冷却した。得られたシリカゾルを限外濾過膜(SIP−1013、旭
化成(株)製)により、シリカ濃度が12%になるまで濃縮し、水酸化ナトリウムの5質量%水溶液を加えて、pH10に調整した。ついで、ロータリーエバポレーターでシリカ濃度30重量%まで濃縮した。
〔カチオン化フィルタを用いた濾過〕
前記カチオン化フィルタを加圧式装置に取り付け、上記で得られたシリカゾルを0.16MPaの加圧条件で、1回通液した。
得られた研磨用シリカゾルAは、窒素吸着法により測定された比表面積が103m2/gであった。
また、研磨用シリカゾルAにおける(S2)/(S1)[ppm]は、839ppmであった。
その他の測定結果(研磨用シリカゾルのシリカ濃度、Na2O濃度、シリカゾル中に存在
する全シリカ成分質量(S1)、溶存シリカ成分の質量(S2)、平均粒子径の濃度依存係数、比表面積から換算された平均粒子径等)を表1に記す(以下の実施例および比較例も同様)。
〔研磨用組成物の調製〕
研磨用シリカゾルAに、H2O2、HEDP(1−ヒドロキシエチリデン−1,1−ジス
ルホン酸)および超純水を加えて、シリカ9質量%、H2O20.5質量%、1−ヒドロキシエチリデン−1,1−ジスルホン酸0.5質量%の研磨用スラリーを調製し、HNO3
を加えて、pH2に調整した研磨用スラリーすなわち研磨用組成物Aを調製した。
(Preparation of silicic acid solution)
7,000 g of 7% sodium silicate (No. 3 water glass) was passed through an ultra module (SIP-1013 manufactured by Asahi Kasei Co., Ltd.) and the filtrate was collected to obtain purified water glass. Pure water was added so that the silica concentration of the purified water glass was 5%. And this water glass 6,500g of silica concentration 5%
Was passed through 2.2 L of strongly acidic cation exchange resin SK1BH (manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.1 to obtain 6,650 g of a silicic acid solution.
The silica concentration of the obtained silicic acid solution was 4.7%.
(Preparation of silica sol)
Pure water 1217 was added to 80.1 g of sodium silicate (No. 3 water glass SiO 2 concentration 24.31 wt%).
. 87.9 g was added to prepare 1297.9 g of a sodium silicate aqueous solution having a silica concentration of 1.5% by mass. Next, 20.1 g of a silica solution having a silica concentration of 4.7% by mass was added and stirred, and then the temperature was raised to 82 ° C. This temperature was maintained at 82 ° C. for 30 minutes, and 11064.8 g of a silicic acid solution having a silica concentration of 4.7% by weight was added over 15 hours. After completion of the addition, the temperature was further maintained at 82 ° C. for 1 hour, and then cooled to room temperature. The obtained silica sol was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) until the silica concentration became 12%, and adjusted to pH 10 by adding a 5 mass% aqueous solution of sodium hydroxide. Subsequently, it concentrated to the silica concentration of 30 weight% with the rotary evaporator.
[Filtration using cationized filter]
The cationized filter was attached to a pressure device, and the silica sol obtained above was passed once under a pressure condition of 0.16 MPa.
The obtained silica sol A for polishing had a specific surface area of 103 m 2 / g measured by a nitrogen adsorption method.
Further, (S2) / (S1) [ppm] in the silica sol A for polishing was 839 ppm.
Other measurement results (from silica concentration of polishing silica sol, Na 2 O concentration, mass of total silica component present in silica sol (S1), mass of dissolved silica component (S2), concentration dependence coefficient of average particle diameter, specific surface area The converted average particle diameter and the like are shown in Table 1 (the same applies to the following Examples and Comparative Examples).
[Preparation of polishing composition]
H 2 O 2 , HEDP (1-hydroxyethylidene-1,1-disulfonic acid) and ultrapure water are added to the silica sol A for polishing, and 9% by mass of silica, 0.5% by mass of H 2 O 2 , 1- A polishing slurry containing 0.5% by mass of hydroxyethylidene-1,1-disulfonic acid was prepared, and HNO 3 was prepared.
Was added to prepare a polishing slurry adjusted to pH 2, that is, a polishing composition A.
この研磨用組成物Aを用いて前記研磨特性の評価を行い、研磨速度、線状痕の個数および濃縮安定性を求めた。これらの結果を表2に示した。 The polishing properties were evaluated using the polishing composition A, and the polishing rate, the number of linear marks and the concentration stability were determined. These results are shown in Table 2.
〔シリカゾルの調製〕
珪酸ナトリウム(3号水硝子SiO2 濃度24.31重量%)80.1gに純水1217
.8gを添加してシリカ濃度1.5質量%の珪酸ナトリウム水溶液を1297.9g調製した。ついで実施例1で調製したものと同様なシリカ濃度4.7質量%の珪酸液20.1
gを添加して攪拌した後、82℃に昇温した。この温度のまま82℃で30分保持し、さらにシリカ濃度4.7重量%の珪酸液11064.8gを15時間かけて添加した。添加終了後さらに82℃のまま1時間保ち、その後室温まで冷却した。得られたシリカゾルを限外ろ過膜(SIP−1013、旭化成(株)製)により、シリカ濃度が12%になるまで
濃縮し、水酸化ナトリウムの5質量%水溶液を加えて、pH10に調整した。ついで、ロータリーエバポレーターでシリカ濃度30重量%まで濃縮した。
〔カチオン化フィルタを用いた濾過〕
前項に示した処理により得られたカチオン化フィルタを加圧式装置に取り付け、上記で得られたシリカゾルを2回通液した。得られた研磨用シリカゾルBは、窒素吸着法により測定された比表面積が101m2/gであった。
(Preparation of silica sol)
Pure water 1217 was added to 80.1 g of sodium silicate (No. 3 water glass SiO 2 concentration 24.31 wt%).
. 87.9 g was added to prepare 1297.9 g of a sodium silicate aqueous solution having a silica concentration of 1.5% by mass. Next, a silica solution 20.1 having a silica concentration of 4.7% by mass similar to that prepared in Example 1 was used.
After adding g and stirring, it heated up at 82 degreeC. This temperature was maintained at 82 ° C. for 30 minutes, and 11064.8 g of a silicic acid solution having a silica concentration of 4.7% by weight was added over 15 hours. After completion of the addition, the temperature was further maintained at 82 ° C. for 1 hour, and then cooled to room temperature. The obtained silica sol was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) until the silica concentration was 12%, and adjusted to pH 10 by adding a 5 mass% aqueous solution of sodium hydroxide. Subsequently, it concentrated to the silica concentration of 30 weight% with the rotary evaporator.
[Filtration using cationized filter]
The cationized filter obtained by the treatment shown in the previous section was attached to a pressure apparatus, and the silica sol obtained above was passed twice. The obtained polishing silica sol B had a specific surface area of 101 m 2 / g measured by a nitrogen adsorption method.
また、研磨用シリカゾルBにおける(S2)/(S1)[ppm]は、762ppmであった。
〔研磨用組成物の調製〕
研磨用シリカゾルAの代わりに研磨用シリカゾルBを使用した以外は、実施例1と同様
にして研磨用スラリーすなわち研磨用組成物Bを調製した。
Moreover, (S2) / (S1) [ppm] in the silica sol B for polishing was 762 ppm.
[Preparation of polishing composition]
A polishing slurry, that is, a polishing composition B, was prepared in the same manner as in Example 1 except that the polishing silica sol B was used instead of the polishing silica sol A.
この研磨用組成物Bを用いて前記研磨特性の評価を行い、研磨速度、線状痕の個数およ
び濃縮安定性を求めた。これらの結果を表2に示した。
The polishing characteristics were evaluated using the polishing composition B, and the polishing rate, the number of linear marks, and the concentration stability were determined. These results are shown in Table 2.
〔シリカゾルの調製〕
珪酸ナトリウム(3号水硝子SiO2 濃度24.31重量%)80.1gに純水1217
.8gを添加してシリカ濃度1.5質量%の珪酸ナトリウム水溶液を1297.9g調製した。ついで実施例1で調製したものと同様なシリカ濃度4.7質量%の珪酸液20.1
gを添加して攪拌した後、82℃に昇温した。この温度のまま82℃で30分保持し、さらにシリカ濃度4.7重量%の珪酸液11064.8gを15時間かけて添加した。添加終了後さらに82℃のまま1時間保ち、その後室温まで冷却した。得られたシリカゾルを限外ろ過膜(SIP−1013、旭化成(株)製)により、シリカ濃度が12%になるまで
濃縮し、水酸化ナトリウムの5質量%水溶液を加えて、pH10に調整した。ついで、ロータリーエバポレーターでシリカ濃度30重量%まで濃縮した。
〔カチオン化フィルタを用いたろ過〕
前項に示した処理により得られたカチオン化フィルタを加圧式装置に取り付け、上記で得られたシリカゾルを3回通液した。得られた研磨用シリカゾルCは、窒素吸着法により測定された比表面積が102m2/g、実施例1と同様にして分離した溶媒のNa2Oは0.137質量%であった。
(Preparation of silica sol)
Pure water 1217 was added to 80.1 g of sodium silicate (No. 3 water glass SiO 2 concentration 24.31 wt%).
. 87.9 g was added to prepare 1297.9 g of a sodium silicate aqueous solution having a silica concentration of 1.5% by mass. Next, a silica solution 20.1 having a silica concentration of 4.7% by mass similar to that prepared in Example 1 was used.
After adding g and stirring, it heated up at 82 degreeC. This temperature was maintained at 82 ° C. for 30 minutes, and 11064.8 g of a silicic acid solution having a silica concentration of 4.7% by weight was added over 15 hours. After completion of the addition, the temperature was further maintained at 82 ° C. for 1 hour, and then cooled to room temperature. The obtained silica sol was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) until the silica concentration was 12%, and adjusted to pH 10 by adding a 5 mass% aqueous solution of sodium hydroxide. Subsequently, it concentrated to the silica concentration of 30 weight% with the rotary evaporator.
[Filtration using cationized filter]
The cationized filter obtained by the treatment shown in the previous section was attached to a pressure type apparatus, and the silica sol obtained above was passed three times. The obtained silica sol C for polishing had a specific surface area of 102 m 2 / g measured by the nitrogen adsorption method, and the content of Na 2 O as a solvent separated in the same manner as in Example 1 was 0.137% by mass.
また、研磨用シリカゾルCにおける(S2)/(S1)[ppm]は、740ppmであった。
〔研磨用組成物の調製〕
研磨用シリカゾルAの代わりに研磨用シリカゾルCを使用した以外は、実施例1と同様に
して研磨用スラリーすなわち研磨用組成物Cを調製した。
Moreover, (S2) / (S1) [ppm] in the silica sol C for polishing was 740 ppm.
[Preparation of polishing composition]
A polishing slurry, that is, a polishing composition C, was prepared in the same manner as in Example 1 except that the polishing silica sol C was used instead of the polishing silica sol A.
この研磨用組成物Cを用いて前記研磨特性の評価を行い、研磨速度、線状痕の個数および濃縮安定性を求めた。これらの結果を表2に示した。 The polishing properties were evaluated using the polishing composition C, and the polishing rate, the number of linear marks, and the concentration stability were determined. These results are shown in Table 2.
〔シリカゾルの調製〕
珪酸ナトリウム(3号水硝子SiO2 濃度24.31重量%)80.1gに純水1217
.8gを添加してシリカ濃度1.5質量%の珪酸ナトリウム水溶液を1297.9g調製した。ついで実施例1で調製したものと同様なシリカ濃度4.7質量%の珪酸液17.4gを添加して攪拌した後、82℃に昇温した。この温度のまま82℃で30分保持し、さらにシリカ濃度4.7重量%の珪酸液11064.8gを15時間かけて添加した。添加終了後さらに82℃のまま1時間保ち、その後室温まで冷却した。得られたシリカゾルを限外ろ過膜(SIP−1013、旭化成(株)製)により、シリカ濃度が12%になるまで
濃縮し、水酸化ナトリウムの5質量%水溶液を加えて、pH10に調整した。ついで、ロータリーエバポレーターでシリカ濃度30重量%まで濃縮した。
〔カチオン化フィルタを用いたろ過〕
前項に示した処理により得られたカチオン化フィルタを加圧式装置に取り付け、上記で得られたシリカゾルを1回通液した。得られた研磨用シリカゾルDは、窒素吸着法により測定された比表面積が101m2/gであった。
また、研磨用シリカゾルDにおける(S2)/(S1)[ppm]は、811ppmであった。
〔研磨用組成物の調製〕
研磨用シリカゾルAの代わりに研磨用シリカゾルDを使用した以外は、実施例1と同様にして研磨用スラリーすなわち研磨用組成物Dを調製した。
(Preparation of silica sol)
Pure water 1217 was added to 80.1 g of sodium silicate (No. 3 water glass SiO 2 concentration 24.31 wt%).
. 87.9 g was added to prepare 1297.9 g of a sodium silicate aqueous solution having a silica concentration of 1.5% by mass. Subsequently, 17.4 g of a silicic acid solution having a silica concentration of 4.7% by mass similar to that prepared in Example 1 was added and stirred, and then the temperature was raised to 82 ° C. This temperature was maintained at 82 ° C. for 30 minutes, and 11064.8 g of a silicic acid solution having a silica concentration of 4.7% by weight was added over 15 hours. After completion of the addition, the temperature was further maintained at 82 ° C. for 1 hour, and then cooled to room temperature. The obtained silica sol was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) until the silica concentration was 12%, and adjusted to pH 10 by adding a 5 mass% aqueous solution of sodium hydroxide. Subsequently, it concentrated to the silica concentration of 30 weight% with the rotary evaporator.
[Filtration using cationized filter]
The cationized filter obtained by the treatment shown in the previous section was attached to a pressure apparatus, and the silica sol obtained above was passed once. The obtained silica sol D for polishing had a specific surface area of 101 m 2 / g measured by a nitrogen adsorption method.
Moreover, (S2) / (S1) [ppm] in the silica sol D for polishing was 811 ppm.
[Preparation of polishing composition]
A polishing slurry, that is, a polishing composition D, was prepared in the same manner as in Example 1 except that the polishing silica sol D was used instead of the polishing silica sol A.
この研磨用組成物Dを用いて前記研磨特性の評価を行い、研磨速度、線状痕の個数お
よび濃縮安定性を求めた。これらの結果を表2に示した。
The polishing characteristics were evaluated using the polishing composition D, and the polishing rate, the number of linear marks and the concentration stability were determined. These results are shown in Table 2.
〔シリカゾルの調製〕
珪酸ナトリウム(3号水硝子SiO2 濃度24.31重量%)80.1gに純水1217
.8gを添加してシリカ濃度1.5質量%の珪酸ナトリウム水溶液を1297.9g調製した。ついで実施例1で調製したものと同様なシリカ濃度4.7質量%の珪酸液22.7gを添加して攪拌した後、82℃に昇温した。この温度のまま82℃で30分保持し、さらにシリカ濃度4.7重量%の珪酸液11064.8gを15時間かけて添加した。添加終了後さらに82℃のまま1時間保ち、その後室温まで冷却した。得られたシリカゾルを限外ろ過膜(SIP−1013、旭化成(株)製)により、シリカ濃度が12%になるまで
濃縮し、水酸化ナトリウムの5質量%水溶液を加えて、pH10に調整した。ついで、ロータリーエバポレーターでシリカ濃度30重量%まで濃縮した。
〔カチオン化フィルタを用いた濾過〕
前項に示した処理により得られたカチオン化フィルタを加圧式装置に取り付け、上記で得られたシリカゾルを1回通液した。得られた研磨用シリカゾルEは、窒素吸着法により測定された比表面積が104m2/gだった。
また、研磨用シリカゾルEにおける(S2)/(S1)[ppm]は、928ppmであった。
〔研磨用組成物の調製〕
研磨用シリカゾルAの代わりに研磨用シリカゾルEを使用した以外は、実施例1と同様にして研磨用スラリーEすなわち研磨用組成物Eを調製した。
(Preparation of silica sol)
Pure water 1217 was added to 80.1 g of sodium silicate (No. 3 water glass SiO 2 concentration 24.31 wt%).
. 87.9 g was added to prepare 1297.9 g of a sodium silicate aqueous solution having a silica concentration of 1.5% by mass. Next, 22.7 g of a silica solution having a silica concentration of 4.7% by mass similar to that prepared in Example 1 was added and stirred, and then the temperature was raised to 82 ° C. This temperature was maintained at 82 ° C. for 30 minutes, and 11064.8 g of a silicic acid solution having a silica concentration of 4.7% by weight was added over 15 hours. After completion of the addition, the temperature was further maintained at 82 ° C. for 1 hour, and then cooled to room temperature. The obtained silica sol was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) until the silica concentration was 12%, and adjusted to pH 10 by adding a 5 mass% aqueous solution of sodium hydroxide. Subsequently, it concentrated to the silica concentration of 30 weight% with the rotary evaporator.
[Filtration using cationized filter]
The cationized filter obtained by the treatment shown in the previous section was attached to a pressure apparatus, and the silica sol obtained above was passed once. The obtained polishing silica sol E had a specific surface area of 104 m 2 / g measured by a nitrogen adsorption method.
Moreover, (S2) / (S1) [ppm] in the silica sol E for polishing was 928 ppm.
[Preparation of polishing composition]
A polishing slurry E, that is, a polishing composition E, was prepared in the same manner as in Example 1 except that the polishing silica sol E was used instead of the polishing silica sol A.
この研磨用組成物Eを用いて前記研磨特性の評価を行い、研磨速度、線状痕の個数および濃縮安定性を求めた。これらの結果を表2に示した。
[比較例1]
The polishing characteristics were evaluated using the polishing composition E, and the polishing rate, the number of linear marks, and the concentration stability were determined. These results are shown in Table 2.
[Comparative Example 1]
〔シリカゾルの調製〕
珪酸ナトリウム(3号水硝子SiO2 濃度24.31重量%)80.1gに純水1217
.8gを添加してシリカ濃度1.5質量%の珪酸ナトリウム水溶液を1297.9g調製した。ついで実施例1で調製したものと同様なシリカ濃度4.7質量%の珪酸液20.1
gを添加して攪拌した後、82℃に昇温した。この温度のまま82℃で30分保持し、さらにシリカ濃度4.7重量%の珪酸液11064.8gを15時間かけて添加した。添加終了後さらに82℃のまま1時間保ち、その後室温まで冷却した。得られたシリカゾルを限外ろ過膜(SIP−1013、旭化成(株)製)により、シリカ濃度が12%になるまで
濃縮し、水酸化ナトリウムの5質量%水溶液を加えて、pH10に調整した。ついでロータリーエバポレーターでシリカ濃度30重量%まで濃縮した。
得られたシリカゾルFは、窒素吸着法により測定された表面積が106m2/gだった。
また、シリカゾルFにおける(S2)/(S1)[ppm]は、1153ppmであった。
〔研磨用組成物の調製〕
研磨用シリカゾルAの代わりにシリカゾルFを使用した以外は、実施例1と同様にして
研磨用スラリーすなわち研磨用組成物Fを調製した。
(Preparation of silica sol)
Pure water 1217 was added to 80.1 g of sodium silicate (No. 3 water glass SiO 2 concentration 24.31 wt%).
. 87.9 g was added to prepare 1297.9 g of a sodium silicate aqueous solution having a silica concentration of 1.5% by mass. Next, a silica solution 20.1 having a silica concentration of 4.7% by mass similar to that prepared in Example 1 was used.
After adding g and stirring, it heated up at 82 degreeC. This temperature was maintained at 82 ° C. for 30 minutes, and 11064.8 g of a silicic acid solution having a silica concentration of 4.7% by weight was added over 15 hours. After completion of the addition, the temperature was further maintained at 82 ° C. for 1 hour, and then cooled to room temperature. The obtained silica sol was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) until the silica concentration was 12%, and adjusted to pH 10 by adding a 5 mass% aqueous solution of sodium hydroxide. Subsequently, it concentrated to the silica concentration of 30 weight% with the rotary evaporator.
The obtained silica sol F had a surface area of 106 m 2 / g measured by a nitrogen adsorption method.
Moreover, (S2) / (S1) [ppm] in silica sol F was 1153 ppm.
[Preparation of polishing composition]
A polishing slurry, that is, a polishing composition F, was prepared in the same manner as in Example 1 except that the silica sol F was used instead of the polishing silica sol A.
この研磨用組成物Fを用いて前記研磨特性の評価を行い、研磨速度、線状痕の個数および濃縮安定性を求めた。これらの結果を表2に示した。
[比較例2]
The polishing properties were evaluated using the polishing composition F, and the polishing rate, the number of linear marks, and the concentration stability were determined. These results are shown in Table 2.
[Comparative Example 2]
〔シリカゾルの調製〕
珪酸ナトリウム(3号水硝子SiO2 濃度24.31重量%)80.1gに純水1217
.8gを添加してシリカ濃度1.5質量%の珪酸ナトリウム水溶液を1297.9g調製した。ついで実施例1で調製したものと同様なシリカ濃度4.7質量%の珪酸液17.4
gを添加して攪拌した後、82℃に昇温した。この温度のまま82℃で30分保持し、さらにシリカ濃度4.7重量%の珪酸液11064.8gを15時間かけて添加した。添加終了後さらに82℃のまま1時間保ち、その後室温まで冷却した。得られたシリカゾルを限外ろ過膜(SIP−1013、旭化成(株)製)により、シリカ濃度が12%になるまで
濃縮し、水酸化ナトリウムの5質量%水溶液を加えて、pH10に調整した。ついで、ロータリーエバポレーターでシリカ濃度30重量%まで濃縮した。
(Preparation of silica sol)
Pure water 1217 was added to 80.1 g of sodium silicate (No. 3 water glass SiO 2 concentration 24.31 wt%).
. 87.9 g was added to prepare 1297.9 g of a sodium silicate aqueous solution having a silica concentration of 1.5% by mass. Next, a silicic acid solution 17.4 having a silica concentration of 4.7% by mass similar to that prepared in Example 1 was used.
After adding g and stirring, it heated up at 82 degreeC. This temperature was maintained at 82 ° C. for 30 minutes, and 11064.8 g of a silicic acid solution having a silica concentration of 4.7% by weight was added over 15 hours. After completion of the addition, the temperature was further maintained at 82 ° C. for 1 hour, and then cooled to room temperature. The obtained silica sol was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) until the silica concentration was 12%, and adjusted to pH 10 by adding a 5 mass% aqueous solution of sodium hydroxide. Subsequently, it concentrated to the silica concentration of 30 weight% with the rotary evaporator.
得られたシリカゾルGは、窒素吸着法により測定された比表面積が104m2/gだった。
また、シリカゾルGにおける(S2)/(S1)[ppm]は、1095ppmであった。
〔研磨用組成物の調製〕
研磨用シリカゾルAの代わりにシリカゾルGを使用した以外は、実施例1と同様にして研磨用スラリーすなわち研磨用組成物Gを調製した。
The obtained silica sol G had a specific surface area measured by a nitrogen adsorption method of 104 m 2 / g.
Further, (S2) / (S1) [ppm] in silica sol G was 1095 ppm.
[Preparation of polishing composition]
A polishing slurry, that is, a polishing composition G, was prepared in the same manner as in Example 1 except that the silica sol G was used instead of the polishing silica sol A.
この研磨用組成物Gを用いて前記研磨特性の評価を行い、研磨速度、線状痕の個数および濃縮安定性を求めた。これらの結果を表2に示した。 The polishing characteristics were evaluated using the polishing composition G, and the polishing rate, the number of linear marks, and the concentration stability were determined. These results are shown in Table 2.
本発明の研磨用シリカゾルの製造方法によって得られた研磨用シリカゾルまたは研磨用組成物は、研磨速度、被研磨基材の表面粗さまたは被研磨基材上における線状痕の発生抑止などにおいて優れた効果を示すので、特にアルミニウム基板、ガラス基板、銅基板またはシリコン基板等に対する研磨材として適用可能である。また、その他にインク受容層用の添加剤、撥水性に基づく抗菌性のある添加剤、塗料添加剤、トナー成分など広範な用途に適用可能である。 The polishing silica sol or polishing composition obtained by the method for producing a polishing silica sol of the present invention is excellent in polishing rate, surface roughness of the substrate to be polished, or suppression of occurrence of linear marks on the substrate to be polished. In particular, the present invention is applicable as an abrasive for aluminum substrates, glass substrates, copper substrates, silicon substrates, and the like. In addition, it can be applied to a wide range of uses such as an additive for an ink receiving layer, an antibacterial additive based on water repellency, a coating additive, and a toner component.
Claims (4)
A method for producing a polishing silica sol, comprising passing a silica sol obtained by dispersing silica fine particles in a solvent through a filter having a positive zeta potential.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008265335A JP5464834B2 (en) | 2008-10-14 | 2008-10-14 | Polishing silica sol, polishing composition, and method for producing polishing silica sol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008265335A JP5464834B2 (en) | 2008-10-14 | 2008-10-14 | Polishing silica sol, polishing composition, and method for producing polishing silica sol |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010095568A JP2010095568A (en) | 2010-04-30 |
JP5464834B2 true JP5464834B2 (en) | 2014-04-09 |
Family
ID=42257483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008265335A Active JP5464834B2 (en) | 2008-10-14 | 2008-10-14 | Polishing silica sol, polishing composition, and method for producing polishing silica sol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5464834B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5615529B2 (en) * | 2009-11-16 | 2014-10-29 | 日揮触媒化成株式会社 | Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition |
JP5844135B2 (en) | 2010-12-24 | 2016-01-13 | 花王株式会社 | Method for producing polishing composition |
JP6047395B2 (en) * | 2012-12-20 | 2016-12-21 | 日揮触媒化成株式会社 | High purity silica sol and method for producing the same |
MY181224A (en) * | 2013-10-24 | 2020-12-21 | Kao Corp | Method for producing polishing liquid composition |
JP2023097907A (en) | 2021-12-28 | 2023-07-10 | 株式会社ロキテクノ | Filter member |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002338951A (en) * | 2001-05-18 | 2002-11-27 | Nippon Chem Ind Co Ltd | Hydrothermally treated colloidal silica for abrasives |
JP3804009B2 (en) * | 2001-10-01 | 2006-08-02 | 触媒化成工業株式会社 | Silica particle dispersion for polishing, method for producing the same, and abrasive |
JP3993995B2 (en) * | 2001-10-19 | 2007-10-17 | 触媒化成工業株式会社 | Method for producing silica sol |
JP2006012969A (en) * | 2004-06-23 | 2006-01-12 | Catalysts & Chem Ind Co Ltd | Polishing silica sol and method for producing the same |
JPWO2008117593A1 (en) * | 2007-03-26 | 2010-07-15 | Jsr株式会社 | Chemical mechanical polishing aqueous dispersion and semiconductor device chemical mechanical polishing method |
JP2008273780A (en) * | 2007-04-27 | 2008-11-13 | Jgc Catalysts & Chemicals Ltd | Modified silica-based sol and method for preparing the same |
-
2008
- 2008-10-14 JP JP2008265335A patent/JP5464834B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010095568A (en) | 2010-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5569574B2 (en) | Abrasive and substrate polishing method using the abrasive | |
JP5127452B2 (en) | Method for producing deformed silica sol | |
JP5084670B2 (en) | Silica sol and method for producing the same | |
JP6044629B2 (en) | Abrasive, abrasive set, and substrate polishing method | |
JP5002175B2 (en) | Polishing slurry and wafer recycling method | |
JP5495508B2 (en) | Abrasive particle dispersion and method for producing the same | |
WO2012102187A1 (en) | Cmp polishing fluid, method for manufacturing same, method for manufacturing composite particle, and method for polishing base material | |
JP5615529B2 (en) | Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition | |
JP6422325B2 (en) | Polishing liquid composition for semiconductor substrate | |
WO2013125441A1 (en) | Abrasive, abrasive set, and method for abrading substrate | |
JP2008273780A (en) | Modified silica-based sol and method for preparing the same | |
JP2013540849A (en) | Aqueous polishing composition and method for chemical mechanical polishing of a substrate comprising a silicon oxide dielectric film and a polysilicon film | |
JP7037918B2 (en) | Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion. | |
JP2010028086A (en) | Cmp abrasive, and polishing method using the same | |
JP5464834B2 (en) | Polishing silica sol, polishing composition, and method for producing polishing silica sol | |
JP2019081672A (en) | Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion | |
JP2009272601A (en) | Abrasive, substrate polishing method using same, and solution and slurry for use in this method | |
KR20130041084A (en) | Polishing liquid for semiconductor substrate and method for producing semiconductor wafer | |
JP2017043531A (en) | Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing silica-based composite fine particle dispersion | |
JP6710100B2 (en) | Method for producing silica-based composite fine particle dispersion | |
JP2010024119A (en) | Method for producing confetti-like silica sol | |
JP2014187268A (en) | Cmp polishing agent, and method for polishing substrate | |
JP2017197429A (en) | Silica-based composite fine particle dispersion, method for producing the same, and abrasive particle dispersion for polishing containing the same | |
JP2020023408A (en) | Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion | |
JP7038031B2 (en) | Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110825 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5464834 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |