[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011133126A - Evaporator with cold storage function - Google Patents

Evaporator with cold storage function Download PDF

Info

Publication number
JP2011133126A
JP2011133126A JP2009290640A JP2009290640A JP2011133126A JP 2011133126 A JP2011133126 A JP 2011133126A JP 2009290640 A JP2009290640 A JP 2009290640A JP 2009290640 A JP2009290640 A JP 2009290640A JP 2011133126 A JP2011133126 A JP 2011133126A
Authority
JP
Japan
Prior art keywords
refrigerant
flat hollow
header
cold storage
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009290640A
Other languages
Japanese (ja)
Other versions
JP5552309B2 (en
Inventor
Hironaka Sasaki
広仲 佐々木
Etsuo Niimura
悦生 新村
Naohisa Higashiyama
直久 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009290640A priority Critical patent/JP5552309B2/en
Publication of JP2011133126A publication Critical patent/JP2011133126A/en
Application granted granted Critical
Publication of JP5552309B2 publication Critical patent/JP5552309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator with a cold storage function capable of efficiently storing cold in a cold storage material. <P>SOLUTION: This evaporator with the cold storage function includes a plurality of flat hollow pipes 4 having refrigerant circulation passages 15 and cold storage material enclosing passages 16, disposed at intervals to each other, and having the width direction toward the ventilating direction, a header section 7 for a refrigerant communicated with the refrigerant circulation passages 15 of the flat hollow pipes 4, and a header section 8 for the cold storage material communicated with the cold storage material enclosing passages 16 of the flat hollow pipes 4. The cold storage material enclosing passages 16 are arranged at a leeward side of the refrigerant circulation passages 15. The cold storage material is enclosed in the cold storage material enclosing passages 16 of the flat hollow bodies 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンに用いられる蓄冷機能付きエバポレータに関する。   The present invention relates to an evaporator with a cold storage function used in a car air conditioner of a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.

近年、環境保護や自動車の燃費向上などを目的として、信号待ちなどの停車時にエンジンを自動的に停止させる自動車が提案されている。   In recent years, automobiles have been proposed that automatically stop the engine when the vehicle stops, such as when waiting for a signal, for the purpose of environmental protection or improvement in automobile fuel efficiency.

ところで、圧縮機、圧縮機から吐出された冷媒を冷却する冷媒冷却器、冷媒冷却器を通過した冷媒を減圧する減圧器、および減圧された冷媒を蒸発させるエバポレータを備えた通常のカーエアコンにおいては、エンジンを停止させると、エンジンを駆動源とする圧縮機が停止するので、エバポレータに冷媒が供給されなくなり、冷房能力が急激に低下するという問題がある。   By the way, in a normal car air conditioner equipped with a compressor, a refrigerant cooler that cools the refrigerant discharged from the compressor, a decompressor that decompresses the refrigerant that has passed through the refrigerant cooler, and an evaporator that evaporates the decompressed refrigerant When the engine is stopped, the compressor using the engine as a driving source stops, so that there is a problem that the refrigerant is not supplied to the evaporator and the cooling capacity is rapidly reduced.

そこで、このような問題を解決したカーエアコンとして、圧縮機、圧縮機から吐出された冷媒を冷却するコンデンサ、コンデンサを通過した冷媒を減圧する減圧器、およびケース内の通風路に配置され、かつ減圧された冷媒を蒸発させるエバポレータと、エバポレータの通風方向下流側においてケース内の通風路に配置され、かつ蓄冷材が封入された蓄冷器とを備えており、エバポレータが、互いに間隔をおいて並列状に配置された複数の冷媒流通管および隣り合う冷媒流通管どうしの間に配置されたフィンとを有し、蓄冷器が、互いに間隔をおいて並列状に配置された複数の蓄冷材封入管および隣り合う蓄冷材封入管どうしの間に配置されたフィンとを有しているものが知られている(特許文献1参照)。   Therefore, as a car air conditioner that solves such problems, the compressor, the condenser that cools the refrigerant discharged from the compressor, the decompressor that decompresses the refrigerant that has passed through the condenser, and the ventilation path in the case, and An evaporator that evaporates the decompressed refrigerant; and a regenerator that is disposed in a ventilation path in the case on the downstream side of the evaporator in the ventilation direction and in which a regenerator material is enclosed. And a plurality of regenerator enclosing tubes in which regenerators are arranged in parallel at intervals from each other, and a plurality of refrigerant flow tubes arranged in a shape and fins arranged between adjacent refrigerant flow tubes And what has the fin arrange | positioned between adjacent cool storage material enclosure tubes is known (refer patent document 1).

特許文献1記載のカーエアコンによれば、圧縮機が作動している場合には、圧縮機、コンデンサおよび膨張弁を通過した冷媒がエバポレータに入り、エバポレータの冷媒流通管を流れる間に、隣り合う冷媒流通管どうしの間の通風間隙を通過する空気と熱交換をし、冷媒は気相となって流出する。このとき、エバポレータを通過した冷却風により蓄冷器の蓄冷材封入管内に存在する蓄冷材が冷却され、その結果蓄冷材が凝固して冷熱が蓄えられる。また、圧縮機が停止した場合には、蓄冷器の蓄冷材封入管内の蓄冷材の有する冷熱が、エバポレータおよび蓄冷器を通過する風に伝えられる。したがって、エバポレータを通過した風の温度が上昇したとしても、当該風は蓄冷器により冷却されるので、冷房能力の急激な低下が防止される。   According to the car air conditioner described in Patent Document 1, when the compressor is operating, the refrigerant that has passed through the compressor, the condenser, and the expansion valve enters the evaporator and is adjacent to the evaporator while flowing through the evaporator refrigerant flow pipe. Heat exchange is performed with the air passing through the ventilation gap between the refrigerant flow pipes, and the refrigerant flows out as a gas phase. At this time, the cool storage material existing in the cool storage material enclosure pipe of the regenerator is cooled by the cooling air that has passed through the evaporator, and as a result, the cool storage material is solidified to store cold heat. Further, when the compressor is stopped, the cold heat of the regenerator material in the regenerator material enclosing tube of the regenerator is transmitted to the wind passing through the evaporator and the regenerator. Therefore, even if the temperature of the wind that has passed through the evaporator rises, the wind is cooled by the regenerator, so that a rapid decrease in the cooling capacity is prevented.

しかしながら、特許文献1記載のカーエアコンの場合、蓄冷器の蓄冷材に冷熱を蓄える場合には、エバポレータの冷媒流通管を流れる冷媒の有する冷熱は、伝熱性の低い空気を介して蓄冷器の蓄冷材封入管内の蓄冷材に伝えられるだけであるので、蓄冷器の蓄冷材の冷却速度が低くなり、蓄冷材に冷熱を効率良く蓄えることができないという問題があった。   However, in the case of the car air conditioner described in Patent Document 1, when the cold energy is stored in the regenerator material of the regenerator, the cold heat of the refrigerant flowing through the refrigerant refrigerant pipe of the evaporator is stored in the regenerator of the regenerator via the low heat transfer air. Since it is only transmitted to the regenerator material in the material enclosing tube, there is a problem that the cooling rate of the regenerator material of the regenerator becomes low, and cold energy cannot be efficiently stored in the regenerator material.

特開2002−337537号公報JP 2002-337537 A

この発明の目的は、上記問題を解決し、蓄冷材に効率良く冷熱を蓄えることのできる蓄冷機能付きエバポレータを提供することにある。   An object of the present invention is to provide an evaporator with a cold storage function that solves the above problems and can efficiently store cold heat in a cold storage material.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)冷媒流通路および蓄冷材封入路を有し、かつ互いに間隔をおくとともに幅方向を通風方向に向けて配置された複数の扁平中空体と、扁平中空体の冷媒流通路が通じさせられる冷媒用ヘッダ部と、扁平中空体の蓄冷材封入路が通じさせられる蓄冷材用ヘッダ部とを備えており、扁平中空体の蓄冷材封入路に蓄冷材が封入されている蓄冷機能付きエバポレータ。   1) A refrigerant having a refrigerant flow path and a regenerator material enclosing path, spaced apart from each other and arranged in the width direction in the ventilation direction, and the refrigerant flow path of the flat hollow body communicated The evaporator with a cool storage function is equipped with the header part for cold storage, and the header part for cool storage materials through which the cool storage material enclosure path of a flat hollow body is connected, and the cool storage material is enclosed in the cool storage material enclosure path of a flat hollow body.

2)蓄冷材封入路が、冷媒流通路の風下側に並んで設けられている上記1)記載の蓄冷機能付きエバポレータ。   2) The evaporator with a cold storage function according to the above 1), wherein the cold storage material sealing passage is provided side by side on the leeward side of the refrigerant flow passage.

3)隣り合う扁平中空体どうしの間の通風間隙に、冷媒流通路および蓄冷材封入路に共有されるフィンが配置されている上記1)または2)記載の蓄冷機能付きエバポレータ。   3) The evaporator with a cool storage function according to the above 1) or 2), wherein fins shared by the refrigerant flow passage and the cool storage material enclosing passage are arranged in a ventilation gap between adjacent flat hollow bodies.

4)冷媒用ヘッダ部および蓄冷材用ヘッダ部を有する2つのタンクが間隔をおいて配置されており、両タンク間に複数の扁平中空体が配置されるとともに、全扁平中空体の両端部が両タンクに接合され、全扁平中空体の冷媒流通路が両タンクの冷媒用ヘッダ部に通じるとともに、蓄冷材封入路が両タンクの蓄冷材用ヘッダ部に通じている上記1)〜3)のうちのいずれかに記載の蓄冷機能付きエバポレータ。   4) Two tanks having a header for refrigerant and a header for cold storage material are arranged at intervals, a plurality of flat hollow bodies are arranged between both tanks, and both ends of all flat hollow bodies are The above-mentioned 1) to 3), in which the refrigerant flow passages of the all flat hollow bodies are joined to both tanks and lead to the refrigerant header portions of both tanks, and the cool storage material enclosure passages lead to the cool storage material header portions of both tanks The evaporator with a cool storage function as described in any one of them.

5)隣り合う扁平中空体どうしが、長さ方向のいずれか一端において、U字状の連結管部により交互に接続されることによって全体に蛇行状となされ、連結管部に、隣り合う扁平中空体の冷媒流通路どうしを通じさせる第1の連通路および蓄冷材封入路どうしを通じさせる第2の連通路が設けられており、並び方向の両端に位置する扁平中空体における連結管部とは反対側の端部が、それぞれ冷媒用ヘッダ部および蓄冷材用ヘッダ部を有するタンクに接合され、並び方向の両端に位置する扁平中空体の冷媒流通路が両タンクの冷媒用ヘッダ部に通じるとともに、蓄冷材封入路が両タンクの蓄冷材用ヘッダ部に通じている上記1)〜3)のうちのいずれかに記載の蓄冷機能付きエバポレータ。   5) The adjacent flat hollow bodies are meandered as a whole by being alternately connected by U-shaped connecting pipe portions at either end in the length direction, and the adjacent flat hollow bodies are connected to the connecting pipe portions. The first communication passage through which the refrigerant flow passages of the body pass and the second communication passage through which the regenerator material enclosure passages pass are provided, and is opposite to the connection pipe portion in the flat hollow bodies located at both ends in the arrangement direction. Are connected to a tank having a refrigerant header portion and a regenerator header portion, respectively, and the refrigerant flow passages of the flat hollow bodies located at both ends in the alignment direction lead to the refrigerant header portions of both tanks, The evaporator with a cool storage function according to any one of the above items 1) to 3), wherein the material sealing path communicates with the headers for the cool storage material of both tanks.

6)扁平中空体が、積層状に接合された2枚の金属板からなり、冷媒流通路および蓄冷材封入路が、扁平中空体を構成する2枚の金属板のうちの少なくともいずれか一方の金属板を外方に膨出させることにより設けられ、扁平中空体に、冷媒用ヘッダ部を形成する2つの冷媒用ヘッダ形成部と、蓄冷材用ヘッダ部を形成する2つの蓄冷材用ヘッダ形成部とが、扁平中空体を構成する2枚の金属板のうちの少なくともいずれか一方の金属板を外方に膨出させることにより設けられている上記1)〜3)のうちのいずれかに記載の蓄冷機能付きエバポレータ。   6) The flat hollow body is composed of two metal plates joined in a laminated form, and the refrigerant flow passage and the cold storage material enclosing passage are at least one of the two metal plates constituting the flat hollow body. Two refrigerant header forming portions that form the refrigerant header portion and two cold storage material header portions that form the cold storage material header portion are formed in the flat hollow body by bulging the metal plate outward. Any one of the above 1) to 3), wherein the portion is provided by bulging outwardly at least one of the two metal plates constituting the flat hollow body Evaporator with cold storage function described.

上記1)〜6)の蓄冷機能付きエバポレータによれば、冷媒流通路および蓄冷材封入路を有し、かつ互いに間隔をおくとともに幅方向を通風方向に向けて配置された複数の扁平中空体と、扁平中空体の冷媒流通路が通じさせられる冷媒用ヘッダ部と、扁平中空体の蓄冷材封入路が通じさせられる蓄冷材用ヘッダ部とを備えており、扁平中空体の蓄冷材封入路に蓄冷材が封入されているので、蓄冷材封入路内の蓄冷材に冷熱を蓄える場合には、冷媒流通路を流れる冷媒の有する冷熱は、扁平中空体の壁を介して効率良く蓄冷材封入路内の蓄冷材に伝えられる。したがって、蓄冷材封入路内の蓄冷材の冷却速度が高くなり、蓄冷材に冷熱を効率良く蓄えることが可能になる。   According to the evaporator with a cold storage function of 1) to 6) above, a plurality of flat hollow bodies having a refrigerant flow passage and a cold storage material enclosing passage and spaced apart from each other and arranged in the width direction in the direction of the wind And a refrigerant header portion through which the refrigerant flow passage of the flat hollow body is communicated and a header portion for cold storage material through which the cold storage material enclosure passage of the flat hollow body is communicated, and in the cold storage material enclosure passage of the flat hollow body Since the regenerator material is enclosed, when storing cold heat in the regenerator material in the regenerator material enclosure path, the cold heat of the refrigerant flowing through the refrigerant flow passage is efficiently passed through the flat hollow body wall. It is conveyed to the cold storage material inside. Therefore, the cooling rate of the regenerator material in the regenerator material enclosing passage becomes high, and it becomes possible to efficiently store the cold energy in the regenerator material.

上記2)の蓄冷機能付きエバポレータによれば、空気が隣り合う扁平中空体間の通風間隙を通過する際に、蓄冷材封入路には高温の空気は直接当たらない。したがって、蓄冷材封入路内の蓄冷材が高温の空気により加熱されることが防止され、蓄冷効率の低下を防止することが可能になる。そして、蓄冷効率の低下を防止することが可能になるので、蓄冷材封入路内に封入される蓄冷材の量を低減することが可能になり、軽量化を図ることができる。   According to the evaporator with the cold storage function of 2) above, when the air passes through the ventilation gap between the adjacent flat hollow bodies, the hot air is not directly applied to the cold storage material enclosing path. Therefore, the regenerator material in the regenerator material enclosure path is prevented from being heated by high-temperature air, and it is possible to prevent a decrease in the regenerator efficiency. And since it becomes possible to prevent the fall of cool storage efficiency, it becomes possible to reduce the quantity of the cool storage material enclosed in the cool storage material enclosure path, and can achieve weight reduction.

上記3)の蓄冷機能付きエバポレータによれば、蓄冷材に冷熱を蓄える場合には、隣り合う扁平中空体の冷媒流通路が設けられている部分間を通過した冷却風の有する冷熱が、フィンを介して蓄冷材封入路内に存在する蓄冷材に伝えられる。したがって、蓄冷材封入路内の蓄冷材の冷却速度が高くなり、蓄冷材に冷熱を効率良く蓄えることが可能になる。また、エンジンが停止して圧縮機が停止した際に、蓄冷材封入路内の蓄冷材の有する冷熱が、蓄冷材封入路からフィンを介して隣り合う扁平中空体どうしの間の通風間隙を通過する空気に伝えられるので、放冷性能が向上する。   According to the evaporator with a cold storage function of 3) above, when cold energy is stored in the cold storage material, the cold heat of the cooling air that has passed through the portion where the refrigerant flow passage of the adjacent flat hollow body is provided, the fins To the regenerator material existing in the regenerator material enclosing passage. Therefore, the cooling rate of the regenerator material in the regenerator material enclosing passage becomes high, and it becomes possible to efficiently store the cold energy in the regenerator material. In addition, when the engine stops and the compressor stops, the cold heat of the regenerator material in the regenerator material enclosing passage passes through the ventilation gap between adjacent flat hollow bodies through the fins from the regenerator material enclosing passage. Because it is transmitted to the air that cools, cooling performance improves.

この発明の実施形態1の蓄冷機能付きエバポレータの全体構成を一部を切り欠いて示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which notches some parts and shows the whole structure of the evaporator with a cool storage function of Embodiment 1 of this invention. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2. 図1に示す蓄冷機能付きエバポレータに用いられている扁平中空管の一端部を示す斜視図である。It is a perspective view which shows the one end part of the flat hollow tube used for the evaporator with a cool storage function shown in FIG. この発明の実施形態2の蓄冷機能付きエバポレータの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the evaporator with a cool storage function of Embodiment 2 of this invention. 図5のC−C線拡大断面図である。FIG. 6 is an enlarged sectional view taken along the line CC of FIG. 5. この発明の実施形態3の蓄冷機能付きエバポレータの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the evaporator with a cool storage function of Embodiment 3 of this invention. 図7のD−D線拡大断面図である。It is the DD sectional view taken on the line of FIG. 図7に示す蓄冷機能付きエバポレータに用いられている扁平中空体を示す分解斜視図である。It is a disassembled perspective view which shows the flat hollow body used for the evaporator with a cool storage function shown in FIG.

以下、この発明の実施形態を、図面を参照して説明する。なお、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.

以下の説明において、通風方向下流側(図1、図5および図7に矢印Xで示す方向)を前、これと反対側を後といい、図1、図5および図7の上下、左右を上下、左右というものとする。また、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the downstream side in the ventilation direction (the direction indicated by the arrow X in FIGS. 1, 5 and 7) is referred to as the front, and the opposite side is referred to as the rear. It is assumed to be up and down and left and right. In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

実施形態1
この実施形態は、図1〜図4に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1は実施形態1の蓄冷機能付きエバポレータの全体構成を示し、図2〜図4はその要部の構成を示す。   FIG. 1 shows the overall configuration of an evaporator with a cold storage function according to the first embodiment, and FIGS.

図1において、蓄冷機能付きエバポレータ(1)は、上下方向に間隔をおいて配置された左右方向にのびるアルミニウム製第1タンク(2)およびアルミニウム製第2タンク(3)と、両タンク(2)(3)間に、幅方向を前後方向(通風方向)に向けるとともに左右方向に間隔をおいて配置された複数の垂直状アルミニウム押出形材製扁平中空管(4)(扁平中空体)と、隣り合う扁平中空管(4)間および左右両端の扁平中空管(4)の外側に配置されて扁平中空管(4)にろう付されたアルミニウム製コルゲートフィン(5)と、左右両端のコルゲートフィン(5)の外側に配置されてコルゲートフィン(5)にろう付されたアルミニウム製サイドプレート(6)とを備えている。   In FIG. 1, an evaporator with a cold storage function (1) includes an aluminum first tank (2) and an aluminum second tank (3) extending in the left-right direction and spaced apart in the vertical direction, and both tanks (2 ) (3) Flat hollow tubes (4) (flat hollow bodies) made of a plurality of vertical aluminum extruded sections with the width direction facing in the front-rear direction (ventilation direction) and spaced apart in the left-right direction An aluminum corrugated fin (5) disposed between the adjacent flat hollow tubes (4) and outside the flat hollow tubes (4) on both left and right ends and brazed to the flat hollow tubes (4), An aluminum side plate (6) disposed outside the corrugated fins (5) at the left and right ends and brazed to the corrugated fins (5).

図1〜図3に示すように、第1タンク(2)には、後側(風上側)に位置する冷媒用ヘッダ部(7)と、前側(風下側)に位置する蓄冷材用ヘッダ部(8)とが、第1タンク(2)内を左右方向にのびる垂直板状の仕切部材(9)により前後2つの部分に区画することによって設けられている。冷媒用ヘッダ部(7)の右端部には冷媒入口(11)が形成されている。冷媒用ヘッダ部(7)の下壁には、前後方向に長い第1長穴(12)が左右方向に間隔をおいて複数形成されている。蓄冷材用ヘッダ部(8)の下壁には、前後方向に長い第2長穴(13)が左右方向に間隔をおいて複数形成されている。第1長穴(12)と第2長穴(13)は左右方向に関して同一位置に形成されている。なお、蓄冷材用ヘッダ部(8)の第2長穴(13)の長さは、冷媒用入口ヘッダ部(7)の第1長穴(12)よりも短くなっている。冷媒用ヘッダ部(7)の横断面積は、蓄冷材用ヘッダ部(8)の横断面積よりも大きくなっている。   As shown in FIGS. 1 to 3, the first tank (2) has a refrigerant header portion (7) located on the rear side (windward side) and a header portion for the regenerator material located on the front side (leeward side). (8) is provided by dividing the first tank (2) into two front and rear parts by a vertical plate-like partition member (9) extending in the left-right direction. A refrigerant inlet (11) is formed at the right end of the refrigerant header (7). A plurality of first elongated holes (12) that are long in the front-rear direction are formed in the lower wall of the refrigerant header (7) at intervals in the left-right direction. A plurality of second long holes (13) elongated in the front-rear direction are formed in the lower wall of the cool storage material header portion (8) at intervals in the left-right direction. The first elongated hole (12) and the second elongated hole (13) are formed at the same position in the left-right direction. In addition, the length of the 2nd long hole (13) of the header part for cool storage materials (8) is shorter than the 1st long hole (12) of the inlet header part for refrigerant | coolants (7). The cross-sectional area of the refrigerant header portion (7) is larger than the cross-sectional area of the cool storage material header portion (8).

第2タンク(3)は、第1タンク(2)とほぼ同様な構成であるとともに、第1タンク(2)とは上下逆向きに配置されたものであり、同一部分には同一符号を付す。   The second tank (3) has substantially the same configuration as the first tank (2), and is disposed upside down with respect to the first tank (2). .

第2タンク(3)の第1タンク(2)との相違点は、後側の冷媒用ヘッダ部(7)の右端部に、冷媒入口(11)に代えて、冷媒出口(14)が形成されていることである。   The difference between the second tank (3) and the first tank (2) is that a refrigerant outlet (14) is formed at the right end of the rear refrigerant header (7) instead of the refrigerant inlet (11). It has been done.

図2〜図4に示すように、扁平中空管(4)には、幅方向に並んで設けられた複数の冷媒流通路(15)と、幅方向に並んで設けられた複数の蓄冷材封入路(16)とが、蓄冷材封入路(16)が冷媒流通路(15)の風下側(前側)に並ぶように設けられている。蓄冷材封入路(16)の横断面積は、冷媒流通路(15)の横断面積よりも大きくなっている。前端の冷媒流通路(15)と、後端の蓄冷材封入路(16)との間の仕切壁(17)は、第1および第2タンク(2)(3)の仕切部材(9)よりも厚肉となっている。扁平中空管(4)の厚肉仕切壁(17)には、その両端から仕切部材(9)嵌入用の切り欠き(18)が形成されており、扁平中空管(4)の両端部における切り欠き(18)よりも後側の部分が、第1および第2タンク(2)(3)の冷媒用ヘッダ部(7)の第1長穴(12)内に挿入されるとともに、切り欠き(18)よりも前側の部分が、第1および第2タンク(2)(3)の蓄冷材用ヘッダ部(8)の第2長穴(13)内に挿入され、さらに第1および第2タンク(2)(3)の仕切部材(9)が切り欠き(18)内に嵌められた状態で、扁平中空管(4)の上下両端部が第1および第2タンク(2)(3)にろう付されている。そして、全扁平中空管(4)の冷媒流通路(15)が第1および第2タンク(2)(3)の冷媒用ヘッダ部(7)内に通じるとともに、蓄冷材封入路(16)が第1および第2タンク(2)(3)の蓄冷材用ヘッダ部(8)内に通じている。   As shown in FIGS. 2 to 4, the flat hollow tube (4) has a plurality of refrigerant flow passages (15) arranged in the width direction and a plurality of cold storage materials arranged in the width direction. The enclosure path (16) is provided so that the regenerator material enclosure path (16) is arranged on the leeward side (front side) of the refrigerant flow path (15). The cross-sectional area of the regenerator material enclosing passage (16) is larger than the cross-sectional area of the refrigerant flow passage (15). The partition wall (17) between the refrigerant flow passage (15) at the front end and the regenerator material enclosing passage (16) at the rear end is formed by the partition members (9) of the first and second tanks (2) and (3). Is also thick. On the thick partition wall (17) of the flat hollow tube (4), a notch (18) for fitting the partition member (9) is formed from both ends thereof, and both end portions of the flat hollow tube (4) are formed. The rear side of the notch (18) is inserted into the first elongated hole (12) of the refrigerant header (7) of the first and second tanks (2) (3) and The portion in front of the notch (18) is inserted into the second elongated hole (13) of the regenerator header portion (8) of the first and second tanks (2) (3), and further the first and second With the partition member (9) of the two tanks (2) and (3) fitted into the notch (18), the upper and lower ends of the flat hollow tube (4) are the first and second tanks (2) ( It is brazed to 3). The refrigerant flow passage (15) of the all flat hollow pipe (4) communicates with the refrigerant header (7) of the first and second tanks (2) and (3), and the regenerator material enclosing passage (16). Communicates with the regenerator header portion (8) of the first and second tanks (2) and (3).

扁平中空管(4)の蓄冷材封入路(16)内には、水系、パラフィン系などの凝固点が3〜10℃程度に調整された蓄冷材(図示略)が、全蓄冷材封入路(16)内を上端部まで満たすように封入されている。蓄冷材の封入は、第1タンク(2)の蓄冷材用ヘッダ部(8)および第2タンク(3)の蓄冷材用ヘッダ部(8)のうちのいずれか一方に注入口(図示略)を形成するとともに同他方の空気抜き口(図示略)を形成しておき、注入口から所定量の蓄冷材を注入した後、注入口および空気抜き口を密閉することにより行われる。   In the regenerator material enclosing passage (16) of the flat hollow tube (4), a regenerator material (not shown) having a freezing point such as water-based or paraffinic is adjusted to about 3 to 10 ° C. 16) It is enclosed so that the inside is filled to the upper end. The cool storage material is sealed in either one of the cool storage material header portion (8) of the first tank (2) and the cool storage material header portion (8) of the second tank (3) (not shown). And the other air vent (not shown) is formed, a predetermined amount of cold storage material is injected from the inlet, and then the inlet and the air outlet are sealed.

コルゲートフィン(5)は、隣り合う扁平中空管(4)どうしの間の通風間隙に、冷媒流通路(15)および蓄冷材封入路(16)に共有されるように配置されている。   The corrugated fin (5) is disposed in the ventilation gap between the adjacent flat hollow tubes (4) so as to be shared by the refrigerant flow passage (15) and the cold storage material enclosure passage (16).

上述した蓄冷機能付きエバポレータ(1)は、圧縮機、冷媒冷却器としてのコンデンサ、気液分離器、および減圧器としての膨張弁とともにフロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両、たとえば自動車に搭載される。そして、圧縮機が作動している場合には、圧縮機、コンデンサおよび膨張弁を通過した低圧の気液混相の2相冷媒が、冷媒入口(11)から第1タンク(2)の冷媒用ヘッダ部(7)内に流入する。第1タンク(2)の冷媒用ヘッダ部(7)内に流入した冷媒は、扁平中空管(4)の冷媒流通路(15)を通って下方に流れ、第2タンク(3)の冷媒用ヘッダ部(7)内に入り、冷媒出口(14)を通って排出される。そして、気液混相の2相冷媒は、扁平中空管(4)の冷媒流通路(15)を流れる間に、隣り合う扁平中空管(4)どうしの間の通風間隙を図1に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。   The evaporator with a cold storage function (1) described above constitutes a refrigeration cycle that uses a chlorofluorocarbon refrigerant together with a compressor, a condenser as a refrigerant cooler, a gas-liquid separator, and an expansion valve as a decompressor, and as a car air conditioner, It is mounted on a vehicle that temporarily stops an engine that is a drive source of the compressor when the vehicle is stopped, for example, an automobile. When the compressor is operating, the low-pressure gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve flows from the refrigerant inlet (11) to the refrigerant header of the first tank (2). Flows into the section (7). The refrigerant flowing into the refrigerant header portion (7) of the first tank (2) flows downward through the refrigerant flow passage (15) of the flat hollow tube (4), and the refrigerant in the second tank (3). Enters the header section (7) and is discharged through the refrigerant outlet (14). The gas-liquid mixed phase two-phase refrigerant flows through the refrigerant flow passage (15) of the flat hollow tube (4), and the ventilation gap between adjacent flat hollow tubes (4) is indicated by an arrow in FIG. It exchanges heat with the air flowing in the direction indicated by X and flows out as a gas phase.

このとき、冷媒流通路(15)内を流れる冷媒が有する冷熱が、扁平中空管(4)の周壁を介して蓄冷材封入路(16)内の蓄冷材に伝えられる。しかも、隣り合う扁平中空管(4)間の通風間隙における冷媒流通路(15)が設けられている部分を通過した冷却風の有する冷熱が、コルゲートフィン(5)を介して蓄冷材封入路(16)内に存在する蓄冷材に伝えられる。その結果、蓄冷材に冷熱が蓄えられる。   At this time, the cold heat of the refrigerant flowing in the refrigerant flow passage (15) is transmitted to the cold storage material in the cold storage material enclosing path (16) through the peripheral wall of the flat hollow tube (4). In addition, the cold heat of the cooling air that has passed through the portion in which the refrigerant flow passageway (15) is provided in the ventilation gap between the adjacent flat hollow tubes (4) is passed through the cold storage material enclosing passage through the corrugated fins (5). (16) It is transmitted to the regenerator material that exists within. As a result, cold energy is stored in the cold storage material.

圧縮機が停止した場合には、扁平中空管(4)の蓄冷材封入路(16)内の蓄冷材の有する冷熱が、コルゲートフィン(5)を介して隣り合う扁平中空管(4)どうしの間の通風間隙を通過する風に伝えられる。したがって、圧縮機が停止した場合においても、冷房能力の急激な低下が防止される。   When the compressor stops, the cold heat of the regenerator material in the regenerator material enclosing passage (16) of the flat hollow tube (4) is adjacent to the flat hollow tube (4) via the corrugated fin (5). It is transmitted to the wind passing through the ventilation gap between the two. Therefore, even when the compressor is stopped, a rapid decrease in the cooling capacity is prevented.

実施形態2
この実施形態は、図5および図6に示すものである。
Embodiment 2
This embodiment is shown in FIG. 5 and FIG.

図5は実施形態2の蓄冷機能付きエバポレータの全体構成を示し、図6はその要部の構成を示す。   FIG. 5 shows the overall configuration of the evaporator with a cold storage function of the second embodiment, and FIG. 6 shows the configuration of the main part thereof.

図5および図6において、蓄冷機能付きエバポレータ(20)は、左右方向に間隔をおいて配置されたアルミニウム製第1タンク(21)およびアルミニウム製第2タンク(22)と、両タンク(21)(22)間に配置されたアルミニウム押出形材製蛇行状中空管(23)とを備えている。   5 and 6, the evaporator (20) with a cold storage function includes an aluminum first tank (21) and an aluminum second tank (22) which are spaced apart in the left-right direction, and both tanks (21). (22) A meandering hollow tube (23) made of extruded aluminum and disposed between them.

第1および第2タンク(21)(22)は後端が開口するとともに前端が閉鎖した円筒状である。第1タンク(21)には、後側(風上側)に位置する冷媒用ヘッダ部(24)と、前側(風下側)に位置する蓄冷材用ヘッダ部(25)とが、第1タンク(21)内を垂直板状の仕切部材(26)により前後2つの部分に区画することによって設けられている。第1タンク(21)の後端部には、第1タンク(21)を構成する円筒状体の後端開口からなる冷媒入口(27)が形成されている。冷媒用ヘッダ部(24)の周壁の下部には、前後方向に長い1つの第1長穴(28)が形成されている。蓄冷材用ヘッダ部(25)の周壁の下部には、前後方向に長い1つの第2長穴(29)が形成されている。なお、蓄冷材用ヘッダ部(25)の第2長穴(29)の長さは、冷媒用ヘッダ部(24)の第1長穴(28)よりも短くなっている。冷媒用ヘッダ部(24)の前後方向の長さは、蓄冷材用ヘッダ部(25)の前後方向の長さよりも長くなっている。   The first and second tanks (21) and (22) are cylindrical with the rear ends opened and the front ends closed. The first tank (21) includes a refrigerant header portion (24) located on the rear side (windward side) and a regenerator header portion (25) located on the front side (leeward side). 21) It is provided by dividing the interior into two front and rear parts by a vertical plate-like partition member (26). A refrigerant inlet (27) including a rear end opening of a cylindrical body constituting the first tank (21) is formed at the rear end portion of the first tank (21). A first long hole (28) that is long in the front-rear direction is formed in the lower portion of the peripheral wall of the refrigerant header (24). One second long hole (29) that is long in the front-rear direction is formed in the lower portion of the peripheral wall of the header for cold storage material (25). In addition, the length of the 2nd long hole (29) of the header part for cold storage materials (25) is shorter than the 1st long hole (28) of the header part for refrigerant | coolants (24). The length of the refrigerant header portion (24) in the front-rear direction is longer than the length of the cold storage material header portion (25) in the front-rear direction.

第2タンク(22)は、第1タンク(21)とほぼ同様な構成であり、同一部分には同一符号を付す。   The second tank (22) has substantially the same configuration as the first tank (21), and the same parts are denoted by the same reference numerals.

第2タンク(22)の第1タンク(21)との相違点は、冷媒用ヘッダ部(24)の後端部に、冷媒入口(27)に代えて、冷媒出口(31)が形成されていることである。   The difference between the second tank (22) and the first tank (21) is that a refrigerant outlet (31) is formed at the rear end of the refrigerant header (24) instead of the refrigerant inlet (27). It is that you are.

蛇行状中空管(23)は、幅方向を前後方向(通風方向)に向けるとともに左右方向に間隔をおいて配置された複数の垂直状扁平管部(32)(扁平中空体)と、隣り合う扁平管部(32)どうしを、長さ方向のいずれか一端において交互に一体に連結するU字状の連結管部(33)とよりなる。扁平管部(32)には、幅方向に並んで設けられた複数の冷媒流通路(34)と、幅方向に並んで設けられた複数の蓄冷材封入路(35)とが、蓄冷材封入路(35)が冷媒流通路(34)の風下側(前側)に並ぶように設けられている。蓄冷材封入路(35)の横断面積は、冷媒流通路(34)の横断面積よりも大きくなっている。前端の冷媒流通路(34)と、後端の蓄冷材封入路(35)との間の仕切壁(36)は、第1および第2タンク(21)(22)の仕切部材(26)よりも厚肉となっている。図示は省略したが、連結管部(33)には、隣り合う扁平管部(32)の各冷媒流通路(34)どうしを通じさせる第1連通路と、同じく各蓄冷材封入路(35)どうしを通じさせる第2連通路とが設けられている。すなわち、蛇行状中空管(23)は、幅方向に並んで設けられた複数の冷媒流通路(34)と、幅方向に並んで設けられた複数の蓄冷材封入路(35)とを有する長尺の扁平状アルミニウム押出管を蛇行状に曲げることにより形成されている。   The meandering hollow tube (23) is adjacent to a plurality of vertical flat tube portions (32) (flat hollow bodies) that have a width direction in the front-rear direction (ventilation direction) and are spaced in the left-right direction. The flat tube portions (32) that fit together are U-shaped connection tube portions (33) that alternately and integrally connect at either one end in the length direction. The flat tube portion (32) includes a plurality of refrigerant flow passages (34) arranged in the width direction and a plurality of cool storage material enclosure paths (35) arranged in the width direction. The passage (35) is provided so as to be arranged on the leeward side (front side) of the refrigerant flow passage (34). The cross-sectional area of the regenerator material enclosing passage (35) is larger than the cross-sectional area of the refrigerant flow passage (34). The partition wall (36) between the refrigerant flow passage (34) at the front end and the regenerator material passage (35) at the rear end is formed by the partition members (26) of the first and second tanks (21) and (22). Is also thick. Although not shown in the drawings, the connecting pipe part (33) includes a first communication path through which the refrigerant flow paths (34) of the adjacent flat pipe parts (32) pass, and each cool storage material sealing path (35). And a second communication passage through which the air is passed. That is, the meandering hollow tube (23) has a plurality of refrigerant flow passages (34) provided side by side in the width direction and a plurality of regenerator enclosing passages (35) provided side by side in the width direction. It is formed by bending a long flat aluminum extruded tube into a meandering shape.

並び方向の両端(左右両端)に位置する厚肉仕切壁(36)には、連結管部(33)とは反対側の端部、ここでは上端部から仕切部材(26)嵌入用の切り欠き(37)が形成されており、左右両端の扁平管部(32)の上端部における切り欠き(37)よりも後側の部分が、第1および第2タンク(21)(22)の冷媒用ヘッダ部(24)の第1長穴(28)内に挿入されるとともに、切り欠き(37)よりも前側の部分が、第1および第2タンク(21)(22)の蓄冷材用ヘッダ部(25)の第2長穴(29)内に挿入され、さらに第1および第2タンク(21)(22)の仕切部材(26)が切り欠き(37)内に嵌められた状態で、蛇行状中空管(23)の両端部が第1および第2タンク(21)(22)ろう付されている。そして、左右両端に位置する扁平管部(32)の冷媒流通路(34)が第1および第2タンク(21)(22)の冷媒用ヘッダ部(24)内に通じるとともに、蓄冷材封入路(35)が第1および第2タンク(21)(22)の蓄冷材用ヘッダ部(25)内に通じている。   The thick partition walls (36) located at both ends (left and right both ends) in the arrangement direction are notched for fitting the partition member (26) from the end opposite to the connecting pipe (33), here the upper end. (37) is formed, and the portion on the rear side of the notch (37) at the upper end of the flat tube portion (32) at the left and right ends is for the refrigerant of the first and second tanks (21) (22). The header part (24) is inserted into the first elongated hole (28), and the front part of the notch (37) is the header part for the regenerator material of the first and second tanks (21) (22). Inserted into the second elongated hole (29) of (25) and the meandering with the partition member (26) of the first and second tanks (21) and (22) fitted in the notch (37) Both ends of the hollow tube (23) are brazed to the first and second tanks (21) and (22). And the refrigerant | coolant flow path (34) of the flat pipe part (32) located in both right and left ends leads to the refrigerant | coolant header part (24) of a 1st and 2nd tank (21) (22), and a cool storage material enclosure path (35) communicates with the regenerator header portion (25) of the first and second tanks (21), (22).

蛇行状中空管(23)の隣り合う扁平管部(32)間および左右両端の扁平管部(32)の外側にはアルミニウム製コルゲートフィン(38)が配置されて扁平管部(32)にろう付され、左右両端のコルゲートフィン(38)の外側にはアルミニウム製サイドプレート(39)が配置されてコルゲートフィン(38)にろう付されている。   Aluminum corrugated fins (38) are arranged between the adjacent flat tube portions (32) of the meandering hollow tube (23) and outside the flat tube portions (32) at both the left and right ends. An aluminum side plate (39) is disposed outside the corrugated fins (38) at both left and right ends and brazed to the corrugated fins (38).

扁平管部(32)の蓄冷材封入路(35)内には、水系、パラフィン系などの凝固点が3〜10℃程度に調整された蓄冷材(図示略)が、全蓄冷材封入路(35)内を上端部まで満たすように封入されている。蓄冷材の封入は、第1タンク(21)の蓄冷材用ヘッダ部(25)および第2タンク(22)の蓄冷材用ヘッダ部(25)のうちのいずれか一方に注入口(図示略)を形成するとともに同他方の空気抜き口(図示略)を形成しておき、注入口から所定量の蓄冷材を注入した後、注入口および空気抜き口を密閉することにより行われる。   In the regenerator material enclosing passage (35) of the flat tube portion (32), a regenerator material (not shown) having a freezing point such as water-based or paraffinic is adjusted to about 3 to 10 ° C. ) Is filled to fill the upper end. The cool storage material is sealed in either one of the cool storage material header portion 25 of the first tank 21 and the cool storage header portion 25 of the second tank 22 (not shown). And the other air vent (not shown) is formed, a predetermined amount of cold storage material is injected from the inlet, and then the inlet and the air outlet are sealed.

上述した蓄冷機能付きエバポレータは、圧縮機、冷媒冷却器としてのコンデンサ、気液分離器、および減圧器としての膨張弁とともにフロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両、たとえば自動車に搭載される。そして、圧縮機が作動している場合には、圧縮機、コンデンサおよび膨張弁を通過した低圧の気液混相の2相冷媒が、冷媒入口(27)から第1タンク(21)の冷媒用ヘッダ部(24)内に流入する。第1タンク(21)の冷媒用ヘッダ部(24)内に流入した冷媒は、蛇行状中空管(23)の冷媒流通路(34)を通って流れて第2タンク(22)の冷媒用ヘッダ部(24)内に入り、冷媒出口(31)を通って排出される。そして、気液混相の2相冷媒は、扁平管部(32)の冷媒流通路(34)を流れる間に、隣り合う扁平管部(32)間の通風間隙を図5に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。   The evaporator with a cold storage function described above constitutes a refrigeration cycle using a CFC-based refrigerant together with a compressor, a condenser as a refrigerant cooler, a gas-liquid separator, and an expansion valve as a decompressor. It is mounted on a vehicle that temporarily stops an engine that is a drive source of the machine, for example, an automobile. When the compressor is operating, the low-pressure gas-liquid mixed-phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve flows from the refrigerant inlet (27) to the refrigerant header of the first tank (21). Flows into the section (24). The refrigerant flowing into the refrigerant header portion (24) of the first tank (21) flows through the refrigerant flow passage (34) of the meandering hollow tube (23) and is used for the refrigerant of the second tank (22). It enters the header section (24) and is discharged through the refrigerant outlet (31). The gas-liquid mixed phase two-phase refrigerant flows through the refrigerant flow passage (34) of the flat tube portion (32), and the ventilation gap between the adjacent flat tube portions (32) is indicated by an arrow X in FIG. It exchanges heat with the air flowing through it and flows out as a gas phase.

このとき、冷媒流通路(34)内を流れる冷媒が有する冷熱が、蛇行状中空管(23)の周壁を介して蓄冷材封入路(35)内の蓄冷材に伝えられる。しかも、隣り合う扁平管部(32)間の通風間隙における冷媒流通路(34)が設けられている部分を通過した冷却風の有する冷熱が、を通過した冷却風の有する冷熱が、コルゲートフィン(38)を介して蓄冷材封入路(35)内に存在する蓄冷材に伝えられる。その結果、蓄冷材に冷熱が蓄えられる。   At this time, the cold heat of the refrigerant flowing in the refrigerant flow passage (34) is transmitted to the cold storage material in the cold storage material enclosing path (35) through the peripheral wall of the meandering hollow tube (23). Moreover, the cold heat of the cooling air that has passed through the portion where the refrigerant flow passageway (34) is provided in the ventilation gap between the adjacent flat tube portions (32) is the cold heat of the cooling air that has passed through the corrugated fins ( It is transmitted to the cool storage material existing in the cool storage material enclosure path (35) via 38). As a result, cold energy is stored in the cold storage material.

圧縮機が停止した場合には、扁平管部(32)の蓄冷材封入路(35)内の蓄冷材の有する冷熱が、コルゲートフィン(38)を介して隣り合う扁平管部(32)どうしの間の通風間隙を通過する風に伝えられる。したがって、圧縮機が停止した場合においても、冷房能力の急激な低下が防止される。   When the compressor stops, the cold heat of the regenerator material in the regenerator material enclosing passage (35) of the flat tube part (32) is transferred between the adjacent flat tube parts (32) via the corrugated fins (38). It is transmitted to the wind passing through the ventilation gap. Therefore, even when the compressor is stopped, a rapid decrease in the cooling capacity is prevented.

実施形態3
この実施形態は、図7〜図9に示すものである。
Embodiment 3
This embodiment is shown in FIGS.

図7は実施形態3の蓄冷機能付きエバポレータの全体構成を示し、図8および図9はその要部の構成を示す。   FIG. 7 shows the whole structure of the evaporator with a cool storage function of Embodiment 3, and FIG. 8 and FIG. 9 show the structure of the principal part.

図7および図8において、蓄冷機能付きエバポレータ(40)は、幅方向を前後方向(通風方向)に向けて左右方向に積層状に並べられるとともに相互に接合された縦長方形の複数の扁平中空体(41)からなり、上下方向に間隔をおいて設けられかつ後側(風上側)に位置する1対の冷媒用ヘッダ部(42)と、上下方向に間隔をおいて設けられかつ前側(風下側)に位置する1対の蓄冷材用ヘッダ部(43)と、両冷媒用ヘッダ部(42)間に設けられかつ両冷媒用ヘッダ部(42)に通じさせられた冷媒流通路(44)と、両蓄冷材用ヘッダ部(43)間に設けられかつ両蓄冷材用ヘッダ部(43)に通じさせられた蓄冷材封入路(45)と、隣り合う扁平中空体(41)間の通風間隙に、冷媒流通路(44)および蓄冷材封入路(45)に共有されるように配置されて扁平中空体(41)にろう付されたアルミニウム製コルゲート状アウターフィン(46)とを備えている。上側の冷媒用ヘッダ部(42)の右端部に冷媒入口(47)が形成され、下側の冷媒用ヘッダ部(42)の右端部に冷媒出口(48)が形成されている。冷媒用ヘッダ部(42)の横断面積は、蓄冷材用ヘッダ部(43)の横断面積よりも大きくなっている。また、冷媒流通路(44)の横断面積は、蓄冷材封入路(45)の横断面積よりも大きくなっている。   7 and 8, the evaporator with a cold storage function (40) includes a plurality of vertical rectangular hollow bodies arranged in a stacked manner in the left-right direction with the width direction in the front-rear direction (ventilation direction) and joined to each other. (41) and a pair of refrigerant headers (42) positioned at the rear side (windward side) with an interval in the vertical direction, and a front side (downwind) with a spacing in the vertical direction A pair of regenerator header portions (43) located on the side) and a refrigerant flow passage (44) provided between both refrigerant header portions (42) and communicated with both refrigerant header portions (42) Between the regenerator material enclosing passage (45) provided between the regenerator material header portions (43) and communicated with the regenerator material header portions (43) and the adjacent flat hollow body (41). Aluminum that is disposed in the gap so as to be shared by the refrigerant flow passage (44) and the cold storage material enclosure passage (45) and brazed to the flat hollow body (41). And a manufacturing corrugated outer fins (46). A refrigerant inlet (47) is formed at the right end of the upper refrigerant header (42), and a refrigerant outlet (48) is formed at the right end of the lower refrigerant header (42). The cross-sectional area of the refrigerant header portion (42) is larger than the cross-sectional area of the cool storage material header portion (43). Further, the cross-sectional area of the refrigerant flow passage (44) is larger than the cross-sectional area of the cold storage material enclosing passage (45).

図9に示すように、扁平中空体(41)は、周縁部どうしが互いにろう付された2枚の縦長方形状アルミニウム板(50)よりなる。すべてのアルミニウム板(50)は両面にろう材層を有するアルミニウムブレージングシートからなり、左右両方から見た外形は同一となっている。扁平中空体(41)を構成する2枚のアルミニウム板(50)間には、上下方向にのびる扁平管状の冷媒流通路(44)と、冷媒流通路(44)の前側に位置しかつ上下方向にのびる扁平管状の蓄冷材封入路(45)と、冷媒流通路(44)の上下両端部にそれぞれ連なる膨出状冷媒用ヘッダ形成部(51)と、蓄冷材封入路(45)の上下両端部にそれぞれ連なる膨出状蓄冷材用ヘッダ形成部(52)とが設けられている。扁平中空体(41)の冷媒流通路(44)および蓄冷材封入路(45)の左右方向の高さは等しくなっている。扁平中空体(41)の冷媒流通路(44)内および蓄冷材封入路(45)内には、それぞれアルミニウム製コルゲート状インナーフィン(53)(54)が配置されており、両アルミニウム板(50)にろう付されている。また、扁平中空体(41)の冷媒用ヘッダ形成部(51)および蓄冷材用ヘッダ形成部(52)の左右方向の高さは等しく、かつ冷媒流通路(44)および蓄冷材封入路(45)の左右方向の高さよりも高くなっており、隣接する扁平中空体(41)の両ヘッダ形成部(51)(52)どうしが相互にろう付されている。したがって、隣り合う扁平中空体(41)間の冷媒流通路(44)および蓄冷材封入路(45)に対応する部分が通風間隙となっている。   As shown in FIG. 9, the flat hollow body (41) is composed of two vertically rectangular aluminum plates (50) in which peripheral portions are brazed to each other. All the aluminum plates (50) are made of an aluminum brazing sheet having a brazing filler metal layer on both sides, and have the same outer shape when viewed from the left and right. Between the two aluminum plates (50) constituting the flat hollow body (41), there is a flat tubular refrigerant flow passage (44) extending in the vertical direction, and located in front of the refrigerant flow passage (44) and in the vertical direction. A flat tubular regenerator enclosing passage (45), a swelled refrigerant header forming portion (51) connected to both upper and lower ends of the refrigerant flow passage (44), and both upper and lower ends of the regenerator enclosing passage (45) And a bulging-type regenerator material header forming part (52) connected to each part. The horizontal flow heights of the refrigerant flow passage (44) and the cold storage material enclosure passage (45) of the flat hollow body (41) are equal. Corrugated inner fins (53), (54) made of aluminum are arranged in the refrigerant flow passage (44) and the cold storage material enclosure passage (45) of the flat hollow body (41), respectively, and both aluminum plates (50 ) Is brazed. Also, the horizontal height of the refrigerant header forming portion (51) and the cold storage material header forming portion (52) of the flat hollow body (41) is equal, and the refrigerant flow passage (44) and the cold storage material sealing passage (45 ) And the header forming portions (51) and (52) of the adjacent flat hollow bodies (41) are brazed to each other. Therefore, the portions corresponding to the refrigerant flow passage (44) and the cool storage material sealing passage (45) between the adjacent flat hollow bodies (41) form a ventilation gap.

大部分の扁平中空体(41)を構成する右側のアルミニウム板(50)は、上下方向にのびるとともに右方に膨出し、かつ冷媒流通路(44)を形成する第1膨出部(55)と、第1膨出部(55)の上下両端に連なって右方に膨出するとともに第1膨出部(55)よりも膨出高さが高く、かつ冷媒用ヘッダ形成部(51)を形成する第2膨出部(56)と、上下方向にのびるとともに右方に膨出し、かつ蓄冷材封入路(45)を形成する第3膨出部(57)と、第3膨出部(57)の上下両端に連なって右方に膨出するとともに第3膨出部(57)よりも膨出高さが高く、かつ蓄冷材用ヘッダ形成部(52)を形成する第4膨出部(58)とを備えている。第2および第4膨出部(56)(58)の頂壁にはそれぞれ貫通穴(59)(61)が形成されている。大部分の扁平中空体(41)を構成する左側のアルミニウム板(50)は、左側アルミニウム板(50)を左右逆向きにするとともに上下逆向きにしたものであり、同一部分には同一符号を付す。なお、左端の扁平中空体(41)の左側アルミニウム板(50)の第2および第4膨出部(56)(58)の頂壁には貫通穴は形成されておらず、右端の扁平中空体(41)の上下の第2膨出部(56)の頂壁には、貫通穴の代わりに冷媒入口(47)および冷媒出口(48)に通じる冷媒流通穴(図示略)が形成されている。そして、2枚のアルミニウム板(50)を、インナーフィン(53)(54)を介して第1〜第4膨出部(55)(56)(57)(58)の開口どうしが対向するように組み合わせてろう付することにより、扁平中空体(41)が形成されている。   The right aluminum plate (50) constituting most of the flat hollow body (41) extends in the vertical direction and bulges to the right, and forms a refrigerant flow passage (44), and a first bulge portion (55). And the right and left ends of the first bulge portion (55) bulge to the right and the bulge height is higher than that of the first bulge portion (55), and the refrigerant header forming portion (51) is A second bulging portion (56) to be formed, a third bulging portion (57) that extends in the vertical direction and bulges to the right and forms a cool storage material enclosing passage (45), and a third bulging portion ( 57) a fourth bulging portion that continues to the right and left ends of the bulging portion and bulges to the right, has a bulging height higher than that of the third bulging portion (57), and forms a regenerator header forming portion (52). (58). Through holes (59) and (61) are formed in the top walls of the second and fourth bulge portions (56) and (58), respectively. The left aluminum plate (50) constituting most flat hollow bodies (41) is the left aluminum plate (50) reversed left and right and upside down. Attached. Note that no through hole is formed in the top wall of the second and fourth bulges (56), (58) of the left aluminum plate (50) of the flat hollow body (41) at the left end. In the top wall of the upper and lower second bulges (56) of the body (41), a refrigerant circulation hole (not shown) communicating with the refrigerant inlet (47) and the refrigerant outlet (48) is formed instead of the through hole. Yes. Then, the two aluminum plates (50) are arranged so that the openings of the first to fourth bulge portions (55) (56) (57) (58) face each other through the inner fins (53) (54). The flat hollow body (41) is formed by brazing in combination.

隣接する2つの扁平中空体(41)の各ヘッダ形成部(51)(52)どうしは、扁平中空体(41)の第2および第4膨出部(56)(58)の貫通穴(59)(61)どうしが通じるように相互にろう付されており、これにより隣り合う扁平中空体(41)の各ヘッダ形成部(51)(52)どうしが連通状に接合されている。そして、すべての扁平中空体(41)のヘッダ形成部(51)(52)により冷媒用ヘッダ部(42)および蓄冷材用ヘッダ部(43)が形成されており、上側の冷媒入口(47)から冷媒用ヘッダ部(42)内に流入した冷媒が、すべての扁平中空体(41)の冷媒流通路(44)を通って下側の冷媒用ヘッダ部(42)内に入り、冷媒出口(48)から流出するようになされている。   The header forming portions (51), (52) of two adjacent flat hollow bodies (41) are connected to through holes (59, 59) of the second and fourth bulge portions (56), (58) of the flat hollow body (41). ) (61) are brazed to each other so that the header forming portions (51) (52) of the adjacent flat hollow bodies (41) are joined in a continuous manner. The header formation parts (51) and (52) of all the flat hollow bodies (41) form the refrigerant header part (42) and the regenerator header part (43), and the upper refrigerant inlet (47) The refrigerant that has flowed into the refrigerant header portion (42) through the refrigerant flow passages (44) of all the flat hollow bodies (41) enters the lower refrigerant header portion (42), and enters the refrigerant outlet ( 48) It is made to flow out.

扁平中空体(41)の蓄冷材封入路(45)内には、水系、パラフィン系などの凝固点が3〜10℃程度に調整された蓄冷材(図示略)が、全蓄冷材封入路(45)内を上端部まで満たすように封入されている。蓄冷材の封入は、上下両蓄冷材用ヘッダ部(43)のうちのいずれか一方に注入口(図示略)を形成するとともに同他方の空気抜き口(図示略)を形成しておき、注入口から所定量の蓄冷材を注入した後、注入口および空気抜き口を密閉することにより行われる。   In the regenerator material enclosing passage (45) of the flat hollow body (41), a regenerator material (not shown) in which the freezing point such as water or paraffin is adjusted to about 3 to 10 ° C. ) Is filled to fill the upper end. Enclose the regenerator material by forming an inlet (not shown) in either one of the upper and lower regenerator header parts (43) and forming the other air vent (not shown). After injecting a predetermined amount of the cold storage material, the inlet and the air vent are sealed.

上述した蓄冷機能付きエバポレータは、圧縮機、冷媒冷却器としてのコンデンサ、気液分離器、および減圧器としての膨張弁とともにフロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両、たとえば自動車に搭載される。そして、圧縮機が作動している場合には、圧縮機、コンデンサおよび膨張弁を通過した低圧の気液混相の2相冷媒が、冷媒入口(47)から上側の冷媒用ヘッダ部(42)内に流入し、扁平中空体(41)の冷媒流通路(44)を通って下方に流れ、下側の冷媒用ヘッダ部(42)内に入り、冷媒出口(48)を通って排出される。そして、気液混相の2相冷媒は、扁平中空体(41)の冷媒流通路(44)を流れる間に、通風間隙を図7および図8に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。   The evaporator with a cold storage function described above constitutes a refrigeration cycle using a CFC-based refrigerant together with a compressor, a condenser as a refrigerant cooler, a gas-liquid separator, and an expansion valve as a decompressor. It is mounted on a vehicle that temporarily stops an engine that is a drive source of the machine, for example, an automobile. When the compressor is in operation, the low-pressure gas-liquid mixed-phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve passes through the refrigerant header (42) above the refrigerant inlet (47). , Flows downward through the refrigerant flow passage (44) of the flat hollow body (41), enters the lower refrigerant header (42), and is discharged through the refrigerant outlet (48). The gas-liquid mixed phase two-phase refrigerant exchanges heat with the air flowing in the direction indicated by the arrow X in FIGS. 7 and 8 while flowing through the refrigerant flow passage (44) of the flat hollow body (41). And flows out in the gas phase.

このとき、冷媒流通路(44)内を流れる冷媒が有する冷熱が、扁平中空体(41)を形成するアルミニウム板(50)を介して蓄冷材封入路(45)内の蓄冷材に伝えられる。しかも、隣り合う扁平中空体(41)間の通風間隙における冷媒流通路(44)が設けられている部分を通過した冷却風の有する冷熱が、どうしの間の通風間隙を通過した冷却風の有する冷熱が、アウターフィン(46)を介して蓄冷材封入路(45)内に存在する蓄冷材に伝えられる。その結果、蓄冷材に冷熱が蓄えられる。   At this time, the cold heat of the refrigerant flowing in the refrigerant flow passage (44) is transmitted to the cold storage material in the cold storage material enclosing passage (45) through the aluminum plate (50) forming the flat hollow body (41). In addition, the cooling air having the cooling air that has passed through the portion where the refrigerant flow passageway (44) is provided in the ventilation gap between the adjacent flat hollow bodies (41) has the cooling air that has passed through the ventilation gap between the two. Cold heat is transmitted to the cold storage material existing in the cold storage material enclosing path (45) via the outer fin (46). As a result, cold energy is stored in the cold storage material.

圧縮機が停止した場合には、扁平中空体(41)の蓄冷材封入路(45)内の蓄冷材の有する冷熱が、アウターフィン(46)を介して隣り合う扁平中空体(41)どうしの間の通風間隙を通過する風に伝えられる。したがって、圧縮機が停止した場合においても、冷房能力の急激な低下が防止される。   When the compressor is stopped, the cold heat of the regenerator material in the regenerator material enclosing passage (45) of the flat hollow body (41) is exchanged between the adjacent flat hollow bodies (41) via the outer fins (46). It is transmitted to the wind passing through the ventilation gap. Therefore, even when the compressor is stopped, a rapid decrease in the cooling capacity is prevented.

この発明による蓄冷機能付きエバポレータは、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンを構成する冷凍サイクルに好適に用いられる。   The evaporator with a cold storage function according to the present invention is suitably used in a refrigeration cycle constituting a car air conditioner for a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.

(1)(20)(40):蓄冷機能付きエバポレータ
(2)(21):第1タンク
(3)(22):第2タンク
(4):扁平中空管(扁平中空体)
(5)(38):コルゲートフィン
(15)(34)(44):冷媒流通路
(16)(35)(45):蓄冷材封入路
(32):扁平管部(扁平中空体)
(33):連結管部
(41):扁平中空体
(46):コルゲート状アウターフィン
(50):アルミニウム板(金属板)
(51):冷媒用ヘッダ形成部
(52):蓄冷材用ヘッダ形成部
(55)(56)(57)(58):膨出部
(1) (20) (40): Evaporator with cool storage function
(2) (21): First tank
(3) (22): Second tank
(4): Flat hollow tube (flat hollow body)
(5) (38): Corrugated fin
(15) (34) (44): Refrigerant flow path
(16) (35) (45): Regenerator enclosure
(32): Flat tube (flat hollow body)
(33): Connecting pipe
(41): Flat hollow body
(46): Corrugated outer fin
(50): Aluminum plate (metal plate)
(51): Refrigerant header forming part
(52): Regenerator header formation
(55) (56) (57) (58): bulge

Claims (6)

冷媒流通路および蓄冷材封入路を有し、かつ互いに間隔をおくとともに幅方向を通風方向に向けて配置された複数の扁平中空体と、扁平中空体の冷媒流通路が通じさせられる冷媒用ヘッダ部と、扁平中空体の蓄冷材封入路が通じさせられる蓄冷材用ヘッダ部とを備えており、扁平中空体の蓄冷材封入路に蓄冷材が封入されている蓄冷機能付きエバポレータ。 A plurality of flat hollow bodies having a refrigerant flow passage and a regenerator passage, and spaced apart from each other and arranged in the width direction in the ventilation direction, and a refrigerant header through which the refrigerant flow passage of the flat hollow body is communicated And an evaporator with a cold storage function in which a cold storage material enclosing passage is connected to the flat hollow body, and a cold storage material is enclosed in the flat hollow body storage passage. 蓄冷材封入路が、冷媒流通路の風下側に並んで設けられている請求項1記載の蓄冷機能付きエバポレータ。 The evaporator with a cool storage function according to claim 1, wherein the cool storage material sealing passage is provided side by side on the leeward side of the refrigerant flow passage. 隣り合う扁平中空体どうしの間の通風間隙に、冷媒流通路および蓄冷材封入路に共有されるフィンが配置されている請求項1または2記載の蓄冷機能付きエバポレータ。 The evaporator with a cool storage function according to claim 1 or 2, wherein fins shared by the refrigerant flow passage and the cool storage material enclosing passage are arranged in a ventilation gap between adjacent flat hollow bodies. 冷媒用ヘッダ部および蓄冷材用ヘッダ部を有する2つのタンクが間隔をおいて配置されており、両タンク間に複数の扁平中空体が配置されるとともに、全扁平中空体の両端部が両タンクに接合され、全扁平中空体の冷媒流通路が両タンクの冷媒用ヘッダ部に通じるとともに、蓄冷材封入路が両タンクの蓄冷材用ヘッダ部に通じている請求項1〜3のうちのいずれかに記載の蓄冷機能付きエバポレータ。 Two tanks having a header for refrigerant and a header for cold storage material are arranged at intervals, a plurality of flat hollow bodies are arranged between both tanks, and both ends of the whole flat hollow body are both tanks. The refrigerant flow passage of the all flat hollow body communicates with the refrigerant header portions of both tanks, and the regenerator material enclosing passage communicates with the regenerator header portions of both tanks. An evaporator with a cold storage function described in Crab. 隣り合う扁平中空体どうしが、長さ方向のいずれか一端において、U字状の連結管部により交互に接続されることによって全体に蛇行状となされ、連結管部に、隣り合う扁平中空体の冷媒流通路どうしを通じさせる第1の連通路および蓄冷材封入路どうしを通じさせる第2の連通路が設けられており、並び方向の両端に位置する扁平中空体における連結管部とは反対側の端部が、それぞれ冷媒用ヘッダ部および蓄冷材用ヘッダ部を有するタンクに接合され、並び方向の両端に位置する扁平中空体の冷媒流通路が両タンクの冷媒用ヘッダ部に通じるとともに、蓄冷材封入路が両タンクの蓄冷材用ヘッダ部に通じている請求項1〜3のうちのいずれかに記載の蓄冷機能付きエバポレータ。 Adjacent flat hollow bodies are meandered as a whole by being alternately connected by U-shaped connecting pipe portions at either end in the length direction, and adjacent flat hollow bodies are connected to the connecting pipe portions. A first communication passage through which the refrigerant flow passages pass and a second communication passage through which the regenerator enclosing passages pass are provided, and the end opposite to the connection pipe portion in the flat hollow body located at both ends in the arrangement direction Are joined to tanks each having a refrigerant header part and a regenerator header part, and the flat hollow hollow refrigerant flow passages located at both ends in the alignment direction lead to the refrigerant header parts of both tanks and contain a regenerator material The evaporator with a cool storage function according to any one of claims 1 to 3, wherein the path leads to a header for the cool storage material of both tanks. 扁平中空体が、積層状に接合された2枚の金属板からなり、冷媒流通路および蓄冷材封入路が、扁平中空体を構成する2枚の金属板のうちの少なくともいずれか一方の金属板を外方に膨出させることにより設けられ、扁平中空体に、冷媒用ヘッダ部を形成する2つの冷媒用ヘッダ形成部と、蓄冷材用ヘッダ部を形成する2つの蓄冷材用ヘッダ形成部とが、扁平中空体を構成する2枚の金属板のうちの少なくともいずれか一方の金属板を外方に膨出させることにより設けられている請求項1〜3のうちのいずれかに記載の蓄冷機能付きエバポレータ。 The flat hollow body is composed of two metal plates joined in a laminated form, and the refrigerant flow passage and the cold storage material enclosing passage are at least one of the two metal plates constituting the flat hollow body. Are formed by bulging outward, and in the flat hollow body, two refrigerant header forming portions that form the refrigerant header portion, and two cold storage material header forming portions that form the cold storage material header portion, The cold storage according to any one of claims 1 to 3, which is provided by bulging outwardly at least one of the two metal plates constituting the flat hollow body. Evaporator with function.
JP2009290640A 2009-12-22 2009-12-22 Evaporator with cool storage function Expired - Fee Related JP5552309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290640A JP5552309B2 (en) 2009-12-22 2009-12-22 Evaporator with cool storage function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290640A JP5552309B2 (en) 2009-12-22 2009-12-22 Evaporator with cool storage function

Publications (2)

Publication Number Publication Date
JP2011133126A true JP2011133126A (en) 2011-07-07
JP5552309B2 JP5552309B2 (en) 2014-07-16

Family

ID=44346063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290640A Expired - Fee Related JP5552309B2 (en) 2009-12-22 2009-12-22 Evaporator with cool storage function

Country Status (1)

Country Link
JP (1) JP5552309B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113512A (en) * 2011-11-29 2013-06-10 Atago Seisakusho:Kk Heat exchanger for waste heat recovery
JP2014092321A (en) * 2012-11-02 2014-05-19 Japan Climate Systems Corp Air cooler with cold storage function
WO2014129621A1 (en) 2013-02-25 2014-08-28 ヴァレオ システム テルミク Heat exchanger and vehicle air conditioning device
WO2014181687A1 (en) * 2013-05-09 2014-11-13 カルソニックカンセイ株式会社 Cold storage heat exchanger
JP2015148392A (en) * 2014-02-07 2015-08-20 株式会社ケーヒン・サーマル・テクノロジー heat exchanger
KR101611694B1 (en) * 2014-01-16 2016-04-12 한온시스템 주식회사 Tube-fin thermal storage evaporator
JP2016211809A (en) * 2015-05-12 2016-12-15 株式会社デンソー Cold storage heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220909U (en) * 1985-07-23 1987-02-07
JPH10238896A (en) * 1997-02-26 1998-09-08 Denso Corp Lamination type evaporator
JP2000205777A (en) * 1999-01-18 2000-07-28 Denso Corp Heat storage heat exchanger apparatus and vehicle air conditioning apparatus
JP2002337537A (en) * 2000-05-26 2002-11-27 Denso Corp Air conditioner for vehicle
JP2008522133A (en) * 2004-11-30 2008-06-26 ヴァレオ システム テルミク Heat exchanger with heat storage function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220909U (en) * 1985-07-23 1987-02-07
JPH10238896A (en) * 1997-02-26 1998-09-08 Denso Corp Lamination type evaporator
JP2000205777A (en) * 1999-01-18 2000-07-28 Denso Corp Heat storage heat exchanger apparatus and vehicle air conditioning apparatus
JP2002337537A (en) * 2000-05-26 2002-11-27 Denso Corp Air conditioner for vehicle
JP2008522133A (en) * 2004-11-30 2008-06-26 ヴァレオ システム テルミク Heat exchanger with heat storage function

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113512A (en) * 2011-11-29 2013-06-10 Atago Seisakusho:Kk Heat exchanger for waste heat recovery
JP2014092321A (en) * 2012-11-02 2014-05-19 Japan Climate Systems Corp Air cooler with cold storage function
WO2014129621A1 (en) 2013-02-25 2014-08-28 ヴァレオ システム テルミク Heat exchanger and vehicle air conditioning device
WO2014181687A1 (en) * 2013-05-09 2014-11-13 カルソニックカンセイ株式会社 Cold storage heat exchanger
KR101611694B1 (en) * 2014-01-16 2016-04-12 한온시스템 주식회사 Tube-fin thermal storage evaporator
JP2015148392A (en) * 2014-02-07 2015-08-20 株式会社ケーヒン・サーマル・テクノロジー heat exchanger
JP2016211809A (en) * 2015-05-12 2016-12-15 株式会社デンソー Cold storage heat exchanger

Also Published As

Publication number Publication date
JP5552309B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5470385B2 (en) Evaporator with cool storage function
JP5525726B2 (en) Evaporator with cool storage function
JP5674388B2 (en) Evaporator with cool storage function
JP5923262B2 (en) Evaporator with cool storage function
JP5276954B2 (en) Evaporator with cool storage function
JP5574819B2 (en) Evaporator with cool storage function
JP5274175B2 (en) Cold storage heat exchanger
JP5552309B2 (en) Evaporator with cool storage function
JP5486837B2 (en) Evaporator with cool storage function
JP5624761B2 (en) Evaporator with cool storage function
JP5542576B2 (en) Evaporator with cool storage function
JP5764335B2 (en) Evaporator with cool storage function
JP2011133127A (en) Evaporator with cold storage function
JP2013018299A (en) Cooling unit of air conditioner for vehicle
JP5315094B2 (en) Evaporator with cool storage function
JP2013015250A (en) Evaporator with cold storage function
JP5194241B2 (en) Evaporator with cool storage function
JP2012126149A (en) Evaporator with cool storage function
JP2010139201A (en) Cold storage device and vehicle air conditioner using the same
JP2011242098A (en) Evaporator having cold storage function
JP2010175167A (en) Cold storage heat exchanger
JP2010243066A (en) Cold storage heat exchanger
JP2014083911A (en) Evaporator with cold storage function
JP5501494B2 (en) Evaporator with cool storage function
JP5600796B2 (en) Evaporator with cool storage function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5552309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees