JP2014083911A - Evaporator with cold storage function - Google Patents
Evaporator with cold storage function Download PDFInfo
- Publication number
- JP2014083911A JP2014083911A JP2012232718A JP2012232718A JP2014083911A JP 2014083911 A JP2014083911 A JP 2014083911A JP 2012232718 A JP2012232718 A JP 2012232718A JP 2012232718 A JP2012232718 A JP 2012232718A JP 2014083911 A JP2014083911 A JP 2014083911A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- pipe
- evaporator
- refrigerant flow
- ventilation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 193
- 238000009423 ventilation Methods 0.000 claims abstract description 54
- 239000011232 storage material Substances 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims description 6
- 230000000712 assembly Effects 0.000 claims description 3
- 238000000429 assembly Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000005219 brazing Methods 0.000 description 4
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- YCOZIPAWZNQLMR-UHFFFAOYSA-N pentadecane Chemical compound CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Abstract
【課題】空気の冷え込みが大きい部分において、蓄冷材容器外面に発生した凝縮水を効果的に排水することができるとともに、空気の冷え込みの度合が小さい部分において、冷媒流通管内を流れる冷媒の有する冷熱を効果的に蓄冷材容器に伝えることができる蓄冷機能付きエバポレータを提供する。
【解決手段】蓄冷機能付きエバポレータは、一部の通風間隙14に配置された蓄冷材容器15を備えている。蓄冷材容器15の左右の各側壁15aにおける管組13の各冷媒流通管12と対応する位置に、外方に膨出しかつ冷媒流通管12に接触する複数の凸部19を上下方向に間隔をおいて形成する。高温冷媒が流れる風上側冷媒流通管12に対応する位置に形成された凸部19の上下方向の間隔を、低温冷媒が流れる風下側冷媒流通管12に対応する位置に形成された凸部19の上下方向の間隔よりも小さくする。
【選択図】図3Condensed water generated on the outer surface of a cold storage material container can be effectively drained in a portion where the air cools down greatly, and the cold heat of the refrigerant flowing in the refrigerant flow pipe in a portion where the degree of air cooling is small It is possible to provide an evaporator with a cool storage function that can effectively transmit the heat to a cool storage material container.
An evaporator with a cool storage function includes a cool storage material container 15 disposed in a part of a ventilation gap 14. In the left and right side walls 15a of the cool storage material container 15, a plurality of convex portions 19 that bulge outward and contact the refrigerant flow pipe 12 are spaced apart in the vertical direction at positions corresponding to the refrigerant flow pipes 12 of the tube set 13. To form. The vertical spacing of the convex portion 19 formed at a position corresponding to the windward side refrigerant circulation pipe 12 through which the high-temperature refrigerant flows is equal to that of the convex portion 19 formed at a position corresponding to the leeward side refrigerant circulation pipe 12 through which the low-temperature refrigerant flows. Make it smaller than the vertical spacing.
[Selection] Figure 3
Description
この発明は、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンに用いられる蓄冷機能付きエバポレータに関する。 The present invention relates to an evaporator with a cold storage function used in a car air conditioner of a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.
この明細書および特許請求の範囲において、図1の上下、左右を上下、左右というものとする。 In this specification and claims, the top and bottom, left and right in FIG.
近年、環境保護や自動車の燃費向上などを目的として、信号待ちなどの停車時にエンジンを自動的に停止させる自動車が提案されている。 In recent years, automobiles have been proposed that automatically stop the engine when the vehicle stops, such as when waiting for a signal, for the purpose of environmental protection or improvement in automobile fuel efficiency.
ところで、通常のカーエアコンにおいては、エンジンを停止させると、エンジンを駆動源とする圧縮機が停止するので、エバポレータに冷媒が供給されなくなり、冷房能力が急激に低下するという問題がある。 By the way, in a normal car air conditioner, when the engine is stopped, the compressor using the engine as a driving source stops, so that the refrigerant is not supplied to the evaporator, and the cooling capacity is rapidly reduced.
そこで、このような問題を解決するために、エバポレータに蓄冷機能を付与し、エンジンが停止して圧縮機が停止した際に、エバポレータに蓄えられた冷熱を利用して車室内を冷却することが考えられている。 Therefore, in order to solve such a problem, the evaporator is provided with a cold storage function, and when the engine stops and the compressor stops, the interior of the vehicle can be cooled using the cold energy stored in the evaporator. It is considered.
蓄冷機能付きエバポレータとして、本出願人は、先に、長手方向が上下方向を向くとともに幅方向が通風方向を向き、かつ通風方向に間隔をおいて配置された2つの扁平状冷媒流通管からなる複数の管組が、冷媒流通管の厚み方向に間隔をおいて並列状に配置され、隣り合う管組どうしの間に通風間隙が形成され、すべての通風間隙のうちの一部の通風間隙に、蓄冷材が封入された蓄冷材容器が、管組の全冷媒流通管に跨るように配置され、少なくとも蓄冷材容器の左右両側に位置する管組において、通風方向に隣り合う2つの冷媒流通管内を流れる冷媒の温度が異なっており、蓄冷材容器の左右の各側壁に、上下方向に間隔をおいて形成され、かつ外方に膨出するとともに冷媒流通管に接触した複数の凸部からなる凸部列が、通風方向に間隔をおいて複数設けられ、すべての凸部列における全凸部の上下方向の間隔が等しくなっており、すべての凸部が風上側に向かって下方に傾斜している蓄冷機能付きエバポレータを提案した(特許文献1参照)。 As an evaporator with a cold storage function, the present applicant first comprises two flat refrigerant circulation pipes whose longitudinal direction faces the up-down direction, the width direction faces the ventilation direction, and is arranged at intervals in the ventilation direction. A plurality of pipe sets are arranged in parallel in the thickness direction of the refrigerant flow pipe, and a ventilation gap is formed between adjacent pipe sets, and a part of all the ventilation gaps is formed in a ventilation gap. In the two refrigerant distribution pipes adjacent to each other in the ventilation direction, the cold storage material container in which the cold storage material is sealed is arranged so as to straddle all the refrigerant circulation pipes of the pipe assembly, and is located at least on both the left and right sides of the cold storage material container. The temperature of the refrigerant flowing through the refrigerant is different, and is formed on the left and right side walls of the cool storage material container at intervals in the vertical direction and bulging outward and in contact with the refrigerant circulation pipe Convex line is in the ventilation direction Proposed an evaporator with a cold storage function, in which a plurality of protrusions are provided, the vertical intervals of all protrusions in all protrusion rows are equal, and all the protrusions are inclined downward toward the windward side. (See Patent Document 1).
特許文献1記載の蓄冷機能付きエバポレータによれば、圧縮機が作動している通常の冷房時には、冷媒流通管内を流れる冷媒の有する冷熱が、凸部を介して蓄冷材容器内の蓄冷材に伝わって蓄冷材に蓄えられ、圧縮機が停止した際には、蓄冷材容器内の蓄冷材に蓄えられた冷熱が、凸部および冷媒流通管を介して通風間隙に配置されたフィンに伝えられ、フィンから当該通風間隙を流れる空気に放冷されるようになっており、エンジンが停止して圧縮機が停止した際に、エバポレータに蓄えられた冷熱を利用して車室内を冷却することが可能になり、エンジンが停止した際の冷房能力の急激な低下が抑制されている。
According to the evaporator with a cool storage function described in
ところで、圧縮機の作動時には、通風方向に隣り合いかつ温度の異なる冷媒が流れる2つの冷媒流通管のうち低温冷媒が流れる冷媒流通管側の部分においては、空気の冷え込みの度合が大きくなって蓄冷材容器外面に発生した凝縮水が凍結するおそれがあるので、当該凝縮水を効果的に排水する必要がある。一方、温度の異なる冷媒が流れる2つの冷媒流通管のうち高温冷媒が流れる冷媒流通管側の部分においては、空気の冷え込みの度合が小さくなるので、冷媒流通管内を流れる冷媒の有する冷熱を、効果的に蓄冷材容器に伝える必要がある。 By the way, at the time of operation of the compressor, in the portion on the side of the refrigerant circulation pipe where the low-temperature refrigerant flows among the two refrigerant circulation pipes adjacent to each other in the ventilation direction and flowing at different temperatures, the degree of air cooling increases and the cold storage occurs. Since the condensed water generated on the outer surface of the material container may freeze, it is necessary to drain the condensed water effectively. On the other hand, in the portion on the side of the refrigerant flow pipe where the high-temperature refrigerant flows among the two refrigerant flow pipes through which the refrigerants having different temperatures flow, the degree of cooling of the air is reduced. Must be communicated to the cool storage container.
しかしながら、特許文献1記載の蓄冷機能付きエバポレータにおいては、空気の冷え込みの度合が大きい部分において、蓄冷材容器外面に発生した凝縮水を効果的に排水するという効果、および空気の冷え込みの度合が小さい部分において、冷媒流通管内を流れる冷媒の有する冷熱を、効果的に蓄冷材容器に伝えるという効果の両者を満たすように、凸部列の凸部の配置が考慮されているわけではない。
However, in the evaporator with the cool storage function described in
この発明の目的は、上記実情に鑑み、空気の冷え込みが大きい部分において、蓄冷材容器外面に発生した凝縮水を効果的に排水することができるとともに、空気の冷え込みの度合が小さい部分において、冷媒流通管内を流れる冷媒の有する冷熱を効果的に蓄冷材容器に伝えることができる蓄冷機能付きエバポレータを提供することにある。 In view of the above situation, the object of the present invention is to effectively drain the condensed water generated on the outer surface of the cool storage material container in the portion where the air is cooled down, and in the portion where the air is cooled down, An object of the present invention is to provide an evaporator with a cold storage function that can effectively transfer the cold heat of the refrigerant flowing in the flow pipe to the cold storage material container.
本発明は、上記目的を達成するために以下の態様からなる。 In order to achieve the above object, the present invention comprises the following aspects.
1)長手方向が上下方向を向くとともに幅方向が通風方向を向き、かつ通風方向に間隔をおいて配置された複数の扁平状冷媒流通管からなる複数の管組が、冷媒流通管の厚み方向に間隔をおいて並列状に配置され、隣り合う管組どうしの間に通風間隙が形成され、すべての通風間隙のうちの一部の通風間隙に、蓄冷材が封入された蓄冷材容器が、管組の全冷媒流通管に跨るように配置されており、少なくとも蓄冷材容器の左右両側に位置する管組において、通風方向に隣り合う2つの冷媒流通管内を流れる冷媒の温度が異なっている蓄冷機能付きエバポレータであって、
蓄冷材容器の左右の各側壁における管組の各冷媒流通管と対応する位置に、外方に膨出しかつ冷媒流通管に接触した複数の凸部が上下方向に間隔をおいて形成されており、通風方向に隣り合いかつ温度の異なる冷媒が流れる2つの冷媒流通管のうち高温冷媒が流れる冷媒流通管に対応する位置に形成された凸部の上下方向の間隔が、同じく低温冷媒が流れる冷媒流通管に対応する位置に形成された凸部の上下方向の間隔よりも小さくなっている蓄冷機能付きエバポレータ。
1) The thickness direction of the refrigerant flow pipe is a plurality of pipe sets composed of a plurality of flat refrigerant flow pipes whose longitudinal direction faces the up-down direction and the width direction faces the ventilation direction and is spaced in the ventilation direction. Are arranged in parallel with each other, a ventilation gap is formed between adjacent pipe sets, and a regenerator container in which a regenerator material is sealed in a part of all the ventilation gaps, Cold storage that is arranged so as to straddle all the refrigerant flow pipes of the pipe set, and in which the temperature of the refrigerant flowing in the two refrigerant flow pipes adjacent to each other in the ventilation direction is different in at least the pipe sets located on the left and right sides of the cold storage material container An evaporator with function,
A plurality of convex portions that bulge outward and are in contact with the refrigerant flow pipe are formed at intervals in the vertical direction at positions corresponding to the refrigerant flow pipes of the pipe sets on the left and right side walls of the cold storage material container. Among the two refrigerant flow pipes that are adjacent to each other in the ventilation direction and through which the refrigerants having different temperatures flow, the intervals in the vertical direction of the convex portions formed at positions corresponding to the refrigerant flow pipes through which the high-temperature refrigerant flows are the same. An evaporator with a cold storage function, which is smaller than the vertical interval between convex portions formed at positions corresponding to the flow pipe.
2)通風方向に隣り合いかつ温度の異なる冷媒が流れる2つの冷媒流通管のうち少なくとも低温冷媒が流れる冷媒流通管に対応する位置に形成された凸部が、同じく高温冷媒が流れる冷媒流通管側に向かって下方に傾斜している上記1)記載の蓄冷機能付きエバポレータ。 2) Of the two refrigerant flow pipes that are adjacent to each other in the ventilation direction and through which refrigerants with different temperatures flow, at least a convex portion formed at a position corresponding to the refrigerant flow pipe through which the low-temperature refrigerant flows is the refrigerant flow pipe side through which the high-temperature refrigerant flows. The evaporator with a cold storage function as described in 1) above, which is inclined downward.
3)通風方向に隣り合いかつ温度の異なる冷媒が流れる2つの冷媒流通管のうち高温冷媒が流れる冷媒流通管に対応する位置に形成された凸部が、風上側または風下側に向かって下方に傾斜している上記1)または2)記載の蓄冷機能付きエバポレータ。 3) A convex portion formed at a position corresponding to the refrigerant flow pipe through which the high-temperature refrigerant flows out of the two refrigerant flow pipes that are adjacent to each other in the ventilation direction and through which the refrigerant having different temperatures flows is downward toward the windward or leeward side. The evaporator with a cold storage function as described in 1) or 2) above, which is inclined.
4)各管組が、通風方向に並んだ2つの冷媒流通管からなり、各管組における風下側冷媒流通管内を低温冷媒が流れるとともに、風上側冷媒流通管内を高温冷媒が流れるようになっており、各冷媒流通管に対応する位置に形成された凸部が風上側に向かって下方に傾斜している上記1)〜3)のうちのいずれかに記載の蓄冷機能付きエバポレータ。 4) Each pipe assembly consists of two refrigerant flow pipes arranged in the direction of ventilation. Low-temperature refrigerant flows in the leeward refrigerant circulation pipe in each pipe set, and high-temperature refrigerant flows in the windward refrigerant circulation pipe. The evaporator with a cold storage function according to any one of the above 1) to 3), wherein a convex portion formed at a position corresponding to each refrigerant circulation pipe is inclined downward toward the windward side.
上記1)〜4)の蓄冷機能付きエバポレータによれば、蓄冷材容器の左右の各側壁における管組の各冷媒流通管と対応する位置に、外方に膨出しかつ冷媒流通管に接触した複数の凸部が上下方向に間隔をおいて形成されており、通風方向に隣り合いかつ温度の異なる冷媒が流れる2つの冷媒流通管のうち高温冷媒が流れる冷媒流通管に対応する位置に形成された凸部の上下方向の間隔が、同じく低温冷媒が流れる冷媒流通管に対応する位置に形成された凸部の上下方向の間隔よりも小さくなっているので、低温冷媒が流れる冷媒流通管と対応する位置に形成された凸部の上下方向の間隔を、隣り合う凸部間に凝縮水が溜まりにくいように比較的大きくした場合であっても、これとは無関係に、高温冷媒が流れる冷媒流通管と対応する位置に形成された凸部の上下方向の間隔を、凸部と冷媒流通管との接触面積が十分に大きくなるように決めることができる。したがって、通風方向に隣り合いかつ温度の異なる冷媒が流れる2つの冷媒流通管のうち低温冷媒が流れる冷媒流通管と対応する位置において、蓄冷材容器外面に発生した凝縮水を効果的に排水することができるとともに、高温冷媒が流れる冷媒流通管と対応する位置において、冷媒流通管内を流れる冷媒の有する冷熱を効果的に蓄冷材容器に伝えることができる。 According to the evaporator with a cold storage function of 1) to 4) above, a plurality of pipes bulging outwardly and in contact with the refrigerant flow pipes at positions corresponding to the refrigerant flow pipes of the pipe sets on the left and right side walls of the cold storage material container Is formed at a position corresponding to the refrigerant flow pipe through which the high-temperature refrigerant flows, out of the two refrigerant flow pipes through which the refrigerant having different temperatures flows adjacent to each other in the ventilation direction. Similarly, the vertical interval between the convex portions is smaller than the vertical interval between the convex portions formed at positions corresponding to the refrigerant flow pipes through which the low-temperature refrigerant flows. Regardless of this, the refrigerant flow pipe through which the high-temperature refrigerant flows is provided even when the vertical interval between the convex portions formed at the positions is relatively large so that the condensed water does not easily collect between the adjacent convex portions. And corresponding positions are formed The vertical spacing of the convex portions can be determined so that the contact area between the convex portions and the refrigerant flow pipe is sufficiently large. Therefore, the condensate generated on the outer surface of the cold storage material container is effectively drained at a position corresponding to the refrigerant circulation pipe through which the low-temperature refrigerant flows out of the two refrigerant circulation pipes through which the refrigerant having different temperatures flows adjacent to each other in the ventilation direction. In addition, at the position corresponding to the refrigerant flow pipe through which the high-temperature refrigerant flows, the cold heat of the refrigerant flowing through the refrigerant flow pipe can be effectively transmitted to the cold storage material container.
上記2)の蓄冷機能付きエバポレータによれば、通風方向に隣り合いかつ温度の異なる冷媒が流れる2つの冷媒流通管のうち少なくとも低温冷媒が流れる冷媒流通管に対応する位置に形成された凸部が、同じく高温冷媒が流れる冷媒流通管側に向かって下方に傾斜しているので、空気の冷え込みの度合が大きい低温冷媒が流れる冷媒流通管側の部分において蓄冷材容器外面に発生した凝縮水を、凸部により隣り合う2つの冷媒流通管間の間隙に案内し、当該間隙を通して排水することが可能になる。したがって、空気の冷え込みの度合が大きい部分において蓄冷材容器外面に発生した凝縮水の凍結を抑制することができる。 According to the evaporator with a cool storage function of 2) above, the convex portion formed at a position corresponding to at least the refrigerant circulation pipe through which the low-temperature refrigerant flows out of the two refrigerant circulation pipes through which the refrigerant having different temperatures flows adjacent to each other in the ventilation direction. Similarly, because it is inclined downward toward the refrigerant flow pipe side through which the high-temperature refrigerant flows, the condensed water generated on the outer surface of the regenerator container in the portion of the refrigerant flow pipe side through which the low-temperature refrigerant flows with a high degree of air cooling, It is possible to guide to the gap between two adjacent refrigerant flow pipes by the convex portion and to drain through the gap. Therefore, it is possible to suppress freezing of the condensed water generated on the outer surface of the cool storage material container in a portion where the degree of cooling of the air is large.
上記3)の蓄冷機能付きエバポレータによれば、空気の冷え込みの度合の小さい部分において蓄冷材容器外面に発生した凝縮水を、凸部により効果的に排水することが可能になる。 According to the evaporator with the cold storage function of 3), it is possible to effectively drain the condensed water generated on the outer surface of the cold storage material container in the portion where the degree of cooling of the air is small by the convex portion.
上記4)の蓄冷機能付きエバポレータによれば、蓄冷材容器外面に発生した凝縮水の風下側への飛散を抑制することができる。 According to the evaporator with a cool storage function of 4) above, it is possible to suppress the scattering of the condensed water generated on the outer surface of the cool storage material container to the leeward side.
以下、この発明の実施形態を、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
以下の説明において、通風方向下流側(各図面に矢印Xで示す方向)を前、これと反対側を後というものとする。 In the following description, the downstream side in the ventilation direction (the direction indicated by arrow X in each drawing) is referred to as the front, and the opposite side is referred to as the rear.
さらに、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。 Furthermore, in the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.
図1はこの発明による蓄冷機能付きエバポレータの全体構成を示し、図2および図3はその要部の構成を示す。 FIG. 1 shows the overall configuration of an evaporator with a cold storage function according to the present invention, and FIGS. 2 and 3 show the configuration of the main part thereof.
図1において、蓄冷機能付きエバポレータ(1)は、上下方向に間隔をおいて配置された左右方向にのびるアルミニウム製第1ヘッダタンク(2)およびアルミニウム製第2ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。 In FIG. 1, an evaporator with a cold storage function (1) includes an aluminum first header tank (2) and an aluminum second header tank (3) extending in the horizontal direction and spaced apart in the vertical direction, and both headers. And a heat exchange core part (4) provided between the tanks (2) and (3).
第1ヘッダタンク(2)は、前側(通風方向下流側)に位置する風下側上ヘッダ部(5)と、後側(通風方向上流側)に位置しかつ風下側上ヘッダ部(5)に一体化された風上側上ヘッダ部(6)とを備えている。風下側上ヘッダ部(5)の右端部に冷媒入口(7)が設けられ、風上側上ヘッダ部(6)の右端部に冷媒出口(8)が設けられている。第2ヘッダタンク(3)は、前側に位置する風下側下ヘッダ部(9)と、後側に位置しかつ風下側下ヘッダ部(9)に一体化された風上側下ヘッダ部(11)とを備えている。第2ヘッダタンク(3)の風下側下ヘッダ部(9)内と風上側下ヘッダ部(11)内とは、図示しない適当な手段により通じさせられている。 The first header tank (2) is located on the leeward upper header part (5) located on the front side (downstream side in the ventilation direction) and on the leeward side upper header part (5) located on the rear side (upstream side in the ventilation direction). And an integrated upwind header section (6). A refrigerant inlet (7) is provided at the right end of the leeward upper header (5), and a refrigerant outlet (8) is provided at the right end of the leeward upper header (6). The second header tank (3) includes a leeward lower header portion (9) located on the front side and an upwind lower header portion (11) located on the rear side and integrated with the leeward lower header portion (9). And. The inside of the leeward side lower header portion (9) and the inside of the leeward side lower header portion (11) of the second header tank (3) are communicated by appropriate means (not shown).
図1および図2に示すように、熱交換コア部(4)には、長手方向が上下方向を向くとともに幅方向が通風方向(前後方向)を向いた複数のアルミニウム押出形材製扁平状冷媒流通管(12)が、左右方向に間隔をおいて並列状に配置されている。ここでは、前後方向に間隔をおいて配置された2つの冷媒流通管(12)からなる複数の組(13)が左右方向に間隔をおいて配置されており、前後の冷媒流通管(12)よりなる組(13)の隣り合うものどうしの間に通風間隙(14)が形成されている。前側の冷媒流通管(12)の上端部は風下側上ヘッダ部(5)に接続されるとともに、同下端部は風下側下ヘッダ部(9)に接続されている。また、後側の冷媒流通管(12)の上端部は風上側上ヘッダ部(6)に接続されるとともに、同下端部は風上側下ヘッダ部(11)に接続されている。 As shown in FIGS. 1 and 2, the heat exchange core (4) has a flat refrigerant made of a plurality of extruded aluminum shapes whose longitudinal direction faces the vertical direction and whose width direction faces the ventilation direction (front-rear direction). The flow pipes (12) are arranged in parallel at intervals in the left-right direction. Here, a plurality of sets (13) consisting of two refrigerant flow pipes (12) arranged at intervals in the front-rear direction are arranged at intervals in the left-right direction, and the front and rear refrigerant flow pipes (12) A ventilation gap (14) is formed between adjacent members of the set (13). An upper end portion of the front refrigerant flow pipe (12) is connected to the leeward upper header portion (5), and a lower end portion thereof is connected to the leeward lower header portion (9). Further, the upper end portion of the rear refrigerant flow pipe (12) is connected to the windward upper header portion (6), and the lower end portion thereof is connected to the windward lower header portion (11).
熱交換コア部(4)における全通風間隙(14)のうち一部の複数の通風間隙(14)でかつ隣接していない通風間隙(14)において、蓄冷材(図示略)が封入されたアルミニウム製蓄冷材容器(15)が、前後両冷媒流通管(12)に跨るように配置されている。また、残りの通風間隙(14)に、両面にろう材層を有するアルミニウムブレージングシートからなり、かつ前後方向にのびる波頂部、前後方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなるコルゲート状のアウターフィン(16)が、前後両冷媒流通管(12)に跨るように配置されて通風間隙(14)を形成する左右両側の組(13)を構成する前後両冷媒流通管(12)にろう付されている。すなわち、蓄冷材容器(15)が配置された通風間隙(14)の両側の通風間隙(14)にそれぞれアウターフィン(16)が配置されている。また、左右両端の冷媒流通管(12)の組(13)の外側にも両面にろう材層を有するアルミニウムブレージングシートからなるアウターフィン(16)が配置されて前後両冷媒流通管(12)にろう付され、さらに左右両端のアウターフィン(16)の外側にアルミニウム製サイドプレート(17)が配置されてアウターフィン(16)にろう付されている。左右両端のアウターフィン(16)とサイドプレート(17)との間も通風間隙(14)となっている。 Aluminum in which a regenerator (not shown) is enclosed in a plurality of ventilation gaps (14) of the entire ventilation gap (14) in the heat exchange core section (4) and in the ventilation gaps (14) that are not adjacent to each other. The cold storage material container (15) is disposed so as to straddle both the front and rear refrigerant flow pipes (12). Further, the remaining ventilation gap (14) is made of an aluminum brazing sheet having a brazing filler metal layer on both sides, and has a wave crest extending in the front-rear direction, a wave bottom extending in the front-rear direction, and a connection connecting the wave crest and the wave bottom. The corrugated outer fins (16) made up of the two parts are arranged so as to straddle the front and rear refrigerant flow pipes (12) to form a pair (13) on both the left and right sides forming a ventilation gap (14). It is brazed to the tube (12). That is, the outer fins (16) are arranged in the ventilation gaps (14) on both sides of the ventilation gap (14) where the cool storage material container (15) is arranged. In addition, outer fins (16) made of an aluminum brazing sheet having brazing filler metal layers on both sides are also arranged outside the set (13) of the refrigerant flow pipes (12) at both left and right ends, and the front and rear refrigerant flow pipes (12). An aluminum side plate (17) is disposed outside the outer fins (16) at both left and right ends and brazed to the outer fins (16). A ventilation gap (14) is also formed between the outer fins (16) at the left and right ends and the side plate (17).
この実施形態のエバポレータ(1)の場合、冷媒入口(7)から風下側上ヘッダ部(5)内に流入した冷媒は、各管組(13)の風下側冷媒流通管(12)内を下方に流れて風下側下ヘッダ部(9)内に入る。風下側下ヘッダ部(9)内に入った冷媒は、風上側下ヘッダ部(11)内に入り、各管組(13)の風上側冷媒流通管(12)内を上方に流れて風上側上ヘッダ部(6)内に入り、冷媒出口(8)から流出するようになっている。したがって、各管組(13)において、通風方向に隣り合う2つの冷媒流通管(12)内を流れる冷媒の温度が異なることになり、冷媒入口(7)に近い風下側冷媒流通管(12)内を低温冷媒が流れ、冷媒入口(7)から遠い風上側冷媒流通管(12)内を高温冷媒が流れるようになっている。すなわち、少なくとも蓄冷材容器(15)の左右両側に位置する管組(13)において、通風方向に隣り合う2つの冷媒流通管(12)内を流れる冷媒の温度は異なっている。 In the case of the evaporator (1) of this embodiment, the refrigerant that has flowed into the leeward upper header section (5) from the refrigerant inlet (7) is moved downward in the leeward refrigerant circulation pipe (12) of each pipe assembly (13). Into the leeward lower header section (9). The refrigerant that has entered the leeward lower header section (9) enters the leeward lower header section (11) and flows upward in the leeward refrigerant circulation pipe (12) of each pipe assembly (13). It enters into the upper header part (6) and flows out from the refrigerant outlet (8). Therefore, in each pipe set (13), the temperature of the refrigerant flowing in the two refrigerant circulation pipes (12) adjacent in the ventilation direction is different, and the leeward refrigerant circulation pipe (12) close to the refrigerant inlet (7). A low-temperature refrigerant flows through the inside, and a high-temperature refrigerant flows through the windward refrigerant circulation pipe (12) far from the refrigerant inlet (7). That is, the temperature of the refrigerant flowing in the two refrigerant circulation pipes (12) adjacent in the ventilation direction is different in at least the pipe assemblies (13) located on the left and right sides of the cold storage material container (15).
図2および図3に示すように、蓄冷材容器(15)は長手方向を上下方向に向けるとともに幅方向を前後方向に向けた扁平状である。蓄冷材容器(15)内に、前後方向にのびる波頂部、前後方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなるコルゲート状のアルミニウム製インナーフィン(18)が配置されており、波底部および波頂部が蓄冷材容器(15)の左右両側壁(15a)にろう付されている。蓄冷材容器(15)内へ充填される蓄冷材としては、凝固点が5〜10℃程度に調整されたパラフィン系潜熱蓄冷材が用いられる。具体的には、ペンタデカン、テトラデカンなどが用いられる。 As shown in FIGS. 2 and 3, the cool storage material container (15) has a flat shape in which the longitudinal direction is directed in the vertical direction and the width direction is directed in the front-rear direction. A corrugated aluminum inner fin (18) comprising a wave crest extending in the front-rear direction, a wave bottom extending in the front-rear direction, and a connecting portion connecting the wave crest and the wave bottom is disposed in the cold storage material container (15). The wave bottom and wave crest are brazed to the left and right side walls (15a) of the cold storage material container (15). As the regenerator material filled in the regenerator material container (15), a paraffin-based latent heat regenerator material whose freezing point is adjusted to about 5 to 10 ° C is used. Specifically, pentadecane, tetradecane, or the like is used.
蓄冷材容器(15)の左右両側壁(15a)における管組(13)の各冷媒流通管(12)と対応する位置に、外方に突出しかつ冷媒流通管(12)に接触した状態でろう付された通風方向に長い複数の凸部(19)が上下方向に間隔をおいて形成されており、各冷媒流通管(12)と対応する位置に、上下方向に並んだ複数の凸部(19)からなる凸部列(21)が設けられている。 In the state corresponding to each refrigerant flow pipe (12) of the pipe assembly (13) on the left and right side walls (15a) of the cold storage material container (15), it protrudes outward and is in contact with the refrigerant flow pipe (12). A plurality of protrusions (19) long in the direction of ventilation attached are formed at intervals in the up-down direction, and a plurality of protrusions (lined up and down) at positions corresponding to the refrigerant flow pipes (12) ( A convex row (21) consisting of 19) is provided.
両凸部列(21)の凸部(19)は、風上側に向かって下方に傾斜している。また、風上側凸部列(21)の凸部(19)、すなわち各管組(13)において通風方向に隣り合う2つの冷媒流通管(12)のうち風上側冷媒流通管(12)(高温冷媒が流れる冷媒流通管)に対応する位置に形成された凸部(19)の上下方向の間隔は、風下側凸部列(21)の凸部(19)、すなわち各管組(13)において通風方向に隣り合う2つの冷媒流通管(12)のうち風下側冷媒流通管(12)(低温冷媒が流れる冷媒流通管)に対応する位置に形成された凸部(19)の上下方向の間隔よりも小さくなっている。両凸部列(21)の凸部(19)の前後両端部は、冷媒流通管(12)の前後両側縁とほぼ一致した位置にある。 The convex portions (19) of the both convex portion rows (21) are inclined downward toward the windward side. In addition, the windward refrigerant flow pipe (12) (high temperature) of the two refrigerant flow pipes (12) adjacent to each other in the air flow direction in each pipe set (13) of the windward convex row (21). The vertical spacing of the projections (19) formed at the position corresponding to the refrigerant flow pipe through which the refrigerant flows is the projection (19) of the leeward projection row (21), that is, each pipe assembly (13). The vertical spacing of the projection (19) formed at a position corresponding to the leeward refrigerant circulation pipe (12) (the refrigerant circulation pipe through which the low-temperature refrigerant flows) of the two refrigerant circulation pipes (12) adjacent to each other in the ventilation direction Is smaller than The front and rear end portions of the convex portion (19) of the both convex portion rows (21) are in positions substantially coincident with the front and rear side edges of the refrigerant flow pipe (12).
上述した蓄冷機能付きエバポレータ(1)は、車両のエンジンを駆動源とする圧縮機、圧縮機から吐出された冷媒を冷却するコンデンサ(冷媒冷却器)、コンデンサを通過した冷媒を減圧する膨張弁(減圧器)とともに冷凍サイクルを構成し、カーエアコンとして、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両、たとえば自動車に搭載される。そして、圧縮機が作動している場合には、圧縮機で圧縮されてコンデンサおよび膨張弁を通過した低圧の気液混相の2相冷媒が、冷媒入口(7)を通って蓄冷機能付きエバポレータ(1)の風下側上ヘッダ部(5)内に入り、全冷媒流通管(12)を通って風上側上ヘッダ部(6)の冷媒出口(8)から流出する。そして、冷媒が冷媒流通管(12)内を流れる間に、通風間隙(14)を通過する空気と熱交換をし、冷媒は気相となって流出する。 The evaporator with a cold storage function (1) described above includes a compressor that uses a vehicle engine as a drive source, a condenser that cools the refrigerant discharged from the compressor (refrigerant cooler), and an expansion valve that depressurizes the refrigerant that has passed through the condenser ( A refrigeration cycle is configured together with a decompressor, and is mounted as a car air conditioner on a vehicle, such as an automobile, that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped. When the compressor is operating, the low-pressure gas-liquid mixed-phase two-phase refrigerant compressed by the compressor and passed through the condenser and the expansion valve passes through the refrigerant inlet (7) and has an evaporator with a cold storage function ( It enters into the leeward upper header part (5) of 1) and flows out from the refrigerant outlet (8) of the leeward upper header part (6) through the entire refrigerant flow pipe (12). Then, while the refrigerant flows through the refrigerant flow pipe (12), heat exchange is performed with the air passing through the ventilation gap (14), and the refrigerant flows out as a gas phase.
このとき、冷媒流通管(12)内を流れる冷媒の有する冷熱が、蓄冷材容器(15)の両側壁(15a)における冷媒流通管(12)にろう付されている凸部(19)の膨出頂壁から直接蓄冷材容器(15)内の蓄冷材に伝わるとともに、凸部(19)の膨出頂壁から蓄冷材容器(15)の両側壁(15a)およびインナーフィン(18)を経て蓄冷材容器(15)内の蓄冷材に伝わって蓄冷材に冷熱が蓄えられる。ここで、風上側凸部列(21)の凸部(19)、すなわち隣り合う2つの冷媒流通管(12)のうち風上側冷媒流通管(12)に対応する位置に形成された凸部(19)の上下方向の間隔が、風下側凸部列(21)の凸部(19)の上下方向の間隔よりも小さくなっているので、風下側冷媒流通管(12)と対応する位置に形成された凸部(19)の上下方向の間隔を、隣り合う凸部(19)間に凝縮水が溜まりにくいように比較的大きくした場合であっても、これとは無関係に、風下側冷媒流通管(12)と対応する位置に形成された凸部(19)の上下方向の間隔を、凸部(19)と冷媒流通管(12)との接触面積が十分に大きくなるように決めることができる。したがって、空気の冷え込みの度合の小さい風上側部分においては、空気の冷え込みの度合の大きい風下側部分に比較して、冷媒流通管(12)内を流れる冷媒の有する冷熱を効果的に蓄冷材容器(15)に伝えることができる。 At this time, the cold heat of the refrigerant flowing in the refrigerant flow pipe (12) is expanded by the protrusion (19) brazed to the refrigerant flow pipe (12) on both side walls (15a) of the cool storage material container (15). It is transmitted directly from the top wall to the cool storage material in the cool storage material container (15), and from the bulging top wall of the convex portion (19) through the both side walls (15a) and the inner fin (18) of the cool storage material container (15). Cold energy is stored in the cool storage material by being transmitted to the cool storage material in the cool storage material container (15). Here, the convex part (19) of the windward convex part row (21), that is, the convex part formed at a position corresponding to the windward refrigerant circulation pipe (12) among the two adjacent refrigerant circulation pipes (12) ( Since the vertical spacing of 19) is smaller than the vertical spacing of the projections (19) of the leeward convex row (21), it is formed at a position corresponding to the leeward refrigerant circulation pipe (12). Regardless of this, the leeward side refrigerant flow can be achieved even when the vertical spacing of the raised protrusions (19) is relatively large so that the condensed water is less likely to collect between adjacent protrusions (19). The interval in the vertical direction of the convex portion (19) formed at a position corresponding to the pipe (12) can be determined so that the contact area between the convex portion (19) and the refrigerant flow pipe (12) is sufficiently large. it can. Therefore, in the leeward portion where the degree of air cooling is small, the cold energy of the refrigerant flowing in the refrigerant flow pipe (12) is effectively reduced compared to the leeward portion where the degree of air cooling is large. (15).
また、両凸部列(21)の凸部(19)は、風上側に向かって下方に傾斜しているので、空気の冷え込みの度合が大きい風下側部分において蓄冷材容器(15)外面に発生した凝縮水は、凸部(19)により隣り合う2つの冷媒流通管(12)間の間隙に向かって案内され、当該間隙を通して排水される。したがって、空気の冷え込みの度合が大きい風下側部分において蓄冷材容器(15)外面に発生した凝縮水の凍結が抑制される。しかも、空気の冷え込みの度合が大きい風下側部分において蓄冷材容器(15)外面に発生した凝縮水の飛散が抑制される。さらに、風上側部分において蓄冷材容器(15)外面に発生した凝縮水は、凸部(19)により風上側冷媒流通管(12)の風上側縁部に向かって案内され、当該風上側縁部に沿って排水される。 Further, since the convex portions (19) of both convex portion rows (21) are inclined downward toward the windward side, they are generated on the outer surface of the regenerator container (15) in the leeward side portion where the degree of air cooling is large. The condensed water thus guided is guided toward the gap between the two adjacent refrigerant flow pipes (12) by the convex portion (19) and drained through the gap. Therefore, freezing of the condensed water generated on the outer surface of the cool storage material container (15) in the leeward side portion where the degree of air cooling is large is suppressed. In addition, scattering of condensed water generated on the outer surface of the cool storage material container (15) is suppressed in the leeward side portion where the degree of air cooling is large. Further, the condensed water generated on the outer surface of the cool storage material container (15) in the windward portion is guided toward the windward edge of the windward refrigerant circulation pipe (12) by the convex portion (19), and the windward edge portion. It is drained along.
圧縮機が停止した場合には、蓄冷材容器(15)内の蓄冷材に蓄えられた冷熱が、蓄冷材容器(15)の両側壁(15a)における冷媒流通管(12)にろう付されている凸部(19)の膨出頂壁から直接冷媒流通管(12)に伝わり、さらに冷媒流通管(12)を通過して当該冷媒流通管(12)にろう付されているアウターフィン(16)に伝わる。そして、アウターフィン(16)を介して蓄冷材容器(15)が配置されている通風間隙(14)の両隣の通風間隙(14)を通過する空気に伝えられる。したがって、エバポレータ(1)を通過した風の温度が上昇したとしても、当該風は冷却されるので、冷房能力の急激な低下が防止される。 When the compressor stops, the cold energy stored in the cold storage material in the cold storage material container (15) is brazed to the refrigerant flow pipe (12) on both side walls (15a) of the cold storage material container (15). The outer fins (16) are transmitted directly from the bulging top wall of the convex portion (19) to the refrigerant flow pipe (12), and further passed through the refrigerant flow pipe (12) and brazed to the refrigerant flow pipe (12). ) And it is transmitted to the air which passes the ventilation gap (14) of the both sides of the ventilation gap (14) where the cool storage material container (15) is arrange | positioned through an outer fin (16). Therefore, even if the temperature of the wind that has passed through the evaporator (1) rises, the wind is cooled, so that a rapid decrease in the cooling capacity is prevented.
上記実施形態においては、冷媒入口(7)から風下側上ヘッダ部(5)内に流入した冷媒は、各管組(13)の風下側冷媒流通管(12)、風下側下ヘッダ部(9)、風上側下ヘッダ部(11)、各管組(13)の風上側冷媒流通管(12)および風上側上ヘッダ部(6)の順序で流れて冷媒出口(8)から流出するようになっており、各管組(13)において、通風方向に隣り合う2つの冷媒流通管(12)内を流れる冷媒の温度が異なることになり、風下側冷媒流通管(12)内を低温冷媒が流れ、風上側冷媒流通管(12)内を高温冷媒が流れるようになっているが、これに限定されるものではない。すなわち、冷媒入口(7)から流入した冷媒が、すべての冷媒流通管(12)を流れて冷媒出口(8)から流出するようになっていればよく、必ずしも各管組(13)において風下側冷媒流通管(12)内を低温冷媒が流れ、風上側冷媒流通管(12)を高温冷媒が流れる必要はない。 In the above embodiment, the refrigerant that has flowed into the leeward upper header portion (5) from the refrigerant inlet (7) flows into the leeward refrigerant circulation pipe (12), leeward lower header portion (9) of each pipe assembly (13). ), The windward lower header section (11), the windward refrigerant circulation pipe (12) of each pipe assembly (13), and the windward upper header section (6) in this order so as to flow out of the refrigerant outlet (8). In each pipe set (13), the temperature of the refrigerant flowing in the two refrigerant flow pipes (12) adjacent in the ventilation direction is different, and the low-temperature refrigerant flows in the leeward refrigerant flow pipe (12). Although the high-temperature refrigerant flows through the windward refrigerant circulation pipe (12), the present invention is not limited to this. That is, it is sufficient that the refrigerant flowing in from the refrigerant inlet (7) flows through all the refrigerant flow pipes (12) and flows out from the refrigerant outlet (8), and is not necessarily in the leeward side in each pipe assembly (13). It is not necessary for the low-temperature refrigerant to flow through the refrigerant flow pipe (12) and the high-temperature refrigerant to flow through the wind-side refrigerant flow pipe (12).
この発明による蓄冷機能付きエバポレータは、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンを構成する冷凍サイクルに好適に用いられる。 The evaporator with a cold storage function according to the present invention is suitably used in a refrigeration cycle constituting a car air conditioner for a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.
(1):蓄冷機能付きエバポレータ
(12):冷媒流通管
(13):管組
(14):通風間隙
(15):蓄冷材容器
(15a):側壁
(19):凸部
(1): Evaporator with cool storage function
(12): Refrigerant distribution pipe
(13): Tube assembly
(14): Ventilation gap
(15): Cold storage container
(15a): Side wall
(19): Convex part
Claims (4)
蓄冷材容器の左右の各側壁における管組の各冷媒流通管と対応する位置に、外方に膨出しかつ冷媒流通管に接触した複数の凸部が上下方向に間隔をおいて形成されており、通風方向に隣り合いかつ温度の異なる冷媒が流れる2つの冷媒流通管のうち高温冷媒が流れる冷媒流通管に対応する位置に形成された凸部の上下方向の間隔が、同じく低温冷媒が流れる冷媒流通管に対応する位置に形成された凸部の上下方向の間隔よりも小さくなっている蓄冷機能付きエバポレータ。 A plurality of flat refrigerant circulation pipes having a longitudinal direction facing the vertical direction and a width direction facing the ventilation direction and spaced apart in the ventilation direction are spaced in the thickness direction of the refrigerant circulation pipe. Are arranged in parallel, a ventilation gap is formed between adjacent pipe assemblies, and a regenerator container in which a regenerator material is sealed in a part of all the ventilation gaps is a pipe assembly. With the cold storage function, the temperature of the refrigerant flowing in the two refrigerant flow pipes adjacent to each other in the ventilation direction is different in at least the pipe assemblies located on the left and right sides of the cold storage material container. An evaporator,
A plurality of convex portions that bulge outward and are in contact with the refrigerant flow pipe are formed at intervals in the vertical direction at positions corresponding to the refrigerant flow pipes of the pipe sets on the left and right side walls of the cold storage material container. Among the two refrigerant flow pipes that are adjacent to each other in the ventilation direction and through which the refrigerants having different temperatures flow, the intervals in the vertical direction of the convex portions formed at positions corresponding to the refrigerant flow pipes through which the high-temperature refrigerant flows are the same. An evaporator with a cold storage function, which is smaller than the vertical interval between convex portions formed at positions corresponding to the flow pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012232718A JP6097520B2 (en) | 2012-10-22 | 2012-10-22 | Evaporator with cool storage function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012232718A JP6097520B2 (en) | 2012-10-22 | 2012-10-22 | Evaporator with cool storage function |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014083911A true JP2014083911A (en) | 2014-05-12 |
JP6097520B2 JP6097520B2 (en) | 2017-03-15 |
Family
ID=50787415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012232718A Expired - Fee Related JP6097520B2 (en) | 2012-10-22 | 2012-10-22 | Evaporator with cool storage function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6097520B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106240306A (en) * | 2016-09-07 | 2016-12-21 | 芜湖德鑫汽车部件有限公司 | Automobile air-conditioning evaporator accumulator is put |
CN106394180A (en) * | 2016-09-07 | 2017-02-15 | 芜湖德鑫汽车部件有限公司 | Cold storage device of evaporator of automobile air conditioner |
JP2017125636A (en) * | 2016-01-13 | 2017-07-20 | 株式会社ケーヒン・サーマル・テクノロジー | Evaporator with cold storage function |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011006058A (en) * | 2009-05-22 | 2011-01-13 | Showa Denko Kk | Evaporator with cold storage function |
JP2012154595A (en) * | 2011-01-28 | 2012-08-16 | Showa Denko Kk | Evaporator including cold storage function |
-
2012
- 2012-10-22 JP JP2012232718A patent/JP6097520B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011006058A (en) * | 2009-05-22 | 2011-01-13 | Showa Denko Kk | Evaporator with cold storage function |
JP2012154595A (en) * | 2011-01-28 | 2012-08-16 | Showa Denko Kk | Evaporator including cold storage function |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017125636A (en) * | 2016-01-13 | 2017-07-20 | 株式会社ケーヒン・サーマル・テクノロジー | Evaporator with cold storage function |
CN106240306A (en) * | 2016-09-07 | 2016-12-21 | 芜湖德鑫汽车部件有限公司 | Automobile air-conditioning evaporator accumulator is put |
CN106394180A (en) * | 2016-09-07 | 2017-02-15 | 芜湖德鑫汽车部件有限公司 | Cold storage device of evaporator of automobile air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP6097520B2 (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5923262B2 (en) | Evaporator with cool storage function | |
JP5525726B2 (en) | Evaporator with cool storage function | |
JP6427636B2 (en) | Evaporator with cold storage function | |
JP5674388B2 (en) | Evaporator with cool storage function | |
JP5574819B2 (en) | Evaporator with cool storage function | |
JP5868088B2 (en) | Cooling unit for vehicle air conditioner | |
JP5624761B2 (en) | Evaporator with cool storage function | |
JP2013061136A5 (en) | ||
JP5764335B2 (en) | Evaporator with cool storage function | |
JP5542576B2 (en) | Evaporator with cool storage function | |
JP5194241B2 (en) | Evaporator with cool storage function | |
JP6097520B2 (en) | Evaporator with cool storage function | |
JP5574700B2 (en) | Evaporator with cool storage function | |
JP6578169B2 (en) | Evaporator with cool storage function | |
JP6182442B2 (en) | Evaporator with cool storage function | |
JP2017155969A (en) | Evaporator with cold storage function | |
JP5501494B2 (en) | Evaporator with cool storage function | |
JP5600796B2 (en) | Evaporator with cool storage function | |
JP5783874B2 (en) | Evaporator with cool storage function | |
JP2015148404A (en) | Evaporator with cold storage function | |
JP2013200073A (en) | Evaporator with cooling storage function | |
JP2015034684A (en) | Evaporator having a cold storage function | |
JP2014020609A (en) | Evaporator | |
JP5501493B2 (en) | Evaporator with cool storage function | |
JP6605338B2 (en) | Evaporator with cool storage function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6097520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |