[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011124779A - 無線通信システム、無線通信装置、及び無線通信方法 - Google Patents

無線通信システム、無線通信装置、及び無線通信方法 Download PDF

Info

Publication number
JP2011124779A
JP2011124779A JP2009280653A JP2009280653A JP2011124779A JP 2011124779 A JP2011124779 A JP 2011124779A JP 2009280653 A JP2009280653 A JP 2009280653A JP 2009280653 A JP2009280653 A JP 2009280653A JP 2011124779 A JP2011124779 A JP 2011124779A
Authority
JP
Japan
Prior art keywords
modulation
carrier
transmission path
wireless communication
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009280653A
Other languages
English (en)
Inventor
Yoichi Katagai
陽一 片貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009280653A priority Critical patent/JP2011124779A/ja
Publication of JP2011124779A publication Critical patent/JP2011124779A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】周波数選択性フェージングが生じた場合でも、安定した通信が行える無線通信システムを提供する。
【解決手段】伝送路状態推定部31は、受信信号の伝送路の等化を行うトランスバーサル形自動等化器23の係数を離散的フーリエ変換して伝送路の周波数特性を算出する。マルチキャリア設定部32は、算出された伝送路の周波数特性に応じて、キャリア数、キャリア帯域、キャリア周波数等のマルチキャリア変調のパラメータを設定する。これにより、周波数選択性フェージングが生じた場合でも、安定した無線通信を行うことができる。
【選択図】図1

Description

本発明は、幹線系無線ネットワークや携帯電話の基地局間通信等に用いて好適な無線通信システム、無線通信装置、及び無線通信方法に関する。
幹線系無線ネットワークや携帯電話の基地局間通信等に用いるディジタルマイクロ波通信装置に対しては、常に安定した通信品質や大容量での伝送が要望されている。このような安定した大容量の無線通信を可能にするものとして適応変調が知られている。
適応変調とは、送信側の変調方式などのパラメータを伝送路の状態変化に応じて最適な値に変化させる方法である。すなわち、QAM(Quadrature Amplitude Modulation)変調では、多値数が多いほど伝送速度は高速化できるが、多値数が多くなると、伝送路状態が悪い場合にエラーが生じやすい。そこで、伝送路の状態が良好な場合には、例えば64値QAM変調で信号の伝送を行い、フェージング等により伝送路の状態が悪い場合には、例えばQPSK(Quadrature Phase Shift Keying)変調で信号の伝送を行うことにより、伝送路の状態変化に応じた最適な無線通信を行う(特許文献1)。これにより、伝送路の状態変化に応じた最適な無線通信を行うことができ、常に安定した通信品質を保持できる。
特開平10−247955号公報
しかしながら、特許文献1に示されるような適応変調では、伝送路の特性に応じて、ディジタル変調の多値数のみを変化させるようにしている。この場合、周波数に依存しないような伝送路状態の変化については信号の多値数を変更することによって高い通信品質を確保できるようになるが、周波数選択性フェージングのような周波数依存性のある伝送路特性の変化については効果が少ない。
すなわち、図7及び図8は、周波数選択フェージングの特性を示すグラフである。図7及び図8において、横軸は周波数を示し、縦軸は伝送路状態を示している。干渉波により発生した周波数選択性フェージングの場合には、図7に示すように、特定の周波数で伝送特性が特に劣化するという特徴を持っている。さらに、伝送特性が劣化する周波数は時間によって遷移するため、例えば図8(A)及び図8(B)に示すような時間により変化する周波数特性を持つ周波数選択性フェージングが生じた場合には、どのように多値数を変更しても、安定した通信品質の維持、高い伝送品質の確保はできない。
上述の課題を鑑み、本発明は、周波数選択性フェージングが生じた場合でも、安定した通信が行える無線通信システム、無線通信装置、及び無線通信方法を提供することを目的とする。
上述の課題を鑑み、本発明は、入力信号を一次変調した後キャリア変調で二次変調して伝送する無線通信システムであって、受信信号の伝送路の等化を行うトランスバーサル形自動等化器の係数を離散的フーリエ変換して伝送路の周波数特性を算出する伝送路状態推定手段と、伝送路状態推定手段で算出された伝送路の周波数特性に応じて、キャリア変調のパラメータを設定するキャリアパラメータ設定手段とを備えることを特徴とする無線通信システムである。
本発明は、入力信号を一次変調した後、一次変調された信号をキャリア変調で二次変調して送信する送信系と、受信信号に対してキャリア変調の二次変調の復調を行った後、一次変調の復調を行う受信系とを有する無線通信装置であって、受信信号の伝送路の等化を行うトランスバーサル形自動等化器の係数を離散的フーリエ変換して伝送路の周波数特性を算出する伝送路状態推定手段と、伝送路状態推定手段で算出された伝送路の周波数特性に応じて、送信系及び受信系のキャリア変調のパラメータを設定するキャリアパラメータ設定手段とを備えことを特徴とする。
本発明は、入力信号を一次変調した後、キャリア変調で二次変調して伝送する無線通信方法であって、受信信号の伝送路の等化を行うトランスバーサル形自動等化器の係数を離散的フーリエ変換して伝送路の周波数特性を算出する工程と、算出された伝送路の周波数特性に応じて、キャリア変調のパラメータを設定する工程とを含むことを特徴とする。
本発明によれば、受信信号の伝送路の等化を行うトランスバーサル形自動等化器の係数を離散的フーリエ変換して伝送路の周波数特性を算出し、算出された伝送路の周波数特性に応じて、キャリア数、キャリア帯域、キャリア周波数等のキャリア変調のパラメータを設定することで、周波数選択性フェージングが生じた場合でも、安定した無線通信を行うことができる。
本発明の第1の実施形態の無線通信装置を示すブロック図である。 トランスバーサル形自動等化器の構成を示すブロック図である。 マルチキャリアパラメータ設定部の構成を示すブロック図である。 本発明の第1の実施形態の無線通信装置におけるマルチキャリアパラメータの設定の説明図である。 本発明の第1の実施形態の無線通信装置おけるマルチキャリアパラメータの設定の説明図である。 本発明の第2の実施形態の無線通信装置を示すブロック図である。 周波数選択フェージングの特性を示すグラフである。 周波数選択フェージングの特性を示すグラフである。
以下、本発明の実施の形態について図面を参照しながら説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態の無線通信装置1を示すブロック図である。図1において、エラー訂正符号化部11と、ディジタル変調部12と、マルチキャリア変調部13と、D/A変換器14と、送信部15とから、送信系の回路が構成される。
エラー訂正符号化部11には入力データが供給される。エラー訂正符号化部11により、入力データに対してエラー訂正符号が付加される。エラー訂正符号化部11の出力信号は、ディジタル変調部12に供給される。
ディジタル変調部12は、入力データを一次変調するものである。ディジタル変調部12の変調方式としては、例えば、QPSK、QAM(16値QAM、32値QAM)等が用いられる。
ディジタル変調部12の出力信号は、マルチキャリア変調部13に供給される。マルチキャリア変調部13は、ディジタル変調部12で一次変調された信号を、マルチキャリアで二次変調するものである。マルチキャリア変調部13の変調方式としては、例えば、OFDM(Orthogonal Frequency Division Multiplexing)が用いられる。また、マルチキャリア変調部13でのパラメータ(キャリア数、キャリア帯域、キャリア周波数)は、マルチキャリアパラメータ設定部32により設定可能とされている。
マルチキャリア変調部13の出力信号は、D/A変換器14でアナログ信号に変換された後、送信部15に供給される。送信部15で、送信信号が所定の搬送送信周波数にアップコンバートされ、電力増幅された後、アンテナ16から送信される。
次に、受信系の回路について説明する。図1において、受信部21と、A/D変換器22と、トランスバーサル形自動等化器23と、マルチキャリア復調部24と、ディジタル復調部25と、エラー訂正部26とから、受信系の回路が構成される。
図1において、アンテナ16の受信信号は、受信部21に供給される。受信部21で、受信信号が増幅され、ベースバンド信号にダウンコンバートされる。受信部21の出力信号は、A/D変換器22でディジタル信号に変換された後、トランスバーサル形自動等化器23に供給される。
トランスバーサル形自動等化器23は、伝送路の特性を推定してトランスバーサル形FIRフィルタの重み係数を最適に設定し、伝送路の歪みを補償するものである。また、伝送路状態推定部31は、トランスバーサル形自動等化器23により推定されたフィルタの重み係数から伝送路の周波数特性を算出し、この伝送路の周波数特性をマルチキャリアパラメータ設定部32に設定する。マルチキャリアパラメータ設定部32は、この周波数特性に基づいて、マルチキャリア変調部13及びマルチキャリア復調部24でのキャリア数、キャリア帯域、キャリア周波数を設定する。
トランスバーサル形自動等化器23の出力信号は、マルチキャリア復調部24に供給される。マルチキャリア復調部24は、例えばOFDMによる二次変調の復調を行う。マルチキャリア復調部24でのパラメータ(キャリア数、キャリア帯域、キャリア周波数)は、マルチキャリアパラメータ設定部32により設定可能とされている。
マルチキャリア復調部24の出力信号は、ディジタル復調部25に供給される。ディジタル復調部25は、例えば、QPSK、QAMによる一次変調の復調を行う。
ディジタル復調部25の出力信号は、エラー訂正部26に供給される。エラー訂正部26は、ディジタル復調部25からのデータのエラー訂正処理を行う。
上述のように、本発明の第1の実施形態においては、伝送路状態推定部31で、トランスバーサル形自動等化器23により推定されたフィルタの重み係数から、伝送路の周波数特性が算出され、この周波数特性に基づいて、マルチキャリア変調部13及びマルチキャリア復調部24でのパラメータ(キャリア数、キャリア帯域、キャリア周波数)が設定している。このことについて、以下に説明する。
図2は、トランスバーサル形自動等化器23の構成を示すブロック図である。図2に示すように、トランスバーサル形自動等化器23は、トランスバーサル形FIR(Finite Impulse Response)フィルタ51と、誤差検出部52と、重み係数決定部53とから構成されている。伝送路の特性を受けた受信信号は、トランスバーサル形FIRフィルタ51で等化された後、誤差検出部52に供給される。誤差検出部52は、例えば、既知信号が入力信号として入力されたときのトランスバーサル形FIRフィルタ51の出力信号Doutから、本来の信号とトランスバーサル形FIRフィルタ51で等化した信号との誤差を検出し、この誤差を重み係数決定部53に供給する。重み係数決定部53は、この誤差検出部52からの誤差が最小となるように、トランスバーサル形FIRフィルタ51の重み係数C(−N≦j≦N)を決定する。
このようなトランスバーサル形自動等化器23では、トランスバーサル形FIRフィルタ51の重み係数C(−N≦j≦N)から、伝送路の周波数特性を推定できる。すなわち、トランスバーサル形FIRフィルタ51では、以下の式(フェージングの補償式)に示すように、重み付け加算による積和演算が行われる。なお、このトランスバーサル形自動等化器23の処理において、トランスバーサル形FIRフィルタ51における入力信号Dinは入力された順番に各タイミングで遅延され、あるタイミングで入力された信号と相対的に−NからNずれたタイミングで入力された2N+1個の信号が生成される。そして、以下の式により、それぞれのタイミングにおいて重み係数が重み係数決定部53で算出され、重み付け加算による積和演算が行われることにより、フェージングの影響を補償する。
Figure 2011124779
このトランスバーサル形FIRフィルタ51の重み係数は時間領域の係数である。伝送路の周波数特性は、以下の式(重み係数の離散フーリエ変換式)に示すように、各タイミングにおける時間領域の重み係数の値を離散的フーリエ変換により周波数領域に変換することで算出できる。
Figure 2011124779
図3は、マルチキャリアパラメータ設定部32の構成を示すブロック図である。図3に示すように、マルチキャリアパラメータ設定部32は、キャリア数決定部61と、キャリア帯域決定部62と、キャリア周波数決定部63とを有している。
上述のように、伝送路状態推定部31により、トランスバーサル形自動等化器23により推定されたフィルタの重み係数から、伝送路の周波数特性が算出される。この伝送路の周波数特性がキャリア数決定部61、キャリア帯域決定部62、キャリア周波数決定部63に供給される。マルチキャリアパラメータ設定部32のキャリア数決定部61、キャリア帯域決定部62、キャリア周波数決定部63において、この周波数特性に基づいて、マルチキャリア変調のキャリア数、キャリア帯域、キャリア周波数が決定され、マルチキャリア変調部13及びマルチキャリア復調部24に設定される
図4及び図5は、本発明の第1の実施形態の無線通信装置におけるマルチキャリアパラメータの設定の説明図である。例えば、伝送路状態推定部31で推定された伝送路の周波数特性が図4(A)に示すような状態であったとする。図4(A)では、通信に使用可能な周波数帯域F1のうち、周波数faの付近で干渉性の周波数選択性フェージングが発生している。この場合には、図4(B)に示すように、キャリア周波数をfbに設定し、キャリア帯域をF2に設定する。これにより、干渉波により発生した周波数選択性フェージングの影響を軽減させることができる。
また、例えば、伝送路状態推定部31で推定された伝送路の周波数特性が図5(A)に示すような状態であったとする。図5(A)では、通信に使用可能な周波数帯域F3のうち、周波数fcの付近で干渉性フェージングが発生している。この場合には,図5(B)に示すように、キャリア周波数をfdとfeとに設定し、キャリア帯域をF4とF5に設定する。これにより、干渉波により発生した周波数選択性フェージングの影響を軽減させることができる。
<第2の実施形態>
図6は、本発明の第2の実施形態の無線通信装置を示すブロック図である。図6において、エラー訂正符号化部111と、変調部112と、マルチキャリア変調部113と、D/A変換器114と、送信部115とから、送信系の回路が構成される。エラー訂正符号化部111、変調部112、マルチキャリア変調部113、D/A変換器114、送信部115、アンテナ116は、図1に示した本発明の第1の実施形態の無線通信装置1の送信系におけるエラー訂正符号化部11、ディジタル変調部12、マルチキャリア変調部13、D/A変換器14、送信部15、アンテナ16と同様である。
また、図6において、受信部121と、A/D変換器122と、トランスバーサル形自動等化器123と、マルチキャリア復調部124と、復調部125と、エラー訂正部126とから、受信系の回路が構成される。受信部121、A/D変換器122、トランスバーサル形自動等化器123、マルチキャリア復調部124、復調部125と、エラー訂正部126は、図1に示した本発明の第1の実施形態の無線通信装置1の受信系における受信部21、A/D変換器22、トランスバーサル形自動等化器23、マルチキャリア復調部24、ディジタル復調部25、エラー訂正部26と同様である。
前述の第1の実施形態においては、伝送路状態推定部31で、トランスバーサル形自動等化器23により推定された伝送路の特性から伝送路の周波数特性を算出し、この周波数特性に基づいて、マルチキャリア変調部13及びマルチキャリア復調部24のパラメータ(キャリア数、キャリア帯域、キャリア周波数)を設定している。
これに対して、この第2の実施形態においては、伝送路の特性から算出された周波数特性に基づいて、マルチキャリア変調部113及びマルチキャリア復調部124でのパラメータ(キャリア数、キャリア帯域、キャリア周波数)を設定すると共に、エラー訂正部126からのエラーレートに基づいて、ディジタル変調パラメータ設定部133により、変調部112及び復調部125でのパラメータ(変調方式、QAMでの多値数)を設定している。このため、この実施形態では、周波数選択性フェージング以外の要因から起こる伝送路状態の劣化が生じても、通信品質を維持することが可能となる。
本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、上述の実施形態では、マルチキャリア変調部13の変調方式としてOFDMを例にして説明しているが、OFDMではキャリア周波数に制限(シンボルレートの整数倍)がかかってしまうため、キャリア周波数を自由に制御することがでない。したがって、必要最小限のキャリア数(信号間のピークファクタ軽減などのため)で伝送できる変調方式であれば、当該変調方式はどのようなものであってもよい。また上述した実施形態では変調方式にマルチキャリア変調方式を用いているが、シングルキャリ変調方式を用いるようにしてもよい。
11,111:エラー訂正符号化部
12,112:変調部
13,113:マルチキャリア変調部
14,114:D/A変換器
15,115:送信部
16,116:アンテナ
21,121:受信部
22,122:A/D変換器
23,123:トランスバーサル形自動等化器
24,124:マルチキャリア復調部
25,125:復調部
26,126:エラー訂正部
31,131:伝送路状態推定部
32,132:マルチキャリアパラメータ設定部
133:ディジタル変調パラメータ設定部
51:トランスバーサル形FIRフィルタ

Claims (9)

  1. 入力信号を一次変調した後キャリア変調で二次変調して伝送する無線通信システムであって、
    受信信号の伝送路の等化を行うトランスバーサル形自動等化器の係数を離散的フーリエ変換して伝送路の周波数特性を算出する伝送路状態推定手段と、
    前記伝送路状態推定手段で算出された伝送路の周波数特性に応じて、前記キャリア変調のパラメータを設定するキャリアパラメータ設定手段と
    を備えることを特徴とする無線通信システム。
  2. 前記キャリア変調のパラメータは、キャリア数、キャリア帯域、キャリア周波数のうちの一部又はその組み合わせであることを特徴とする請求項1に記載の無線通信システム。
  3. さらに、受信信号のエラーレートに応じて、前記一次変調のパラメータを設定することを特徴とする請求項1に記載の無線通信システム。
  4. 前記一次変調のパラメータは、ディジタル変調の多値数であることを特徴とする請求項3に記載の無線通信システム。
  5. 入力信号を一次変調した後、前記一次変調された信号をキャリア変調で二次変調して送信する送信系と、受信信号に対してキャリア変調の二次変調の復調を行った後、一次変調の復調を行う受信系とを有する無線通信装置であって、
    受信信号の伝送路の等化を行うトランスバーサル形自動等化器の係数を離散的フーリエ変換して伝送路の周波数特性を算出する伝送路状態推定手段と、
    前記伝送路状態推定手段で算出された伝送路の周波数特性に応じて、前記送信系及び前記受信系のキャリア変調のパラメータを設定するキャリアパラメータ設定手段と
    を備えることを特徴とする無線通信装置。
  6. 前記キャリア変調のパラメータは、キャリア数、キャリア帯域、キャリア周波数のうちの一部又はその組み合わせであることを特徴とする請求項5に記載の無線通信装置。
  7. さらに、受信信号のエラーレートに応じて、前記送信系及び受信系の一次変調のパラメータを設定することを特徴とする請求項5に記載の無線通信装置。
  8. 前記一次変調のパラメータは、ディジタル変調の多値数であることを特徴とする請求項7に記載の無線通信装置。
  9. 入力信号を一次変調した後、キャリア変調で二次変調して伝送する無線通信方法であって、
    受信信号の伝送路の等化を行うトランスバーサル形自動等化器の係数を離散的フーリエ変換して伝送路の周波数特性を算出する工程と、
    前記算出された伝送路の周波数特性に応じて、前記キャリア変調のパラメータを設定する工程とを含む
    ことを特徴とする無線通信方法。
JP2009280653A 2009-12-10 2009-12-10 無線通信システム、無線通信装置、及び無線通信方法 Pending JP2011124779A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009280653A JP2011124779A (ja) 2009-12-10 2009-12-10 無線通信システム、無線通信装置、及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009280653A JP2011124779A (ja) 2009-12-10 2009-12-10 無線通信システム、無線通信装置、及び無線通信方法

Publications (1)

Publication Number Publication Date
JP2011124779A true JP2011124779A (ja) 2011-06-23

Family

ID=44288245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009280653A Pending JP2011124779A (ja) 2009-12-10 2009-12-10 無線通信システム、無線通信装置、及び無線通信方法

Country Status (1)

Country Link
JP (1) JP2011124779A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365231A (ja) * 1991-06-12 1992-12-17 Ricoh Co Ltd 回線品質測定システム
WO2005015801A2 (ja) * 2003-08-06 2005-02-17 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
WO2009069630A1 (ja) * 2007-11-26 2009-06-04 Sharp Kabushiki Kaisha 無線通信システム、無線送信装置、無線通信方法およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365231A (ja) * 1991-06-12 1992-12-17 Ricoh Co Ltd 回線品質測定システム
WO2005015801A2 (ja) * 2003-08-06 2005-02-17 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
WO2009069630A1 (ja) * 2007-11-26 2009-06-04 Sharp Kabushiki Kaisha 無線通信システム、無線送信装置、無線通信方法およびプログラム

Similar Documents

Publication Publication Date Title
JP3492565B2 (ja) Ofdm通信装置および検波方法
US20070211747A1 (en) Adaptive channel prediction apparatus and method for performing uplink pre-equalization depending on downlink channel variation in OFDM/TDD mobile communication system
US20070036232A1 (en) Ofdm reception apparatus and ofdm reception method
EP2356786B1 (en) Receiver with ici noise estimation
WO2006111843A1 (en) Time domain windowing and inter-carrier interference cancellation
KR20080031345A (ko) 무선 통신 장치 및 무선 통신 방법
US20120328055A1 (en) Channel estimation circuit, channel estimation method, and receiver
JP3602785B2 (ja) マルチキャリア変調方式用復調回路
JP2008206045A (ja) 無線通信システム及び無線機
JP5361827B2 (ja) 送信機および送信方法
JP5174969B2 (ja) 無線通信システムおよび無線通信装置
US8937989B1 (en) Channel estimation using linear phase estimation
US20110286537A1 (en) Telecommunications Method and System
JP5254526B2 (ja) 伝送性能を向上させるためのシステム、モデム、受信器、送信器及びその方法
EP1838030A2 (en) Uplink signal receiving method and apparatus using successive interference cancellation in wireless transmission system based on OFDMA
KR101314776B1 (ko) 이동통신 시스템에서 주파수 옵셋을 보상하기 위한 장치 및방법
US20110243280A1 (en) Receiver and receiving method
JP2011124779A (ja) 無線通信システム、無線通信装置、及び無線通信方法
WO2013074119A1 (en) Inter carrier interference cancellation for orthogonal frequency domain multiplexing receivers
JP2008278161A (ja) Ofdm信号受信装置、ofdm信号の受信方法、及びofdm信号の復調方法
JP3843870B2 (ja) Ofdm通信装置
WO2007063855A1 (ja) マルチキャリア送信装置、マルチキャリア受信装置、送信方法及び受信方法
EP1665710B1 (en) Apparatus and method for adaptive orthogonality correction
JP2008022339A (ja) 無線通信装置及び無線通信方法
JP2012023670A (ja) Ofdm伝送方式における受信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212