[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011108476A - Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same - Google Patents

Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same Download PDF

Info

Publication number
JP2011108476A
JP2011108476A JP2009261763A JP2009261763A JP2011108476A JP 2011108476 A JP2011108476 A JP 2011108476A JP 2009261763 A JP2009261763 A JP 2009261763A JP 2009261763 A JP2009261763 A JP 2009261763A JP 2011108476 A JP2011108476 A JP 2011108476A
Authority
JP
Japan
Prior art keywords
resin composition
unsaturated
electrical insulation
parts
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009261763A
Other languages
Japanese (ja)
Inventor
Yasuhiro Obata
康裕 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009261763A priority Critical patent/JP2011108476A/en
Publication of JP2011108476A publication Critical patent/JP2011108476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for electrical insulation which provides fine workability, hardly emits an odor, retains fine electrical insulation after being thermally deteriorated, hardly generates curing shrinkage, allows the derivation of a cured material superior in retaining low shrinkage and high fixing properties, and allows the derivation of a cured material of a fine physical property, and to provide a manufacturing method for an electric equipment insulator using the resin composition. <P>SOLUTION: The resin composition for electrical insulation is composed of essential materials composed of an unsaturated polyesterimide (A) obtained by making an imidodicarboxylic acid, an α,β-unsaturated dibasic acid, and an alcohol having one or more hydroxyl groups in molecular chains react with one another as essential components, unsaturated polyester (B) having dicyclomalate, a reactive diluent (C) containing an unsaturated group having a vapor pressure of 0.1 mmHg or lower at 20°C, a compound (D) which is monofunctional (meta)acrylate having a fatty principal chain containing one hydroxyl group in a molecular or a compound having a fatty principal chain containing one hydroxyl group in a molecular and an allyl group at an molecular end, and a silane coupling agent (E) containing two or three methyloxy groups. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気絶縁用樹脂組成物及びそれを用いた電気機器絶縁物の製造方法に関する。
さらに、詳しくは、モータ、変圧トランス、アーマチュア(回転子)、ステ−タ(固定子)などの電気機器用コイルの含浸性を低下することなく、剛直な硬化皮膜を持ち、成形収縮率の変動が少なく短時間で硬化可能で高固着性を有し、かつ作業時の臭気が少なく、作業環境が良好で、さらに熱劣化後の絶縁破壊電圧や固着力の保持率が良好な電気機器絶縁用樹脂組成物に関する。
The present invention relates to a resin composition for electrical insulation and a method for producing an electrical equipment insulator using the same.
Furthermore, in detail, it has a rigid hardened film without reducing impregnation of coils for electrical equipment such as motors, transformers, armatures (rotors), stators (stators), and fluctuations in molding shrinkage. For insulation of electrical equipment that has low adhesiveness, high adhesiveness, low odor during work, good working environment, and good dielectric breakdown voltage and adhesive strength retention after thermal degradation The present invention relates to a resin composition.

従来から、回転機、変圧器等の機器には、固着、絶縁補強、防振、防錆等の目的でコイル含浸ワニスが用いられている。上記コイル含浸ワニスは、大別すると溶剤型ワニスと無溶剤型ワニスの二つに分けられ、機器の種類、処理方法等により適宜に選択される。
上記溶剤型ワニスは、アルキッド樹脂をナフサ等で溶解したものであって、このため加熱硬化処理時には、大量の溶剤飛散が伴うという問題が生じる。また、上記無溶剤型ワニスは、一般にスチレン等の反応性モノマーに不飽和基を有する樹脂を溶解させ、加熱硬化時に上記溶剤型ワニスほど溶剤が飛散することはないが、スチレンの持つ刺激特性のために少量の飛散量にもかかわらず取り扱い作業者に及ぼす影響は大きく、作業環境の劣化が生じるという問題を有している。このように、作業者および作業環境問題に関してはいずれのワニスにおいても何ら解決されていない。そして、最近では、高作業性(短処理時間)、省資源、防錆性能等の理由から、溶剤型から無溶剤型への検討が進められている。この無溶剤型ワニスのひとつに、不飽和ポリエステルワニスが上げられる。不飽和ポリエステルワニスは、不飽和ポリエステルと架橋性単量体からなり、機械的、電気的及び熱的特性、作業性、経済性などの点で調和がとれているため、FRP積層板やライニング等の建築機材をはじめ多くの用途に使用されている。
この無溶剤型ワニスへの要求事項として(1)低温短時間硬化及びワニスからの溶剤揮発量の減少(無溶剤化)や高固着性の付与、(2)熱劣化時の絶縁破壊電圧や固着力の保持率の向上があげられる。
低温短時間硬化及びワニスからの溶剤揮発量の減少(無溶剤化)や高固着性の付与に対応する方法として、スチレンの含有量を低減する方法や添加剤の配合によるスチレン揮発量を低減するなど方法が採られている。しかしながらこれらの方法は、基本的にスチレンを含有する樹脂であることに変わりなく、その臭気対策としては不十分なものである。スチレンに替えて他の重合性不飽和モノマーを使用する方法も多く報告されている。例えば、特開平7−216040号公報や特開平9−151225号公報に記載されているような重合性不飽和モノマーとして、ジエチレングリコールモノメチルエーテルメタクリレートのようなオリゴエチレングリコールアルキルエーテルメタクリレートを必須成分として含有するモノマーや、ジプロピレングリコールモノエチルエーテルメタクリレートのようなオリゴエーテルモノアルキルエーテルメタクリレートを必須成分として含有するモノマーを使用した樹脂組成物、特開平10−87770号公報に記載されているような重合性不飽和モノマーとしてオリゴエチレングリコールジ(メタ)アクリレートおよび/またはオリゴプロピレングリコールジ(メタ)アクリレートを必須成分として使用した樹脂組成物、また、特開2002−114829号公報に記載されているような、重合性不飽和モノマーとしてアルキルシクロヘキシル(メタ)アクリレートを必須成分として含有する樹脂組成物がある。
また、例えば、特開平10−36461号公報記載のように重合性不飽和結合基を有するマクロモノマーと重合性不飽和単量体として炭素数2〜4のジオールのオリゴエーテルモノアルキルエーテル(メタ)アクリレートを含有する樹脂組成物や、特開2003−268054号公報記載のような、分子末端に少なくとも2個以上の(メタ)アクリロイル基を有する樹脂、(メタ)アクリレート基を有する単量体およびアセチルラクトン化合物を含有する樹脂組成物、さらに、特開2003−89709号公報のようなジシクロペンタジエン変性不飽和ポリエステルオリゴマー、シクロヘキセン環およびアリルエーテル基を有するエステル化合物、およびヒドロキシアルキルメタクリレートを必須成分とする不飽和ポリエステル樹脂組成物等種々報告されている。
Conventionally, coil impregnated varnishes have been used in devices such as rotating machines and transformers for the purposes of fixation, insulation reinforcement, vibration isolation, rust prevention, and the like. The coil-impregnated varnish is roughly classified into two types, a solvent type varnish and a solventless varnish, and is appropriately selected depending on the type of equipment, the processing method, and the like.
The solvent-type varnish is obtained by dissolving an alkyd resin with naphtha or the like. Therefore, there is a problem that a large amount of solvent is scattered during the heat curing treatment. In addition, the solventless varnish generally dissolves a resin having an unsaturated group in a reactive monomer such as styrene, and the solvent does not scatter as much as the solvent type varnish during heat curing. For this reason, the influence on the handling worker is great despite the small amount of scattering, and there is a problem that the working environment is deteriorated. As described above, no problems have been solved in any varnish with respect to workers and work environment problems. And recently, from the reasons of high workability (short processing time), resource saving, rust prevention performance, etc., examination from a solvent type to a solventless type has been advanced. One example of the solventless varnish is an unsaturated polyester varnish. Unsaturated polyester varnish consists of unsaturated polyester and crosslinkable monomer, and is harmonized in terms of mechanical, electrical and thermal properties, workability, economy, etc., so FRP laminates, linings, etc. It is used for many purposes including building equipment.
The requirements for this solventless varnish are (1) low-temperature and short-time curing and reduction of solvent volatilization from the varnish (solvent-free) and high adhesion, (2) dielectric breakdown voltage and solidity during thermal degradation. The improvement of the holding power retention rate can be raised.
Reduce the amount of styrene by reducing the content of styrene or blending additives as a way to deal with low-temperature, short-time curing, reduction of solvent volatilization from varnish (solvent-free) and high adhesion. The method is taken. However, these methods remain basically styrene-containing resins, and are insufficient as countermeasures for odors. Many methods using other polymerizable unsaturated monomers in place of styrene have been reported. For example, as a polymerizable unsaturated monomer as described in JP-A-7-2116040 and JP-A-9-151225, an oligoethylene glycol alkyl ether methacrylate such as diethylene glycol monomethyl ether methacrylate is contained as an essential component. Resin composition using a monomer or a monomer containing an oligoether monoalkyl ether methacrylate such as dipropylene glycol monoethyl ether methacrylate as an essential component, and a polymerizable non-polymerizable resin as described in JP-A-10-87770. Resin composition using oligoethylene glycol di (meth) acrylate and / or oligopropylene glycol di (meth) acrylate as an essential component as a saturated monomer, As described in -114829 discloses, an alkyl cyclohexyl (meth) acrylate is a resin composition containing as essential components a polymerizable unsaturated monomer.
Also, for example, as described in JP-A-10-36461, a macromonomer having a polymerizable unsaturated bond group and an oligoether monoalkyl ether (meth) of a diol having 2 to 4 carbon atoms as the polymerizable unsaturated monomer A resin composition containing an acrylate, a resin having at least two (meth) acryloyl groups at a molecular end, a monomer having a (meth) acrylate group, and acetyl as described in JP-A-2003-268054 A resin composition containing a lactone compound, a dicyclopentadiene-modified unsaturated polyester oligomer as disclosed in JP-A-2003-89709, an ester compound having a cyclohexene ring and an allyl ether group, and a hydroxyalkyl methacrylate are essential components. Unsaturated polyester resin composition, etc. People have been reported.

また、高固着性については、例えば、特開平5−140261号公報記載のように、エポキシ樹脂をフェノ−ル類ジメチロ−ル化物とナフト−ル類との縮合物のエポキシ化物とビスフェノ−ルF型エポキシ樹脂を50〜95:50〜5(質量比)の割合で含むエポキシ樹脂混合物や、該エポキシ樹脂混合物と硬化剤と硬化促進剤を含むエポキシ樹脂組成物及びその硬化物を用いる方法や、特開平11−131042号公報記載のようにエポキシ樹脂、ニトリルゴムの混合物、硬化剤、イミダゾール化合物、硼弗化物及びオクチル酸塩より選択された1種又は2種以上の硬化促進剤からなる熱硬化性固着剤を用いる方法、特開2005−139289号公報記載のように、エポキシ樹脂、酸無水物、アンモニウム塩を含有するエポキシ樹脂組成物を使用する方法等種々報告されている。   As for the high fixing property, for example, as described in JP-A-5-140261, an epoxy resin is converted to an epoxidized product of a condensate of phenols dimethylol and naphthols and bisphenol F. Epoxy resin mixture containing a type epoxy resin in a ratio of 50 to 95:50 to 5 (mass ratio), an epoxy resin composition containing the epoxy resin mixture, a curing agent and a curing accelerator, and a method of using the cured product, Thermal curing comprising one or two or more curing accelerators selected from epoxy resins, nitrile rubber mixtures, curing agents, imidazole compounds, borofluorides and octylates as described in JP-A-11-131042 Epoxy resin composition containing an epoxy resin, an acid anhydride, and an ammonium salt as described in JP-A-2005-139289 The is method in various reports used.

また、低成形収縮力への解決手法としては、たとえば、特開平05-070676号公報や、特開2009-077577号公報記載のように、樹脂組成物中に無機充填剤を大量に入れる方法や特開2007-177127号公報記載のように高分子量熱可塑樹脂を添加する方法が公知である。   Further, as a method for solving the low molding shrinkage force, for example, as described in JP-A No. 05-070676 and JP-A No. 2009-077757, a method of adding a large amount of an inorganic filler into the resin composition, A method of adding a high molecular weight thermoplastic resin as described in JP-A-2007-177127 is known.

熱劣化時の絶縁破壊電圧保持率の向上および固着力の保持方法としては、従来、耐熱性を有する絶縁電線用に使用されていた、ポリイミド線用樹脂、ポリアミドイミド線用樹脂及びポリエステルイミド線用樹脂がある。これらのうち、例えば、特性と価格のバランスの点から、トリス(2−ヒドロキシエチル)イソシアヌレート(以下、THEICと略す)を使用して分子鎖中にイミド結合及びイソシアヌレート環を導入したポリエステルイミド樹脂を使用する場合が多い。しかし、従来のTHEICを使用したポリエステルイミドワニスの固着力は、要求に対しては不十分であった。
また、THEICを使用したポリエステルイミドワニスの固着力を向上させる手段としては、特開平2−58567号公報および特開平7−316425号公報に、チオール化合物をポリエステルイミドワニスに配合することが開示されている。しかし、この方法を用いると、固着力は向上するが、空気乾燥性が悪化し作業性や生産性が悪くなること、また、得られる樹脂の分子量が高く、相溶性の良い有機溶剤が存在しない状況下では、作業性が悪い等の不具合が発生する。さらに、熱劣化後の固着力が極端に低下するという問題があった。
As a method for improving the dielectric breakdown voltage retention rate and the adhesion strength during thermal degradation, conventionally used for insulated wires having heat resistance, for polyimide wire resin, polyamide imide wire resin and polyester imide wire There is resin. Among these, for example, polyester imide in which an imide bond and an isocyanurate ring are introduced into a molecular chain using tris (2-hydroxyethyl) isocyanurate (hereinafter abbreviated as THEIC) from the viewpoint of balance between characteristics and price. Resin is often used. However, the fixing strength of the polyesterimide varnish using the conventional THEIC is insufficient for the demand.
Moreover, as means for improving the fixing force of the polyesterimide varnish using THEIC, JP-A-2-58567 and JP-A-7-316425 disclose that a thiol compound is added to the polyesterimide varnish. Yes. However, when this method is used, the fixing force is improved, but the air drying property is deteriorated and the workability and productivity are deteriorated, and the obtained resin has a high molecular weight, and there is no compatible organic solvent. Under circumstances, problems such as poor workability occur. Furthermore, there has been a problem that the adhesive strength after heat deterioration is extremely reduced.

特開平7−216040号公報Japanese Patent Laid-Open No. 7-2106040 特開平9−151225号公報JP-A-9-151225 特開平10−87770号公報Japanese Patent Laid-Open No. 10-87770 特開2002−114829号公報Japanese Patent Laid-Open No. 2002-114829 特開平10−36461号公報Japanese Patent Laid-Open No. 10-36461 特開2003−268054号公報JP 2003-268054 A 特開2003−89709号公報JP 2003-89709 A 特開平5−140261号公報Japanese Patent Laid-Open No. 5-140261 特開平11−131042号公報Japanese Patent Laid-Open No. 11-131042 特開2005−139289号公報JP 2005-139289 A 特開平5−070676号公報JP-A-5-070676 特開2009−077577号公報JP 2009-077757 A 特開2007−177127号公報JP 2007-177127 A 特開平2−58567号公報JP-A-2-58567 特開平7−316425号公報JP 7-316425 A

本発明は、かかる問題に鑑み、電気機器用コイルの含浸性を低下することなく、剛直な硬化皮膜を持ち、成形収縮率の変動が少なく短時間で硬化可能で高固着性を有し、かつ作業時の臭気が少なく、作業環境が良好で、さらに熱劣化後の絶縁破壊電圧や固着力の保持率が良好な電気機器絶縁用樹脂組成物を提供するものであり、さらに、本発明は、この電気絶縁用樹脂組成物を用いた電気機器絶縁物の製造方法を提供するものである。   In view of such a problem, the present invention has a rigid cured film without lowering the impregnation property of the coil for electrical equipment, has a small change in molding shrinkage rate, can be cured in a short time, and has high adhesion. The present invention provides a resin composition for insulating electrical equipment that has a low odor during work, a good work environment, and a good holding ratio of dielectric breakdown voltage and adhesive strength after thermal deterioration. The present invention provides a method for producing an electrical equipment insulator using the resin composition for electrical insulation.

本発明は、[1]分子鎖中にイミドジカルボン酸と、α,β−不飽和二塩基酸と、1個以上の水酸基を持つアルコールを必須成分として反応させて得られ、かつイミドジカルボン酸量が全酸成分1molに対して0.1〜0.5molと、α,β−不飽和二塩基酸が全酸成分1molに対して0.5〜0.9molと成るように設定したものと、1個以上の水酸基を持つアルコールを必須成分として得られる不飽和ポリエステルイミド(A)と、ジシクロマレートを有する不飽和ポリエステル(B)、20℃の蒸気圧が0.1mmHg以下である不飽和基を有する反応性希釈剤(C)、分子中に1個の水酸基を有する主鎖が脂肪族の単官能(メタ)アクリレ−トまたは分子中に1個の水酸基を有する主鎖が脂肪族で分子末端にアリル基を有する化合物(D)、および、2または3個のメチルオキシ基を含有するシランカップリング剤(E)を必須材料としてなる電気絶縁用樹脂組成物に関する。
また、本発明は、[2]不飽和ポリエステルイミド(A)の数平均分子量が、1,000〜10,000の範囲である上記[1]に記載の電気絶縁用樹脂組成物に関する。
さらに、本発明は、[3]ジシクロマレートを有する不飽和ポリエステル(B)の数平均分子量が、500〜3,000の範囲である上記[1]に記載の電気絶縁用樹脂組成物に関する。
さらに、本発明は、[4]20℃の蒸気圧が0.1mmHg以下である不飽和基を有する反応性希釈剤(C)を、不飽和ポリエステルイミド(A)とジシクロマレートを有する不飽和ポリエステル(B)100質量部に対して、50〜400質量部含有する上記[1]ないし[3]の何れかに記載の電気絶縁用樹脂組成物に関する。
さらに、本発明は、[5]電気絶縁用樹脂組成物100質量部に対し、分子中に1個の水酸基を有する主鎖が脂肪族の単官能(メタ)アクリレ−トまたは分子中に1個の水酸基を有する主鎖が脂肪族で分子末端にアリル基を有する化合物(D)1〜100質量部を含有する上記[1]ないし[4]の何れかに記載の電気絶縁用樹脂組成物に関する。
さらに、本発明は、[6]電気絶縁用樹脂組成物100質量部に対し、2または3個のメチルオキシ基を含有するシランカップリング剤(E)0.01〜20質量部を含有する上記[1]ないし[5]の何れかに記載の電気絶縁用樹脂組成物に関する。
さらに、本発明は、[7](F)重合開始剤及び(G)安定剤を含有する上記[1]ないし[6]の何れかに記載の電気絶縁用樹脂組成物に関する。
さらに、本発明は、[8]電気機器を上記[1]ないし[7]の何れかに記載の電気絶縁用樹脂組成物で被覆し、硬化することを特徴とする電気機器絶縁物の製造方法に関する。
The present invention is obtained by reacting [1] imide dicarboxylic acid, α, β-unsaturated dibasic acid and alcohol having one or more hydroxyl groups as essential components in the molecular chain, and the amount of imide dicarboxylic acid Is set such that 0.1 to 0.5 mol with respect to 1 mol of the total acid component, and 0.5 to 0.9 mol of α, β-unsaturated dibasic acid with respect to 1 mol of the total acid component, Unsaturated polyesterimide (A) obtained by using an alcohol having one or more hydroxyl groups as an essential component, an unsaturated polyester (B) having dicyclomalate, and an unsaturated group having a vapor pressure at 20 ° C. of 0.1 mmHg or less. Reactive diluent (C) having a main chain having one hydroxyl group in the molecule is an aliphatic monofunctional (meth) acrylate, or a main chain having one hydroxyl group in the molecule is an aliphatic molecule Compound having an allyl group at the terminal (D) And to 2 or electrically insulating resin composition comprising three of the silane coupling agent containing methyl group and (E) as essential materials.
Moreover, this invention relates to the resin composition for electrical insulation as described in said [1] whose number average molecular weights of [2] unsaturated polyesterimide (A) are the range of 1,000-10,000.
Furthermore, this invention relates to the resin composition for electrical insulation as described in said [1] whose number average molecular weight of unsaturated polyester (B) which has [3] dicyclomalate is the range of 500-3,000.
Furthermore, the present invention provides [4] a reactive diluent (C) having an unsaturated group whose vapor pressure at 20 ° C. is not more than 0.1 mmHg, and an unsaturated polyesterimide (A) and an unsaturated compound having dicyclomalate. It is related with the resin composition for electrical insulation in any one of said [1] thru | or [3] which contains 50-400 mass parts with respect to 100 mass parts of polyester (B).
Furthermore, the present invention provides [5] an aliphatic monofunctional (meth) acrylate having one hydroxyl group in the molecule or one in the molecule for 100 parts by mass of the resin composition for electrical insulation. The resin composition for electrical insulation according to any one of the above [1] to [4], comprising 1 to 100 parts by mass of the compound (D) having a main chain having a hydroxyl group of aliphatic and having an allyl group at the molecular end. .
Furthermore, the present invention includes [6] 0.01 to 20 parts by mass of a silane coupling agent (E) containing 2 or 3 methyloxy groups based on 100 parts by mass of the resin composition for electrical insulation. [1] The resin composition for electrical insulation according to any one of [5].
Furthermore, the present invention relates to the resin composition for electrical insulation according to any one of [1] to [6] above, which contains [7] (F) a polymerization initiator and (G) a stabilizer.
Furthermore, the present invention provides [8] a method for producing an electrical equipment insulator, wherein the electrical equipment is coated with the resin composition for electrical insulation according to any one of [1] to [7] and cured. About.

本発明の電気絶縁用樹脂組成物は、ワニス硬化物の成形後の寸法及び硬度の安定性にすぐれ、かつ初期および熱劣化後の固着力およびツイストペア絶縁破壊電圧の保持率が高い硬化物を提供できる。また、樹脂組成物の粘度は従来品と同等であるため、含浸作業方法に幅広く対応可能である。さらに、従来の液状タイプの樹脂組成物と同等以上の電気絶縁性、固着性等の硬化物特性の提供が可能で、良好な安定性を示すため、信頼性の高い電気機器を提供することができる。   The resin composition for electrical insulation according to the present invention provides a cured product that has excellent stability of dimensions and hardness after molding of a varnish cured product, and has a high retention of initial and thermal degradation and a twisted pair breakdown voltage. it can. Moreover, since the viscosity of a resin composition is equivalent to the conventional product, it can respond | correspond widely to the impregnation operation method. Furthermore, it is possible to provide cured product characteristics such as electrical insulation and adhesion that are equal to or better than those of conventional liquid type resin compositions, and to provide good stability, thus providing a highly reliable electrical device. it can.

本発明で用いる分子鎖中にイミドジカルボン酸を有するものとしては、酸成分の一部として一般式(1)で表されるイミドジカルボン酸を用いるものが好ましい。   As what has imide dicarboxylic acid in the molecular chain used by this invention, what uses the imide dicarboxylic acid represented by General formula (1) as a part of acid component is preferable.

Figure 2011108476
〔一般式(1)中、Rはトリカルボン酸残基の3価の有機基、Rはジアミン残基の2価の有機基を意味する。〕
一般式(1)で表されるイミドジカルボン酸としては、例えばジアミン1モルに対してトリカルボン酸無水物2モルを反応させることにより得られるイミドジカルボン酸(特公昭51−40113号公報参照)が挙げられる。また、あらかじめジアミンとトリカルボン酸無水物とを反応させてイミドジカルボン酸として用いないで、ジアミンとトリカルボン酸無水物をポリエステルイミド樹脂の製造時に加えて、イミドジカルボン酸を形成してもよい。
Figure 2011108476
[In General Formula (1), R 1 represents a trivalent organic group of a tricarboxylic acid residue, and R 2 represents a divalent organic group of a diamine residue. ]
Examples of the imide dicarboxylic acid represented by the general formula (1) include imide dicarboxylic acid (see Japanese Patent Publication No. 51-40113) obtained by reacting 2 mol of tricarboxylic anhydride with 1 mol of diamine. It is done. Alternatively, diamine and tricarboxylic acid anhydride may be reacted in advance and not used as imide dicarboxylic acid, but diamine and tricarboxylic acid anhydride may be added during production of the polyesterimide resin to form imide dicarboxylic acid.

トリカルボン酸無水物としては、トリメリット酸無水物、3,4,4'−ベンゾフェノントリカルボン酸無水物、3,4,4'−ビフェニルトリカルボン酸無水物等が挙げられ、トリメリット酸無水物が好ましい。   Examples of the tricarboxylic acid anhydride include trimellitic acid anhydride, 3,4,4′-benzophenone tricarboxylic acid anhydride, 3,4,4′-biphenyltricarboxylic acid anhydride, and trimellitic acid anhydride is preferable. .

ジアミンとしては、4,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルエーテル、m−フェニレンジアミン、p−フェニレンジアミン、1,4−ジアミノナフタレン、ヘキサメチレンジアミン、ジアミノジフェニルスルホン等が用いられる。   As the diamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, m-phenylenediamine, p-phenylenediamine, 1,4-diaminonaphthalene, hexamethylenediamine, diaminodiphenylsulfone and the like are used.

イミドジカルボン酸の使用量は、全酸成分の10〜50mol%の範囲とすることが好ましく、10〜20mol%の範囲とすることがより好ましい。イミドジカルボン酸の使用量が少なすぎると耐熱性が劣り、保持率が維持できない傾向にあり、これ以上にしても耐熱性は向上せず、可とう性が低下する場合がある。   The amount of imidodicarboxylic acid used is preferably in the range of 10 to 50 mol% of the total acid component, and more preferably in the range of 10 to 20 mol%. If the amount of imidodicarboxylic acid used is too small, the heat resistance tends to be inferior and the retention rate tends not to be maintained. Even if the amount is higher than this, the heat resistance is not improved and the flexibility may be lowered.

本発明で用いるα,β−不飽和二塩基酸としては、無水マレイン酸、マレイン酸、フマル酸などが用いられ、これらは単独で用いても併用してもよい。
酸成分としては、上記記載の不飽和二塩基酸のほか飽和酸及びこの飽和酸低級アルキルのモノエステル、ジエステル等を併用することも出来る。例えば、テレフタル酸モノメチル、テレフタル酸の低級アルキルのジエステル等のテレフタル酸ジエステル、例えば、テレフタル酸ジメチルなどが用いられる。
飽和酸としては、イソフタル酸、フタル酸、無水フタル酸、テレフタル酸、テトラヒドロ無水フタル酸、テトラヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロフタル酸、アジピン酸、セバチン酸等の飽和二塩基酸などが挙げられる。飽和酸低級アルキルのジエステルとしては、例えば、テレフタル酸ジメチルなどが用いられる。これらは単独で用いても併用してもよい。
さらに、大豆油脂肪酸、アマニ油脂肪酸、トール油脂肪酸等の食用油脂肪酸などを併用することもできる。α,β−不飽和酸の量は、全酸成分中50〜90mol%、好ましくは50〜80mol%の範囲で選択されることが好ましい。α,β−不飽和酸以外の酸成分を併用する場合は、α,β−不飽和酸の比率から置き換えることが好ましい。
As the α, β-unsaturated dibasic acid used in the present invention, maleic anhydride, maleic acid, fumaric acid and the like are used, and these may be used alone or in combination.
As the acid component, in addition to the unsaturated dibasic acid described above, a saturated acid and a monoester or diester of this saturated acid lower alkyl may be used in combination. For example, terephthalic acid diesters such as monomethyl terephthalate and lower alkyl diesters of terephthalic acid such as dimethyl terephthalate are used.
Examples of the saturated acid include isophthalic acid, phthalic acid, phthalic anhydride, terephthalic acid, tetrahydrophthalic anhydride, tetrahydrophthalic acid, hexahydrophthalic anhydride, hexahydrophthalic acid, adipic acid, and sebacic acid. Can be mentioned. As a diester of a saturated acid lower alkyl, for example, dimethyl terephthalate is used. These may be used alone or in combination.
Furthermore, edible oil fatty acids such as soybean oil fatty acid, linseed oil fatty acid and tall oil fatty acid can be used in combination. The amount of the α, β-unsaturated acid is preferably selected in the range of 50 to 90 mol%, preferably 50 to 80 mol% in the total acid component. When an acid component other than α, β-unsaturated acid is used in combination, it is preferably replaced from the ratio of α, β-unsaturated acid.

1個以上の水酸基を持つアルコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3−ブタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が用いられ、これらは単独で用いても併用してもよい。必要に応じて用いられる変性成分としては、例えば、アマニ油、大豆油、トール油、脱水ヒマシ油、ヤシ油、ジシクロペンタジエン、シクロペンタジエン等が挙げられる。   Examples of the alcohol having one or more hydroxyl groups include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-butanediol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol, and the like. Or may be used in combination. Examples of the modifying component used as necessary include linseed oil, soybean oil, tall oil, dehydrated castor oil, coconut oil, dicyclopentadiene, and cyclopentadiene.

本発明で用いる不飽和ポリエステルイミド(A)の酸成分は、イミドジカルボン酸量が全酸成分1molに対して0.1〜0.5molと、α,β−不飽和二塩基酸が全酸成分1molに対して0.5〜0.9molと成るように設定し、イミドジカルボン酸量が全酸成分1molに対して0.1〜0.2molと、α,β−不飽和二塩基酸が全酸成分1molに対して0.8〜0.9molであるものが好ましい。イミドジカルボン酸が0.1mol未満では耐熱性に不具合が発生する。また、0.5molを超えると得られる硬化物の強度が低下する不具合が発生する。同様にα,β−不飽和二塩基酸が全酸成分1molに対して0.5mol未満では、硬化物の強度が低下する不具合が発生し、0.9molを超えると耐熱性に不具合が発生する。その他の成分として飽和酸、飽和酸低級アルキルのモノエステル、ジエステル等を併用することもできる。   The acid component of the unsaturated polyesterimide (A) used in the present invention is 0.1 to 0.5 mol of imide dicarboxylic acid with respect to 1 mol of total acid component, and α, β-unsaturated dibasic acid is total acid component. The amount of imide dicarboxylic acid is set to 0.1 to 0.2 mol with respect to 1 mol of the total acid component, and the α, β-unsaturated dibasic acid is completely added. What is 0.8-0.9 mol with respect to 1 mol of acid components is preferable. If the imidodicarboxylic acid is less than 0.1 mol, a problem occurs in heat resistance. Moreover, when exceeding 0.5 mol, the malfunction which the intensity | strength of the hardened | cured material obtained falls will generate | occur | produce. Similarly, if the α, β-unsaturated dibasic acid is less than 0.5 mol with respect to 1 mol of the total acid component, a problem that the strength of the cured product is reduced occurs, and if it exceeds 0.9 mol, a problem occurs in heat resistance. . As other components, a saturated acid, a monoester or a diester of a saturated acid lower alkyl can be used in combination.

本発明で用いる不飽和ポリエステルイミド(A)の数平均分子量(ゲルパーミッションクロマトグラフィー法により測定し、標準ポリスチレン検量線を用いて換算した値、以下同様)は、1,000〜10,000であることが好ましい。より好ましくは、1,500〜5,000である。1,000未満では、樹脂組成物の硬化性および樹脂硬化物特性が極端に劣り、10,000を超えると粘度が高すぎ含浸作業性が悪化する。   The number average molecular weight of the unsaturated polyesterimide (A) used in the present invention (measured by gel permeation chromatography and converted using a standard polystyrene calibration curve, the same shall apply hereinafter) is 1,000 to 10,000. It is preferable. More preferably, it is 1,500-5,000. If it is less than 1,000, the curability and resin cured product properties of the resin composition are extremely inferior, and if it exceeds 10,000, the viscosity is too high and impregnation workability deteriorates.

本発明で用いる不飽和ポリエステルイミド(イミド変性不飽和ポリエステル)(A)の製造方法としては、従来から公知の方法によることができる。例えば、必須成分である前記の酸成分とアルコール成分とをエステル化触媒の存在下に160〜250℃、好ましくは170〜250℃の温度で、3〜15時間、好ましくは5〜10時間加熱反応させることにより行われる。この際、用いられるエステル化触媒としては、例えば、テトラブチルチタネート、酢酸鉛、ジブチルスズラウレート、ナフテン酸亜鉛などが挙げられる。また、反応は、窒素ガス等の不活性雰囲気下で行うことが好ましい。前記のイミドジカルボン酸は、あらかじめ合成したものを用いてもよく、また、ジアミン及び無水トリメリット酸等のトリカルボン酸無水物のイミド酸となる成分を他の酸成分、アルコール成分と同時に混合加熱してイミド化及びエステル化を同時に行ってもよい。このときジアミンとトリカルボン酸無水物の配合量は、前記のイミドジカルボン酸の配合量に対応する量とするのが好ましい。また、合成時の粘度が高いため、例えば、キシレノール等の溶媒の共存下で合成を行うこともできる。
その後α,β−不飽和二塩基酸と1個以上の水酸基を持つアルコールのみ、または多塩基酸成分、多価アルコール成分を併用し、縮合反応させ、両成分が反応するときに生じる縮合水を系外に除きながら進められる。全酸成分1当量に対して全アルコール成分は1〜2当量の範囲で使用することが好ましい。
縮合水を系外に除去することは、好ましくは不活性気体を通じることによる自然留出又は減圧留出によって行われる。縮合水の留出を促進するため、トルエン、キシレンなどの溶剤を共沸成分として系中に添加することもできる。反応の進行は、一般に反応により生成する留出分量の測定、末端の官能基の定量、反応系の粘度の測定などにより知ることができる。
合成反応を行うための反応温度は、160〜250℃とすることが好ましい。このことから、反応装置としては、ガラス、ステンレス製等のものが選ばれ、撹拌装置、水とアルコール成分の共沸によるアルコール成分の留出を防ぐための分留装置、反応系の温度を高める加熱装置、この加熱装置の温度制御装置等を備えた反応装置を用いるのが好ましい。
合成における重縮合反応を行うために調整する反応装置内圧力は、常圧でも全く問題なく反応を進めることができるが、加圧し、多価アルコ−ルの沸点をあげることにより、反応を促進することができる。この場合、常圧〜0.1MPaの範囲で行うことが好ましい。
As a manufacturing method of unsaturated polyester imide (imide modified unsaturated polyester) (A) used by this invention, it can be based on a conventionally well-known method. For example, the acid component and alcohol component, which are essential components, are heated in the presence of an esterification catalyst at a temperature of 160 to 250 ° C., preferably 170 to 250 ° C. for 3 to 15 hours, preferably 5 to 10 hours. Is done. In this case, examples of the esterification catalyst used include tetrabutyl titanate, lead acetate, dibutyltin laurate, and zinc naphthenate. The reaction is preferably performed in an inert atmosphere such as nitrogen gas. The imide dicarboxylic acid may be synthesized in advance, and the components that become imide acid of a tricarboxylic anhydride such as diamine and trimellitic anhydride are mixed and heated simultaneously with other acid components and alcohol components. The imidization and esterification may be performed simultaneously. At this time, the blending amount of the diamine and the tricarboxylic acid anhydride is preferably set to an amount corresponding to the blending amount of the imide dicarboxylic acid. Moreover, since the viscosity at the time of synthesis is high, for example, the synthesis can be performed in the presence of a solvent such as xylenol.
Thereafter, only the α, β-unsaturated dibasic acid and one or more hydroxyl group-containing alcohols, or a polybasic acid component and a polyhydric alcohol component are used in combination and subjected to a condensation reaction. It is advanced while removing it outside the system. The total alcohol component is preferably used in the range of 1 to 2 equivalents relative to 1 equivalent of the total acid component.
Removal of the condensed water out of the system is preferably carried out by natural distillation or reduced pressure distillation through an inert gas. In order to promote the distillation of the condensed water, a solvent such as toluene or xylene can be added to the system as an azeotropic component. The progress of the reaction can be generally known by measuring the amount of distillate produced by the reaction, quantifying the functional group at the end, and measuring the viscosity of the reaction system.
The reaction temperature for carrying out the synthesis reaction is preferably 160 to 250 ° C. For this reason, a glass, stainless steel or the like is selected as the reaction apparatus, and a stirring apparatus, a fractionation apparatus for preventing distillation of alcohol components due to azeotropy of water and alcohol components, and raising the temperature of the reaction system. It is preferable to use a reactor equipped with a heating device, a temperature control device for the heating device, and the like.
The pressure inside the reactor adjusted to carry out the polycondensation reaction in the synthesis can proceed without any problem even at normal pressure, but the reaction is accelerated by increasing the boiling point of the polyhydric alcohol by pressurization. be able to. In this case, it is preferable to carry out in the range of normal pressure to 0.1 MPa.

本発明で用いるジシクロマレートを有する不飽和ポリエステル(B)は、ジシクロペンタジエン、不飽和酸、アルキレングリコールを原料として用いるが、物性の調整等の必要に応じて飽和酸、ジアルキレングリコールを併用する。   The unsaturated polyester (B) having dicyclomalate used in the present invention uses dicyclopentadiene, unsaturated acid, and alkylene glycol as raw materials, but in combination with saturated acid and dialkylene glycol as necessary for adjusting physical properties. To do.

ジシクロマレートを有する不飽和ポリエステルは、水の存在下において不飽和酸である無水マレイン酸とジシクロペンタジエンを付加させてジシクロマレートを生成し、その後にジアルキレングリコール及びアルキレングリコール又は必要に応じて飽和酸を仕込み反応させて得る。   Unsaturated polyesters with dicyclomalate are formed by adding maleic anhydride and dicyclopentadiene as unsaturated acids in the presence of water to form dicyclomalate, followed by dialkylene glycol and alkylene glycol or as required To obtain a saturated acid.

ジシクロマレートを有する不飽和ポリエステル樹脂組成物の数平均分子量は、500〜3000の範囲が好ましく、より好ましくは600〜1200の範囲である。数平均分子量が小さい場合は固着力が発現せず強度が低くなる傾向があるうえ、硬化性が悪化する。一方、数平均分子量が大きい場合は、得られる不飽和ポリエステルの粘度が高くなり、作業性が著しく劣るうえ、粘度調整用に用いる後述の反応性希釈剤の添加量が大きくなることから寸法安定性に悪影響をあたえる。   The number average molecular weight of the unsaturated polyester resin composition having dicyclomalate is preferably in the range of 500 to 3000, more preferably in the range of 600 to 1200. When the number average molecular weight is small, the fixing force does not appear and the strength tends to be low, and the curability deteriorates. On the other hand, when the number average molecular weight is large, the viscosity of the unsaturated polyester obtained is high, the workability is remarkably inferior, and the addition amount of the reactive diluent described below used for viscosity adjustment is large, so that the dimensional stability Negatively affected.

本発明で用いる不飽和ポリエステルイミド(A)とジシクロマレートを有する不飽和ポリエステル(B)との配合割合は、不飽和ポリエステルイミド(A)100質量部に対してジシクロマレートを有する不飽和ポリエステル(B)5〜100質量部とすることが好ましく、5〜50質量部とすることがより好ましい。ジシクロマレートを有する不飽和ポリエステル(B)の配合量が5質量部未満では、得られるワニス硬化物の固着力および安定した寸法精度が得られない不具合が発生する。また、100質量部を超えて配合してしまうと、得られるワニス硬化物の固着力は向上するが成形収縮が大きくなる上、硬化時にクラック等の発生する不具合が発生する。   The blending ratio of the unsaturated polyesterimide (A) and the unsaturated polyester (B) having dicyclomalate used in the present invention is the unsaturated polyester having dicyclomalate with respect to 100 parts by mass of the unsaturated polyesterimide (A). (B) It is preferable to set it as 5-100 mass parts, and it is more preferable to set it as 5-50 mass parts. When the blending amount of the unsaturated polyester (B) having dicyclomalate is less than 5 parts by mass, there occurs a problem that the fixing strength and stable dimensional accuracy of the obtained varnish cured product cannot be obtained. Moreover, when it mixes exceeding 100 mass parts, the adhesive force of the obtained varnish hardened | cured material will improve, but molding shrinkage becomes large, and also the malfunction which a crack etc. generate | occur | produces at the time of hardening will generate | occur | produce.

本発明で使用する20℃の蒸気圧が0.1mmHg以下(大気圧に対して)である不飽和基を有する反応性希釈剤(C)としては、低臭気性の樹脂組成物を得る目的から、蒸気圧が0.1mmHg(20℃)以下であるもので、さらに不飽和ポリエステルイミド(A)、ジシクロマレートを有する不飽和ポリエステル(B)、分子中に1個の水酸基を有する主鎖が脂肪族の単官能(メタ)アクリレ−トまたは分子中に1個の水酸基を有する主鎖が脂肪族で分子末端にアリル基を有する化合物(D)を溶解するものが選択される。この要件を満足する反応性希釈剤として、具体的には、例えばジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、フェノールエチレンオキサイド変性(メタ)アクリレートなどが挙げられる。また、2−ヒドロキシエチルメタクリレート、プラクセルFA1、FA2D、FA3、FM1D、FM2D、FM3(ダイセル化学工業株式会社製商品名)などの(ポリ)カプロラクトンモノエトキシ(メタ)アクリレートなどの水酸基を持つ(メタ)アクリレートを使用することができる。また分子中に1個の水酸基を有する単官能(メタ)アクリレートと飽和二塩基酸との反応物である不飽和一塩基酸も使用することが可能である。これらは単独で又は2種以上を組み合わせて用いることができる。   As the reactive diluent (C) having an unsaturated group having a vapor pressure of 20 ° C. or less (relative to atmospheric pressure) used in the present invention, a low odorous resin composition is obtained. A vapor pressure of 0.1 mmHg (20 ° C.) or less, an unsaturated polyesterimide (A), an unsaturated polyester (B) having dicyclomalate, and a main chain having one hydroxyl group in the molecule. An aliphatic monofunctional (meth) acrylate or a compound in which the main chain having one hydroxyl group in the molecule is aliphatic and the compound (D) having an allyl group at the molecular end is dissolved is selected. Specific examples of the reactive diluent that satisfies this requirement include dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and phenolethylene oxide-modified (meth) acrylate. In addition, (meth) having a hydroxyl group such as (poly) caprolactone monoethoxy (meth) acrylate such as 2-hydroxyethyl methacrylate, Plaxel FA1, FA2D, FA3, FM1D, FM2D, FM3 (trade name manufactured by Daicel Chemical Industries, Ltd.) Acrylates can be used. It is also possible to use an unsaturated monobasic acid which is a reaction product of a monofunctional (meth) acrylate having one hydroxyl group in the molecule and a saturated dibasic acid. These can be used alone or in combination of two or more.

不飽和ポリエステルイミド(A)とジシクロマレートを有する不飽和ポリエステル(B)の混合物と20℃の蒸気圧が0.1mmHg以下である不飽和基を有する反応性希釈剤(C)の使用量は、不飽和ポリエステルイミド(A)とジシクロマレートを有する不飽和ポリエステル(B)の混合物100質量部に対して、20℃の蒸気圧が0.1mmHg以下である不飽和基を有する反応性希釈剤(C)を50〜400質量部の範囲とするのが好ましい。50質量部未満の場合、得られる樹脂組成物の粘度が高すぎてしまい、トランス表面に厚く付着するばかりでなく、内部浸透性も悪くなる。また、20℃の蒸気圧が0.1mmHg以下である不飽和基を有する反応性希釈剤を400質量部を超えて配合した場合、樹脂組成物の外観が濁るうえ、ワニス粘度が低すぎて、内部に浸透した樹脂付着物が加熱硬化時に流れ出してしまう不具合が発生する。好ましくは、50〜100質量部の範囲とする。   The amount of the reactive diluent (C) having an unsaturated group whose vapor pressure at 20 ° C. is 0.1 mmHg or less and a mixture of the unsaturated polyesterimide (A) and the unsaturated polyester (B) having dicyclomalate is A reactive diluent having an unsaturated group whose vapor pressure at 20 ° C. is 0.1 mmHg or less with respect to 100 parts by mass of a mixture of unsaturated polyesterimide (A) and unsaturated polyester (B) having dicyclomalate (C) is preferably in the range of 50 to 400 parts by mass. When the amount is less than 50 parts by mass, the resulting resin composition has too high a viscosity, and not only thickly adheres to the transformer surface, but also deteriorates internal permeability. In addition, when the reactive diluent having an unsaturated group having a vapor pressure at 20 ° C. of 0.1 mmHg or less is added in excess of 400 parts by mass, the appearance of the resin composition becomes cloudy and the varnish viscosity is too low. There is a problem that the resin deposits that have penetrated inside flow out during heat curing. Preferably, it is set as the range of 50-100 mass parts.

本発明で用いる(D)成分の分子中に1個の水酸基を有する主鎖が脂肪族の単官能(メタ)アクリレ−トとして、1,4−ブタンジオールモノ(メタ)アクリレート、1,6−ヘキサンジオールモノ(メタ)アクリレート、1,9−ノナンジオールモノ(メタ)アクリレート、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸ステアリルなどが挙げられる。また、炭素数12〜15の長鎖アルキル基を有する(メタ)アクリレートモノマーの混合物(例えば、共栄社化学株式会社製のライトエステルL−7、ライトエステルL−8、日本油脂株式会社製のブレンマーSLMA、ブレンマーCMAなど)も使用できる。これらの中からモノマーの臭気を考慮して選定して使用することが好ましい。好ましくは、(メタ)アクリル酸ラウリル、炭素数12〜15の長鎖アルキル基を有する(メタ)アクリレートモノマーの混合物を使用するなどの長鎖アルキルアルコールモノ(メタ)アクリレート類が使用でき、これらは単独または2種以上併用で使用することもできる。   The main chain having one hydroxyl group in the molecule of component (D) used in the present invention is an aliphatic monofunctional (meth) acrylate, such as 1,4-butanediol mono (meth) acrylate, 1,6- Hexanediol mono (meth) acrylate, 1,9-nonanediol mono (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, Examples thereof include tridecyl (meth) acrylate and stearyl (meth) acrylate. Also, a mixture of (meth) acrylate monomers having a long-chain alkyl group having 12 to 15 carbon atoms (for example, Kyoeisha Chemical Co., Ltd. Light Ester L-7, Light Ester L-8, Nippon Oil & Fats Co., Ltd. Bremer SLMA , Bremer CMA, etc.) can also be used. Among these, it is preferable to select and use in consideration of the odor of the monomer. Preferably, long-chain alkyl alcohol mono (meth) acrylates such as lauryl (meth) acrylate and a mixture of (meth) acrylate monomers having a long-chain alkyl group having 12 to 15 carbon atoms can be used. It can also be used alone or in combination of two or more.

また、分子中に1個の水酸基とアリル基を有する化合物としては、例えば、1,5−ペンタンジオールモノアリルエーテル、1,6−ヘキサンジオールモノアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ポリエチレングリコールモノアリルエーテル、ポリプロピレングリコールモノアリルエーテル、などの多価アルコールのアリルエーテル化合物が例示される。これらは単独または2種以上併用で使用することもできる。   Examples of the compound having one hydroxyl group and allyl group in the molecule include 1,5-pentanediol monoallyl ether, 1,6-hexanediol monoallyl ether, trimethylolpropane diallyl ether, glyceryl diallyl ether, Examples include allyl ether compounds of polyhydric alcohols such as pentaerythritol triallyl ether, polyethylene glycol monoallyl ether, and polypropylene glycol monoallyl ether. These may be used alone or in combination of two or more.

上記記載の分子中に1個の水酸基を有する主鎖が脂肪族の単官能(メタ)アクリレ−トまたは分子中に1個の水酸基を有する主鎖が脂肪族で分子末端にアリル基を有する化合物(D)の使用量は、(A)成分の不飽和ポリエステルイミドと(B)成分のジシクロマレートを有する不飽和ポリエステルと(C)成分の20℃の蒸気圧が1mmHg以下である不飽和基を有する反応性希釈剤などの電気絶縁用樹脂組成物の総量100質量部に対し1〜100質量部の範囲とするのが好ましい。1質量部未満の場合、得られる樹脂組成物の粘度が高すぎてしまい、得られる樹脂組成物外観が濁る上、含浸する電気機器表面に厚く付着するばかりでなく、内部浸透性も悪くなる。
また、100質量部を超えて配合すると、樹脂組成物の外観が濁るうえ、ワニス粘度が低すぎて、内部に浸透した樹脂付着物が加熱硬化時に流れ出してしまう不具合が発生する。
The main chain having one hydroxyl group in the molecule described above is an aliphatic monofunctional (meth) acrylate, or a compound in which the main chain having one hydroxyl group in the molecule is aliphatic and has an allyl group at the molecular end. The amount of (D) used is the unsaturated polyester imide of component (A), the unsaturated polyester having dicyclomalate of component (B), and the unsaturated group whose vapor pressure at 20 ° C. of component (C) is 1 mmHg or less. It is preferable to set it as the range of 1-100 mass parts with respect to 100 mass parts of total amounts of resin compositions for electrical insulation, such as a reactive diluent which has. If the amount is less than 1 part by mass, the viscosity of the resulting resin composition is too high, the resulting resin composition becomes cloudy, and not only thickly adheres to the surface of the electrical equipment to be impregnated, but also the internal permeability deteriorates.
Moreover, when it mix | blends exceeding 100 mass parts, while the external appearance of a resin composition will become muddy, the varnish viscosity is too low and the malfunction which the resin deposit | penetration which penetrate | infiltrated the inside will flow out at the time of heat-curing will generate | occur | produce.

本発明に用いられる、(E)成分の2または3個のメチルオキシ基を含有するシランカップリング剤は、メチルオキシ基を官能基に有するシランカップリング剤であれば特に限定されないが、例えば、式(1)又は(2):
R−SiX (1)
R−Si(CH)X (2)
(ここで、Rは、1価の有機官能基であり、Xは、メトキシ基(メチルオキシ基)である)で示されるシランカップリング剤が挙げられる。具体的には、ビニルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシランが使用可能である。また、これらは単独または2種以上併用で使用することもできる。
本発明に用いられる(E)成分の2または3個のメチルオキシ基を含有するシランカップリング剤の使用量は、(A)成分の不飽和ポリエステルイミドと(B)成分のジシクロマレートを有する不飽和ポリエステルと(C)成分の20℃の蒸気圧が1mmHg以下である不飽和基を有する反応性希釈剤などの電気絶縁用樹脂組成物の総量100質量部に対し、2または3個のメチルオキシ基を含有するシランカップリング剤(E)0.01〜20質量部であるのが好ましく、0.1〜10質量部であるのがより好ましく、さらに好ましくは0.5〜5質量部である。
2または3個のメチルオキシ基を含有するシランカップリング剤を、20質量部を超えて配合しても、揮発量は少なくなるが、固着性が逆に低下し、かつ、表面乾燥時間および樹脂組成物の硬化時間が延長し、硬化しづらくなる。また、配合量を0.1質量部未満にすると、得られる樹脂組成物の固着力が低下する不具合が発生する。
The silane coupling agent containing 2 or 3 methyloxy groups of the component (E) used in the present invention is not particularly limited as long as it is a silane coupling agent having a methyloxy group as a functional group. Formula (1) or (2):
R-SiX 3 (1)
R-Si (CH 3) X 2 (2)
(Here, R is a monovalent organic functional group, and X is a methoxy group (methyloxy group)). Specifically, vinyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane 3-methacryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-phenyl-3- Aminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane can be used. Moreover, these can also be used individually or in combination of 2 or more types.
The amount of the silane coupling agent containing 2 or 3 methyloxy groups of the component (E) used in the present invention has the unsaturated polyesterimide of the component (A) and the dicyclomalate of the component (B). 2 or 3 methyls per 100 parts by mass of the total amount of the resin composition for electrical insulation, such as a reactive diluent having an unsaturated group with unsaturated polyester and an unsaturated group whose vapor pressure at 20 ° C. is 1 mmHg or less. The silane coupling agent (E) containing an oxy group is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.5 to 5 parts by mass. is there.
Even if the silane coupling agent containing 2 or 3 methyloxy groups is added in excess of 20 parts by mass, the volatilization amount is reduced, but the sticking property is reduced, and the surface drying time and resin are reduced. The curing time of the composition is extended and it is difficult to cure. On the other hand, when the blending amount is less than 0.1 parts by mass, there occurs a problem that the fixing strength of the obtained resin composition is lowered.

本発明では、さらに、(F)重合開始剤と(G)安定剤を含有することが好ましい。
本発明で用いられる(F)重合開始剤(硬化剤)としては、ケトンパーオキサイド類、パーオキシジカーボネート類、ハイドロパーオキサイド類、ジアシルパーオキサイド類、パーオキシケタール類、ジアルキルパーオキサイド類、パーオキシエステル類、アルキルパーエステル類などが挙げられる。(F)重合開始剤(硬化剤)の量は、硬化条件や樹脂硬化物の外観、特性等の面に影響があるため、それぞれに応じて決定される。材料の保存性、成形サイクルの面から前記(A)成分の不飽和ポリエステルイミドと(B)成分のジシクロマレートを有する不飽和ポリエステルと(C)成分の20℃の蒸気圧が1mmHg以下である不飽和基を有する反応性希釈剤などの電気絶縁用樹脂組成物の総量100質量部に対して0.5〜10質量%が好ましく、より好ましくは1〜5質量%である。
In the present invention, it is preferable to further contain (F) a polymerization initiator and (G) a stabilizer.
Examples of the (F) polymerization initiator (curing agent) used in the present invention include ketone peroxides, peroxydicarbonates, hydroperoxides, diacyl peroxides, peroxyketals, dialkyl peroxides, and peroxides. Examples thereof include oxyesters and alkyl peresters. (F) The amount of the polymerization initiator (curing agent) has an influence on the surface such as the curing conditions and the appearance and characteristics of the cured resin, and therefore is determined according to each. In view of storage stability of the material and molding cycle, the unsaturated polyesterimide (A) and the unsaturated polyester (B) having dicyclomalate and the vapor pressure (C) of the component (C) are 1 mmHg or less. 0.5-10 mass% is preferable with respect to 100 mass parts of total amounts of resin compositions for electrical insulation, such as a reactive diluent which has an unsaturated group, More preferably, it is 1-5 mass%.

本発明で必要に応じて用いられる(G)安定剤としては、p−ベンゾキノン、ハイドロキノン、ナフトキノン、p−トルキノン、2,5−ジフェニル−p−ベンゾキノン、2,5−ジ−アセトキシ−p−ベンゾキノン、p−tert−ブチルカテコール、2,5−ジ−tert−ブチルハイドロキノン、ジ−tert−ブチル−p−クレゾール、ハイドロキノンモノメチルエーテル、2,6−ジ−tert−ブチル−4−メチルフェノール等が挙げられる。その配合量は、電気絶縁用樹脂組成物の貯蔵安定性、実機処理時の硬化温度及び硬化時間により便宜に決定されるが、通常、(A)成分の不飽和ポリエステルイミドと(B)成分のジシクロマレートを有する不飽和ポリエステルと(C)成分の20℃の蒸気圧が1mmHg以下である不飽和基を有する反応性希釈剤などの電気絶縁用樹脂組成物の総量100質量部に対して0.01〜5.0質量部が好ましく、より好ましくは0.5〜3質量部であり、特に0.5質量部以下が好ましく、極めて好ましくは0.01〜0.1質量部である。   (G) Stabilizer used as necessary in the present invention includes p-benzoquinone, hydroquinone, naphthoquinone, p-toluquinone, 2,5-diphenyl-p-benzoquinone, 2,5-di-acetoxy-p-benzoquinone , P-tert-butylcatechol, 2,5-di-tert-butylhydroquinone, di-tert-butyl-p-cresol, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, etc. Be The blending amount is conveniently determined by the storage stability of the resin composition for electrical insulation, the curing temperature and the curing time during actual machine processing, and is usually (A) the unsaturated polyesterimide and (B) component. 0 with respect to 100 parts by mass of the total amount of the resin composition for electrical insulation, such as an unsaturated polyester having dicyclomalate and a reactive diluent having an unsaturated group whose vapor pressure at 20 ° C. of component (C) is 1 mmHg or less. 0.01 to 5.0 parts by mass is preferable, more preferably 0.5 to 3 parts by mass, particularly preferably 0.5 parts by mass or less, and most preferably 0.01 to 0.1 parts by mass.

また、本発明の電気絶縁用樹脂組成物には、必要に応じて硬化物表面の空気遮断効果を持つ公知の市販の各種添加剤などを添加することが好ましい。これらの添加剤を配合することにより、表面硬化(表面乾燥)時間を短縮することができる。表面硬化性を短縮させるための添加剤としてその一例を挙げれば、各種融点のパラフィンワックスなどのワックス類、BYK−S740やBYK−S750(ビックケミージャパン株式会社製商品名)などの低揮散剤などが挙げられる。
ワックス類の配合量としては、電気絶縁用樹脂組成物100質量部に対して、0.05〜1質量部、好ましくは0.1〜0.5質量部である。
本発明の電気絶縁用樹脂組成物を用いた絶縁処理(電気機器絶縁物の製造方法)は、公知の方法で処理されるが、本発明の電気絶縁用樹脂組成物中に電気機器を2〜20分間浸漬した後引き上げ、または滴下含浸した後、100〜160℃で1〜5時間加熱して樹脂組成物を硬化させる方法で行われることが望ましい。
Moreover, it is preferable to add the well-known commercially available various additives etc. which have the air blocking effect of hardened | cured material surface as needed to the resin composition for electrical insulation of this invention. By blending these additives, the surface curing (surface drying) time can be shortened. Examples of additives for shortening the surface curability include waxes such as paraffin waxes having various melting points, low volatility agents such as BYK-S740 and BYK-S750 (trade names manufactured by BYK Japan Japan), etc. Is mentioned.
The compounding amount of the wax is 0.05 to 1 part by mass, preferably 0.1 to 0.5 part by mass with respect to 100 parts by mass of the resin composition for electrical insulation.
Insulating treatment using the resin composition for electrical insulation of the present invention (method for producing an electrical equipment insulator) is performed by a known method. It is desirable to carry out by a method in which the resin composition is cured by being heated at 100 to 160 ° C. for 1 to 5 hours after being dipped for 20 minutes and then pulled or impregnated dropwise.

本発明の電気絶縁用樹脂組成物は、臭気が少なく、良作業性を有するだけではなく、得られるワニス皮膜が剛直性と柔軟性を有するため、トランスやモ−タ等に代表される電気機器含浸処理用に好適である。とくに、作動温度が高温になり、高固着を要求するジューサ・ミシン・電動工具向けの回転子などの電気機器の絶縁処理に最適である。   The resin composition for electrical insulation of the present invention has low odor and not only good workability, but also the varnish film obtained has rigidity and flexibility, so that electrical equipment represented by transformers, motors, etc. Suitable for impregnation treatment. In particular, it is optimal for insulation processing of electrical equipment such as a rotor for juicers, sewing machines, and electric tools that require high adhesion due to high operating temperatures.

次に、本発明を実施例により具体的に説明するが、本発明はこれらに制限されるものではない。なお、例中の「部」は特に断らない限り「質量部」を意味する。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited to these. In the examples, “part” means “part by mass” unless otherwise specified.

(1) 不飽和ポリエステルイミド(A)の合成
温度計、チッ素吹き込み管、精留塔及び撹拌装置を備えた5リットルのフラスコに、2-メチル-1,3-プロパンジオール1035部、4,4'-ジアミノジフェニルエタン297部、無水トリメリット酸597部、トリス(2−ヒドロキシエチル)イソシアヌレート261部、無水フタル酸365部を入れ、窒素気流中で室温(25℃)から1時間で175℃に昇温して4時間反応させた。次いで、得られた溶液を5時間で200℃に昇温して3時間反応させ、樹脂酸価5mgKOH/gの樹脂を得た。得られた溶液に無水マレイン酸588部を加え、再び215℃まで昇温し、6時間反応させたところ、酸価18mgKOH/g、数平均分子量2600の不飽和ポリエステルイミド(A)を得た。なお、合成した不飽和ポリエステルイミド(A)のイミドジカルボン酸量は、全酸成分1molに対して0.27molで、α,β−不飽和二塩基酸が全酸成分1molに対して0.52molである。
(1) Synthesis of unsaturated polyesterimide (A) Into a 5-liter flask equipped with a thermometer, a nitrogen blowing tube, a rectifying column and a stirrer, 1035 parts of 2-methyl-1,3-propanediol, 297 parts of 4′-diaminodiphenylethane, 597 parts of trimellitic anhydride, 261 parts of tris (2-hydroxyethyl) isocyanurate and 365 parts of phthalic anhydride were added, and 175 in 1 hour from room temperature (25 ° C.). The temperature was raised to 0 ° C. and reacted for 4 hours. Next, the obtained solution was heated to 200 ° C. in 5 hours and reacted for 3 hours to obtain a resin having a resin acid value of 5 mgKOH / g. When 588 parts of maleic anhydride was added to the obtained solution and the temperature was raised again to 215 ° C. and reacted for 6 hours, an unsaturated polyesterimide (A) having an acid value of 18 mg KOH / g and a number average molecular weight of 2600 was obtained. The amount of imide dicarboxylic acid in the synthesized unsaturated polyesterimide (A) is 0.27 mol with respect to 1 mol of the total acid component, and 0.52 mol of α, β-unsaturated dibasic acid with respect to 1 mol of the total acid component. It is.

(2) ジシクロマレートを有する不飽和ポリエステル(B)の合成
温度計、チッ素吹き込み管、精留塔及び撹拌装置を備えた5リットルのフラスコに、ジシクロペンタジエン2112部、無水マレイン酸1568部に水道水を288部仕込み、窒素ガス導入下に1時間をかけて140℃まで昇温し、さらに3時間保温したのちに100℃以下まで冷却し、ジエチレングリコール318部、エチレングリコール447部、ハイドロキノンを0.03部を仕込み、160℃まで1時間で昇温後、4時間をかけて210℃まで昇温し、8時間保温したところ、酸価が15mgKOH/g、数平均分子量1200の不飽和ポリエステル(B)を得た。
(2) Synthesis of unsaturated polyester (B) having dicyclomalate In a 5 liter flask equipped with a thermometer, a nitrogen blowing tube, a rectifying column and a stirrer, 2112 parts of dicyclopentadiene and 1568 parts of maleic anhydride 288 parts of tap water was added to the flask, heated to 140 ° C. over 1 hour while introducing nitrogen gas, further maintained for 3 hours, then cooled to 100 ° C. or lower, 318 parts of diethylene glycol, 447 parts of ethylene glycol, hydroquinone 0.03 part was charged, heated to 160 ° C. over 1 hour, heated to 210 ° C. over 4 hours, and kept warm for 8 hours. An unsaturated polyester having an acid value of 15 mg KOH / g and a number average molecular weight of 1200 (B) was obtained.

(実施例1)
上記で作製した不飽和ポリエステルイミド(A)60部とジシクロマレートを有する不飽和ポリエステル(B)24部、(C)成分として2−ヒドロキシエチルメタクリレート46部、(D)成分として、(メタ)アクリル酸ラウリル(共栄社化学株式会社製ライトエステルL)13部、(E)成分として、3−メタクリロキシプロピルトリメトキシシラン(信越シリコン株式会社製KBM−603)1.95部、(F)成分として1,1−ジ(タ−シャリ−ブチルパ−オキシ)ベンゾエ−ト(化薬アクゾ株式会社製、製品名カヤブチルB)を1.3部、及び(G)成分としてハイドロキノンを0.013部配合し、樹脂組成物A−1を得た。
Example 1
60 parts of the unsaturated polyesterimide (A) prepared above and 24 parts of the unsaturated polyester (B) having dicyclomalate, 46 parts of 2-hydroxyethyl methacrylate as the (C) component, and (meth) as the (D) component 13 parts of lauryl acrylate (light ester L manufactured by Kyoeisha Chemical Co., Ltd.), 1.95 parts of 3-methacryloxypropyltrimethoxysilane (KBM-603 manufactured by Shin-Etsu Silicon Co., Ltd.) as component (E), 1.3 parts of 1,1-di (tert-butyl peroxy) benzoate (product name Kayabutyl B, manufactured by Kayaku Akzo Co., Ltd.) and 0.013 part of hydroquinone as component (G) Resin composition A-1 was obtained.

(実施例2)
上記で作製した不飽和ポリエステルイミド(A)60部と不飽和ポリエステル(B)3.2部、(C)成分として2−ヒドロキシエチルメタクリレート40.8部、(D)成分として、(メタ)アクリル酸ラウリル(共栄社化学株式会社製ライトエステルL)10.4部、(E)成分として、3−メタクリロキシプロピルトリメトキシシラン(信越シリコン株式会社製KBM−503)1.56部、(F)成分として1,1−ジ(タ−シャリ−ブチルパ−オキシ)ベンゾエ−ト(化薬アクゾ株式会社製、製品名カヤブチルB)を1.04部、及び(G)成分としてハイドロキノンを0.0104部配合し、樹脂組成物A−2を得た。
(Example 2)
60 parts of the unsaturated polyesterimide (A) prepared above, 3.2 parts of the unsaturated polyester (B), 40.8 parts of 2-hydroxyethyl methacrylate as the (C) component, and (meth) acrylic as the (D) component Acid lauryl (Kyoeisha Chemical Co., Ltd. light ester L) 10.4 parts, (E) component, 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicon Co., Ltd. KBM-503) 1.56 parts, (F) component 1.04-parts of 1,1-di (tert-butylperoxy) benzoate (manufactured by Kayaku Akzo Co., Ltd., product name Kayabutyl B), and 0.0104 parts of hydroquinone as component (G) Resin composition A-2 was obtained.

(実施例3)
上記で作製した不飽和ポリエステルイミド(A)60部と不飽和ポリエステル(B)40部、(C)成分として2−ヒドロキシエチルメタクリレート60部、(D)成分として、(メタ)アクリル酸ラウリル(共栄社化学株式会社製ライトエステルL)20部、(E)成分として、3−メタクリロキシプロピルトリメトキシシラン(信越シリコン株式会社製KBM−603)3部、(F)成分として1,1−ジ(タ−シャリ−ブチルパ−オキシ)ベンゾエ−ト(化薬アクゾ株式会社製、製品名カヤブチルB)を2部、及び(G)成分としてハイドロキノンを0.02部配合し、樹脂組成物A−3を得た。
(Example 3)
60 parts of the unsaturated polyesterimide (A) prepared above and 40 parts of the unsaturated polyester (B), 60 parts of 2-hydroxyethyl methacrylate as the component (C), and lauryl (meth) acrylate (Kyoeisha) as the component (D) Chemical Co., Ltd. Light Ester L) 20 parts, (E) component as 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone KBM-603) 3 parts, (F) component 1,1-di (ta -Shari-butyl peroxy) benzoate (manufactured by Kayaku Akzo Co., Ltd., product name Kayabutyl B) 2 parts, and 0.02 parts of hydroquinone as component (G) were blended to obtain resin composition A-3. It was.

(実施例4)
上記で作製した不飽和ポリエステルイミド(A)60部と不飽和ポリエステル(B)24部、(C)成分として2−ヒドロキシエチルメタクリレート84部、(D)成分として、(メタ)アクリル酸ラウリル(共栄社化学株式会社製ライトエステルL)10.8部、(E)成分として、3−メタクリロキシプロピルトリメトキシシラン(信越シリコン株式会社製KBM−603)1.62部、(F)成分として1,1−ジ(タ−シャリ−ブチルパ−オキシ)ベンゾエ−ト(化薬アクゾ株式会社製、製品名カヤブチルB)を1.08部、及び(G)成分としてハイドロキノンを0.0108部配合し、樹脂組成物A−4を得た。
Example 4
60 parts of unsaturated polyesterimide (A) prepared above and 24 parts of unsaturated polyester (B), 84 parts of 2-hydroxyethyl methacrylate as component (C), lauryl (meth) acrylate (Kyoeisha) as component (D) Chemical Co., Ltd. Light Ester L) 10.8 parts, (E) as component, 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicon Co., Ltd. KBM-603) 1.62 parts, (F) component 1,1 -Di (tert-butyl peroxy) benzoate (product name Kayabutyl B, manufactured by Kayaku Akzo Co., Ltd.) 1.08 parts, and 0.0108 parts hydroquinone as component (G) Product A-4 was obtained.

(比較例1)
上記で作製した不飽和ポリエステルイミド(A)60部、(C)成分として2−ヒドロキシエチルメタクリレート40部、(D)成分として、(メタ)アクリル酸ラウリル(共栄社化学株式会社製ライトエステルL)10部、(E)成分として、3−メタクリロキシプロピルトリメトキシシラン(信越シリコン株式会社製KBM−503)1.5部、(F)成分として1,1−ジ(タ−シャリ−ブチルパ−オキシ)ベンゾエ−ト(化薬アクゾ株式会社製、製品名カヤブチルB)を1部、及び(G)成分としてハイドロキノンを0.01部配合し、樹脂組成物B−1を得た。
(Comparative Example 1)
60 parts of unsaturated polyesterimide (A) prepared above, 40 parts of 2-hydroxyethyl methacrylate as component (C), 10 parts of lauryl (meth) acrylate (light ester L manufactured by Kyoeisha Chemical Co., Ltd.) as component (D) 10 Part, (E) component, 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Silicon Co., Ltd.), (F) component 1,1-di (tert-butylperoxy) 1 part of benzoate (manufactured by Kayaku Akzo Co., Ltd., product name Kayabutyl B) and 0.01 part of hydroquinone as component (G) were blended to obtain a resin composition B-1.

(比較例2)
上記で作製した不飽和ポリエステル(B)80部、(C)成分として2−ヒドロキシエチルメタクリレート20部、(D)成分として、(メタ)アクリル酸ラウリル(共栄社化学株式会社製ライトエステルL)10部、(E)成分として、3−メタクリロキシプロピルトリメトキシシラン(信越シリコン株式会社製KBM−503)1.5部、(F)成分として1,1−ジ(タ−シャリ−ブチルパ−オキシ)ベンゾエ−ト(化薬アクゾ株式会社製、製品名カヤブチルB)を1部、及び(G)成分としてハイドロキノンを0.01部配合し、樹脂組成物B−2を得た。
(Comparative Example 2)
80 parts of the unsaturated polyester (B) prepared above, 20 parts of 2-hydroxyethyl methacrylate as the component (C), 10 parts of lauryl (meth) acrylate (light ester L manufactured by Kyoeisha Chemical Co., Ltd.) as the component (D) As component (E), 1.5 parts of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Silicon Co., Ltd.) and 1,1-di (tert-butylperoxy) benzoe as component (F) -1 part of Toto (made by Kayaku Akzo Co., Ltd., product name Kayabutyl B) and 0.01 part of hydroquinone as component (G) were blended to obtain a resin composition B-2.

(比較例3)
上記で作製した不飽和ポリエステルイミド(A)60部と不飽和ポリエステル(B)24部、(D)成分として、(メタ)アクリル酸ラウリル(共栄社化学株式会社製ライトエステルL)8.4部、(E)成分として、3−メタクリロキシプロピルトリメトキシシラン(信越シリコン株式会社製KBM−603)1.26部、(F)成分として1,1−ジ(タ−シャリ−ブチルパ−オキシ)ベンゾエ−ト(化薬アクゾ株式会社製、製品名カヤブチルB)を0.84部、及び(G)成分としてハイドロキノンを0.0084部配合し、樹脂組成物B−3を得た。
(Comparative Example 3)
60 parts of unsaturated polyesterimide (A) prepared above and 24 parts of unsaturated polyester (B), (D) as component (D), lauryl (meth) acrylate (Kyoeisha Chemical Co., Ltd. light ester L) 8.4 parts, As component (E), 1.26 parts of 3-methacryloxypropyltrimethoxysilane (KBM-603 manufactured by Shin-Etsu Silicon Co., Ltd.) and 1,1-di (tert-butylperoxy) benzoe as component (F) 0.84 parts of Toto (manufactured by Kayaku Akzo Co., Ltd., product name Kayabutyl B) and 0.0084 parts of hydroquinone as component (G) were blended to obtain a resin composition B-3.

(比較例4)
上記で作製した不飽和ポリエステルイミド(A)60部と不飽和ポリエステル(B)24部、(C)成分として2−ヒドロキシエチルメタクリレート4部、(D)成分として、(メタ)アクリル酸ラウリル(共栄社化学株式会社製ライトエステルL)8.8部、(E)成分として、3−メタクリロキシプロピルトリメトキシシラン(信越シリコン株式会社製KBM−603)1.32部、(F)成分として1,1−ジ(タ−シャリ−ブチルパ−オキシ)ベンゾエ−ト(化薬アクゾ株式会社製、製品名カヤブチルB)を0.88部、及び(G)成分としてハイドロキノンを0.0088部配合し、樹脂組成物B−4を得た。
(Comparative Example 4)
60 parts of the unsaturated polyesterimide (A) prepared above and 24 parts of the unsaturated polyester (B), 4 parts of 2-hydroxyethyl methacrylate as the (C) component, and lauryl (meth) acrylate (Kyoeisha) as the (D) component Chemical Co., Ltd. Light Ester L) 8.8 parts, (E) component, 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone KBM-603) 1.32 parts, (F) component 1,1 -0.88 parts of di (tertiary butyl peroxy) benzoate (manufactured by Kayaku Akzo Co., Ltd., product name Kayabutyl B) and 0.0088 parts of hydroquinone as component (G), and resin composition Product B-4 was obtained.

実施例1〜4および比較例1〜4の樹脂組成物について、粘度、ゲル化時間、表面乾燥性、硬化物の硬さ、成型収縮率、固着力および絶縁破壊電圧を以下のようにして測定した。   For the resin compositions of Examples 1 to 4 and Comparative Examples 1 to 4, the viscosity, gelation time, surface drying property, hardness of the cured product, molding shrinkage rate, adhesion force and dielectric breakdown voltage were measured as follows. did.

(1)ワニス粘度の測定:JIS C 2105(電気絶縁用無溶剤液状レジン試験方法)に準拠して、ブルックフィ−ルド型粘度計を用いて測定した。
(2)ゲル化時間測定:JIS C 2105に準拠して、試験管法にてゲル化時間を測定した。
(3)ポットライフ:JIS C 2105に準拠して、試験管法にてポットライフを測定した。表中、例えば、「7OK,8NG」は、7日まで流動性があり、8日後は、試験管を逆さにしても組成物がすぐには落下しない高粘度になったことを示す。
(4)固着力:JIS C 2105に準拠し、日立マグネットワイヤ株式会社製直径2mmのAIW電線を使用し、ヘリカルコイル試験片を作製した。これに、樹脂組成物を含浸させ、130℃、1.5時間硬化させ試験片を作製した。この試験片を用い、支点間距離を80mmにし、株式会社島津製作所製オ−トグラフを用いて5mm/minの速さで、試験片の中央部に荷重を加えた。試験片が破壊する荷重をもって固着力とした。
(5)熱劣化後の固着力:上記の固着力で作製した試験片を240℃の高温槽で240時間静置した後、上記の固着力と同様な方法で固着力を測定した。
(6)ワニス硬化物の成形収縮率:直径が60mmの金属シャーレに樹脂混合物を10g入れ、165℃、30minで硬化する。得られた樹脂硬化物の直径と金属シャ-レの直径の差より成形収縮率を算出した。
(7)ワニス硬化物の硬度:直径が60mmの金属シャーレに樹脂混合物を10g入れ、165℃、30minで硬化する。得られた樹脂硬化物をShoreD硬度計で硬化物表面の硬度を測定した。
(8)ツイストペア絶縁破壊電圧:JIS C 3003に準拠し、日立マグネットワイヤ株式会社製直径2mmのAIW電線を使用し、ツイストペア試験片を作製した。これに、樹脂組成物を含浸させ、160℃、1時間硬化を2回実施し試験片を作製した。この試験片を用い、絶縁破壊電圧を測定した。
(9)熱劣化後のツイストペア絶縁破壊電圧:上記のツイストペア絶縁破壊電圧で作製した試験片を240℃の高温槽で240時間静置した後、上記と同様に絶縁破壊電圧を測定した。
(1) Measurement of varnish viscosity: Measured using a Brookfield viscometer in accordance with JIS C 2105 (Test method for solvent-free liquid resin for electrical insulation).
(2) Gelation time measurement: Gelation time was measured by a test tube method in accordance with JIS C 2105.
(3) Pot life: Pot life was measured by a test tube method in accordance with JIS C 2105. In the table, for example, “7 OK, 8 NG” indicates that the composition was fluid until 7 days, and after 8 days, the composition did not drop immediately even when the test tube was inverted, and became a high viscosity.
(4) Adhesive strength: In accordance with JIS C 2105, an AIW electric wire with a diameter of 2 mm manufactured by Hitachi Magnet Wire Co., Ltd. was used to produce a helical coil specimen. This was impregnated with a resin composition and cured at 130 ° C. for 1.5 hours to prepare a test piece. Using this test piece, the distance between fulcrums was 80 mm, and a load was applied to the center of the test piece at a speed of 5 mm / min using an autograph manufactured by Shimadzu Corporation. The load at which the test piece breaks was defined as the fixing force.
(5) Adhesive strength after thermal deterioration: After the test piece prepared with the above-mentioned adhesive strength was allowed to stand for 240 hours in a high-temperature bath at 240 ° C., the adhesive strength was measured by the same method as the above-mentioned adhesive strength.
(6) Mold shrinkage of cured varnish: 10 g of the resin mixture is placed in a metal petri dish having a diameter of 60 mm and cured at 165 ° C. for 30 min. The molding shrinkage was calculated from the difference between the diameter of the obtained cured resin and the diameter of the metal dish.
(7) Hardness of cured varnish: 10 g of the resin mixture is put in a metal petri dish having a diameter of 60 mm and cured at 165 ° C. for 30 minutes. The resulting cured resin was measured for the hardness of the surface of the cured product with a Shore D hardness meter.
(8) Twisted pair dielectric breakdown voltage: In accordance with JIS C 3003, a 2 mm diameter AIW electric wire manufactured by Hitachi Magnet Wire Co., Ltd. was used to produce a twisted pair specimen. This was impregnated with a resin composition and cured twice at 160 ° C. for 1 hour to prepare a test piece. Using this test piece, the dielectric breakdown voltage was measured.
(9) Twisted Pair Dielectric Breakdown Voltage after Thermal Degradation: After a test piece prepared with the above twisted pair dielectric breakdown voltage was allowed to stand for 240 hours in a high temperature bath at 240 ° C., the dielectric breakdown voltage was measured in the same manner as described above.

得られた結果を纏めて表1、表2に示した。     The obtained results are summarized in Tables 1 and 2.

Figure 2011108476
Figure 2011108476

Figure 2011108476
Figure 2011108476

比較例1のジシクロマレートを有する不飽和ポリエステル(B)を用いず不飽和ポリエステルイミド(A)のみを用いた場合、ゲル化時間、固着力、成形収縮率が低下する。比較例2の不飽和ポリエステルイミド(A)を用いずジシクロマレートを有する不飽和ポリエステル(B)のみを用いた場合、ポットライフ、加熱劣化試験後の固着力、絶縁破壊電圧の保持力が低下する。また、(C)成分を含有しない比較例3の場合、ワニス粘度、ゲル化時間、加熱劣化試験後の固着力、絶縁破壊電圧の保持力が低下する。(C)成分を少量添加した比較例4の場合、ワニス粘度、ゲル化時間、絶縁破壊電圧の保持力の低下が見られる。
本発明の、(A)〜(E)成分を含有する電気絶縁用樹脂組成物を用いた場合、ワニス硬化物が、柔軟性にすぐれ、初期および熱劣化後の固着力およびツイストペア絶縁破壊電圧の保持率が高いワニス硬化物を提供できる。また、樹脂組成物の粘度は従来品と同等であるため、含浸作業方法に幅広く対応可能である。さらに、従来の液状タイプの樹脂組成物と同等以上の電気絶縁性、固着性等の硬化物特性の提供が可能で、良好な安定性を示すため、信頼性の高い電気機器を提供することができる。
When only the unsaturated polyester imide (A) is used without using the unsaturated polyester (B) having the dicyclomalate of Comparative Example 1, the gelation time, the fixing force, and the molding shrinkage ratio are lowered. When only unsaturated polyester (B) having dicyclomalate is used without using unsaturated polyesterimide (A) of Comparative Example 2, pot life, fixing strength after heat deterioration test, and holding power of dielectric breakdown voltage are reduced. To do. Moreover, in the case of the comparative example 3 which does not contain (C) component, varnish viscosity, gelation time, the fixing force after a heat deterioration test, and the retention strength of a dielectric breakdown voltage will fall. In the case of Comparative Example 4 in which a small amount of the component (C) is added, a decrease in varnish viscosity, gelation time, and breakdown voltage holding power is observed.
When the resin composition for electrical insulation containing the components (A) to (E) of the present invention is used, the cured varnish is excellent in flexibility, and has an initial and thermal deterioration after fixing strength and twisted pair breakdown voltage. A cured varnish having a high retention rate can be provided. Moreover, since the viscosity of a resin composition is equivalent to the conventional product, it can respond | correspond widely to the impregnation operation method. Furthermore, it is possible to provide cured product characteristics such as electrical insulation and adhesion that are equal to or better than those of conventional liquid type resin compositions, and to provide good stability, thus providing a highly reliable electrical device. it can.

Claims (8)

分子鎖中にイミドジカルボン酸と、α,β−不飽和二塩基酸と、1個以上の水酸基を持つアルコールを必須成分として反応させて得られ、かつイミドジカルボン酸量が全酸成分1molに対して0.1〜0.5molと、α,β−不飽和二塩基酸が全酸成分1molに対して0.5〜0.9molと成るように設定したものと、1個以上の水酸基を持つアルコールを必須成分として得られる不飽和ポリエステルイミド(A)と、ジシクロマレートを有する不飽和ポリエステル(B)、20℃の蒸気圧が0.1mmHg以下である不飽和基を有する反応性希釈剤(C)、分子中に1個の水酸基を有する主鎖が脂肪族の単官能(メタ)アクリレ−トまたは分子中に1個の水酸基を有する主鎖が脂肪族で分子末端にアリル基を有する化合物(D)、および、2または3個のメチルオキシ基を含有するシランカップリング剤(E)を必須材料としてなる電気絶縁用樹脂組成物。 It is obtained by reacting imide dicarboxylic acid, α, β-unsaturated dibasic acid and alcohol having one or more hydroxyl groups as essential components in the molecular chain, and the amount of imide dicarboxylic acid is 1 mol of total acid component. 0.1 to 0.5 mol, α, β-unsaturated dibasic acid is set to 0.5 to 0.9 mol with respect to 1 mol of all acid components, and has one or more hydroxyl groups Unsaturated polyesterimide (A) obtained by using alcohol as an essential component, unsaturated polyester (B) having dicyclomalate, and reactive diluent having an unsaturated group having a vapor pressure at 20 ° C. of 0.1 mmHg or less ( C) a compound in which the main chain having one hydroxyl group in the molecule is an aliphatic monofunctional (meth) acrylate, or a compound in which the main chain having one hydroxyl group in the molecule is aliphatic and has an allyl group at the molecular end (D) and 2 Other three methyl group and containing silane coupling agent (E) consisting of as essential material for electrical insulation resin composition. 不飽和ポリエステルイミド(A)の数平均分子量が1,000〜10,000の範囲である請求項1に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to claim 1, wherein the unsaturated polyesterimide (A) has a number average molecular weight in the range of 1,000 to 10,000. ジシクロマレートを有する不飽和ポリエステル(B)の数平均分子量が500〜3,000の範囲である請求項1に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to claim 1, wherein the unsaturated polyester (B) having dicyclomalate has a number average molecular weight in the range of 500 to 3,000. 20℃の蒸気圧が0.1mmHg以下である不飽和基を有する反応性希釈剤(C)を、不飽和ポリエステルイミド(A)とジシクロマレートを有する不飽和ポリエステル(B)の総量100質量部に対して、50〜400質量部含有する請求項1ないし3のいずれかに記載の電気絶縁用樹脂組成物。 Reactive diluent (C) having an unsaturated group with a vapor pressure at 20 ° C. of 0.1 mmHg or less, 100 parts by mass of unsaturated polyester imide (A) and unsaturated polyester (B) having dicyclomalate The resin composition for electrical insulation according to any one of claims 1 to 3, which is contained in an amount of 50 to 400 parts by mass. 電気絶縁用樹脂組成物100質量部に対し、分子中に1個の水酸基を有する主鎖が脂肪族の単官能(メタ)アクリレ−トまたは分子中に1個の水酸基を有する主鎖が脂肪族で分子末端にアリル基を有する化合物(D)1〜100質量部を含有する請求項1ないし4の何れかに記載の電気絶縁用樹脂組成物。 The main chain having one hydroxyl group in the molecule is aliphatic monofunctional (meth) acrylate or the main chain having one hydroxyl group in the molecule is aliphatic with respect to 100 parts by mass of the resin composition for electrical insulation. The resin composition for electrical insulation according to any one of claims 1 to 4, comprising 1 to 100 parts by mass of the compound (D) having an allyl group at the molecular end. 電気絶縁用樹脂組成物100質量部に対し、2または3個のメチルオキシ基を含有するシランカップリング剤(E)0.01〜20質量部を含有する請求項1ないし5の何れかに記載の電気絶縁用樹脂組成物。 The silane coupling agent (E) containing 2 or 3 methyloxy groups is contained in an amount of 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin composition for electrical insulation. Resin composition for electrical insulation. さらに、(F)重合開始剤及び(G)安定剤を含有する請求項1ないし6の何れかに記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 6, further comprising (F) a polymerization initiator and (G) a stabilizer. 電気機器を請求項1ないし7の何れかに記載の電気絶縁用樹脂組成物で被覆し、硬化することを特徴とする電気機器絶縁物の製造方法。 A method for producing an electrical equipment insulator, wherein the electrical equipment is coated with the resin composition for electrical insulation according to any one of claims 1 to 7 and cured.
JP2009261763A 2009-11-17 2009-11-17 Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same Pending JP2011108476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261763A JP2011108476A (en) 2009-11-17 2009-11-17 Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261763A JP2011108476A (en) 2009-11-17 2009-11-17 Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same

Publications (1)

Publication Number Publication Date
JP2011108476A true JP2011108476A (en) 2011-06-02

Family

ID=44231738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261763A Pending JP2011108476A (en) 2009-11-17 2009-11-17 Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same

Country Status (1)

Country Link
JP (1) JP2011108476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006999A (en) * 2011-06-27 2013-01-10 Nitto Shinko Kk Thermosetting adhesive, thermosetting adhesive sheet, and interphase insulating sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006999A (en) * 2011-06-27 2013-01-10 Nitto Shinko Kk Thermosetting adhesive, thermosetting adhesive sheet, and interphase insulating sheet

Similar Documents

Publication Publication Date Title
JP5686234B2 (en) Resin composition for electrical insulation and electrical equipment using the composition
JP2015002095A (en) Resin composition for electric insulation and manufacturing method of insulated electric appliance using the same
JP2010116461A (en) Electrically insulating resin composition and method for manufacturing insulating material for electrical equipment using the same
JP2011108476A (en) Resin composition for electrical insulation and manufacturing method for electric equipment insulator using the same
JP5500358B2 (en) Resin composition for electrical insulation and electrical equipment using the composition
JP2010244965A (en) Electrical insulation resin composition, and method of manufacturing electric equipment insulating material using the same
JP2018163744A (en) Resin composition for electric insulation and method for producing the same, and electric apparatus using resin composition and method for manufacturing the same
JP5321876B2 (en) Resin composition for electrical insulation and method for producing electrical equipment insulator using the same
JP2015147918A (en) Unsaturated polyester resin composition, and resin composition for electric insulation using the same, and method for manufacturing electric equipment
JP4697511B2 (en) Resin composition, resin composition for electrical insulation, and method for producing electrical equipment insulator
ES2534875T3 (en) Resin compositions containing epoxy resins modified with sorbic acid
JP2017048329A (en) Unsaturated polyester resin composition, and method for manufacturing resin composition for electric insulation and electric equipment insulation using the same
JP2019026804A (en) Unsaturated polyester resin composition and method for manufacturing electric device insulation using the same
JP6759139B2 (en) Resin composition for coil impregnation and coil for automobile motor
JP2016017082A (en) Unsaturated polyester resin composition, resin composition for electrical insulation using the same, and method for manufacturing electrical equipment
JP4947333B2 (en) Resin composition for electrical insulation and method for producing electrical equipment insulator using the same
WO2022162805A1 (en) Insulating resin composition, cured product, rotary machine coil, and rotary machine
JP2009099387A (en) Resin composition for electric insulation and method of manufacturing electric apparatus insulator using the same
JP2007297479A (en) Resin composition and method for producing electric equipment insulator
JP4427741B2 (en) Resin composition, resin composition for electrical insulation, and method for producing electrical equipment insulator
JP2011116879A (en) Unsaturated polyester resin composition
JP2017115015A (en) Unsaturated polyester resin composition, rotor using the same and manufacturing method of electric device insulating material
JP5202439B2 (en) Thermosetting resin composition
JP5847195B2 (en) Impregnating resin formulation for electrical windings
JP2005294572A (en) Coil-impregnating resin composition and coil