[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011176445A - 経路決定装置,経路決定方法及び経路決定プログラム - Google Patents

経路決定装置,経路決定方法及び経路決定プログラム Download PDF

Info

Publication number
JP2011176445A
JP2011176445A JP2010037546A JP2010037546A JP2011176445A JP 2011176445 A JP2011176445 A JP 2011176445A JP 2010037546 A JP2010037546 A JP 2010037546A JP 2010037546 A JP2010037546 A JP 2010037546A JP 2011176445 A JP2011176445 A JP 2011176445A
Authority
JP
Japan
Prior art keywords
flow
route
constraint condition
data link
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037546A
Other languages
English (en)
Other versions
JP5418289B2 (ja
Inventor
Satoshi Imai
悟史 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010037546A priority Critical patent/JP5418289B2/ja
Priority to US13/030,492 priority patent/US8687498B2/en
Publication of JP2011176445A publication Critical patent/JP2011176445A/ja
Application granted granted Critical
Publication of JP5418289B2 publication Critical patent/JP5418289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5019Ensuring fulfilment of SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5077Network service management, e.g. ensuring proper service fulfilment according to agreements wherein the managed service relates to simple transport services, i.e. providing only network infrastructure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/38Flow based routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

【課題】フローに対する経路決定に際して、フローのエンドツーエンド品質を考慮した経路を現実的な計算量で求めることができるようにする。
【解決手段】データリンクにフローを割り当てることによりそのデータリンクにおいて生じる品質変化に基づき、フローのエンドツーエンドの品質要件を満たしていることと、データリンクにフローを割り当てることによりそのデータリンクにおいて既存の他フローに生じる品質変化に基づき、他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定部104と、設定された制約条件を満たす範囲内で、複数のデータリンクにより構成される複数の経路の中から、フローに対する経路を決定する経路決定部102とをそなえる。
【選択図】図1

Description

本件は、データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する技術に関する。
複数のノードと各ノード間を夫々連結する多数のリンクとをそなえたネットワークにおいては、各ノードに接続されたネットワーク管理システム(NMS:Network Management System)が、ネットワーク上における経路の決定やフローの収容(割当)を行なう。
具体的には、ネットワーク管理システムの経路設計機能が、送信元ノードから送信先ノードに対するデータ送信に関するフロー設定要求に応じて、到達性条件やトラフィック容量,経路長(ホップ数)条件等の制約条件に従って、経路の決定及びフローの収容を行なう。なお、フローとはデータの流れであり、セッション又はパスと言い換えることができる。
従来の経路設計手法においては、例えば、複数パターンの経路からノード間のリンクコストを最小化する経路を最適な経路として決定する技術が知られている(下記特許文献1)。
特表2003−527039号公報
このような従来の経路決定手法においては、経路が重畳されているリンク毎のトラフィック利用制限等を制約条件として与えることで経路を決定している。このような制約条件では、ネットワークに収容される各フローのエンドツーエンド(End-to-End)品質を保証するために、ネットワーク利用に対してどれぐらいのレベルまで許容できるかが明確ではなく、厳しい制約条件付与のもと経路計算を行なわざるを得ない。
また、従来の経路決定手法においては、新たなフローに対する経路を計算する際に、様々な経路長や品質要件を持つ各フローのエンドツーエンド品質を考慮して経路計算を行なおうとすると、全ての経路候補に対して全パターン検索をして実現するしかない。すなわち、計算量が膨大になり時間がかかる他、ノード数の多いネットワーク構成によっては処理が破綻するという課題がある。
本件の目的の一つは、このような課題に鑑み創案されたもので、フローに対する経路決定に際して、フローのエンドツーエンド品質を考慮した最適経路を現実的な計算量で求めることができるようにすることである。
なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本発明の他の目的の1つとして位置付けることができる。
このため、この経路決定装置は、データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する経路決定装置であって、該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定部と、該制約条件設定部により設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定部とをそなえる。
また、この経路決定方法は、データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する経路決定方法であって、該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定ステップと、該制約条件設定ステップにおいて設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定ステップとをそなえる。
さらに、この経路決定プログラムは、データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する機能をコンピュータに実行させるための経路決定プログラムであって、該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定部と、該制約条件設定部により設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定部として、該コンピュータを機能させる。
開示の技術によれば、以下の少なくともいずれか1つの効果ないし利点が得られる。
(1)フローに対し、既存の他フローを含む各フローに対するエンドツーエンド品質要件を満たす経路を少ない計算量で求めることができる
(2)ノード数が多いネットワークにおいても、多項式時間で最適経路を計算することができる。
実施形態の一例としてのネットワーク管理システムの構成を模式的に示す図である。 実施形態の一例としてのネットワーク管理システムの管理サーバの機能を説明するための図である。 実施形態の一例としてのネットワーク管理システムにおける制約条件設計部による制約条件の設定手法を説明するための図である。 リンクトラフィック負荷とバッファリング遅延との関係を示す図である。 リンクトラフィック負荷とロス率との関係を示す図である。 実施形態の一例としてのネットワーク管理システムにおける要求フローに対する経路計算をするための目的関数と制約条件式とを説明するための図である。 実施形態の一例としてのネットワーク管理システムにおける最適経路の表現方法を説明するための図である。 実施形態の一例としてのネットワーク管理システムにおける経路設定手法を説明するためのフローチャートである。 実施形態の一例としてのネットワーク管理システムにおける各フローの最適経路とその経路履歴情報の使用方法を示す図である。 実施形態の一例としてのネットワーク管理システムにおける、要求フローに対する経路設定処理の流れを説明するためのフローチャートである。 実施形態の一例としてのネットワーク管理システムにおける制約条件の設計手法を説明するためのフローチャートである。 ネットワークのトポロジの構成例を示す図である。 実施形態の一例としてのネットワーク管理システムにおいて生成されるリンク属性情報を例示する図である。 実施形態の一例としてのネットワーク管理システムの制約条件設計部による制約条件の生成手法を説明するための図である。
以下、図面を参照して経路決定に係る実施の形態を説明する。
図1は実施形態の一例としてのネットワーク管理システム1の構成を模式的に示す図、図2はその管理サーバ10の機能を説明するための図である。
ネットワーク管理システム1は、データリンクを介して接続される複数のノードをそなえるネットワーク2を管理するものであり、図1に示すように、管理サーバ10をそなえている。
ネットワーク2は、複数のノードをそなえるとともに、これらのノード間を通信可能に接続するデータリンクをそなえている。
ノードは、それぞれデータリンクを介して他のノードとデータを受信及び送信可能なコンピュータシステムである。
また、各ノードは、それぞれ、ネットワーク2に送信されるデータの発信元である送信元ノードとして機能可能であるとともに、送信元ノードから送信されるデータを受信する宛先としての受信ノード(送信先ノード)として機能可能である。又、各ノードは、送信元ノード又は他のノードからデータを受信し、受信されたデータを更に他のノードに送信(転送)する機能もそなえている。なお、本実施形態においては、便宜上、これらのノードの構成や機能についての詳細な説明は省略する。
データリンクは、例えば、LAN(Local Area Network)やFC(Fibre Channel)等の通信回線(伝送路)である。このデータリンクは、データを送信するための物理的な回線の他、データネットワークにおいてデータを送受信するためのハードウェア構成要素及びソフトウェア構成要素をそなえている。そして、このデータリンクには既知の種々の規格の通信回線を用いることができる。なお、本実施形態においては、便宜上、これらのデータリンクの構成や機能についての詳細な説明は省略する。又、以下、データリンクを単にリンクという場合がある。
図1に示す例においては、ネットワーク2に6つのノードがそなえられている例を示しており、これらのノードを、それぞれA,B,C,D,1および2の符号を付して示している。
なお、以下、これらのノードを特定するための符号をノード番号という。又、以下、ノードを表す場合には、任意のノードを指すときには単にノードと表現するが、複数のノードのうち1つを特定する必要があるときにはノード番号を付して表す。例えば、ノード番号AのノードをノードAと表し、ノード番号1のノードをノード1と表す場合がある。
また、図1に示す例においては、データリンクによって接続されたノード間のデータ経路(データリンク)を符号xを用いて表すとともに、このxに対して、その経路の両端を形成する各ノードのノード番号を付すことによりデータの送信方向を表す。より詳細には、符号xに対して、データの送信元のノード番号、送信先のノード番号の順に並べて下付き符号で付記することにより、そのデータリンクにおけるデータ経路をデータの伝送方向とともに表す。
例えば、符号xA2は、ノードAからノード2へデータを伝送する経路を表しており、符号x2Dは、ノード2からノードDへデータを伝送する経路を表している。
また、以下、データリンクを符号(i,j)を用いて表わす場合がある。ただし、i,jはともにデータリンクの両端に位置するノード番号である。
管理サーバ10は、ネットワーク2におけるデータの送信経路を管理するものであり、ネットワーク2を構成する各ノードに直接もしくは間接に接続されている。この管理サーバ10は、データリンクを介して接続される複数のノードを有するネットワーク2において、フローに対する経路を決定する経路決定装置として機能する。
また、管理サーバ10は、サーバ機能をそなえたコンピュータ(情報処理装置)であって、図1に示すように、CPU101,表示装置13,RAM11,ROM12,入力装置14及び記憶装置15をそなえている。
表示装置13は、種々の情報を表示することにより、オペレータに対して情報を提示するものであり、例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイである。入力装置14は、オペレータが種々の指示やデータを入力するための装置であり、例えば、キーワードやマウス等である。
RAM(Random Access Memory)11は、データやプログラム(ネットワーク管理プログラム,経路決定プログラム)を一時的に格納する記憶装置であり、後述するCPU101が各種演算や制御を行なう際に、データやプログラムを展開(格納)するために用いられる。
また、RAM11には、コスト定義テーブル111,制約条件情報112,経路履歴情報113及びリンク属性情報114を格納する。
コスト定義テーブル111は、ネットワーク2に含まれる各データリンク(i,j)のコスト(リンクコスト)を格納するものであり、各データリンク(i,j)に対して、予め設定されたリンクコストci,jを対応付けて格納する。なお、このリンクコストは、既知の種々の手法を用いて求めることができ、その詳細な説明は省略する。
制約条件情報112は、後述する制約条件設計部104によって設定された品質制約条件である。なお、この品質制約条件についての詳細な説明は後述する。
経路履歴情報113は、後述する最適経路計算部102によって決定された最適経路に関する情報であって、例えば、フローを特定する識別情報に対して、最適経路を示す情報や、そのフローに関する、利用帯域,エンドツーエンド遅延(バッファリング遅延)に対する品質要件及びロス率(パケットロス率)に対する品質要件を関連付けられている。すなわち、RAM11は、最適経路計算部102によって決定された、フローに対する経路をなすデータリンクに関する情報を経路履歴情報として格納する経路履歴情報格納部として機能する。
リンク属性情報114は、制約条件設計部104による品質制約条件の設定に際して生成される情報である。このリンク属性情報114の詳細は、図13を参照しながら後述する。
また、RAM11には、送信元ノードから送信された要求フローf(詳細は後述)も格納され、この要求フローfは、後述する最適経路計算部102や設計履歴管理部103,制約条件設計部104等から読み出すことができる。
ROM(Read Only Memory)12はデータやプログラムを格納する記憶装置である。記憶装置15は、データやプログラムを格納する記憶装置であり、例えばHDD(Hard Disk Drive)、SSD(Solid State Drive)等であって、OS(Operating System)等の種々のプログラムやデータを格納する。
なお、上述したコスト定義テーブル111,制約条件情報112,経路履歴情報113,リンク属性情報114および要求フローfの少なくとも一部を、RAM11に代えて記憶装置15に格納してもよい。
CPU101は、ROM12や記憶装置15に格納されたプログラムを実行することにより種々の演算や制御を実行し、種々の機能を実現する処理装置である。本実施形態においては、このCPU101が、ネットワーク管理プログラムを実行することにより、図1に示すように、フロー経路決定部110(最適経路計算部102,設計履歴管理部103,制約条件設計部104,状態計測部105)及び経路設計部106として機能する。
すなわち、管理サーバ10において、CPU101がフロー経路決定部110及び経路設計部106として機能することにより、図2に示すように、送信元ノード(拠点A)からの要求フロー(設計フロー,接続要求)fを受けて、このフローに対する最適な経路(フロー経路)を決定し、経路設定を行なう。
さて、送信元ノードからの要求フローfには、送信されるデータの他、要求フロー帯域Bf及び要求フロー品質要件が含まれる。要求フロー帯域Bfは、送信するデータの利用帯域(トラフィック量)であり、例えば、bps(Bits Per Second)等の単位で表される。そして、この要求フロー帯域Bfは、その要求フローfをデータリンクに流すことにより、そのデータリンクにおいて増加するトラフィック量(トラフィック増量分)を表す。
要求フロー品質要件(品質要件)は、要求フローfにおいて求められるエンドツーエンド品質を表す情報であって、遅延情報Df及びロス率Lfをそなえている。遅延情報Dfは、その要求フローfに許容される遅延レベルを表す情報であり、例えば、sec(秒)やmsec(ミリ秒)等の単位で表される。ロス率Lfは、その要求フローfに許容されるデータのロス率(パケットロス率)であり、例えば、0〜1の数値で表される。なお、このロス率はパーセント等の他の単位で表わしてもよい。
なお、これらの要求フロー帯域Bf及び要求フロー品質要件は、RAM11等の記憶装置における所定の記憶領域に格納される。
経路設計部106は、要求フローfを伝送すべく、フロー経路決定部110によって決定された経路(最適経路)をネットワーク上に設定する。なお、この経路設計部106としての機能は既知の種々の手法により実現することができ、その詳細な説明については省略する。
フロー経路決定部110は、送信元ノードからの要求フローfに基づいて、経路となるデータリンクを決定するものであり、新たな経路を追加したい送信元ノード(始点ノード)からのフロー要求を受け付けると、その要求フローfに関して最適経路Xの決定を行なう。なお、送信元ノードは、ノードに繋がった端末であってもよい。
このフロー経路決定部110は、図1に示すように、最適経路計算部102,設計履歴管理部103,制約条件設計部104及び状態計測部105をそなえている。
状態計測部105は、ネットワーク2の状態を把握するものであり、ネットワーク2の各データリンク(i,j)における各転送トラフィック量(トラフィック量,リンクトラフィック負荷)Ri,jを計測する。この状態計測部105は、データリンクにおけるトラフィック量を実測することにより求めてもよく、又、各データリンクに対する要求フローfに含まれる情報等に基づいて計算して求めてもよい。すなわち、状態計測部105は、既知の種々の手法を用いて、各データリンク(i,j)における各トラフィック量Ri,jの計測を実現することができる。
また、状態計測部105は、計測した各転送トラフィック量を例えば、RAM11や記憶装置15の所定の記憶領域に格納する(図13参照)。又、RAM11に格納された各転送トラフィック量は、後述する制約条件設計部104によって読み出され、制約条件の設定に用いられる。
制約条件設計部(制約条件設定部)104は、最適経路計算部102による経路決定に用いられる制約条件を設定する。この制約条件設計部104は、データリンクにおける現在のトラフィック量と要求フローfの帯域情報とを用いて、要求フローfやネットワーク2において既存の他フロー(設定済み他フロー)にそれぞれ与えられた品質要件に基づいて、これらの要求フローfおよび設定済み他フローに対する制約条件式を設計する。
この制約条件設計部104は、要求フローfによる個々のデータリンクに対するトラフィック影響に基づいて、要求フローf及びネットワーク2において既存の他フローに対するエンドツーエンド品質影響をそれぞれ推定する。そして、制約条件設計部14は、要求フローf及び他フローのエンドツーエンド品質に関する線形制約方程式を制約条件として設定する。
すなわち、制約条件設計部104は、ネットワーク2の各データリンクにおける「負荷と遅延」および「負荷とパケットロス率」の関係モデルに基づき、要求フロー及び他フローのエンドツーエンドのロス率、遅延を線型方程式として近似定式化する。
図3は実施形態の一例としてのネットワーク管理システム1における制約条件設計部104による制約条件の設定手法を説明するための図であり、ネットワーク2のトポロジの構成例を模式的に示している。
この図3に示す例においては、先にフローa1およびフローa2の2つのフロー(他フロー,設定済み他フロー)が設定されている環境下で、ノードAからノードBへ到達する新たな要求フローfの設定要求(フロー設定要求)が発生する状況を想定する。
ここで、設定済みの他フローa1に対しては、エンドツーエンド遅延に対する品質要件として遅延D1が、又、エンドツーエンドロス率に対する品質要件としてロス率L1がそれぞれ与えられている。又、設定済みの他フローa2に対しては、エンドツーエンド遅延に対する品質要件として遅延D2が、又、エンドツーエンドロス率に対する品質要件としてロス率L2が、それぞれ与えられている。
さらに、要求フローfに対しても、フロー設定要求時に利用帯域Bf,エンドツーエンド遅延品質要件Df及びエンドツーエンドロス率品質要件Lfが、それぞれ与えられる。
制約条件設計部104は、要求フローfに対し、後述する最適経路計算部102がリンクコスト値の総和が最小となる経路を特定する上で用いる、「要求フローに対する品質」と「他フローに対する品質影響」とを考慮した制約条件を設定する。
「要求フローに対する品質」を考慮した制約条件としては、要求フローに対するエンドツーエンド遅延、エンドツーエンドロス率に対する品質要件を満たすことが要求される。
また、「他フローに対する品質影響」を考慮した制約条件としては、設定済み他フロー対するエンドツーエンド遅延及びエンドツーエンドロス率に対する品質要件を満たすことが要求される。すなわち、フローa1に対するエンドツーエンド遅延、エンドツーエンドロス率に対する品質要件を満たすことと、フローa2に対するエンドツーエンド遅延、エンドツーエンドロス率に対する品質要件を満たすこととが要求される。
そして、本手法においては、制約条件設計部104は上記制約条件を線形式として設定し、最適経路計算部102が線形計画問題の一種として要求フローfに対する最適経路計算を行なう。
具体的には、制約条件設計部104は、個々のノードにおける、「リンクトラフィック負荷とバッファリング遅延」および「リンクトラフィック量とロス率」の特性を推定・管理する。ここで、「リンクトラフィック負荷とバッファリング遅延」および「リンクトラフィック量とロス率」の特性は、例えば、M/M/1/Kに代表される待ち行列モデル等の品質変化予測関数を用いることで求めることができる。
すなわち、制約条件設計部104は、要求フローfをデータリンクに割り当てることにより生じる品質影響(エンドツーエンド品質影響)を推定する、品質影響推定部としての機能もそなえる。
図4はリンクトラフィック負荷(リンク負荷)とバッファリング遅延との関係を示す図、図5はリンクトラフィック負荷(リンクトラフィック量)とロス率との関係を示す図である。
バッファリング遅延は、図4に示すような、リンクトラフィック負荷とバッファリング遅延との特性関数fで表わされる。又、ロス率は、図5に示すような、リンクトラフィク負荷とロス率との特性関数fで表わされる。例えば、
ネットワーク機器のバッファ長:K(単位:packets)
平均パケット長:data(単位:bits)
要求フローfがデータリンク(i,j)に流入したときの回線容量:Ci,j(単位:bps)
ここでは、各リンクのトラフィック量に応じて該当リンクの回線容量が動的に変化するノードなども本特許の対象として想定している。
リンク(i,j)の負荷:ρi,j[0〜1]=転送トラフィック量(単位:bps)/Ci,j
とした場合に、バッファリング遅延fは、例えば以下の式(1)で、又、ロス率fは、例えば以下の式(2)で、それぞれ表わすことができる。
Figure 2011176445
さらに、これらの特性モデルを用いて、要求フローfが各リンクを経由したと仮定したときのバッファリング遅延とロス率への品質変化量(エンドツーエンド品質影響)を予測する。すなわち、バッファリング遅延の品質変化量は、以下の式(3)に示すバッファリング遅延予測関数で表わされる。
(Ri,j+B)・・・(3)
同様にロス率の品質変化量は、以下の式(4)に示すロス率予測関数で表わされる。
(Ri,j+B)・・・(4)
ただし、Ri,jは、データリンク(i,j)の転送トラフィック量(単位:bps)、すなわち、データリンク(i,j)における現在の負荷を表わす。従って、要求フローfがデータリンク(i,j)を用いる場合には、
遅延増大=f(Ri,j+B
ロス率増大=f(Ri,j+B
となる。
すなわち、制約条件設定部104は、フローによるデータリンクにおけるトラフィック影響を品質変化予測関数に適用することにより、要求フロー及び他フローに対するエンドツーエンド品質影響を推定する。
なお、本実施形態においては、最適経路計算部102は、要求フローfが各ノードiからノードjを繋ぐリンクを経由するか(Xij=1)、しないか(Xij=0)を数理演算で計算し、設計変数であるxi,jを求めることにより最適経路を求める。
したがって、設計変数(Xij)を導出するための制約条件は、設計変数(Xij)を用いた式として与えられる必要がある。なお,エンドツーエンド遅延やエンドツーエンドロス率は、個々のノードに対して予測した品質変化量と設計変数(Xij)とを用いて定式化することができる。
図6は実施形態の一例としてのネットワーク管理システムにおける要求フローに対する経路計算をするための目的関数と制約条件式とを説明するための図である。
目的関数は、各ノードiからノードjを繋ぐリンクに与えられたリンクコスト値Ci,jと、設計変数(Xij)を用いて、以下の式(5)のように表わされる。
Figure 2011176445
この式(5)に示す目的関数は、リンクコスト和を最小とする設計変数(Xij)を導出することを表す。
制約条件設計部104は、この目的関数に対して、以下の制約条件を設定する。
[要求フローに対する品質制約]
Figure 2011176445
ただし、xi,jは要求フローfについて、リンク(i,j)の利用有無∈{0,1}を表わす。
また、上記品質制約において、f(Ri,j+B)は、要求フローf自身の遅延増分を表わし、f(Ri,j+B)は、要求フローf自身のロス増分を表わす。
[フローa1に対する品質制約]
Figure 2011176445
上記品質制約において、f(Ri,j+B)−f(Ri,j)は、要求フローfに影響されるフローa1の遅延増分を表わし、f(Ri,j)は、フローa1が現在経験しているリンク遅延を表わす。又、f(Ri,j+B)−f(Ri,j)は、要求フローfに影響されるフローa1のロス増分を表わし、f(Ri,j)は、フローa1が現在経験しているリンクロスを表わす。
[フローa2に対する品質制約]
Figure 2011176445
そして、上述の如きフローa1,a2に対する品質制約は、要求フローf以外の他フローに対する品質制約として、以下の式(6),(7)に示すように一般化して示すことができる。
[他フローに対する品質制約]
kはフローを識別するための情報(kは1以上の自然数)とする。
Figure 2011176445
上記経路計算問題はすべて線形式で扱われ、最適な設計変数(Xij)を導出する0−1整数計画問題として解を導出することを可能にする。
また、上述の如く制約条件設計部104によって作成された品質制約条件は、RAM11に制約条件情報112として格納される。
最適経路計算部(経路決定部)102は、制約条件設計部104によって設定された品質制約条件を満たす範囲で、経路上の全リンクについてコスト定義テーブルに定義されているコスト総和が最小となる経路を、最適経路X∈{0,1}として決定する。すなわち、最適経路計算部102は、制約条件設計部104によって設定された制約条件を満たす範囲内で、複数のデータリンクの中から、要求フローに対する経路をなすデータリンクを決定する。
具体的には、最適経路計算部102は、上述した式(5)の目的関数により、リンクコスト和を最小とする設計変数(Xij)を導出する。
図7は実施形態の一例としてのネットワーク管理システム1における最適経路の表現方法を説明するための図であり、ネットワーク2のトポロジ例を示す図である。
最適経路Xは、例えば、以下に示すように、ネットワーク2中の全てのデータ経路を羅列した状態で、選択されたデータ経路に“1”を設定するとともに、被選択のデータ経路に“0”を設定することにより表す。
例えば、図7に示すネットワークトポロジにおいて、それぞれのノード間を接続するリンク情報は、
リンク変数X={xA,1,x1,A,xA,2,x2,A,xB,1,x1,B,xB,2,x2,B,xC,1,x1,C,xC,2,x2,C
X∈{0,1}
と表される。
フロー経路決定部110は、要求フローfが与えられる毎に、このリンク変数(0:要求フローは経由しない/1:要求フローは経由する)を決定する。
例えば、図7に示すネットワークトポロジにおいて、図中、矢印Aで表される、ノードAからノード1を経由してノードCに至る経路、すなわち、リンクxA,1,x1,Cを経由する経路は、X={1,0,0,0,0,0,0,0,0,1,0,0}と表される。
最適経路計算部102は、上述の如く線形式として形成された経路計算問題を、0−1整数計画問題として解を導出することにより最適な設計変数(Xij)を導出し、最適経路Xを計算する
なお、この最適経路計算部102によるコスト総和に基づく最適経路の決定手法は、既知の種々の手法を用いて実現することができ、その詳細な説明については省略する。
経路設計部106は、最適経路計算部102による経路計算結果に基づき、その要求フローをネットワーク2に収容する。
設計履歴管理部103は、ネットワーク2に既に設定されているフローの経路情報や利用帯域、エンドツーエンド遅延、ロス率に対する品質要件を管理する。
この設計履歴管理部103は、最適経路計算部102によって決定された最適経路に関する情報を、経路履歴情報113としてRAM11に格納する。具体的には、設計履歴管理部103は、要求フローfを特定する識別情報と、その要求フローfについて最適経路計算部102によって求められた最適経路Xとを対応付けて経路履歴情報113として格納する。
例えば、最適経路計算部102によって求められた、フローの最適経路X={1,0,0,0,0,0,0,0,0,1,0,0}は、y(k)={1,0,0,0,0,0,0,0,0,1,0,0}として経路履歴情報113として格納される。
また、設計履歴管理部103は、要求フローfについての利用帯域Bf、エンドツーエンド遅延に対する品質要件Df及びロス率に対する品質要件Lfを、フローkについての、利用帯域Bk、エンドツーエンド遅延に対する品質要件Dk及びロス率に対する品質要件Lkとして経路履歴情報113に格納し管理する。
そして、この設計履歴管理部103によって管理される情報は、新たな要求フローfが与えられ、この要求フローfの最適経路を決定する際に、設定済み他フローの情報として用いられる。
すなわち、新たなフローに対する経路を決定するに際して、制約条件設定部104が、RAM11に格納された経路履歴情報113を、既存の他フローに対するエンドツーエンド品質影響の推定に用いる。
なお、そのフローが処理された際には、経路履歴情報113から当該フローについての情報が削除されることが望ましい。
制約条件設計部104は、経路離脱が発生する度に、エンドツーエンド品質影響を経路計算に対する制約条件として削除する。
ここで、本実施形態の一例としてのネットワーク管理システムにおける経路設定手法を、図9を参照しながら図8に示すフローチャート(ステップA10〜A30)に従って説明する。なお、図9は各フローの最適経路とその経路履歴情報113の使用方法を示す図である。又、この図8に示す例においては、図7に示すネットワークトポロジに対してフロー1〜3の3つの要求フローfを順番に経路設定する例について説明する。
図7に示すような、トラフィックの入口・出口となるノードA、B、Cと、トラフィックを中継するノード1、2から構成されるトポロジとにおいて、それぞれのノード間を接続するリンク情報は、上述の如く、
リンク変数X={xA,1,x1,A,xA,2,x2,A,xB,1,x1,B,xB,2,x2,B,xC,1,x1,C,xC,2,x2,C
で表される。
(1)1つ目のフロー(ステップA10)
まず、ネットワーク2上にフローが何も収容されていない環境下で、1つ目のフローが設定される過程を示す。
利用帯域B1、エンドツーエンド遅延品質要件D1、エンドツーエンドロス率品要件L1を持つ、ノードAからノードCまで到達するフロー1が要求されたものとする。
制約条件設計部104は、このフロー1の品質制約条件を生成する。
Figure 2011176445
また、最適経路計算部102は、その制約条件を満たす範囲で、
Figure 2011176445
により、リンクコスト値ci,jの和を最小とするフロー1の経路を導出する。
図9に示す例においては、最適経路X={1,0,0,0,0,0,0,0,0,1,0,0}が導出されている。この結果は、データリンクxA,1,x1,Cをフロー1が経由することを意味する。
管理サーバ10においては、経路設計部106が、この経路計算結果に従い、フロー1をネットワークに収容する。又、設計履歴管理部103が、経路情報を、Y(1)={1,0,0,0,0,0,0,0,0,1,0,0}として履歴管理する。
(2)2つ目のフロー(ステップA20)
フロー1が設定済み他フローとなり、更に、利用帯域B2、エンドツーエンド遅延品質要件D2、エンドツーエンドロス率品要件L2を持つ、ノードAからノードBまで到達するフロー2が要求されたものとする。
制約条件設計部104は、このフロー2の品質制約条件を生成する。
Figure 2011176445
さらに制約条件設計部104は、フロー1に対する品質制約条件を生成する。
Figure 2011176445
また、最適経路計算部102は、既に設定済みのフロー1と要求フロー2の制約条件を満たす範囲で、
Figure 2011176445
により、リンクコスト値ci,jの和を最小とするフロー2の経路を導出する。
図9に示す例においては、最適経路X={1,0,0,0,0,1,0,0,0,0,0,0}が導出されている。この結果は、データリンクxA,1,x1,Bをフロー2が経由することを意味する。
管理サーバ10においては、経路設計部106が、この経路計算結果に従い、フロー2をネットワークに収容する。又、設計履歴管理部103が、経路情報を、Y(2)={1,0,0,0,0,1,0,0,0,0,0,0}として履歴管理する。
(3)3つ目のフロー(ステップA30)
フロー1,2が設定済み他フローとなり、更に、利用帯域B3、エンドツーエンド遅延品質要件D3、エンドツーエンドロス率品要件L3を持つ、ノードBからノードCまで到達するフロー3が要求されたものとする。
制約条件設計部104は、このフロー3の品質制約条件を生成する。
Figure 2011176445
さらに制約条件設計部104は、フローk(k=1,2)に対する品質制約条件を生成する。
Figure 2011176445
また、最適経路計算部102は、要求フロー3の制約条件と、既に設定済みのフロー1,2の制約条件を満たす範囲で、
Figure 2011176445
により、リンクコスト値ci,jの和を最小とするフロー3の経路を導出する。
図9に示す例においては、最適経路X={0,0,0,0,0,0,0,1,0,0,1,0}が導出されている。この結果は、データリンクxB,2,x2,Cをフロー3が経由することを意味する。
管理サーバ10においては、経路設計部106が、この経路計算結果に従い、フロー3をネットワークに収容する。又、設計履歴管理部103が、経路情報を、Y(3)={0,0,0,0,0,0,0,1,0,0,1,0}として履歴管理する。
上述の如く構成された実施形態の一例としてのネットワーク管理システム1における、要求フローfに対する経路設定処理の流れを、図10に示すフローチャート(ステップB10〜B50)に従って説明する。
管理サーバ10は、ネットワーク2における送信元ノードから要求フローを受け付けると(ステップB10)、制約条件設計部104が、各データリンクにおけるバッファリング遅延やパケットロス率を推定する(ステップB20)。すなわち、制約条件設計部104は、要求フローfに対する経路がリンク(i,j)に収容されたと仮定したときの、リンク(i,j)で発生するバッファリング遅延とパケットロス率とを見積る。
これらのバッファリング遅延やパケットロス率は、例えば、M/M/1/Kに代表される待ち行列モデルや、予め実測データに基づいて構築したテーブルを用いることにより求めることができる。
次に、制約条件設計部104は、そのネットワーク2において、その時点までに設計されている全ての経路に対する、エンドツーエンド経路毎の遅延及びパケットロス率にかかる制約条件を生成する(ステップB30:制約条件設定ステップ)。なお、このステップB30の詳細な処理については後述する(図11参照)。
そして、最適経路計算部102が、制約条件設計部104によって設定された品質制約条件を満たす範囲で、経路上の全リンクについてコスト定義テーブルに定義されているコスト総和が最小となる経路を、最適経路として決定する(ステップB40:経路決定ステップ)。
経路設計部106は、この最適経路計算部102によって決定された最適経路をネットワーク2に設定する(ステップB50)。又、決定された最適経路に関する情報はRAM11の経路履歴情報113として格納される(経路履歴情報格納ステップ)。その後、処理は終了される。
次に、本実施形態の一例としてのネットワーク管理システム1における制約条件の設計手法を、図11に示すフローチャート(ステップC10〜C70)に従って説明する。
制約条件設計部104は、状態計測部105から、ネットワーク2を構成する全てのデータリンクについて、その時点におけるリンク利用量(転送トラフィック量)をそれぞれ読み込む(ステップC10)。又、制約条件設計部104は、送信元ノードからの要求フローfから、利用帯域情報Bfを読み込む(ステップC20)。
制約条件設計部104は、要求フローfがそのデータリンクを利用した場合のバッファリング遅延及びロス率の変化量を推定する(ステップC30)。又、制約条件設計部104は、ネットワーク2において既に設定済みのフロー(設定済み他フロー)に関する経路履歴情報113を、RAM11から読み込む(ステップC40)。
そして、制約条件設計部104は、要求フローfに対する、エンドツーエンド遅延の制約条件及びエンドツーエンドロス率の制約条件を生成する(ステップC50)。又、制約条件設計部104は、ネットワーク2における設定済み他フローに対する、エンドツーエンド遅延の制約条件及びエンドツーエンドロス率の制約条件を生成する(ステップC60)。
制約条件設計部104は、ステップC50及びステップC60においてそれぞれ生成した制約条件を、制約条件として最適経路計算部102に受け渡す(ステップC70)。
図12はネットワーク2のトポロジの構成例を示す図、図13は図12に示すトポロジに関して、本管理システム1において生成されるデータをテーブル状に例示する図である。
図12に例示するトポロジは、ノードAとノードBとの間にノード1及びノード2が並列に配置されている。又、この図12に示す例においては、データリンクxA,1をLink1、データx1,BをLink2,データリンクxA,2をLink3、データx2,BをLink4と、それぞれ表わしている。
また、この図12に示す例においては、各Link1〜4の最大容量は100Mbpsであるものとする。又、Link1に30Mbpsのトラフィック量が流れており、同様に、Link2に60Mbps、Link3に50Mbps、Link4に75Mbpsのトラフィック量が流れている。
そして、この図12に示すネットワーク2に、送信元ノードAから送信先ノードBに対して、利用帯域10Mbpsの要求フローfの設定要求が行なわれたものとする。
図13は実施形態の一例としてのネットワーク管理システム1において生成されるリンク属性情報114を例示する図である。このリンク属性情報114は、上述した制約条件設計部104が品質制約条件の設定を行なうに際して生成される種々の情報であり、図13に示す例においては、これらの情報をテーブル状に示している。制約条件設計部104は、これらの情報を、逐次、RAM11の所定の領域に格納する。
この図13に示す例においては、リンク属性情報114は、リンク属性として、「リンク容量」,「現在の転送トラフィック量」,「現在の遅延量」,「現在のロス率」,「フロー要求時 トラフィック量増分」,「フロー要求時 予測トラフィック量」,「フロー要求時 予測遅延量」,「フロー要求時 予測遅延量 増分」,「フロー要求時 予測ロス率」及び「フロー要求時 予測ロス率増分」をそなえている。
ここで、「現在の遅延量」及び「現在のロス率」は、制約条件設計部104が、例えば、M/M/1/Kに代表される待ち行列モデルの遅延量に関する関数f(ρ)に対して、「現在の転送トラフィック量」を適用することにより求める。
「フロー要求時 予測遅延量」は、制約条件設計部104が、「現在の転送トラフィック量」に「フロー要求時 トラフィック量増分」を加算することにより求められる。
「フロー要求時 予測遅延量」は、制約条件設計部104が、例えば、M/M/1/Kに代表される待ち行列モデルの遅延量に関する関数f(ρ)に対して、「フロー要求時 予測トラフィック量」を適用することにより求める。
「フロー要求時 予測遅延量 増分」は、制約条件設計部104が、「フロー要求時 予測遅延量」から「現在の遅延量」を減算することにより求める。
「フロー要求時 予測ロス率」は、制約条件設計部104が、例えば、M/M/1/Kに代表される待ち行列モデルの遅延量に関する関数f(ρ)に対して、「フロー要求時 予測トラフィック量」を適用することにより求める。
「フロー要求時 予測ロス率増分」は、制約条件設計部104が、「フロー要求時 予測ロス率」から「現在のロス率」を減算することにより求める。
そして、経路履歴情報113は、これらの情報(リンク特性)を、ネットワーク2を構成するデータリンク毎にそなえる。
実施形態の一例としてのネットワーク管理システム1の制約条件設計部104による制約条件の生成手法を、図14に定式化して表わす。なお、ネットワーク2のノード集合をV,ネットワーク2のリンク集合をEとする。
制約条件設計部104は、フローfの受付と、フローfに対する品質要件、さらには各リンクのバッファ遅延特性/ロス特性を設定する。すなわち、
Bf:フローfのトラフィックデマンド
Df:フローfに対するエンドツーエンド遅延上限
Lf:フローfに対するエンドツーエンドロス上限
(ρi,j)/f(ρi,j):リンク(i,j)間の負荷ρi,jに対するバッファ遅延関数/ロス関数である。
最適経路計算部102は、要求フローfに対する最適経路設として以下の式を生成する。すなわち、
i,j∈{0,1}for(i,j)∈E:フローfに対するリンク(i,j)間の転送有無
i,j for(i,j)∈E:リンク(i,j)間のリンクコスト
i,j (i,j)∈E:リンクi,j間の現在の利用トラフィック量
とし、更に
Figure 2011176445
とする。
ここで、現状のネットワーク2の状態を基準としたフローfに対する品質制約に基づく制約条件(s.t.)は以下のようにすることができる。
先ず、要求フローf(トラフィック量Bf)の始点ノードsと終点ノードdとにおいて流量の総量が保存されることに基づき(流量保存条件)、
フロー収容制約を、
for s:source d:destination
Figure 2011176445
とし、又、フロー保存制約を、
Figure 2011176445
とする。
また、遅延制約を、
Figure 2011176445
とし、ロス制約を、
Figure 2011176445
とする。更に、設定済みフローgk(k=1,・・・,M)に対するリンク(i,j)間の転送有無を
Figure 2011176445
とする。又、
設定済みフローgkのトラフィックデマンドを、Bgk
設定済みフローgkに対するエンドツーエンド遅延上限を、Dgk
設定済みフローgkに対するエンドツーエンドロス上限を、Lgk
エンドツーエンド遅延制約を、
Figure 2011176445
とし、エンドツーエンドロス制約を、
Figure 2011176445
とする。
なお、上述した最適経路計算部102,設計履歴管理部103,制約条件設計部104,状態計測部105及び経路設計部106としての機能を実現するためのプログラム(ネットワーク管理プログラム)は、例えばフレキシブルディスク,CD(CD−ROM,CD−R,CD−RW等),DVD(DVD−ROM,DVD−RAM,DVD−R,DVD+R,DVD−RW,DVD+RW,HD DVD等),ブルーレイディスク,磁気ディスク,光ディスク,光磁気ディスク等の、コンピュータ読取可能な記録媒体に記録された形態で提供される。そして、コンピュータはその記録媒体からプログラムを読み取って内部記憶装置または外部記憶装置に転送し格納して用いる。又、そのプログラムを、例えば磁気ディスク,光ディスク,光磁気ディスク等の記憶装置(記録媒体)に記録しておき、その記憶装置から通信経路を介してコンピュータに提供するようにしてもよい。
最適経路計算部102,設計履歴管理部103,制約条件設計部104,状態計測部105及び経路設計部106としての機能を実現する際には、内部記憶装置(本実施形態ではRAM11やROM12)に格納されたプログラムがコンピュータのマイクロプロセッサ(本実施形態ではCPU101)によって実行される。このとき、記録媒体に記録されたプログラムをコンピュータが読み取って実行するようにしてもよい。
なお、本実施形態において、コンピュータとは、ハードウェアとオペレーティングシステムとを含む概念であり、オペレーティングシステムの制御の下で動作するハードウェアを意味している。又、オペレーティングシステムが不要でアプリケーションプログラム単独でハードウェアを動作させるような場合には、そのハードウェア自体がコンピュータに相当する。ハードウェアは、少なくとも、CPU等のマイクロプロセッサと、記録媒体に記録されたコンピュータプログラムを読み取るための手段とをそなえており、本実施形態においては、管理サーバ10がコンピュータとしての機能を有しているのである。
このように、実施形態の一例としてのネットワーク管理システム1によれば、新たに追加要求されたフローに対し、既に設定済のフローを含む各フローに対するエンドツーエンド品質要件を満たし、且つ、リンクコスト和が最小となる最適な経路を決定することができる。
また、制約条件設計部104が、ネットワーク2の各データリンクにおける「負荷と遅延」および「負荷とパケットロス」の関係モデルに基づき、要求フロー及び他フローのエンドツーエンドのロス率、遅延を線型方程式として定式化する。
これにより、最適経路計算部102は、リンクコストの総和が最小となる経路を特定する線形目的関数と線形制約式とを用いて、0−1整数計画問題に帰着して経路計算を行なう。これにより計算量を軽減し短時間で最適経路を計算することができる。特に、ノード数が多いネットワークにおいても、短時間で最適経路を計算することができる。
そして、開示の技術は上述した実施形態に限定されるものではなく、本実施形態の趣旨を逸脱しない範囲で種々変形して実施することができる。
以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する経路決定装置であって、
該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定部と、
該制約条件設定部により設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定部とをそなえることを特徴とする、経路決定装置。
(付記2)
該制約条件設定部が、該フローによる個々の該データリンクに対するトラフィック影響に基づいて、該フロー及び該ネットワークにおいて既存の他フローに対するエンドツーエンド品質影響をそれぞれ推定し、該フロー及び該他フローのエンドツーエンド品質に関する線形制約方程式を制約条件として設定し、
該経路決定部が、該制約条件を満たす範囲内で、複数の該データリンクの中から、該フローに対する該経路をなすデータリンクを決定することを特徴とする、付記1記載の経路決定装置。
(付記3)
該制約条件設定部が、該フローによる該データリンクにおけるトラフィック影響を品質変化予測関数に適用することにより、該フロー及び該他フローに対するエンドツーエンド品質影響を推定することを特徴とする、付記1又は付記2記載の経路決定装置。
(付記4)
該制約条件設定部が、該フローに対する経路を決定する度に、該フロー及び該他フローに対するエンドツーエンド品質影響に基づく該制約条件を設定することを特徴とする、付記1〜付記3のいずれか1項に記載の経路決定装置。
(付記5)
該経路決定部によって決定された、該フローに対する該経路をなすデータリンクに関する情報を経路履歴情報として格納する経路履歴情報格納部をそなえ、
新たなフローに対する経路を決定するに際して、該制約条件設定部が、該経路履歴情報格納部に格納された該経路履歴情報を、該既存の他フローに対するエンドツーエンド品質影響の推定に用いることを特徴とする、付記1〜付記4のいずれか1項に記載の経路決定装置。
(付記6)
該制約条件設定部が、経路離脱が発生する度に、エンドツーエンド品質影響を経路計算に対する制約条件として削除することを特徴とする、付記1〜付記5のいずれか1項に記載の経路決定装置。
(付記7)
該品質要件がエンドツーエンド遅延時間であることを特徴とする、付記1〜付記6のいずれか1項に記載の経路決定装置。
(付記8)
該品質要件がエンドツーエンドデータロス率であることを特徴とする、付記1〜付記7のいずれか1項に記載の経路決定装置。
(付記9)
データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する経路決定方法であって、
該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定ステップと、
該制約条件設定ステップにおいて設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定ステップとをそなえることを特徴とする、経路決定方法。
(付記10)
該制約条件設定ステップにおいて、該フローによる個々の該データリンクに対するトラフィック影響に基づいて、該フロー及び該ネットワークにおいて既存の他フローに対するエンドツーエンド品質影響をそれぞれ推定し、該フロー及び該他フローのエンドツーエンド品質に関する線形制約方程式を制約条件として設定し、
該経路決定ステップにおいて、該制約条件を満たす範囲内で、複数の該データリンクの中から、該フローに対する該経路をなすデータリンクを決定することを特徴とする、付記9記載の経路決定方法。
(付記11)
該制約条件設定ステップにおいて、該フローによる該データリンクにおけるトラフィック影響を品質変化予測関数に適用することにより、該フロー及び該他フローに対するエンドツーエンド品質影響を推定することを特徴とする、付記9又は付記10記載の経路決定方法。
(付記12)
該制約条件設定ステップにおいて、該フローに対する経路を決定する度に、該フロー及び該他フローに対するエンドツーエンド品質影響に基づく該制約条件を設定することを特徴とする、付記9〜付記11のいずれか1項に記載の経路決定方法。
(付記13)
該経路決定ステップにおいて決定された、該フローに対する該経路をなすデータリンクに関する情報を、経路履歴情報格納部に経路履歴情報として格納する経路履歴情報格納ステップをそなえ、
新たなフローに対する経路を決定するに際して、該制約条件設定ステップにおいて、該経路履歴情報格納部に格納された該経路履歴情報を、該既存の他フローに対するエンドツーエンド品質影響の推定に用いることを特徴とする、付記9〜付記12のいずれか1項に記載の経路決定方法。
(付記14)
該制約条件設定ステップにおいて、経路離脱が発生する度に、エンドツーエンド品質影響を経路計算に対する制約条件として削除することを特徴とする、付記9〜付記13のいずれか1項に記載の経路決定方法。
(付記15)
該品質要件がエンドツーエンド遅延時間であることを特徴とする、付記9〜付記14のいずれか1項に記載の経路決定方法。
(付記16)
該品質要件がエンドツーエンドデータロス率であることを特徴とする、付記9〜付記15のいずれか1項に記載の経路決定方法。
(付記17)
データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する機能をコンピュータに実行させるための経路決定プログラムであって、
該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定部と、
該制約条件設定部により設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定部として、該コンピュータを機能させることを特徴とする、経路決定プログラム。
(付記18)
該制約条件設定部が、該フローによる個々の該データリンクに対するトラフィック影響に基づいて、該フロー及び該ネットワークにおいて既存の他フローに対するエンドツーエンド品質影響をそれぞれ推定し、該フロー及び該他フローのエンドツーエンド品質に関する線形制約方程式を制約条件として設定し、
該経路決定部が、該制約条件を満たす範囲内で、複数の該データリンクの中から、該フローに対する該経路をなすデータリンクを決定するように、該コンピュータを機能させることを特徴とする、付記17記載の経路決定プログラム。
1 ネットワーク管理システム
2 ネットワーク
10 管理サーバ(経路決定装置)
11 RAM
12 ROM
13 表示装置
14 入力装置
15 記憶装置
101 CPU
102 最適経路計算部(経路決定部)
103 設計履歴管理部
104 制約条件設計部(制約条件設定部)
105 状態計測部
106 経路設計部
110 フロー経路決定部
111 コスト定義テーブル
112 制約条件情報
113 経路履歴情報
114 リンク属性情報

Claims (10)

  1. データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する経路決定装置であって、
    該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定部と、
    該制約条件設定部により設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定部とをそなえることを特徴とする、経路決定装置。
  2. 該制約条件設定部が、該フローによる個々の該データリンクに対するトラフィック影響に基づいて、該フロー及び該ネットワークにおいて既存の他フローに対するエンドツーエンド品質影響をそれぞれ推定し、該フロー及び該他フローのエンドツーエンド品質に関する線形制約方程式を制約条件として設定し、
    該経路決定部が、該制約条件を満たす範囲内で、複数の該データリンクの中から、該フローに対する該経路をなすデータリンクを決定することを特徴とする、請求項1記載の経路決定装置。
  3. 該制約条件設定部が、該フローによる該データリンクにおけるトラフィック影響を品質変化予測関数に適用することにより、該フロー及び該他フローに対するエンドツーエンド品質影響を推定することを特徴とする、請求項1又は請求項2記載の経路決定装置。
  4. 該制約条件設定部が、該フローに対する経路を決定する度に、該フロー及び該他フローに対するエンドツーエンド品質影響に基づく該制約条件を設定することを特徴とする、請求項1〜請求項3のいずれか1項に記載の経路決定装置。
  5. 該経路決定部によって決定された、該フローに対する該経路をなすデータリンクに関する情報を経路履歴情報として格納する経路履歴情報格納部をそなえ、
    新たなフローに対する経路を決定するに際して、該制約条件設定部が、該経路履歴情報格納部に格納された該経路履歴情報を、該既存の他フローに対するエンドツーエンド品質影響の推定に用いることを特徴とする、請求項1〜請求項4のいずれか1項に記載の経路決定装置。
  6. 該制約条件設定部が、経路離脱が発生する度に、エンドツーエンド品質影響を経路計算に対する制約条件として削除することを特徴とする、請求項1〜請求項5のいずれか1項に記載の経路決定装置。
  7. 該品質要件がエンドツーエンド遅延時間であることを特徴とする、請求項1〜請求項6のいずれか1項に記載の経路決定装置。
  8. 該品質要件がエンドツーエンドデータロス率であることを特徴とする、請求項1〜請求項7のいずれか1項に記載の経路決定装置。
  9. データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する経路決定方法であって、
    該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定ステップと、
    該制約条件設定ステップにおいて設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定ステップとをそなえることを特徴とする、経路決定方法。
  10. データリンクを介して接続される複数のノードを有するネットワークにおいて、フローに対する経路を決定する機能をコンピュータに実行させるための経路決定プログラムであって、
    該データリンクに該フローを割り当てることにより当該データリンクにおいて生じる品質変化に基づき、該フローのエンドツーエンドの品質要件を満たしていることと、該データリンクに該フローを割り当てることにより当該データリンクにおいて既存の他フローに生じる品質変化に基づき、該他フローのエンドツーエンドの品質要件を満たしていることとを要件とする制約条件を生成する制約条件設定部と、
    該制約条件設定部により設定された該制約条件を満たす範囲内で、複数の該データリンクにより構成される複数の経路の中から、該フローに対する該経路を決定する経路決定部として、該コンピュータを機能させることを特徴とする、経路決定プログラム。
JP2010037546A 2010-02-23 2010-02-23 経路決定装置,経路決定方法及び経路決定プログラム Active JP5418289B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010037546A JP5418289B2 (ja) 2010-02-23 2010-02-23 経路決定装置,経路決定方法及び経路決定プログラム
US13/030,492 US8687498B2 (en) 2010-02-23 2011-02-18 Routing device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037546A JP5418289B2 (ja) 2010-02-23 2010-02-23 経路決定装置,経路決定方法及び経路決定プログラム

Publications (2)

Publication Number Publication Date
JP2011176445A true JP2011176445A (ja) 2011-09-08
JP5418289B2 JP5418289B2 (ja) 2014-02-19

Family

ID=44476400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037546A Active JP5418289B2 (ja) 2010-02-23 2010-02-23 経路決定装置,経路決定方法及び経路決定プログラム

Country Status (2)

Country Link
US (1) US8687498B2 (ja)
JP (1) JP5418289B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026702A (ja) * 2011-07-19 2013-02-04 Fujitsu Ltd 経路決定装置,経路決定方法,管理プログラム及び管理装置
JP2013058882A (ja) * 2011-09-08 2013-03-28 Tokyo Denki Univ 通信システム
JP2014036423A (ja) * 2012-08-10 2014-02-24 Nippon Telegr & Teleph Corp <Ntt> 経路制御装置及び方法及びプログラム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803911B2 (ja) * 2010-06-17 2015-11-04 日本電気株式会社 経路制御装置及び経路制御方法
JP5811764B2 (ja) * 2011-10-21 2015-11-11 富士通株式会社 デマンド収容設計方法及びデマンド収容設計システム
US20130219046A1 (en) * 2012-02-21 2013-08-22 Cisco Technology, Inc. Dynamic application-aware routing topologies
WO2014093921A1 (en) 2012-12-13 2014-06-19 Huawei Technologies Co., Ltd. Methods and systems for admission control and resource availability prediction considering user equipment (ue) mobility
KR101766708B1 (ko) 2012-12-14 2017-08-09 후아웨이 테크놀러지 컴퍼니 리미티드 추출된 네트워크 자원 요건을 이용한 서비스 프로비저닝
US9426075B2 (en) 2013-03-12 2016-08-23 Huawei Technologies Co., Ltd. Method and system to represent the impact of load variation on service outage over multiple links
CN104702502B (zh) * 2013-12-09 2019-11-26 中兴通讯股份有限公司 网络路径计算方法及装置
US8811172B1 (en) * 2014-04-10 2014-08-19 tw telecom holdings inc. Network path selection using bandwidth prediction
US9584420B2 (en) * 2015-05-08 2017-02-28 Cisco Technology, Inc. Switching between loss-based and delay-based mode for real-time media congestion controllers
US10721174B2 (en) 2018-10-09 2020-07-21 Cisco Technology, Inc. Network-based coordination of loss/delay mode for congestion control of latency-sensitive flows
US11405284B1 (en) * 2020-06-23 2022-08-02 Amazon Technologies, Inc. Generating network link utilization targets using a packet-loss-versus-link utilization model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168838A (ja) * 1997-08-12 1999-03-09 Kokusai Denshin Denwa Co Ltd <Kdd> 経路選択方法
JP2003018191A (ja) * 2001-06-21 2003-01-17 Sk Telecom Co Ltd マルチプロトコルラベルスイッチングネットワークにおけるトラフィック経路決定方法
JP2003527039A (ja) * 2000-03-15 2003-09-09 インフォジム ネットワーキング ソリューションズ アクチェンゲゼルシャフト ネットワーク中でデータトラフィックを制御する方法とシステム
JP2007142609A (ja) * 2005-11-16 2007-06-07 Nec Corp パス経路設定システム及びその方法並びにそれに用いるノード及びプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053690B2 (ja) 1992-03-18 2000-06-19 富士通株式会社 優先呼と非優先呼が混在される呼収容方式
AP1142A (en) * 1997-08-01 2003-01-31 Salbu Res And Development Proprietary Limited Power adaption in a multi-station network.
US6665271B1 (en) * 1998-03-17 2003-12-16 Transnexus, Llc System for real-time prediction of quality for internet-based multimedia communications
GB9909436D0 (en) 1999-04-23 1999-06-23 Pact Routing device
US7626917B2 (en) 2004-06-10 2009-12-01 International Business Machines Corporation Methods and apparatus for cost minimization of multi-tiered infrastructure with end-to-end delay guarantees
CN102077680B (zh) * 2008-11-28 2014-02-05 松下电器产业株式会社 路径控制装置、方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168838A (ja) * 1997-08-12 1999-03-09 Kokusai Denshin Denwa Co Ltd <Kdd> 経路選択方法
JP2003527039A (ja) * 2000-03-15 2003-09-09 インフォジム ネットワーキング ソリューションズ アクチェンゲゼルシャフト ネットワーク中でデータトラフィックを制御する方法とシステム
JP2003018191A (ja) * 2001-06-21 2003-01-17 Sk Telecom Co Ltd マルチプロトコルラベルスイッチングネットワークにおけるトラフィック経路決定方法
JP2007142609A (ja) * 2005-11-16 2007-06-07 Nec Corp パス経路設定システム及びその方法並びにそれに用いるノード及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026702A (ja) * 2011-07-19 2013-02-04 Fujitsu Ltd 経路決定装置,経路決定方法,管理プログラム及び管理装置
JP2013058882A (ja) * 2011-09-08 2013-03-28 Tokyo Denki Univ 通信システム
JP2014036423A (ja) * 2012-08-10 2014-02-24 Nippon Telegr & Teleph Corp <Ntt> 経路制御装置及び方法及びプログラム

Also Published As

Publication number Publication date
US8687498B2 (en) 2014-04-01
JP5418289B2 (ja) 2014-02-19
US20110205901A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5418289B2 (ja) 経路決定装置,経路決定方法及び経路決定プログラム
JP5716587B2 (ja) 経路決定装置,経路決定方法,管理プログラム及び管理装置
JP5044537B2 (ja) トランスポート制御サーバ、ネットワークシステム及び集約パス決定方法
CN111865781B (zh) 用于路径优化的方法、设备和计算机程序产品
US7907596B2 (en) Valley-free shortest path method
CN105075200A (zh) 在软件定义网络中支持任意路由标准
JP2010166594A (ja) メトリック・ルーテッド・ネットワーク内でトラフィック・エンジニアリングを実行する方法とシステム
JP5811805B2 (ja) ネットワーク設計装置
US20170085630A1 (en) System and method for control traffic balancing in in-band software defined networks
US8004984B2 (en) Routing control technique in MPLS
JP4706979B2 (ja) 相互に連結されたネットワーク間で予測されたネットワーク動作を通信する方法とシステム
JP4909060B2 (ja) Ahpを用いた網トポロジ設計方法および設計システム
CN105634968A (zh) 用于控制数据流量的传输的装置及方法
JP6467360B2 (ja) ネットワーク構成レコメンド装置、ネットワーク構成レコメンド方法およびプログラム
US11601336B2 (en) Assigning routing paths based on interior gateway protocol metric optimization
JP5651619B2 (ja) 通信システム、経路決定装置、経路決定方法及び経路決定プログラム
JP5723806B2 (ja) 通信システム、経路制御装置、経路制御方法及び経路制御プログラム
JP7322951B2 (ja) 経路制御装置、経路制御方法、プログラム、および、ネットワークシステム
KR100925137B1 (ko) 종단간 지연 보장을 갖는 다중-계층 인프라의 비용 최소화방법 및 장치
EP3157209B1 (en) Route search apparatus and route search method
JP5550024B2 (ja) パス管理装置およびパス管理方法
CN105515714A (zh) 一种网络升级感知的保护方法
CN114900441B (zh) 网络性能预测方法,性能预测模型训练方法及相关装置
JP2010206581A (ja) トポロジ生成システムと方法および網トポロジ設計システムならびにプログラム
WO2023016539A1 (zh) 网络路径的处理方法及装置、存储介质、电子设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5418289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150