[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011147880A - Method and apparatus for production of purified water for medicine - Google Patents

Method and apparatus for production of purified water for medicine Download PDF

Info

Publication number
JP2011147880A
JP2011147880A JP2010010921A JP2010010921A JP2011147880A JP 2011147880 A JP2011147880 A JP 2011147880A JP 2010010921 A JP2010010921 A JP 2010010921A JP 2010010921 A JP2010010921 A JP 2010010921A JP 2011147880 A JP2011147880 A JP 2011147880A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
temperature
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010010921A
Other languages
Japanese (ja)
Other versions
JP5307049B2 (en
Inventor
Toshikazu Abe
俊和 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2010010921A priority Critical patent/JP5307049B2/en
Publication of JP2011147880A publication Critical patent/JP2011147880A/en
Application granted granted Critical
Publication of JP5307049B2 publication Critical patent/JP5307049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for production of purified water for medicine which enable carrying out, efficiently in a short time, a treatment for production of purified water including a hot water sterilization process. <P>SOLUTION: The method of producing purified water for medicine includes a hot water sterilization process as a start of the process of production of purified water and uses a reverse-osmosis membrane apparatus achieving a conductivity of permeated water of water to be treated at a water temperature of ≥60°C of ≤45 μS/cm. In the hot water sterilization process, return of concentrated water of the reverse-osmosis membrane apparatus and concentrated water, electrode water and desalted water of an electrical deionization apparatus to a raw water tank or their discharge out of the system is switched appropriately among a temperature-raising, a constant-temperature and a temperature-reducing process so as to carry out the hot water sterilization process efficiently. A production apparatus for the method is also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、医薬品用精製水の製造方法及び製造装置に係わり、特に精製水の製造前に、系内を効率的に殺菌できるようにした医薬品用精製水の製造方法及び製造装置に関する。   The present invention relates to a method and an apparatus for producing purified water for pharmaceuticals, and more particularly, to a method and an apparatus for producing purified water for pharmaceuticals that can efficiently sterilize the system before the production of purified water.

従来より、医薬品製造等に用いられる精製水の製造装置として、水道水等の原水を、逆浸透膜装置と、電気式脱イオン装置を組み合わせた系で処理するようにしたものが知られている。
特に医薬品製造用の精製水の製造には、生菌の発生を防止するための厳密な管理が要求されるため、精製水の製造処理前に、系内の各装置を、定期的(例えば週1回)に殺菌する必要がある。
精製水製造装置内部の殺菌は、通常60℃以上の温度の熱水を装置内部に通水することにより行われる。
2. Description of the Related Art Conventionally, as purified water production equipment used for pharmaceutical production, raw water such as tap water is treated with a system that combines a reverse osmosis membrane device and an electrical deionization device. .
In particular, the production of purified water for pharmaceutical production requires strict management to prevent the generation of viable bacteria. Need to be sterilized once).
Sterilization inside the purified water production apparatus is usually performed by passing hot water having a temperature of 60 ° C. or higher through the apparatus.

ところで、特許文献1(特開平8−252600号公報)には、常温の原水を逆浸透膜装置及びイオン交換装置に通水し、この処理水を一旦純水タンクに貯留したものを、熱交換器で90℃以上の高温に加熱し、この加熱水をUF装置に通水後、被処理水タンクに戻して逆浸透膜装置、イオン交換装置等を熱水殺菌する方法が記載されている。   By the way, in Patent Document 1 (Japanese Patent Application Laid-Open No. 8-252600), raw water at room temperature is passed through a reverse osmosis membrane device and an ion exchange device, and this treated water is once stored in a pure water tank for heat exchange. A method is described in which a vessel is heated to a high temperature of 90 ° C. or higher, and this heated water is passed through a UF device and then returned to a water tank to be treated to sterilize a reverse osmosis membrane device, an ion exchange device, and the like.

しかしながら、特許文献1に記載の方法では、系全体を熱水殺菌するためには、純水タンクの純水を加熱してUF装置に通水した後、この熱水を原水タンクに還流させて原水タンクの原水を熱水で置換する必要があり、殺菌のための昇温工程、均温工程、降温工程に長時間を要する上に、その間、系内の逆浸透膜装置やイオン交換装置に熱負荷が加わるため、イオン交換装置の劣化が促進されるという問題がある。   However, in the method described in Patent Document 1, in order to sterilize the entire system with hot water, the pure water in the pure water tank is heated and passed through the UF device, and then the hot water is returned to the raw water tank. It is necessary to replace the raw water in the raw water tank with hot water, and it takes a long time for the temperature raising process, temperature equalizing process, and temperature lowering process for sterilization, and in the meantime, in the reverse osmosis membrane device and ion exchange device in the system Since a heat load is applied, there is a problem that deterioration of the ion exchange device is promoted.

また、特許文献2(特開2004−74109号公報)には、常温状態の原水を事前に逆浸透膜、電気式脱イオン装置(電気再生式純水製造装置)に通して純水とし、この純水で原水タンク内の貯留水を置換したものを原水加熱器で加熱して、逆浸透膜、電気式脱イオン装置、原水タンクと循環させて熱殺菌する方法が記載されている。
しかし、この方法では、熱殺菌に際して、原水タンク内の原水を、一旦、この系を通過して処理された純水で置換して、この原水タンク内の純水を加熱して系内を循環させる方法であり、原水タンクの原水と純水の置換に長時間を要する上に、系内の逆浸透膜装置や電気式脱イオン装置に熱負荷が加わるため、イオン交換装置の劣化が促進されるという問題がある。
さらに、特許文献3(特開2005−288335号公報)には、第1三方弁及び第2三方弁の切換え操作により、一次純水システムの循環経路を形成し、この状態で、一次純水システムの被処理水タンク内の被処理水を軟水に置換した上で、この軟水を第1熱交換器で加熱し、逆浸透膜装置、脱イオン装置に一括送水して加熱殺菌する方法が記載されている。
In Patent Document 2 (Japanese Patent Laid-Open No. 2004-74109), raw water in a normal temperature state is passed through a reverse osmosis membrane and an electric deionization device (electric regeneration type pure water production device) in advance to obtain pure water. A method is described in which water stored in a raw water tank is replaced with pure water, heated by a raw water heater, and circulated through a reverse osmosis membrane, an electric deionizer, and a raw water tank for heat sterilization.
However, in this method, during the heat sterilization, the raw water in the raw water tank is once replaced with the pure water that has been processed through the system, and the pure water in the raw water tank is heated to circulate in the system. It takes a long time to replace raw water and pure water in the raw water tank, and a thermal load is applied to the reverse osmosis membrane device and electric deionization device in the system, which promotes deterioration of the ion exchange device. There is a problem that.
Further, in Patent Document 3 (Japanese Patent Laid-Open No. 2005-288335), the circulation path of the primary pure water system is formed by switching the first three-way valve and the second three-way valve, and in this state, the primary pure water system A method is described in which water to be treated in the water tank to be treated is replaced with soft water, and then the soft water is heated by a first heat exchanger, and is then collectively fed to a reverse osmosis membrane device and a deionization device for heat sterilization. ing.

しかし、特許文献3の方法も被処理水タンクの被処理水を軟水で置換するのに長時間を要し、全体の処理効率が良くないという問題がある。   However, the method of Patent Document 3 also has a problem that it takes a long time to replace the water to be treated in the water tank to be treated with soft water, and the overall treatment efficiency is not good.

特開平8−252600号公報JP-A-8-252600 特開2004−74109号公報JP 2004-74109 A 特開2005−288335号公報JP 2005-288335 A

本発明は、上記課題を解決するためになされたものであり、熱水殺菌工程を含む精製水製造処理において、殺菌工程に要する時間を短縮するとともに、原水タンクの原水を直接殺菌用の熱水として使用して処理水の無駄を大幅に節減した、医薬品用精製水を効率的に製造できる精製水製造方法、及び精製水製造装置を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems. In the purified water production process including the hot water sterilization process, the time required for the sterilization process is shortened, and the raw water in the raw water tank is directly used for hot water for sterilization. It is an object of the present invention to provide a purified water production method and a purified water production apparatus capable of efficiently producing purified water for pharmaceuticals, which can be used as a waste water to greatly reduce waste of treated water.

すなわち、本発明の医薬品用精製水の製造方法は、原水が供給される原水タンクと、逆浸透膜装置と、電気式脱イオン装置と、前記電気式脱イオン装置の脱塩水が供給される処理水タンクが順に配置され、前記原水タンクから前記逆浸透膜装置に供給される被処理水を60℃以上の温度に加熱する加熱手段とを備えた系を用いる医薬用精製水の製造方法であって、
前記逆浸透膜装置として、被処理水の水温60℃以上における透過水の導電率が45μS/cm以下の逆浸透膜装置を使用し、精製水の製造を開始するにあたり系内を熱水により殺菌するための昇温、均温及び降温の各工程において、(a)昇温工程では、前記加熱手段により前記原水タンクから前記逆浸透膜装置に供給される被処理水を60℃以上の温度に加熱するとともに、前記原水タンクへの原水の供給を止め、前記逆浸透膜装置の濃縮水を排出し、前記電気式脱イオン装置の脱塩水、濃縮水、電極水は前記原水タンクへ還流させる、(b)均温工程では、前記加熱を継続しつつ、前記原水タンクへの原水の流入を止め、前記逆浸透膜装置の濃縮水および前記電気式脱イオン装置の濃縮水、電極水、脱塩水を原水タンクへ還流させる、(c)降温工程では、前記加熱を停止するとともに、前記原水タンクへ原水を供給し、前記逆浸透膜装置の濃縮水および前記電気式脱イオン装置の濃縮水、電極水を放出し、前記電気式脱イオン装置の脱塩水は処理水タンクへ還流させる、ことを特徴とするものである。
That is, the method for producing purified water for pharmaceuticals of the present invention comprises a raw water tank to which raw water is supplied, a reverse osmosis membrane device, an electric deionization device, and a treatment in which demineralized water of the electric deionization device is supplied. A method for producing purified pharmaceutical water using a system in which a water tank is disposed in order and heating means for heating the water to be treated supplied from the raw water tank to the reverse osmosis membrane device to a temperature of 60 ° C. or higher. And
As the reverse osmosis membrane device, a reverse osmosis membrane device having a permeate conductivity of 45 μS / cm or less at a water temperature of 60 ° C. or more to be treated is sterilized with hot water before starting production of purified water. (A) In the temperature raising step, the water to be treated supplied from the raw water tank to the reverse osmosis membrane device is heated to a temperature of 60 ° C. or higher. While heating, the supply of raw water to the raw water tank is stopped, the concentrated water of the reverse osmosis membrane device is discharged, and the deionized water, concentrated water, and electrode water of the electric deionization device are recirculated to the raw water tank. (B) In the soaking step, while continuing the heating, the inflow of the raw water into the raw water tank is stopped, the concentrated water of the reverse osmosis membrane device, the concentrated water of the electric deionizer, electrode water, and demineralized water To the raw water tank, c) In the temperature lowering step, the heating is stopped, the raw water is supplied to the raw water tank, the concentrated water of the reverse osmosis membrane device, the concentrated water of the electric deionization device, and the electrode water are discharged. The deionized water of the deionizer is returned to the treated water tank.

また、本発明の医薬品用精製水の製造装置は、原水が供給される原水タンクと、逆浸透膜装置と、電気式脱イオン装置と、前記電気式脱イオン装置の脱塩水が供給される処理水タンクが順に配置され、原水タンクから前記逆浸透膜装置に供給される被処理水を60℃以上の温度に加熱する加熱手段を備えた医薬品用精製水の製造装置であって、前記逆浸透膜装置の被処理水の水温60℃以上における透過水の導電率が45μS/cm以下の逆浸透膜装置を使用し、原水の供給配管及び脱塩水の供給配管にそれぞれ開閉弁を設け、前記逆浸透膜装置の濃縮水排出配管と原水タンク間、前記電気式脱イオン装置の濃縮水排出配管と前記原水タンク間、前記電気式脱イオン装置の電極水排出配管と前記原水タンク間及び前記電気式脱イオン装置の脱塩水排出配管の前記開閉弁の上流部と前記原水タンク間に、それぞれ切換弁の切換えにより濃縮水、電極水及び脱塩水を前記原水タンクに還流可能な独立又は共通の還流配管を設けるとともに、殺菌するための昇温、均温及び降温の各工程において、前記開閉弁、前記切換弁および前記加熱手段を以下のように制御する制御手段を備えたことを特徴とするものである。(a)昇温工程では、前記加熱手段を駆動させ、前記原水の供給配管を閉鎖、電気式脱イオン装置の脱塩水、濃縮水、電極水の流路を処理水タンク側から原水タンクへの還流配管側に切換える、(b)均温工程においては、さらに、前記逆浸透膜装置の濃縮水の流路を排出側から原水タンクへの還流管路側に切換え、(c)降温工程においては、前記加熱手段を停止し、前記原水の供給配管を開放、前記逆浸透膜装置の濃縮水及び前記電気式脱イオン装置の濃縮水、電極水の流路を原水タンクへの還流管路側から排出側に切換える。   In addition, the device for producing purified water for pharmaceuticals of the present invention includes a raw water tank to which raw water is supplied, a reverse osmosis membrane device, an electric deionization device, and a treatment in which demineralized water of the electric deionization device is supplied. A device for producing purified water for pharmaceuticals, comprising a water tank arranged in order, and heating means for heating the water to be treated supplied from the raw water tank to the reverse osmosis membrane device to a temperature of 60 ° C. or higher, Using a reverse osmosis membrane device having a permeate conductivity of 45 μS / cm or less at a water temperature of 60 ° C. or higher for the water to be treated in the membrane device, an open / close valve is provided in each of the raw water supply pipe and the demineralized water supply pipe. Between the concentrated water discharge pipe of the osmosis membrane device and the raw water tank, between the concentrated water discharge pipe of the electric deionizer and the raw water tank, between the electrode water discharge pipe of the electric deionizer and the raw water tank, and the electric type Deionizer removal Between the upstream part of the on-off valve of the water discharge pipe and the raw water tank, there is provided an independent or common return pipe capable of returning concentrated water, electrode water and demineralized water to the raw water tank by switching the switching valve, respectively. In the temperature raising, temperature equalization, and temperature lowering steps for the purpose, control means for controlling the on-off valve, the switching valve, and the heating means as follows is provided. (A) In the temperature raising step, the heating means is driven, the raw water supply pipe is closed, and the deionized water, concentrated water, and electrode water flow paths of the electric deionizer are connected from the treated water tank side to the raw water tank. In the (b) soaking step, the flow path of the concentrated water of the reverse osmosis membrane device is further switched from the discharge side to the reflux pipe side to the raw water tank. (C) In the temperature lowering step, The heating means is stopped, the raw water supply pipe is opened, the concentrated water of the reverse osmosis membrane device, the concentrated water of the electric deionization device, and the electrode water flow path from the reflux line side to the raw water tank to the discharge side Switch to.

本発明によれば、熱水殺菌工程では、原水タンクの原水を加熱して系内を循環させつつ精製するとともに、昇温工程、均温工程では電気式脱イオン装置の濃縮水、電極水も系内を循環させつつ、循環する熱水が所定の水質になるまでは逆浸透膜装置を機能させ所定の水質になった後には、逆浸透膜装置の濃縮水も循環させて極力熱の系外への放出を抑制して昇温を迅速に行わせ、降温工程では系内に原水を導入するとともに、逆浸透膜装置の濃縮水、電気式脱イオン装置の濃縮水、電極水を放出することにより、降温を迅速に行わせることにより、全体として、熱水殺菌に要する時間を大幅に短縮させることができ、さらに、殺菌処理に用いる処理水を大幅に節減できる。
また、殺菌工程終了時には、系内の水が精製されており、殺菌工程終了後、そのまま精製水製造処理工程に移行できる。従って、精製水の製造工程全体を効率的に行うことができ、また、このように効率化しても、電気式脱イオン装置の劣化を招くことがない。
According to the present invention, in the hot water sterilization process, the raw water in the raw water tank is heated and purified while circulating in the system, and in the heating process and the soaking process, the concentrated water and electrode water of the electric deionizer are also used. The reverse osmosis membrane device functions until the hot water circulating circulates in the system until the water quality reaches a predetermined level.After the water quality reaches the predetermined water quality, the concentrated water of the reverse osmosis membrane device is also circulated to maximize the heat system. Suppresses the release to the outside and quickly raises the temperature. In the temperature lowering process, the raw water is introduced into the system, and the concentrated water from the reverse osmosis membrane device, the concentrated water from the electrical deionization device, and the electrode water are released. As a result, the temperature can be lowered quickly, and as a whole, the time required for the hot water sterilization can be greatly shortened, and the treatment water used for the sterilization treatment can be greatly reduced.
At the end of the sterilization process, the water in the system is purified, and after the sterilization process is completed, the process can proceed to the purified water production process. Therefore, the entire process of producing purified water can be efficiently performed, and even if the efficiency is increased in this way, the electric deionization apparatus is not deteriorated.

このように、本発明によれば、医薬品等に用いられる精製水の製造処理全体に要する時間を、電気式脱イオン装置に対する負荷を増大させることなく、大幅に短縮することができる。また、殺菌処理に要する処理水やエネルギーを節減することができる。   Thus, according to the present invention, the time required for the entire production process of purified water used for pharmaceuticals or the like can be significantly shortened without increasing the load on the electric deionizer. In addition, the water and energy required for sterilization can be reduced.

本発明の一実施形態における医薬品用精製水の製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the manufacturing apparatus of the purified water for pharmaceuticals in one Embodiment of this invention. 本発明の精製水製造方法の昇温工程におけるフローを示す図である。It is a figure which shows the flow in the temperature rising process of the purified water manufacturing method of this invention. 本発明の精製水製造方法の均温工程におけるフローを示す図である。It is a figure which shows the flow in the temperature equalization process of the purified water manufacturing method of this invention. 本発明の精製水製造方法の降温工程におけるフローを示す図である。It is a figure which shows the flow in the temperature fall process of the purified water manufacturing method of this invention. 本発明の精製水製造方法の精製水製造処理工程のフローを示す図である。It is a figure which shows the flow of the purified water manufacturing process process of the purified water manufacturing method of this invention. 他の実施形態における医薬品用精製水の製造装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the manufacturing apparatus of the purified water for pharmaceuticals in other embodiment.

以下、本発明の詳細、ならびにその他の特徴及び利点について、図面を参照しながら説明する。   The details of the present invention as well as other features and advantages are described below with reference to the drawings.

図1は、本発明の一実施形態における医薬品用精製水の製造装置の概略構成を示す図である。
図1に示すように、本実施形態における医薬品用精製水の製造装置1は、前処理水10を処理する活性炭吸着装置11と、この活性炭吸着装置11の後段に、原水タンク12が設置されており、活性炭吸着装置11、原水タンク12間は、開閉バルブ21を備えた供給配管L1によって接続されている。
原水タンク12の後段には、逆浸透膜装置13と、電気式脱イオン装置14と、が順次設置されており、更に電気式脱イオン装置14の後段には、処理水タンク15が設置されている。電気式脱イオン装置14と処理水タンク15は、開閉バルブ22を備えた供給配管L2により接続されている。
また、原水タンク12と逆浸透膜装置13との間には、蒸気ヒータ16が設けられている。図1では蒸気ヒータ16は原水タンク12と逆浸透膜装置13との間に設置されているが、特に限定されるものではなく、また、加熱は蒸気ヒータに限定されるものではなく電熱ヒータ等も使用可能である。
FIG. 1 is a diagram showing a schematic configuration of an apparatus for producing purified water for pharmaceuticals in one embodiment of the present invention.
As shown in FIG. 1, the pharmaceutical purified water production apparatus 1 in this embodiment includes an activated carbon adsorbing device 11 for treating pretreated water 10, and a raw water tank 12 installed at the subsequent stage of the activated carbon adsorbing device 11. The activated carbon adsorbing device 11 and the raw water tank 12 are connected by a supply pipe L <b> 1 having an opening / closing valve 21.
A reverse osmosis membrane device 13 and an electrical deionization device 14 are sequentially installed in the subsequent stage of the raw water tank 12, and a treated water tank 15 is installed in the subsequent stage of the electrical deionization device 14. Yes. The electrical deionizer 14 and the treated water tank 15 are connected by a supply pipe L2 having an opening / closing valve 22.
A steam heater 16 is provided between the raw water tank 12 and the reverse osmosis membrane device 13. In FIG. 1, the steam heater 16 is installed between the raw water tank 12 and the reverse osmosis membrane device 13, but is not particularly limited, and heating is not limited to the steam heater but an electric heater or the like Can also be used.

なお、原水タンク12と蒸気ヒータ16との間の配管には、第1のポンプP1が設けられ、蒸気ヒータ16と逆浸透膜装置13との間の配管には、第2のポンプP2が設けられている。原水タンク12内の水は、これらのポンプにより上記各装置に順次通水され、後述するように加熱殺菌時には、還流配管を介して、熱水を系内に循環させるようになっている。なお、図1では原水タンク12と蒸気ヒータ16との間には、第1のポンプP1が介挿入され、蒸気ヒータ16と逆浸透膜装置13との間には、第2のポンプP2が介挿入されているが、いずれか一方でもよく、設置する場所も特に限定されない。
また、原水タンク12内、蒸気ヒータ16と逆浸透膜装置13との間の配管、電気式脱イオン装置14と処理水タンク15との間の配管には、それぞれ温度計T1、T2、T3が設けられており、加熱殺菌時には、各部の水温を検出して、図示を省略した制御手段により、昇温、均温、降温の各工程における各バルブの操作を行うとともに、蒸気ヒータ16を制御して各部の水温を所定の殺菌温度に維持するようになっている。
A first pump P1 is provided in the pipe between the raw water tank 12 and the steam heater 16, and a second pump P2 is provided in the pipe between the steam heater 16 and the reverse osmosis membrane device 13. It has been. Water in the raw water tank 12 is sequentially passed through the above devices by these pumps, and hot water is circulated in the system through a reflux pipe during heat sterilization as will be described later. In FIG. 1, a first pump P1 is inserted between the raw water tank 12 and the steam heater 16, and a second pump P2 is interposed between the steam heater 16 and the reverse osmosis membrane device 13. Although it is inserted, any one may be sufficient and the place to install is not specifically limited.
Thermometers T1, T2, and T3 are provided in the raw water tank 12, the pipe between the steam heater 16 and the reverse osmosis membrane device 13, and the pipe between the electrical deionizer 14 and the treated water tank 15, respectively. At the time of heat sterilization, the temperature of each part is detected, and the control means (not shown) is used to operate each valve in each step of temperature increase, temperature equalization, and temperature decrease, and to control the steam heater 16. Thus, the water temperature of each part is maintained at a predetermined sterilization temperature.

このように、温度計T1〜T3は、加熱殺菌時に系内の水温が所定の殺菌温度であることを監視するとともに、所定の殺菌温度を維持するように図示を省略した制御手段により蒸気ヒータ16をフィードバック制御する温度センサーとして用いられる。   As described above, the thermometers T1 to T3 monitor that the water temperature in the system is the predetermined sterilization temperature during the heat sterilization, and the steam heater 16 is controlled by a control unit (not shown) so as to maintain the predetermined sterilization temperature. It is used as a temperature sensor for feedback control.

逆浸透膜装置13の濃縮水出口配管は、濃縮水排出バルブ23を介して濃縮水排出配管L3に接続されている。濃縮水排出配管L3の濃縮水排出バルブ23の上流部と原水タンク12間には、後述する均熱工程において、濃縮水排出バルブ23を閉じるとともに、管路に設けた切換えバルブ24の開放により、逆浸透膜装置13の濃縮水を原水タンク12に還流させる還流配管L4が設けられている。   The concentrated water outlet pipe of the reverse osmosis membrane device 13 is connected to the concentrated water discharge pipe L <b> 3 via the concentrated water discharge valve 23. Between the upstream portion of the concentrated water discharge valve 23 of the concentrated water discharge pipe L3 and the raw water tank 12, in the soaking process described later, the concentrated water discharge valve 23 is closed and the switching valve 24 provided in the pipeline is opened, A reflux pipe L4 for returning the concentrated water of the reverse osmosis membrane device 13 to the raw water tank 12 is provided.

電気式脱イオン装置14は、脱塩室141と濃縮室142と電極室143とから構成されており、脱塩水の供給配管L2の開閉バルブ22の上流部と原水タンク12間には、殺菌工程において、切換えバルブ25の開放により、高温の脱塩水を原水タンク12に還流させる還流配管L5が設けられている。
また、濃縮室142の濃縮水出口配管と、電極室143の電極水出口配管はそれぞれ共通の還流配管L6に接続されている。この共通の還流配管L6は分岐して一方の分岐管L61は原水タンク12に接続され、他方の分岐管L62は濃縮水排出口に開口している。分岐管L61、62には、それぞれ流路を原水タンク12側と濃縮水排出口側に切換えるバルブ26、27が設けられている。
The electric deionization apparatus 14 includes a demineralization chamber 141, a concentration chamber 142, and an electrode chamber 143. A sterilization process is performed between the upstream portion of the open / close valve 22 of the deionized water supply pipe L2 and the raw water tank 12. , A recirculation pipe L <b> 5 for recirculating high-temperature demineralized water to the raw water tank 12 by opening the switching valve 25 is provided.
The concentrated water outlet pipe of the concentrating chamber 142 and the electrode water outlet pipe of the electrode chamber 143 are connected to a common reflux pipe L6. The common reflux pipe L6 branches and one branch pipe L61 is connected to the raw water tank 12, and the other branch pipe L62 opens to the concentrated water discharge port. The branch pipes L61 and 62 are provided with valves 26 and 27 for switching the flow path between the raw water tank 12 side and the concentrated water discharge side, respectively.

なお、開閉バルブ21、22及び濃縮水排出バルブ23、切換えバルブ24〜27は、加熱処理の各段階において、図示を省略した制御手段により開閉が行われる。そして、開閉バルブ22と切換えバルブ25、濃縮水排出バルブ23と切換えバルブ24、切換えバルブ26と27については、それぞれ同時に開閉制御が行われて、熱水の流路の切換えが行われる。   The open / close valves 21 and 22, the concentrated water discharge valve 23, and the switching valves 24 to 27 are opened and closed by control means (not shown) at each stage of the heat treatment. The open / close valve 22 and the switching valve 25, the concentrated water discharge valve 23 and the switching valve 24, and the switching valves 26 and 27 are simultaneously controlled to open and close, and the hot water flow path is switched.

本発明に使用される逆浸透膜装置13は、水温60℃以上の熱水を通水したときの、透過水の導電率が45μS/cm以下となるものであり、脱塩率は85%以上のものが好ましい。
このような逆浸透膜装置13に装着される逆浸透膜131(図示省略)としては、例えば、Duratherm RO 2540 HF(70℃用)、Duratherm RO 4040 HF(70℃用)、Duratherm RO 8040 HF(70℃用)(いずれも米国GE社製、商品名)等が挙げられる。
The reverse osmosis membrane device 13 used in the present invention has a permeated water conductivity of 45 μS / cm or less when hot water having a water temperature of 60 ° C. or higher is passed through, and the desalination rate is 85% or higher. Are preferred.
Examples of the reverse osmosis membrane 131 (not shown) attached to the reverse osmosis membrane device 13 include, for example, Duratherm RO 2540 HF (for 70 ° C), Duratherm RO 4040 HF (for 70 ° C), Duratherm RO 8040 HF ( 70 ° C.) (both manufactured by US GE, trade name) and the like.

電気式脱イオン装置14は、電極室141と濃縮室142と脱塩室143と、を有している。ここで、具体的な電気式脱イオン装置14の構造図は省略するが、濃縮室142、電極室143からは、それぞれ出口配管が設けられている。
なお、濃縮室142を流れる濃縮水流路と電極室143を流れる電極水流路とが、電気式脱イオン装置14内部で合流している場合には、濃縮水の出口配管と電極水の出口配管とを共通配管としてもよい。
このような電気式脱イオン装置14としては、例えば、MK−2MiniHT(耐熱仕様EDI)(GE社製)が適している。
The electric deionizer 14 includes an electrode chamber 141, a concentration chamber 142, and a demineralization chamber 143. Here, although a specific structural diagram of the electric deionization device 14 is omitted, outlet pipes are provided from the concentration chamber 142 and the electrode chamber 143, respectively.
In addition, when the concentrated water flow path which flows through the concentration chamber 142 and the electrode water flow path which flows through the electrode chamber 143 are merged inside the electric deionization apparatus 14, an outlet pipe of concentrated water, an outlet pipe of electrode water, May be common piping.
As such an electrical deionization apparatus 14, for example, MK-2 MiniHT (heat resistant specification EDI) (manufactured by GE) is suitable.

次に、図2〜5に基づいて、本発明の製造装置1による医薬用精製水の製造方法について説明する。
本発明では、製造装置1内の各装置に熱水を通水し、殺菌処理をした後に通常の精製水製造処理を行う。この熱殺菌工程は、昇温工程、均温工程、降温工程から構成される。以下に、製造装置1による医薬用精製水の製造方法について説明する。
Next, based on FIGS. 2-5, the manufacturing method of the purified water for pharmaceuticals by the manufacturing apparatus 1 of this invention is demonstrated.
In the present invention, hot water is passed through each device in the manufacturing apparatus 1 and sterilization is performed, followed by normal purified water manufacturing processing. This thermal sterilization process includes a temperature raising process, a temperature equalizing process, and a temperature lowering process. Below, the manufacturing method of the purified water for pharmaceuticals by the manufacturing apparatus 1 is demonstrated.

図2に基づいて、殺菌工程における昇温工程のフローを説明する。
初めに、開閉バルブ21、22及び切換えバルブ24、27を閉とし、濃縮水排出バルブ23、切換えバルブ、25、26を開として、ポンプP1を駆動させる。これによって、タンク12内の原水は、20〜80℃の加熱温度に設定した蒸気ヒータ16に供給し、原水を加熱する。次いで、加熱された原水を、ポンプP2を駆動させて蒸気ヒータ16から逆浸透膜装置13に供給する。
逆浸透膜装置13では、被処理水の水温が60℃以上で脱塩処理が行われる。
逆浸透膜装置13から排出された濃縮水は、濃縮水排出バルブ23を介して系外に排出させる。
使用する逆浸透膜装置13は、被処理水の水温が60℃以上で透過水の導電率は45μS/cm以下、好ましくは40μS/cm以下の性能のものであり、被処理水の水温が60℃以上で脱塩率が85%以上のものがより好ましい。
昇温速度としては、温度計T2で測定される逆浸透膜装置13への供給水の水温が、5℃/分以下の速度で上昇するように行うことが好ましい。従って、急激な温度上昇が起こらないよう、蒸気ヒータ16の設定温度、系内の循環水の流速等を適宜調整して行うことが好ましい。
Based on FIG. 2, the flow of the temperature rising process in a sterilization process is demonstrated.
First, the opening / closing valves 21 and 22 and the switching valves 24 and 27 are closed, the concentrated water discharge valve 23 and the switching valves 25 and 26 are opened, and the pump P1 is driven. Thereby, the raw water in the tank 12 is supplied to the steam heater 16 set to a heating temperature of 20 to 80 ° C. to heat the raw water. Next, the heated raw water is supplied from the steam heater 16 to the reverse osmosis membrane device 13 by driving the pump P2.
In the reverse osmosis membrane device 13, the desalination treatment is performed when the water temperature of the water to be treated is 60 ° C. or higher.
The concentrated water discharged from the reverse osmosis membrane device 13 is discharged out of the system through the concentrated water discharge valve 23.
The reverse osmosis membrane device 13 to be used has a performance such that the water temperature of the water to be treated is 60 ° C. or more and the conductivity of the permeated water is 45 μS / cm or less, preferably 40 μS / cm or less. It is more preferable that the desalting rate is 85% or higher at a temperature of ° C or higher.
The rate of temperature rise is preferably such that the temperature of the water supplied to the reverse osmosis membrane device 13 measured by the thermometer T2 increases at a rate of 5 ° C./min or less. Therefore, it is preferable to appropriately adjust the set temperature of the steam heater 16, the flow rate of circulating water in the system, and the like so that a rapid temperature rise does not occur.

上記のように、常温での逆浸透膜処理を経ずに蒸気ヒータの熱水状態で逆浸透膜装置13を通過した透過水は、直接電気式脱イオン装置14の脱塩室141、濃縮室142、及び電極室143に供給される。
脱塩室141から排出される処理水は、切換えバルブ25を介して原水タンク12に還流される。また、濃縮室142及び電極室143から排出される処理水も、切換えバルブ26を介して原水タンク12に還流される。
この状態で、系内の温度が60〜90℃に昇温するまで原水タンク12内の原水を循環させる。すなわち、原水タンク12内への新たな水の供給を行わず、原水タンク12内の水を循環して昇温させるため、系内の昇温に伴って、循環水の精製が進行する。
なお、昇温工程において処理水の循環が繰り返されると、逆浸透膜装置13に供給される水の導電率は次第に低下する。そして、逆浸透膜装置13の供給水の導電率が200μS/cm以下、好ましくは150μS/cm以下、さらに好ましくは100μS/cm以下になると、逆浸透膜装置13の濃縮水の導電率も原水の導電率と同等又はそれより低くなるので、切換えバルブ24を開にして原水タンク12に還流させて、濃縮水の排出による熱の放出を抑制することができる。
As described above, the permeated water that has passed through the reverse osmosis membrane device 13 in the hot water state of the steam heater without passing through the reverse osmosis membrane treatment at room temperature is directly applied to the demineralization chamber 141 and the concentration chamber of the electric deionization device 14. 142 and the electrode chamber 143.
The treated water discharged from the desalting chamber 141 is returned to the raw water tank 12 through the switching valve 25. The treated water discharged from the concentration chamber 142 and the electrode chamber 143 is also returned to the raw water tank 12 via the switching valve 26.
In this state, the raw water in the raw water tank 12 is circulated until the temperature in the system rises to 60 to 90 ° C. That is, since the water in the raw water tank 12 is circulated to raise the temperature without supplying new water to the raw water tank 12, the purification of the circulating water proceeds with the temperature rise in the system.
In addition, when the circulation of treated water is repeated in the temperature raising step, the conductivity of the water supplied to the reverse osmosis membrane device 13 gradually decreases. When the conductivity of the feed water of the reverse osmosis membrane device 13 is 200 μS / cm or less, preferably 150 μS / cm or less, more preferably 100 μS / cm or less, the conductivity of the concentrated water of the reverse osmosis membrane device 13 is also the raw water. Since it is equal to or lower than the conductivity, the switching valve 24 can be opened and refluxed to the raw water tank 12 to suppress the release of heat due to the discharge of concentrated water.

次に、図3に基づいて、均温工程のフローを説明する。
開閉バルブ21、22、濃縮水排出バルブ23及び切換えバルブ27は閉、切換えバルブ25、26は開としたままで、切換えバルブ24を開として、上記昇温工程と同様に、タンク12内の原水を、60〜90℃に設定した蒸気ヒータ16に供給し、原水の水温を60〜90℃に保持した状態でこの原水を蒸気ヒータ16から逆浸透膜装置13に供給する。逆浸透膜装置13では、熱水状態で通水された原水が逆浸透膜131により脱塩処理されて濃縮水を得られるが、均温工程における系内の循環水は、既に昇温工程で脱塩処理されているため、この濃縮水は、系外に排出せず、切換えバルブ24を介して還流配管L4より原水タンク12に還流する。
なお、必要に応じて逆浸透膜装置13の濃縮水の一部を系外に排出するようにしてもよい。
Next, the flow of the soaking process will be described based on FIG.
The open / close valves 21 and 22, the concentrated water discharge valve 23 and the switching valve 27 are closed, the switching valves 25 and 26 are kept open, the switching valve 24 is opened, and the raw water in the tank 12 is opened in the same manner as in the temperature raising step. Is supplied to the steam heater 16 set to 60 to 90 ° C., and the raw water is supplied from the steam heater 16 to the reverse osmosis membrane device 13 while the temperature of the raw water is maintained at 60 to 90 ° C. In the reverse osmosis membrane device 13, the raw water passed in the hot water state is desalted by the reverse osmosis membrane 131 to obtain concentrated water, but the circulating water in the system in the soaking step is already in the temperature raising step. Since it has been desalted, this concentrated water is not discharged out of the system, but is returned to the raw water tank 12 via the switching valve 24 through the return pipe L4.
In addition, you may make it discharge | emit a part of concentrated water of the reverse osmosis membrane apparatus 13 out of the system as needed.

逆浸透膜装置13を熱水状態で通過した透過水は、上記昇温工程のときと同様、電気式脱イオン装置14の脱塩室141、濃縮室142、電極室143に直接供給される。脱塩室141から排出される処理水は、切換えバルブ25を介して原水タンク12に還流される。また、濃縮室142及び電極室143から排出される処理水も、切換えバルブ26を介して原水タンク12に還流される。
このように、逆浸透膜装置13で得られる濃縮水も含め、製造装置1内の水をすべて循環させることにより、系内の熱をロスすることなく、熱水殺菌を効率的に行うことができる。
この状態で、系内の各装置が十分に殺菌処理されるまで、原水タンク12内の原水を循環させる。循環回数としては、特に制限されるものではないが、通常は数回から数十回である。
The permeated water that has passed through the reverse osmosis membrane device 13 in the hot water state is directly supplied to the demineralization chamber 141, the concentration chamber 142, and the electrode chamber 143 of the electric deionization device 14 as in the temperature raising step. The treated water discharged from the desalting chamber 141 is returned to the raw water tank 12 through the switching valve 25. The treated water discharged from the concentration chamber 142 and the electrode chamber 143 is also returned to the raw water tank 12 via the switching valve 26.
In this way, by circulating all the water in the production apparatus 1 including the concentrated water obtained by the reverse osmosis membrane apparatus 13, hot water sterilization can be efficiently performed without losing heat in the system. it can.
In this state, the raw water in the raw water tank 12 is circulated until each device in the system is sufficiently sterilized. The number of circulations is not particularly limited, but is usually several to several tens of times.

次に、図4に基づいて、降温工程におけるフローを説明する。
開閉バルブ22を閉、切換えバルブ25を開としたまま、開閉バルブ21、濃縮水排出バルブ23、切換えバルブ27を開とし、切換えバルブ24、26を閉として、活性炭吸着装置11によって吸着処理がなされた常温の原水を、原水タンク12内に供給する。
併せて、原水タンク12内の原水を、加熱動作を停止した蒸気ヒータ16に供給する。次いでこの原水を、上記均温工程のときと同様、逆浸透膜装置13に供給する。逆浸透膜装置13に供給された原水は、逆浸透膜131で脱塩処理され、逆浸透膜装置13で得られた濃縮水は、濃縮水排出バルブ23を介して系外に排出させる。
被処理水の降温速度は、逆浸透膜装置13への供給水の水温が、5℃/分以下の速度で降下するように行うことが好ましい。従って、系内に供給する原水タンク12内の貯留水の水温や、系内の循環水の流速等を適宜調整して、急激な温度低下を抑えて行うことが好ましい。
Next, a flow in the temperature lowering process will be described based on FIG.
With the open / close valve 22 closed and the switching valve 25 open, the open / close valve 21, the concentrated water discharge valve 23 and the switching valve 27 are opened, the switching valves 24 and 26 are closed, and the activated carbon adsorption device 11 performs the adsorption process. The raw water at room temperature is supplied into the raw water tank 12.
In addition, the raw water in the raw water tank 12 is supplied to the steam heater 16 whose heating operation has been stopped. Next, this raw water is supplied to the reverse osmosis membrane device 13 in the same manner as in the temperature-uniforming step. The raw water supplied to the reverse osmosis membrane device 13 is desalted by the reverse osmosis membrane 131, and the concentrated water obtained by the reverse osmosis membrane device 13 is discharged out of the system through the concentrated water discharge valve 23.
The temperature of the water to be treated is preferably lowered so that the temperature of the water supplied to the reverse osmosis membrane device 13 falls at a rate of 5 ° C./min or less. Therefore, it is preferable that the temperature of the stored water in the raw water tank 12 supplied into the system, the flow rate of circulating water in the system, and the like are appropriately adjusted to suppress a sudden temperature drop.

降温工程においても、脱塩室141からの処理水は、切換えバルブ25を介して原水タンク12に還流されるが、逆浸透膜装置13の濃縮水及び電気式脱イオン装置14の濃縮水、電極水は、それぞれ還流配管L3並びに還流配管L6及び分岐管L62から系外に排出される。
この状態で、系内の温度が20〜30℃に降温するまで原水タンク12内の原水を循環させる。
Also in the temperature lowering process, the treated water from the desalting chamber 141 is returned to the raw water tank 12 through the switching valve 25. However, the concentrated water of the reverse osmosis membrane device 13 and the concentrated water and electrodes of the electric deionization device 14 are used. Water is discharged out of the system from the reflux pipe L3, the reflux pipe L6, and the branch pipe L62, respectively.
In this state, the raw water in the raw water tank 12 is circulated until the temperature in the system drops to 20-30 ° C.

なお、本実施形態では、前処理水10を原水タンク12に供給するとともに、逆浸透膜装置13の濃縮水等を系外に放出して系内の水温を降下させることとしたが、例えば、蒸気ヒータ16のジャケットに冷水を供給して、蒸気ヒータ16を水冷ジャケットとして用いることもでき、濃縮水等の系外への放出と水冷ジャケットの使用とを併用することもできる。   In the present embodiment, the pretreatment water 10 is supplied to the raw water tank 12 and the concentrated water of the reverse osmosis membrane device 13 is discharged out of the system to lower the water temperature in the system. Cold water can be supplied to the jacket of the steam heater 16 so that the steam heater 16 can be used as a water cooling jacket, and the discharge of concentrated water or the like out of the system and the use of the water cooling jacket can be used in combination.

以上のようにして製造装置1の殺菌処理が終了した後、実際の医薬品用精製水の製造を行う。ここで、系内の循環水は、上記の熱水殺菌工程時に逆浸透膜装置13によって十分に脱塩処理されているため、この循環水を精製処理することなく、このまま以下の精製水製造工程に供することもできる。
図5は、本発明の精製水の製造方法の精製水製造処理工程のフローを示す図である。
初めに、切換えバルブ24、26を閉、開閉バルブ21、濃縮水排出バルブ23及び切換えバルブ27を開としたまま、開閉バルブ22を開とし、切換えバルブ25を閉として、タンク12内の原水を、20〜30℃に温度設定した蒸気ヒータ16にポンプP1を駆動させて供給し、次いで、ポンプP2を駆動してこの原水を逆浸透膜装置13に供給し、逆浸透膜131によって脱塩処理する。
この際、逆浸透膜装置13で得られた濃縮水は、濃縮水排出バルブ23を介して系外に排出させる。
After the sterilization process of the manufacturing apparatus 1 is completed as described above, actual purified water for pharmaceuticals is manufactured. Here, since the circulating water in the system has been sufficiently desalted by the reverse osmosis membrane device 13 during the hot water sterilization process, the following purified water production process is performed as it is without purifying the circulating water. It can also be used.
FIG. 5 is a diagram showing a flow of a purified water production treatment process of the purified water production method of the present invention.
First, the switching valves 24 and 26 are closed, the opening / closing valve 21, the concentrated water discharge valve 23 and the switching valve 27 are kept open, the opening / closing valve 22 is opened, the switching valve 25 is closed, and the raw water in the tank 12 is removed. The pump P1 is driven and supplied to the steam heater 16 whose temperature is set to 20 to 30 ° C., and then the raw water is supplied to the reverse osmosis membrane device 13 by driving the pump P2, and the desalination treatment is performed by the reverse osmosis membrane 131. To do.
At this time, the concentrated water obtained by the reverse osmosis membrane device 13 is discharged out of the system through the concentrated water discharge valve 23.

逆浸透膜装置13の透過水は、電気式脱イオン装置14の脱塩室141、濃縮室142及び電極室143に供給される。
脱塩室141で脱イオン処理がなされた処理水は、開閉バルブ22を介して供給配管L2より処理水タンク15に供給される。濃縮室142でイオン濃度の高まった濃縮水は、濃縮室142及び電極室143から排出され、切換えバルブ27を介して分岐管L62より系外に排出される。
なお、濃縮室142、電極室143から排出される排水は、原水よりも水質が良い場合には、分岐管L61から原水タンクに返送してもよい。
The permeated water of the reverse osmosis membrane device 13 is supplied to the demineralization chamber 141, the concentration chamber 142, and the electrode chamber 143 of the electric deionization device 14.
The treated water that has been deionized in the desalting chamber 141 is supplied to the treated water tank 15 from the supply pipe L <b> 2 through the opening / closing valve 22. Concentrated water whose ion concentration has increased in the concentration chamber 142 is discharged from the concentration chamber 142 and the electrode chamber 143, and is discharged out of the system from the branch pipe L 62 via the switching valve 27.
The drainage discharged from the concentration chamber 142 and the electrode chamber 143 may be returned from the branch pipe L61 to the raw water tank when the water quality is better than the raw water.

このように、本発明の精製水製造方法は、熱水殺菌工程において、熱水状態で逆浸透膜131を通水させた透過水を、直接電気式脱イオン装置14に供給して熱水殺菌しており、殺菌工程に要する時間を大幅に短縮できる。即ち、従来のように、予め常温の原水を逆浸透膜131に通水して純水を製造し、次いでこの純水で原水タンク12内の原水を置換し、これを電気式脱イオン装置14に供給する工程を経ないため、殺菌処理に要する処理水やエネルギーを大幅に節減できる。なお、殺菌工程終了後は、系内の水が脱塩処理されているため、速やかに精製水製造処理工程に移行することもできる。
また、このように熱水状態で逆浸透膜131を通水させた処理水を、直接電気式脱イオン装置14に供給しても、電気式脱イオン装置14への負荷を増大させず、電気式脱イオン装置14の短命化や処理水の水質低下を招くこともない。
As described above, in the purified water production method of the present invention, in the hot water sterilization step, the permeated water that has been passed through the reverse osmosis membrane 131 in the hot water state is directly supplied to the electric deionizer 14 to perform the hot water sterilization. Therefore, the time required for the sterilization process can be greatly shortened. That is, as in the prior art, raw water at room temperature is passed through the reverse osmosis membrane 131 in advance to produce pure water, and then the pure water in the raw water tank 12 is replaced with the pure water, which is replaced with the electric deionizer 14. Since it does not go through the process of supplying to the wastewater, the water and energy required for sterilization can be greatly reduced. In addition, after completion | finish of a sterilization process, since the water in a system is desalted, it can also transfer to a purified water manufacturing process process rapidly.
Moreover, even if the treated water that has been passed through the reverse osmosis membrane 131 in the hot water state is directly supplied to the electric deionization device 14, the load on the electric deionization device 14 is not increased, The life of the type deionizer 14 is not shortened and the quality of treated water is not lowered.

なお、本実施形態では上記の構成の装置1としているが、例えば、原水タンク12と蒸気ヒータ16との間に、活性炭吸着装置、膜処理装置を設けることもでき、逆浸透膜装置13と電気式脱イオン装置14との間に、UV照射装置を設けることもできる。
さらに、電気式脱イオン装置14と切換えバルブ25との間にUV照射装置、膜処理装置を設けた構成とすることも可能である。
In the present embodiment, the apparatus 1 having the above-described configuration is used. However, for example, an activated carbon adsorption device and a membrane treatment device can be provided between the raw water tank 12 and the steam heater 16, and the reverse osmosis membrane device 13 and the electric device are electrically connected. A UV irradiation device can also be provided between the type deionization device 14.
Furthermore, a configuration in which a UV irradiation device and a film processing device are provided between the electric deionization device 14 and the switching valve 25 is also possible.

本発明の精製水の製造方法及び製造装置によって得られた処理水は、主に薬剤調整や注射用水等の医薬品製造用として好ましく用いられるが、この処理水の用途としては、医薬品用に限定されるものでなく、例えば半導体製造用、食品用など、幅広い用途に用いることができる。   The treated water obtained by the method and apparatus for producing purified water of the present invention is preferably used mainly for pharmaceutical preparation such as pharmaceutical preparation and water for injection, but the use of this treated water is limited to pharmaceutical use. For example, it can be used for a wide range of applications such as semiconductor manufacturing and food.

以下、本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

図1に示した医薬品用精製水の製造装置1を用いて原水(厚木市)の処理を行った。
以下、図2〜図4を用いて説明する。
The raw water (Atsugi City) was treated using the pharmaceutical purified water production apparatus 1 shown in FIG.
Hereinafter, a description will be given with reference to FIGS.

図1における活性炭吸着装置11としては、ACボンベNCC−200AC(野村マイクロ・サイエンス株式会社製、商品名)を用い、これに装着する活性炭として、クラレコールKW(クラレケミカル株式会社製、商品名)を用いた。
逆浸透膜131としては、Duratherm RO 4040 HF(GE社製)を用い、電気式脱イオン装置14としては、MK−2MiniHT(GE社製、商品名)を用いた。
As the activated carbon adsorption device 11 in FIG. 1, AC cylinder NCC-200AC (trade name, manufactured by Nomura Micro Science Co., Ltd.) is used, and Kuraray Coal KW (trade name, manufactured by Kuraray Chemical Co., Ltd.) is used as the activated carbon to be attached thereto. Was used.
Duratherm RO 4040 HF (manufactured by GE) was used as the reverse osmosis membrane 131, and MK-2 MiniHT (manufactured by GE, trade name) was used as the electric deionization device 14.

(実施例1)
[昇温工程]
逆浸透膜装置13に、逆浸透膜131として「Duratherm RO 4040 HF」(GE社製、商品名))を装着した製造装置1を用い、上記逆浸透膜131に、非加熱の原水(原水導電率170μS/cm)を供給して、以下の操作を行った。
ここで、「非加熱」とは、蒸気ヒータ16等を用いた積極的な加熱処理を行っていないことを意味している。
まず、図2において、活性炭吸着装置11で予め活性炭処理されて原水タンク12内に貯留された非加熱の原水(導電率170μS/cm)を、図示を省略した温度制御装置により、原水を80℃に加熱するよう設定した蒸気ヒータ16に供給して加熱しながら通水し、次いで、加熱された原水(水温20〜80℃)を、逆浸透膜装置13、電気式脱イオン装置14の順に通水した(逆浸透膜装置13の処理水の導電率は10〜20μS/cm以下(脱塩率は85%以上)である。)。
電気脱イオン装置14の脱塩室141の流量は1.5L/min./cellである。
脱塩室141からの処理水は、切換えバルブ25を介して原水タンク12に返送し、濃縮室142、電極室143からの処理水は、切換えバルブ26を介して原水タンク12に返送して、この状態のまま、系内の温度が80℃になるまで60分間循環させた。
なお、逆浸透膜装置13から排出された濃縮水は、濃縮水排出バルブ23を介して排出配管L3より系外に排出した。
Example 1
[Temperature raising process]
Using the manufacturing apparatus 1 in which the reverse osmosis membrane device 13 is equipped with “Duratherm RO 4040 HF” (trade name, manufactured by GE) as the reverse osmosis membrane 131, unheated raw water (raw water conduction) The following operation was performed.
Here, “non-heating” means that the active heat treatment using the steam heater 16 or the like is not performed.
First, in FIG. 2, unheated raw water (conductivity: 170 μS / cm) that has been previously activated carbon-treated by the activated carbon adsorption device 11 and stored in the raw water tank 12 is converted into raw water at 80 ° C. by a temperature control device (not shown). The steam heater 16 that is set to be heated is supplied with water and heated, and then heated raw water (water temperature 20 to 80 ° C.) is passed through the reverse osmosis membrane device 13 and the electric deionizer 14 in this order. (The conductivity of the treated water in the reverse osmosis membrane device 13 is 10 to 20 μS / cm or less (desalting rate is 85% or more)).
The flow rate of the demineralization chamber 141 of the electrodeionization apparatus 14 is 1.5 L / min. / Cell.
The treated water from the desalting chamber 141 is returned to the raw water tank 12 via the switching valve 25, and the treated water from the concentration chamber 142 and the electrode chamber 143 is returned to the raw water tank 12 via the switching valve 26, In this state, the system was circulated for 60 minutes until the temperature in the system reached 80 ° C.
The concentrated water discharged from the reverse osmosis membrane device 13 was discharged out of the system through the concentrated water discharge valve 23 through the discharge pipe L3.

[均温工程]
図3において、蒸気ヒータ16の温度は80℃に設定したまま、原水タンク12内の水を、上記昇温工程と同様に、蒸気ヒータ16、逆浸透膜装置13、電気式脱イオン装置14の順に通水した。
脱塩室141、濃縮室142、電極室143からの処理水は、それぞれ切換えバルブ25、26を介して還流配管L5、還流配管L6により原水タンク12に返送し、逆浸透膜装置13から排出された濃縮水も、切換えバルブ24を介して還流配管L4により原水タンク12に返送して、水温80℃に保持した熱水を、製造装置1内に30分間循環させた。
なお、電気脱イオン装置14の脱塩室141の流量は1.5L/min./cellである。
[Soaking process]
In FIG. 3, while the temperature of the steam heater 16 is set to 80 ° C., the water in the raw water tank 12 is supplied to the steam heater 16, the reverse osmosis membrane device 13, and the electric deionization device 14 in the same manner as the temperature raising step. Water was passed in order.
The treated water from the desalting chamber 141, the concentration chamber 142, and the electrode chamber 143 is returned to the raw water tank 12 via the switching valves 25, 26 through the reflux pipe L 5 and the reflux pipe L 6, and is discharged from the reverse osmosis membrane device 13. The concentrated water was also returned to the raw water tank 12 through the switching valve 24 via the reflux pipe L4, and hot water maintained at a water temperature of 80 ° C. was circulated in the manufacturing apparatus 1 for 30 minutes.
The flow rate of the demineralization chamber 141 of the electrodeionization apparatus 14 is 1.5 L / min. / Cell.

[降温工程]
図4において、蒸気ヒータ16の加熱動作を停止したうえで、開閉バルブ21を開放して前処理水10を原水タンク12に供給し、原水タンク12内の熱水と混合する。
同時に、この混合水を、上記の各工程と同様に、蒸気ヒータ16、逆浸透膜装置13、電気式脱イオン装置14の順に通水する。このときの、電気脱イオン装置14の脱塩室141の流量は1.5L/min./cellとした。
脱塩室141からの処理水は、切換えバルブ25を介して原水タンク12に還流し、濃縮室142、電極室143からの処理水は、切換えバルブ27を介して分岐管L62から系外に排出して、この状態のまま、系内の温度が25〜30℃になるまで60分間循環させた。
なお、逆浸透膜装置13からの濃縮水は、濃縮水排出バルブ23を介して排出配管L3より系外に排出した。
降温工程が終了した時点での、逆浸透膜131へ供給される水の導電率は120μS/cmであった。
ちなみに、逆浸透膜装置13へ供給される水の導電率が、殺菌工程前の導電率(170μS/cm)に上昇するまで、さらに20分間必要であった。
この実施例において、殺菌工程開始時から殺菌工程を終了するまで(殺菌工程前の導電率(170μS/cm)に回復するまで)に要した時間は、170分であった。
[Cooling process]
In FIG. 4, after the heating operation of the steam heater 16 is stopped, the opening / closing valve 21 is opened, the pretreated water 10 is supplied to the raw water tank 12, and mixed with the hot water in the raw water tank 12.
At the same time, the mixed water is passed in the order of the steam heater 16, the reverse osmosis membrane device 13, and the electric deionization device 14 in the same manner as in each of the above steps. At this time, the flow rate of the demineralization chamber 141 of the electrodeionization apparatus 14 is 1.5 L / min. / Cell.
The treated water from the desalting chamber 141 is returned to the raw water tank 12 through the switching valve 25, and the treated water from the concentration chamber 142 and the electrode chamber 143 is discharged out of the system from the branch pipe L62 through the switching valve 27. And it was made to circulate for 60 minutes until the temperature in a system became 25-30 degreeC with this state.
The concentrated water from the reverse osmosis membrane device 13 was discharged out of the system through the concentrated water discharge valve 23 through the discharge pipe L3.
The conductivity of the water supplied to the reverse osmosis membrane 131 at the time when the temperature lowering process was completed was 120 μS / cm.
Incidentally, it took another 20 minutes for the conductivity of the water supplied to the reverse osmosis membrane device 13 to increase to the conductivity before the sterilization step (170 μS / cm).
In this example, the time required from the start of the sterilization process to the end of the sterilization process (until the electric conductivity (170 μS / cm) before the sterilization process is restored) was 170 minutes.

殺菌処理を行う前の電気脱イオン装置14の脱塩室141出口の生菌数は2.1cfu/mlであったが、上述した一連の殺菌処理を行った結果、脱塩室141出口の生菌数は0.1cfu/mlとなった。   The number of viable bacteria at the outlet of the demineralization chamber 141 of the electrodeionization apparatus 14 before the sterilization treatment was 2.1 cfu / ml. As a result of performing the above-described series of sterilization treatments, The number of bacteria was 0.1 cfu / ml.

(参考例1)
図6に示す純水製造装置1´を用いて、以下の操作を行った。
なお、純水製造装置1´は、図1に示す純水製造装置1の逆浸透膜装置13と電気脱イオン装置14とを接続する配管上に、切換えバルブ28を設けると共に、逆浸透膜装置13及び切換えバルブ28間に、切換えバルブ29を介して還流配管L5と接続する配管L7を設けたものであり、他の構成は、図1に示す純水製造装置と同様である。
参考例1において、逆浸透膜装置13に装着する逆浸透膜131としては、「SU−710T」(東レ社製、商品名)を使用した。
(Reference Example 1)
The following operation was performed using the pure water manufacturing apparatus 1 'shown in FIG.
The pure water production apparatus 1 'is provided with a switching valve 28 on a pipe connecting the reverse osmosis membrane apparatus 13 and the electrodeionization apparatus 14 of the pure water production apparatus 1 shown in FIG. 13 and the switching valve 28 are provided with a pipe L7 connected to the reflux pipe L5 via the switching valve 29, and the other configuration is the same as that of the pure water producing apparatus shown in FIG.
In Reference Example 1, “SU-710T” (trade name, manufactured by Toray Industries, Inc.) was used as the reverse osmosis membrane 131 attached to the reverse osmosis membrane device 13.

図6において、切換えバルブ28を閉とし、切換えバルブ24、29を開とし、他の切換えバルブ及び開閉バルブは全て閉として、原水タンク12内の非加熱の原水を、80℃に設定した蒸気ヒータ16、逆浸透膜装置13の順に通水した。逆浸透膜装置13の透過水は、配管L7及び還流配管L5を介して原水タンク12に返送し、逆浸透膜装置13の濃縮水も、還流配管L4を介して原水タンク12に返送した。
この状態のまま、電気脱イオン装置14はバイパスして系内の水の温度が80℃になるまで循環させ(昇温工程)、その後、系内の水の水温を80℃に保持して、製造装置1´内に30分間循環させた(均温工程)。
均温工程時の逆浸透膜装置13の処理水の導電率は、60μS/cm(脱塩率は約65%)であり、電気式脱イオン装置14に供給できる水質の処理水は得られなかった。
In FIG. 6, the switching valve 28 is closed, the switching valves 24 and 29 are opened, the other switching valves and the open / close valves are all closed, and the unheated raw water in the raw water tank 12 is set to 80 ° C. 16 and reverse osmosis membrane device 13 were passed through in this order. The permeated water of the reverse osmosis membrane device 13 was returned to the raw water tank 12 via the pipe L7 and the reflux pipe L5, and the concentrated water of the reverse osmosis membrane device 13 was also returned to the raw water tank 12 via the reflux pipe L4.
In this state, the electrodeionization device 14 is bypassed and circulated until the temperature of the water in the system reaches 80 ° C. (temperature raising step), and then the water temperature of the water in the system is maintained at 80 ° C. It was circulated in the production apparatus 1 'for 30 minutes (soaking step).
The conductivity of the treated water in the reverse osmosis membrane device 13 during the soaking process is 60 μS / cm (the desalination rate is about 65%), and the treated water of water quality that can be supplied to the electric deionization device 14 cannot be obtained. It was.

(参考例2)
図1に示す製造装置1の逆浸透膜装置13に、参考例1で用いた「SU−710T」(東レ社製、商品名)を逆浸透膜131として装着し、以下の操作を行った。
(Reference Example 2)
The “SU-710T” (trade name, manufactured by Toray Industries, Inc.) used in Reference Example 1 was attached as the reverse osmosis membrane 131 to the reverse osmosis membrane device 13 of the manufacturing apparatus 1 shown in FIG.

処理水タンク15内に貯留されている電気式脱イオン装置14の処理水を原水タンク12に還流して、原水タンク12内の被処理水が逆浸透膜装置13の供給口入口において導電率が100μS/cm以下になるまで希釈して、逆浸透膜装置13の処理水の導電率を10μS/cm以下にした。この操作に30分を要した。
以下、昇温工程と均温工程は実施例と同様の方法で、殺菌処理を行った。(逆浸透膜装置13の処理水の導電率は10〜20μS/cmであった。)
降温工程では、逆浸透膜装置13に供給する水の導電率の上昇を抑制するため、開閉バルブ21を閉として原水タンク12に対する前処理水10の供給は行わず、蒸気ヒータ16のジャケットに冷水を供給し、他の点は実施例の降温工程と同様にして、系内の温度が25〜30℃になるまで60分間循環させた。
降温工程が終了した時点での、逆浸透膜131へ供給される水の導電率は20μS/cm以下であった。
ちなみに、逆浸透膜装置13へ供給される水の導電率が、殺菌工程前の導電率(170μS/cm)に上昇するまでに、さらに60分間必要であった。
この参考例において、殺菌工程開始時から殺菌工程を終了するまで(殺菌工程前の導電率(170μS/cm)に回復するまで)に要した時間は240分であった。
The treated water of the electric deionization device 14 stored in the treated water tank 15 is returned to the raw water tank 12, and the water to be treated in the raw water tank 12 has a conductivity at the supply port inlet of the reverse osmosis membrane device 13. It diluted until it became 100 microsiemens / cm or less, and the electrical conductivity of the treated water of the reverse osmosis membrane apparatus 13 was 10 microsiemens / cm or less. This operation took 30 minutes.
Hereinafter, the temperature raising step and the soaking step were sterilized by the same method as in the examples. (The conductivity of the treated water in the reverse osmosis membrane device 13 was 10 to 20 μS / cm.)
In the temperature lowering process, in order to suppress an increase in the conductivity of the water supplied to the reverse osmosis membrane device 13, the on-off valve 21 is closed and the pretreated water 10 is not supplied to the raw water tank 12, and cold water is supplied to the jacket of the steam heater 16. And the other points were circulated for 60 minutes until the temperature in the system reached 25-30 ° C. in the same manner as in the temperature lowering step of the example.
The conductivity of the water supplied to the reverse osmosis membrane 131 at the time when the temperature lowering process was completed was 20 μS / cm or less.
Incidentally, it took another 60 minutes for the conductivity of the water supplied to the reverse osmosis membrane device 13 to increase to the conductivity before the sterilization step (170 μS / cm).
In this reference example, the time required from the start of the sterilization process to the end of the sterilization process (until the electrical conductivity (170 μS / cm) before the sterilization process was restored) was 240 minutes.

殺菌処理を行う前の電気脱イオン装置14の脱塩室141出口の生菌数は3.1cfu/mlであったが、上述した一連の殺菌処理を行った結果、脱塩室141出口の生菌数は0.2cfu/mlとなった。   The number of viable bacteria at the outlet of the demineralization chamber 141 of the electrodeionization apparatus 14 before the sterilization treatment was 3.1 cfu / ml. As a result of the above-described series of sterilization treatments, The number of bacteria was 0.2 cfu / ml.

本発明の精製水の製造方法及び製造装置は、医薬品用等の精製水の製造に用いることができ、とくに精製水の製造前に、系内を熱水殺菌する精製水の製造の際に用いることができる。   The method and apparatus for producing purified water according to the present invention can be used for the production of purified water for pharmaceuticals and the like, and in particular, used for the production of purified water that sterilizes the system with hot water before the production of purified water. be able to.

1 医薬品用精製水製造装置
10 前処理水
11 活性炭吸着装置
12 原水タンク
13 逆浸透膜装置
131 逆浸透膜
14 電気式脱イオン装置
15 処理水タンク
16 蒸気ヒータ
21、22 開閉バルブ
23 濃縮水排出バルブ
24〜30 切換えバルブ
DESCRIPTION OF SYMBOLS 1 Purified water manufacturing apparatus 10 for pharmaceuticals Pretreatment water 11 Activated carbon adsorption device 12 Raw water tank 13 Reverse osmosis membrane device 131 Reverse osmosis membrane 14 Electric deionization device 15 Treated water tank 16 Steam heaters 21, 22 Open / close valve 23 Concentrated water discharge valve 24-30 switching valve

Claims (6)

原水が供給される原水タンクと、逆浸透膜装置と、電気式脱イオン装置と、前記電気式脱イオン装置の脱塩水が供給される処理水タンクが順に配置され、前記原水タンクから前記逆浸透膜装置に供給される被処理水を60℃以上の温度に加熱する加熱手段とを備えた系を用いる医薬品用精製水の製造方法であって、
前記逆浸透膜装置の被処理水の水温60℃以上における、前記逆浸透膜装置の透過水の導電率が45μS/cm以下の逆浸透膜装置を使用し、精製水の製造を開始するにあたり系内を熱水により殺菌するための昇温、均温及び降温の各工程において、
(a)前記昇温工程では、前記加熱手段により前記原水タンクから前記逆浸透膜装置に供給される被処理水を60℃以上の温度に加熱するとともに、前記原水タンクへの原水の供給を止め、前記逆浸透膜装置の濃縮水を排出し、前記電気式脱イオン装置の脱塩水、濃縮水、電極水は前記原水タンクへ還流させる、
(b)前記均温工程では、前記加熱を継続しつつ、前記原水タンクへの原水の流入を止め、前記逆浸透膜装置の濃縮水および前記電気式脱イオン装置の濃縮水、電極水、脱塩水を原水タンクへ還流させる、
(c)前記降温工程では、前記加熱を停止するとともに、前記原水タンクへ原水を供給し、前記逆浸透膜装置の濃縮水および前記電気式脱イオン装置の濃縮水、電極水を放出し、前記電気式脱イオン装置の脱塩水は処理タンクへ還流させる、
ことを特徴とする医薬品用精製水の製造方法。
A raw water tank to which raw water is supplied, a reverse osmosis membrane device, an electric deionization device, and a treated water tank to which deionized water of the electric deionization device is supplied are arranged in order, and the reverse osmosis from the raw water tank A method for producing purified water for pharmaceuticals using a system comprising heating means for heating the water to be treated supplied to the membrane device to a temperature of 60 ° C or higher,
When using a reverse osmosis membrane device having a conductivity of the permeated water of the reverse osmosis membrane device of 45 μS / cm or less at a water temperature of 60 ° C. or higher for the water to be treated of the reverse osmosis membrane device, In each process of temperature rise, temperature equalization and temperature drop to sterilize the inside with hot water,
(A) In the temperature raising step, the water to be treated supplied from the raw water tank to the reverse osmosis membrane device is heated to a temperature of 60 ° C. or higher by the heating means, and the supply of the raw water to the raw water tank is stopped. , The concentrated water of the reverse osmosis membrane device is discharged, and the deionized water, concentrated water, and electrode water of the electric deionizer are recirculated to the raw water tank.
(B) In the soaking step, while continuing the heating, the inflow of the raw water into the raw water tank is stopped, and the concentrated water of the reverse osmosis membrane device and the concentrated water, electrode water, dewatering of the electric deionization device are stopped. Return salt water to raw water tank,
(C) In the temperature lowering step, the heating is stopped, the raw water is supplied to the raw water tank, the concentrated water of the reverse osmosis membrane device, the concentrated water of the electric deionization device, and the electrode water are discharged, The demineralized water of the electric deionizer is returned to the treatment tank.
The manufacturing method of the purified water for pharmaceuticals characterized by the above-mentioned.
昇温工程における被処理水の昇温速度が、5℃/分以下であることを特徴とする請求項1に記載の医薬品用精製水の製造方法。   The method for producing purified water for pharmaceutical use according to claim 1, wherein the temperature rise rate of the water to be treated in the temperature raising step is 5 ° C / min or less. 降温工程における被処理水の降温速度が、5℃/分以下であることを特徴とする請求項1又は2に記載の医薬品用精製水の製造方法。   The method for producing purified water for pharmaceutical use according to claim 1 or 2, wherein the temperature decrease rate of the treated water in the temperature decreasing step is 5 ° C / min or less. 原水が供給される原水タンクと、逆浸透膜装置と、電気式脱イオン装置と、前記電気式脱イオン装置の脱塩水が供給される処理水タンクが順に配置され、原水タンクから前記逆浸透膜装置に供給される被処理水を60℃以上の温度に加熱する加熱手段を備えた医薬品用精製水の製造装置において、
前記逆浸透膜装置の被処理水の水温60℃以上における、前記逆浸透膜装置の透過水の導電率が45μS/cm以下の逆浸透膜装置を使用し、原水の供給配管及び脱塩水の供給配管にそれぞれ開閉弁を設け、前記逆浸透膜装置の濃縮水排出配管と原水タンク間、前記電気式脱イオン装置の濃縮水排出配管と前記原水タンク間、前記電気式脱イオン装置の電極水排出配管と前記原水タンク間及び前記電気式脱イオン装置の脱塩水排出配管の前記開閉弁の上流部と前記原水タンク間に、それぞれ切換弁の切換えにより濃縮水、電極水及び脱塩水を前記原水タンクに還流可能な独立又は共通の還流配管を設けるとともに、殺菌するための昇温、均温及び降温の各工程において、前記開閉弁、前記切換弁および前記加熱手段を以下のように制御する制御手段を備えたことを特徴とする医薬品用精製水の製造装置。
(a)前記昇温工程では、前記加熱手段を駆動させ、前記原水の供給配管を閉鎖、電気式脱イオン装置の脱塩水、濃縮水、電極水の流路を処理水タンク側から原水タンクへの還流配管側に切換える、
(b)前記均温工程においては、さらに、前記逆浸透膜装置の濃縮水の流路を排出側から原水タンクへの還流管路側に切換え、
(c)前記降温工程においては、前記加熱手段を停止し、前記原水の供給配管を開放、前記逆浸透膜装置の濃縮水及び前記電気式脱イオン装置の濃縮水、電極水の流路を原水タンクへの還流管路側から排出側に切換える。
A raw water tank to which raw water is supplied, a reverse osmosis membrane device, an electric deionization device, and a treated water tank to which deionized water of the electric deionization device is supplied are arranged in order, and the reverse osmosis membrane from the raw water tank In the apparatus for producing purified water for pharmaceuticals, comprising heating means for heating the water to be treated supplied to the apparatus to a temperature of 60 ° C. or higher
Using a reverse osmosis membrane device having a conductivity of the permeated water of the reverse osmosis membrane device of 45 μS / cm or less at a water temperature of 60 ° C. or higher of the water to be treated of the reverse osmosis membrane device, supply of raw water and deionized water An open / close valve is provided in each of the pipes, between the concentrated water discharge pipe of the reverse osmosis membrane device and the raw water tank, between the concentrated water discharge pipe of the electric deionizer and the raw water tank, and discharge of the electrode water of the electric deionizer. Concentrated water, electrode water and demineralized water are exchanged between the pipe and the raw water tank and between the upstream portion of the on-off valve of the demineralized water discharge pipe of the electric deionizer and the raw water tank by switching the switching valve, respectively. In addition, an independent or common recirculation pipe that can be recirculated is provided, and the on-off valve, the switching valve, and the heating means are controlled as follows in each of the temperature raising, temperature equalizing, and temperature lowering steps for sterilization. Drug for purified water manufacturing apparatus characterized by comprising means.
(A) In the temperature raising step, the heating means is driven, the raw water supply pipe is closed, and the flow path of demineralized water, concentrated water, and electrode water of the electric deionizer from the treated water tank side to the raw water tank Switch to the reflux piping side of
(B) In the soaking step, the flow path of the concentrated water of the reverse osmosis membrane device is further switched from the discharge side to the reflux line side to the raw water tank,
(C) In the temperature lowering step, the heating means is stopped, the raw water supply pipe is opened, the concentrated water of the reverse osmosis membrane device, the concentrated water of the electric deionization device, and the flow path of the electrode water are raw water. Switch from the reflux line to the tank to the discharge side.
前記電気式脱イオン装置の濃縮水排出配管と前記原水タンク間の還流配管と前記電気式脱イオン装置の電極水排出配管と前記原水タンク間の還流配管は、共通配管であることを特徴とする請求項4に記載の医薬品用精製水の製造装置。   The concentrated water discharge pipe of the electric deionizer and the reflux pipe between the raw water tank, the electrode water discharge pipe of the electric deionizer and the reflux pipe between the raw water tank are common pipes. The apparatus for producing purified water for pharmaceuticals according to claim 4. 前記逆浸透膜装置は、水温60℃以上の被処理水が供給されたときの脱塩率が85%以上である
ことを特徴とする請求項4又は5に記載の医薬品用精製水の製造装置。
The said reverse osmosis membrane apparatus is a desalination rate when 85 degreeC or more of to-be-processed water is supplied is 85% or more. The manufacturing apparatus of the purified water for pharmaceuticals of Claim 4 or 5 characterized by the above-mentioned. .
JP2010010921A 2010-01-21 2010-01-21 Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals Active JP5307049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010921A JP5307049B2 (en) 2010-01-21 2010-01-21 Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010921A JP5307049B2 (en) 2010-01-21 2010-01-21 Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals

Publications (2)

Publication Number Publication Date
JP2011147880A true JP2011147880A (en) 2011-08-04
JP5307049B2 JP5307049B2 (en) 2013-10-02

Family

ID=44535389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010921A Active JP5307049B2 (en) 2010-01-21 2010-01-21 Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals

Country Status (1)

Country Link
JP (1) JP5307049B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192819A (en) * 2010-03-11 2011-09-21 中国核动力研究设计院 Quick heating process for pre-service hydrostatic test of secondary side of steam generator
JP2014124482A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014124481A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014198292A (en) * 2013-03-29 2014-10-23 栗田工業株式会社 Manufacturing method and apparatus of purified water targeting the production of water for pharmaceuticals
CN104276682A (en) * 2013-07-12 2015-01-14 刘爱东 Vertical tea bar heating integrated water purification machine
CN106040008A (en) * 2016-08-02 2016-10-26 华兰生物工程重庆有限公司 Cleaning method of purification ultrafilter
WO2020036274A1 (en) * 2018-08-17 2020-02-20 오씨아이 주식회사 Method for purifying hydrogen peroxide
CN113072131A (en) * 2021-03-18 2021-07-06 新疆宏开电子系统集成有限公司 RO (reverse osmosis) membrane water purifier wastewater recycling device and using method
JP7019860B1 (en) 2021-08-27 2022-02-15 岩井ファルマテック株式会社 Purified water supply system
CN117582824A (en) * 2023-11-28 2024-02-23 武汉启诚生物技术有限公司 Water purification equipment heat sterilization method and water purification equipment heat sterilization system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889763A (en) * 1994-09-27 1996-04-09 Nitto Denko Corp Treatment of solution
JPH0957271A (en) * 1995-08-22 1997-03-04 Japan Organo Co Ltd Treatment of water by electrolytic deionization method and device used therefor
JP2001047054A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Sterilizing method of deionized water making apparatus and deionized water making method
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2005288335A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Sterilization method for pure water manufacturing apparatus, and pure water manufacturing apparatus
JP2008221195A (en) * 2007-03-16 2008-09-25 Miura Co Ltd Operation method of pure water production system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889763A (en) * 1994-09-27 1996-04-09 Nitto Denko Corp Treatment of solution
JPH0957271A (en) * 1995-08-22 1997-03-04 Japan Organo Co Ltd Treatment of water by electrolytic deionization method and device used therefor
JP2001047054A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Sterilizing method of deionized water making apparatus and deionized water making method
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2005288335A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Sterilization method for pure water manufacturing apparatus, and pure water manufacturing apparatus
JP2008221195A (en) * 2007-03-16 2008-09-25 Miura Co Ltd Operation method of pure water production system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192819A (en) * 2010-03-11 2011-09-21 中国核动力研究设计院 Quick heating process for pre-service hydrostatic test of secondary side of steam generator
CN102192819B (en) * 2010-03-11 2013-03-20 中国核动力研究设计院 Quick heating process for pre-service hydrostatic test of secondary side of steam generator
JP2014124482A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014124481A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014198292A (en) * 2013-03-29 2014-10-23 栗田工業株式会社 Manufacturing method and apparatus of purified water targeting the production of water for pharmaceuticals
CN104276682A (en) * 2013-07-12 2015-01-14 刘爱东 Vertical tea bar heating integrated water purification machine
CN106040008A (en) * 2016-08-02 2016-10-26 华兰生物工程重庆有限公司 Cleaning method of purification ultrafilter
WO2020036274A1 (en) * 2018-08-17 2020-02-20 오씨아이 주식회사 Method for purifying hydrogen peroxide
KR20200020374A (en) * 2018-08-17 2020-02-26 오씨아이 주식회사 Method for purifying hydrogen peroxide
KR102579673B1 (en) 2018-08-17 2023-09-18 오씨아이 주식회사 Method for purifying hydrogen peroxide
CN113072131A (en) * 2021-03-18 2021-07-06 新疆宏开电子系统集成有限公司 RO (reverse osmosis) membrane water purifier wastewater recycling device and using method
JP7019860B1 (en) 2021-08-27 2022-02-15 岩井ファルマテック株式会社 Purified water supply system
JP2023032884A (en) * 2021-08-27 2023-03-09 岩井ファルマテック株式会社 Purified water supply system
CN117582824A (en) * 2023-11-28 2024-02-23 武汉启诚生物技术有限公司 Water purification equipment heat sterilization method and water purification equipment heat sterilization system

Also Published As

Publication number Publication date
JP5307049B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5307049B2 (en) Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals
JP5616771B2 (en) Dilution water production equipment for dialysate preparation
JP3570304B2 (en) Sterilization method of deionized water production apparatus and method of producing deionized water
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP5093679B2 (en) Disinfection method for purified water production equipment
JP4990710B2 (en) Medical purified water production apparatus and hot water disinfection method for nanofiltration membrane
JP2004074109A (en) Method and apparatus for manufacturing purified water for medicines
JP2010000433A5 (en)
TWI691687B (en) Ultrapure water manufacturing device
JP2024074880A (en) Sterilization method of medical water production system, and production method of medical water
JP5923030B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP5480063B2 (en) Pure water production method and pure water production apparatus
JP2010194092A (en) Apparatus and method for manufacturing dilution water for making dialysate
JP5459704B2 (en) Purified water production method and purified water production apparatus
CN117582824B (en) Water purification equipment heat sterilization method and water purification equipment heat sterilization system
JP5184401B2 (en) Pure water production method and pure water production apparatus
JP5572563B2 (en) Hot water disinfection method of nanofiltration membrane
EP2563722B1 (en) Method for sanitizing an electrodeionization device
JP4617696B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
JP4552483B2 (en) Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus
JP2018051450A (en) Device for producing purified water for medical use
JP2023031981A (en) Water treatment system and sterilization method of water treatment system
EP4124378A1 (en) Water purification device for dialysis
JPH0818022B2 (en) Heat sterilization method of final filter for ultrapure water
JP2023031982A (en) water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5307049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250