[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011097754A - Permanent magnet embedded motor and blower - Google Patents

Permanent magnet embedded motor and blower Download PDF

Info

Publication number
JP2011097754A
JP2011097754A JP2009249686A JP2009249686A JP2011097754A JP 2011097754 A JP2011097754 A JP 2011097754A JP 2009249686 A JP2009249686 A JP 2009249686A JP 2009249686 A JP2009249686 A JP 2009249686A JP 2011097754 A JP2011097754 A JP 2011097754A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
embedded
outer peripheral
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009249686A
Other languages
Japanese (ja)
Other versions
JP5208088B2 (en
Inventor
Isato Yoshino
勇人 吉野
Kazuhiko Baba
和彦 馬場
Koji Yabe
浩二 矢部
Masahiro Nigo
昌弘 仁吾
Junichi Ozaki
淳一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009249686A priority Critical patent/JP5208088B2/en
Publication of JP2011097754A publication Critical patent/JP2011097754A/en
Application granted granted Critical
Publication of JP5208088B2 publication Critical patent/JP5208088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet embedded motor of high efficiency, low cost, and high-speed rotation which assures a strength against a centrifugal force at high speed rotation and can be controlled by a position sensorless 120° electrification method, along with a blower using the same. <P>SOLUTION: In the permanent magnet embedded motor 100, a rotor 90 includes a rotor core 4 in which a plurality of thin electromagnetic steel plates are laminated, a plurality of magnet insert holes 5 each of which is provided along the outer peripheral edge of the rotator core 4 and has an arc-like non-magnetic material 9 with both ends in circumferential direction being bent inward wherein the entire almost U-shaped, a plurality of permanent magnets 6 embedded in the magnet insert holes 5, and a slit 7 which is provided at part of the rotor core 4 arranged on the outer peripheral side of the permanent magnets 6, comprising an air layer. The non-magnetic material 9 is arranged further inside the outer peripheral side surface of the permanent magnet 6 to extend toward the inside diameter side beyond the inner peripheral side surface of the permanent magnet 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、主に送風機等に使用され、高速回転を行う永久磁石埋込型電動機に関する。また、その永久磁石埋込型電動機を搭載した送風機に関する。   The present invention relates to a permanent magnet embedded type electric motor that is mainly used for a blower or the like and performs high-speed rotation. The present invention also relates to a blower equipped with the permanent magnet embedded motor.

永久磁石埋込型電動機では、磁極間の漏れ磁束を低減するために、回転子の磁極間外周部の磁路を狭くする設計方法が従来より用いられている。この際、高速に回転する電動機では、遠心力による機械的強度が課題となる。   In the permanent magnet embedded type electric motor, a design method for narrowing the magnetic path of the outer peripheral portion between the magnetic poles of the rotor has been conventionally used in order to reduce the leakage magnetic flux between the magnetic poles. At this time, in an electric motor that rotates at high speed, mechanical strength due to centrifugal force becomes a problem.

従来、永久磁石式リラクタンス型回転電機の組立時の永久磁石の挿入を容易にするとともに、製造の機械化を可能とし、また永久磁石を固定する接着剤が劣化した場合においても、永久磁石の飛散及び回転子の破損の恐れをなくし、高出力化、高効率化、高速化、及び高信頼性を図るため、永久磁石埋め込み穴に永久磁石位置決め用突起を設けることにより、永久磁石を支持するようにした。また回転子鉄心内の薄肉部の形状を最適化することにより、永久磁石より発生する磁束の漏れを低減し、かつ応力の集中する薄肉部の強度を確保した永久磁石リラクタンス型回転電機が提案されている(例えば、特許文献1参照)。   Conventionally, the permanent magnet reluctance type rotating electrical machine can be easily inserted into the permanent magnet during assembly, and the mechanization of the manufacturing can be facilitated. Even when the adhesive for fixing the permanent magnet is deteriorated, In order to eliminate the possibility of breakage of the rotor and to achieve high output, high efficiency, high speed, and high reliability, a permanent magnet positioning projection is provided in the permanent magnet embedding hole so that the permanent magnet is supported. did. In addition, by optimizing the shape of the thin part in the rotor core, a permanent magnet reluctance type rotating electrical machine that reduces the leakage of magnetic flux generated from the permanent magnet and ensures the strength of the thin part where stress is concentrated has been proposed. (For example, refer to Patent Document 1).

またロータ(回転子)の機械的強度の確保と、漏れ磁束の抑制との両立を図るため、ロータは複数の磁極を有し、各磁極に対応する位置にスロットが形成されたヨークと、各スロットに挿入された永久磁石とを備えてなり、ヨークは、スロットの両端部にブリッジを有し、ブリッジの厚さが、ロータの回転中心側から外周へ向けて連続的または段階的に減少しているモータ(電動機)が提案されている(例えば、特許文献2参照)。   Further, in order to ensure both the mechanical strength of the rotor (rotor) and the suppression of leakage magnetic flux, the rotor has a plurality of magnetic poles, and a yoke in which a slot is formed at a position corresponding to each magnetic pole, The yoke has a bridge at both ends of the slot, and the thickness of the bridge decreases continuously or stepwise from the rotation center side of the rotor toward the outer periphery. A motor (electric motor) is proposed (see, for example, Patent Document 2).

特開2001−339919号公報JP 2001-339919 A 特開平9−224338号公報JP-A-9-224338

しかしながら、上記特許文献1の永久磁石式リラクタンス型回転電機は、高速回転時には永久磁石の外周側の空気穴と回転子鉄心外周間の薄肉部に大きな応力集中が生じるため、薄肉部の径方向厚さを遠心力に耐えるように大きく設計する必要があり、その場合、極間の磁束漏れが大きくなり回転電機の特性が低下する課題があった。   However, the permanent magnet type reluctance type rotating electrical machine disclosed in Patent Document 1 has a large stress concentration in the thin portion between the air hole on the outer periphery of the permanent magnet and the outer periphery of the rotor core during high speed rotation. Therefore, there is a problem that the magnetic flux leakage between the poles increases and the characteristics of the rotating electrical machine deteriorate.

また、上記特許文献2のモータは、回転子の回転速度が毎分1万rpm(回転数/分)を超えるような高速回転では十分な機械的強度が得られない場合がある。   In addition, in the motor of Patent Document 2, sufficient mechanical strength may not be obtained at a high speed rotation in which the rotation speed of the rotor exceeds 10,000 rpm per minute (number of rotations / minute).

この発明は、上記のような課題を解決するためになされたもので、高速回転時の遠心力に対する強度を確保すると共に、位置センサレス120度通電方式で制御可能な、高効率、安価で高速回転が可能な永久磁石埋込型電動機及びその永久磁石埋込型電動機を用いた送風機を提供する。   The present invention has been made to solve the above-described problems, and ensures high strength against centrifugal force during high-speed rotation, and can be controlled by a position sensorless 120-degree energization method, with high efficiency, low cost, and high-speed rotation. Provided are a permanent magnet embedded type electric motor capable of achieving the above and a blower using the permanent magnet embedded type electric motor.

この発明に係る永久磁石埋込型電動機は、固定子鉄心に巻線を施した固定子の内側に空隙を介して回転子が配置され、回転子の回転位置を位置センサで検出しない位置センサレス120度通電方式で制御される永久磁石埋込型電動機において、
回転子は、
薄板の電磁鋼板を複数枚積層して構成される回転子鉄心と、
回転子鉄心の外周縁に沿って設けられ、全体が略コの字状で、周方向両端が内側に屈曲した円弧状の非磁性体部を有する複数の磁石挿入孔と、
磁石挿入孔に埋め込まれる複数の永久磁石と、
永久磁石の外周側に配置される回転子鉄心の一部に設けられ、非磁性体層からなるスリットと、を備え、
非磁性体部は、永久磁石の外周側表面よりも内側に配置するように構成され、かつ永久磁石の内周側表面よりも内径側に延びるように形成されるものである。
In the embedded permanent magnet electric motor according to the present invention, the rotor is disposed inside the stator with the stator core wound with a gap, and the position sensorless 120 does not detect the rotational position of the rotor with the position sensor. In the permanent magnet embedded type motor controlled by the power supply method,
The rotor is
A rotor core constructed by laminating a plurality of thin electromagnetic steel sheets;
A plurality of magnet insertion holes provided along the outer peripheral edge of the rotor core, and having an arcuate non-magnetic body part that is substantially U-shaped as a whole and whose circumferential ends are bent inward;
A plurality of permanent magnets embedded in the magnet insertion hole;
Provided in a part of the rotor core disposed on the outer peripheral side of the permanent magnet, and comprising a slit made of a nonmagnetic layer,
The non-magnetic part is configured to be arranged on the inner side of the outer peripheral surface of the permanent magnet, and is formed to extend to the inner diameter side of the inner peripheral surface of the permanent magnet.

この発明に係る永久磁石埋込型電動機は、磁石挿入孔を全体が略コの字状で、周方向両端が内側に屈曲した円弧状の非磁性体部を有する構成とし、かつ永久磁石の外周側に非磁性体層からなるスリットを配置することで、高速回転時の遠心力に対する応力を緩和させると共に、位置センサレス120度通電方式で高速運転を実現できるという効果がある。   The embedded permanent magnet electric motor according to the present invention has a configuration in which the magnet insertion hole has a substantially U-shape as a whole and has an arc-shaped non-magnetic body portion whose inner ends are bent inward, and the outer periphery of the permanent magnet By arranging a slit made of a non-magnetic layer on the side, it is possible to relieve stress against centrifugal force during high-speed rotation and to realize high-speed operation with a position sensorless 120-degree energization method.

実施の形態1を示す図で、永久磁石埋込型電動機100の横断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the permanent magnet embedded motor 100. FIG. 図1の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、固定子80の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a stator 80. 実施の形態1を示す図で、固定子鉄心1の平面図。FIG. 3 shows the first embodiment and is a plan view of the stator core 1. 図4の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、回転子90の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor 90. 実施の形態1を示す図で、回転子鉄心4の平面図。FIG. 5 shows the first embodiment and is a plan view of the rotor core 4. 実施の形態1を示す図で、回転子鉄心4の極間部付近の拡大図。FIG. 5 shows the first embodiment, and is an enlarged view of the vicinity of the interpolar portion of the rotor core 4. 図6の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、変形例1の永久磁石埋込型電動機200の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a permanent magnet embedded electric motor 200 of a first modification. 実施の形態1を示す図で、変形例1の回転子190の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor 190 of a first modification. 実施の形態1を示す図で、変形例1の回転子鉄心104の平面図。FIG. 5 shows the first embodiment, and is a plan view of a rotor core 104 of a first modification. 図12の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、回転子鉄心104の極間部付近の拡大図。FIG. 5 shows the first embodiment, and is an enlarged view of the vicinity of the interpolar part of the rotor core 104. FIG. 実施の形態1を示す図で、変形例2の永久磁石埋込型電動機300の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a permanent magnet embedded type electric motor 300 according to a second modification. 図15の部分拡大図。The elements on larger scale of FIG. 実施の形態1を示す図で、変形例2の回転子290の横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of a rotor 290 of a second modification. 実施の形態1を示す図で、変形例2の回転子鉄心204の平面図。FIG. 5 shows the first embodiment and is a plan view of a rotor core 204 of a second modification. 実施の形態1を示す図で、回転子鉄心204の極間部付近の拡大図。FIG. 5 shows the first embodiment, and is an enlarged view of the vicinity of the interpolar portion of the rotor core 204. FIG. 実施の形態1を示す図で、変形例3の永久磁石埋込型電動機400の横断面図。FIG. 5 shows the first embodiment, and is a transverse cross-sectional view of a permanent magnet embedded electric motor 400 according to Modification 3. 実施の形態1を示す図で、変形例3の回転子390の横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of a rotor 390 of a third modification. 実施の形態1を示す図で、変形例3の回転子鉄心304の平面図。FIG. 5 shows the first embodiment and is a plan view of a rotor core 304 of a third modification. 実施の形態1を示す図で、回転子鉄心304のスリット307付近の拡大図。FIG. 5 shows the first embodiment, and is an enlarged view of the vicinity of the slit 307 of the rotor core 304. 図23の拡大図。The enlarged view of FIG. 実施の形態1を示す図で、スリット307の拡大図。FIG. 5 shows the first embodiment and is an enlarged view of a slit 307; 実施の形態1を示す図で、回転子鉄心304の極間部付近の拡大図。FIG. 5 shows the first embodiment, and is an enlarged view of the vicinity of the interpolar portion of the rotor core 304. 比較のために示す図で、第四円弧部454の半径を大きくした回転子鉄心404の極間部付近の拡大図。It is a figure shown for a comparison, and is an enlarged view of the vicinity of the interpolar part of the rotor core 404 in which the radius of the fourth arc portion 454 is increased.

実施の形態1.
図1乃至図26は実施の形態1を示す図で、図1は永久磁石埋込型電動機100の横断面図、図2は図1の部分拡大図、図3は固定子80の横断面図、図4は固定子鉄心1の平面図、図5は図4の部分拡大図、図6は回転子90の横断面図、図7は回転子鉄心4の平面図、図8は回転子鉄心4の極間部付近の拡大図、図9は図6の部分拡大図、図10は変形例1の永久磁石埋込型電動機200の横断面図、図11は変形例1の回転子190の横断面図、図12は変形例1の回転子鉄心104の平面図、図13は図12の部分拡大図、図14は回転子鉄心104の極間部付近の拡大図、図15は変形例2の永久磁石埋込型電動機300の横断面図、図16は図15の部分拡大図、図17は変形例2の回転子290の横断面図、図18は変形例2の回転子鉄心204の平面図、図19は回転子鉄心204の極間部付近の拡大図、図20は変形例3の永久磁石埋込型電動機400の横断面図、図21は変形例3の回転子390の横断面図、図22は変形例3の回転子鉄心304の平面図、図23は回転子鉄心304のスリット307付近の拡大図、図24は図23の拡大図、図25はスリット307の拡大図、図26は回転子鉄心304の極間部付近の拡大図。
Embodiment 1 FIG.
1 to 26 show the first embodiment. FIG. 1 is a cross-sectional view of a permanent magnet embedded motor 100, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. 4 is a plan view of the stator core 1, FIG. 5 is a partially enlarged view of FIG. 4, FIG. 6 is a cross-sectional view of the rotor 90, FIG. 7 is a plan view of the rotor core 4, and FIG. 9 is an enlarged view of the vicinity of the inter-electrode portion, FIG. 9 is a partially enlarged view of FIG. 6, FIG. 10 is a cross-sectional view of the permanent magnet embedded electric motor 200 of Modification 1, and FIG. FIG. 12 is a plan view of the rotor core 104 of the first modification, FIG. 13 is a partially enlarged view of FIG. 12, FIG. 14 is an enlarged view of the vicinity of the interpole portion of the rotor core 104, and FIG. FIG. 16 is a partially enlarged view of FIG. 15, FIG. 17 is a cross-sectional view of a rotor 290 of a second modification, and FIG. 18 is a second modification. 19 is a plan view of the rotor core 204, FIG. 19 is an enlarged view of the vicinity of the inter-pole portion of the rotor core 204, FIG. 20 is a transverse cross-sectional view of the permanent magnet embedded type electric motor 400 of Modification 3, and FIG. 22 is a cross-sectional view of the rotor 390, FIG. 22 is a plan view of the rotor core 304 of Modification 3, FIG. 23 is an enlarged view of the vicinity of the slit 307 of the rotor core 304, FIG. 24 is an enlarged view of FIG. 26 is an enlarged view of the slit 307, and FIG.

図27は比較のために示す図で、第四円弧部454の半径を大きくした回転子鉄心404の極間部付近の拡大図である。   FIG. 27 is a view for comparison, and is an enlarged view of the vicinity of the inter-pole portion of the rotor core 404 in which the radius of the fourth arc portion 454 is increased.

図1乃至図9により、永久磁石埋込型電動機100の構成を説明する。   The configuration of the embedded permanent magnet electric motor 100 will be described with reference to FIGS.

図1に示すように、永久磁石埋込型電動機100は、少なくとも固定子80と回転子90とを備える。   As shown in FIG. 1, the embedded permanent magnet electric motor 100 includes at least a stator 80 and a rotor 90.

永久磁石埋込型電動機100を、以下、単にモータまたは電動機と呼ぶ場合もある。   Hereinafter, the permanent magnet embedded type electric motor 100 may be simply referred to as a motor or an electric motor.

図3に示すように、固定子80は、少なくとも、固定子鉄心1と、巻線3と、図示しない絶縁材(スロットセル等)とを備える。   As shown in FIG. 3, the stator 80 includes at least the stator core 1, the winding 3, and an insulating material (slot cell or the like) (not shown).

固定子鉄心1は、全体の断面形状がドーナッツ状で、外周側に断面形状がリング状のコアバック23が形成されている。このコアバック23から、内側に放射状に12個の歯部21が周方向に略等間隔に設けられている(図4参照)。   The stator core 1 has a donut-like overall cross-sectional shape, and a core back 23 having a ring-like cross-sectional shape is formed on the outer peripheral side. From the core back 23, twelve tooth portions 21 are radially provided on the inner side at substantially equal intervals in the circumferential direction (see FIG. 4).

歯部21の周方向の幅は、径方向に略均一である。即ち、歯部21は、固定子鉄心1の内周側に向かって略平行の形状を有している。歯部21の内径側の先端部21aは、両サイドが周方向に広がるような円弧状をなしている(図4、図5参照)。ただし円弧状でなくてもよく、例えば直線状でも良い。   The circumferential width of the tooth portion 21 is substantially uniform in the radial direction. That is, the tooth portion 21 has a substantially parallel shape toward the inner peripheral side of the stator core 1. The tip portion 21a on the inner diameter side of the tooth portion 21 has an arc shape in which both sides spread in the circumferential direction (see FIGS. 4 and 5). However, it does not have to be arcuate, and may be linear, for example.

隣接する二つの歯部21と、コアバック23の一部とで囲まれる空間をスロット22と呼ぶ。歯部21の数が12個であるから、スロット22の数も12個である。   A space surrounded by two adjacent tooth portions 21 and a part of the core back 23 is referred to as a slot 22. Since the number of the tooth portions 21 is twelve, the number of the slots 22 is twelve.

歯部21の周方向の幅は径方向に略均一であるから、スロット22の周方向の幅は内側から外側に向かって徐々に大きくなる(図4、図5参照)。   Since the circumferential width of the tooth portion 21 is substantially uniform in the radial direction, the circumferential width of the slot 22 gradually increases from the inside toward the outside (see FIGS. 4 and 5).

スロット22の内周側(回転子90側)は、開口している。このスロット22の内周側(回転子90側)の開口している部分を、スロット開口部22aと呼ぶ(図5参照)。   The inner peripheral side (rotor 90 side) of the slot 22 is open. The open portion of the slot 22 on the inner peripheral side (rotor 90 side) is referred to as a slot opening 22a (see FIG. 5).

巻線3は、このスロット開口部22aからスロット22内に挿入される。   The winding 3 is inserted into the slot 22 through the slot opening 22a.

各々のスロット22の内部には、スロットセルなどの絶縁材(図示せず)を介して、三相4極の分布巻方式で巻かれた巻線3が施されている。巻線3には、銅線の外側に絶縁被膜が施されたマグネットワイヤなどが用いられる。   Each slot 22 is provided with a winding 3 wound in a three-phase four-pole distributed winding method via an insulating material (not shown) such as a slot cell. For the winding 3, a magnet wire or the like in which an insulating film is applied to the outside of the copper wire is used.

固定子鉄心1は、薄板の電磁鋼板(例えば0.1〜1.0mm程度の板厚の無方向性電磁鋼板(鋼板の特定方向に偏って磁気特性を示さないよう、各結晶の結晶軸方向をできる限りランダムに配置させたもの))を所定の形状に金型で打ち抜き、所定の枚数(複数枚)積層して構成される。   The stator core 1 is a thin electromagnetic steel sheet (for example, a non-oriented electrical steel sheet having a thickness of about 0.1 to 1.0 mm (the crystal axis direction of each crystal so as not to be biased toward a specific direction of the steel sheet and exhibit magnetic properties). Are randomly arranged as much as possible))) in a predetermined shape with a mold, and a predetermined number (multiple) is laminated.

固定子80の内径側に空隙25(図2参照)を介して配置される回転子90は、少なくとも回転子鉄心4、永久磁石6、出力軸60とを備える。4個の永久磁石6を、周方向の極性が交互に異なるように配置して、4極の回転子90を構成する(図6参照)。   The rotor 90 disposed on the inner diameter side of the stator 80 via the gap 25 (see FIG. 2) includes at least the rotor core 4, the permanent magnet 6, and the output shaft 60. The four permanent magnets 6 are arranged so that the polarities in the circumferential direction are alternately different to constitute a four-pole rotor 90 (see FIG. 6).

回転子鉄心4も、固定子鉄心1と同様に薄板の電磁鋼板(例えば0.1〜1.0mm程度の板厚の無方向性電磁鋼板)を所定の形状に金型で打ち抜き、所定の枚数(複数枚)積層して構成される。   Similarly to the stator core 1, the rotor core 4 is also formed by punching a thin electromagnetic steel sheet (for example, a non-oriented electrical steel sheet having a thickness of about 0.1 to 1.0 mm) into a predetermined shape with a die, and a predetermined number of sheets. (Multiple sheets) are configured by stacking.

回転子鉄心4は、固定子鉄心1と同じ材料の電磁鋼板を使用しても良いし、別の材料の電磁鋼板を使用しても良い。例えば、固定子鉄心1の電磁鋼板の厚さを、回転子鉄心4の電磁鋼板の厚さより薄い材料に設定しても良い。これにより、固定子鉄心1の鉄損が低減して、高効率な永久磁石埋込型電動機100を得ることができる。   For the rotor core 4, an electromagnetic steel plate made of the same material as the stator core 1 may be used, or an electromagnetic steel plate made of another material may be used. For example, the thickness of the electromagnetic steel plate of the stator core 1 may be set to a material thinner than the thickness of the electromagnetic steel plate of the rotor core 4. Thereby, the iron loss of the stator core 1 can be reduced, and the highly efficient embedded permanent magnet electric motor 100 can be obtained.

回転子鉄心4には、外周縁に沿って4個の磁石挿入孔5が周方向に略等間隔に設けられる(図7参照)。4個の磁石挿入孔5には平板状の4枚の永久磁石6が、極性が交互に逆になるように挿入され、4極の回転子90を構成している(図6参照)。   The rotor core 4 is provided with four magnet insertion holes 5 at substantially equal intervals in the circumferential direction along the outer peripheral edge (see FIG. 7). Four permanent magnets 6 in the form of flat plates are inserted into the four magnet insertion holes 5 so that the polarities are alternately reversed to constitute a four-pole rotor 90 (see FIG. 6).

固定子80と回転子90との間の空隙25は、例えば、径方向寸法が0.2〜2.0mm程度である(図2参照)。   The gap 25 between the stator 80 and the rotor 90 has, for example, a radial dimension of about 0.2 to 2.0 mm (see FIG. 2).

図6乃至図8により、永久磁石埋込型電動機100の回転子90および回転子鉄心4について、さらに詳細に説明する。   6 to 8, the rotor 90 and the rotor core 4 of the embedded permanent magnet electric motor 100 will be described in more detail.

回転子鉄心4には、平板状の永久磁石6を埋め込むための磁石挿入孔5が、外周縁に沿って周方向に略等間隔に設けられている(図7参照)。   The rotor core 4 is provided with magnet insertion holes 5 for embedding the plate-like permanent magnets 6 at substantially equal intervals in the circumferential direction along the outer peripheral edge (see FIG. 7).

また、回転子鉄心4の略中心部に、出力軸60が嵌合する軸孔10が形成されている(図7参照)。   Further, a shaft hole 10 into which the output shaft 60 is fitted is formed in a substantially central portion of the rotor core 4 (see FIG. 7).

本実施の形態では、4ヶ所の磁石挿入孔5に、4枚の平板状の永久磁石6が挿入されている(図6参照)。永久磁石6は、ネオジウム系の希土類永久磁石を使用することが望ましいが、他の材質(例えばフェライト)の永久磁石6を用いても良い。   In this embodiment, four flat permanent magnets 6 are inserted into four magnet insertion holes 5 (see FIG. 6). The permanent magnet 6 is preferably a neodymium rare earth permanent magnet, but may be a permanent magnet 6 made of another material (for example, ferrite).

永久磁石6は、磁石挿入孔5の両端部付近に形成された永久磁石止め部51で周方向の位置が決められる(図8参照)。   The position of the permanent magnet 6 in the circumferential direction is determined by a permanent magnet stopper 51 formed near both ends of the magnet insertion hole 5 (see FIG. 8).

回転子鉄心4を構成する薄板の電磁鋼板の積層方法については、抜きカシメやリベットで固定しても良いし、接着剤を用いて固定しても良い。   About the lamination | stacking method of the thin electromagnetic steel plate which comprises the rotor core 4, you may fix with a crimping | crimping or a rivet, and you may fix using an adhesive agent.

磁石挿入孔5は全体が略コの字状であり、磁石挿入孔5の両端は、出力軸60側に屈曲している。両端の屈曲した部分には、永久磁石6は存在せず、空気層などの非磁性体部9を構成している(図6参照)。   The entire magnet insertion hole 5 is substantially U-shaped, and both ends of the magnet insertion hole 5 are bent toward the output shaft 60 side. The permanent magnet 6 does not exist in the bent portions at both ends, and constitutes a nonmagnetic body portion 9 such as an air layer (see FIG. 6).

永久磁石6の周方向端部に隣接して形成される非磁性体部9は、回転子鉄心4を構成する電磁鋼板に比べて透磁率が低いため、磁束が通りにくく、磁束の通る磁路(漏れ磁束)を制御する役割を有している。   The non-magnetic body portion 9 formed adjacent to the circumferential end portion of the permanent magnet 6 has a lower magnetic permeability than the electromagnetic steel plate constituting the rotor core 4, so that it is difficult for the magnetic flux to pass therethrough and the magnetic path through which the magnetic flux passes. It has a role of controlling (leakage magnetic flux).

隣接する永久磁石6の間の漏れ磁束が増加すると、回転子90の磁束が固定子80に流れにくくなり、永久磁石埋込型電動機100の特性が低下することがあった。つまり漏れ磁束の増加に伴い、電動機に流す電流を多くする必要があるため、その結果、電動機の損失が増加し、効率が低下するという課題がある。   When the leakage magnetic flux between the adjacent permanent magnets 6 increases, the magnetic flux of the rotor 90 becomes difficult to flow to the stator 80, and the characteristics of the permanent magnet embedded electric motor 100 may be deteriorated. That is, as the leakage magnetic flux increases, it is necessary to increase the current flowing through the motor. As a result, there is a problem that the loss of the motor increases and the efficiency decreases.

本実施の形態では、回転子90は永久磁石埋込型であり、磁石挿入孔5の周方向端部に形成される非磁性体部9の端部形状は第三円弧部53(図8参照)となるように構成する。第三円弧部53は、磁石挿入孔5の外周側端面の直線部5aに接する接円11の一部である(図8参照)。   In the present embodiment, the rotor 90 is a permanent magnet embedded type, and the end shape of the nonmagnetic body portion 9 formed at the circumferential end portion of the magnet insertion hole 5 is the third arc portion 53 (see FIG. 8). ). The 3rd circular arc part 53 is a part of contact circle 11 which contact | connects the linear part 5a of the outer peripheral side end surface of the magnet insertion hole 5 (refer FIG. 8).

非磁性体部9は、永久磁石6の外周側表面よりも出力軸60側に屈曲するように配置されると共に、永久磁石6の内周側表面よりも出力軸60側に屈曲するように配置させる(図6参照)。   The non-magnetic body portion 9 is disposed so as to be bent toward the output shaft 60 from the outer peripheral surface of the permanent magnet 6 and is disposed so as to be bent toward the output shaft 60 from the inner peripheral surface of the permanent magnet 6. (See FIG. 6).

なお磁石挿入孔5の外周側端面の直線部5aの長さを一定として、第三円弧部53の半径を変化させると、第三円弧部53の半径が大きくなるにつれて、隣接する磁石挿入孔5の間の極間薄肉部12(図8参照)の周方向幅が狭くなることになる。   If the length of the linear portion 5a on the outer peripheral side end face of the magnet insertion hole 5 is constant and the radius of the third arc portion 53 is changed, the adjacent magnet insertion hole 5 increases as the radius of the third arc portion 53 increases. The circumferential width of the inter-electrode thin portion 12 (see FIG. 8) between the two becomes narrow.

後述するが、第三円弧部53の半径を大きくすることで遠心力に対する強度が向上するが、最小限の磁石挿入孔5の間の極間薄肉部12の周方向幅が確保させる範囲に設定する必要がある。   As will be described later, the strength against the centrifugal force is improved by increasing the radius of the third arc portion 53, but it is set in a range in which the circumferential width of the inter-wall thin portion 12 between the minimum magnet insertion holes 5 is ensured. There is a need to.

磁石挿入孔5の間の極間薄肉部12の最小限の周方向幅は、一般的に回転子鉄心4を構成する電磁鋼板の一枚の厚さ(0.1〜1.0mm程度)である。回転子90が高速回転すると上記の極間薄肉部12にも、永久磁石6および磁石挿入孔5の外側の鉄心(回転子鉄心4の一部)に作用する遠心力が加わるため、遠心力に耐える強度を確保する必要がある。   The minimum circumferential width of the thin interelectrode portion 12 between the magnet insertion holes 5 is generally the thickness of one electromagnetic steel sheet (about 0.1 to 1.0 mm) constituting the rotor core 4. is there. When the rotor 90 rotates at a high speed, a centrifugal force acting on the iron core outside the permanent magnet 6 and the magnet insertion hole 5 (a part of the rotor core 4) is also applied to the above-described thin interelectrode portion 12. It is necessary to ensure the strength to withstand.

ここでは非磁性体部9は空気層の場合について説明したが、非磁性体部9に接着剤を入れて永久磁石6を固定する方法や、樹脂を注入(充填)する方法を採用することで、遠心力に対する強度を向上させることが可能であり、信頼性の高い永久磁石埋込型電動機100を得ることができる。   Here, the case where the nonmagnetic body portion 9 is an air layer has been described. However, by adopting a method of fixing the permanent magnet 6 by putting an adhesive into the nonmagnetic body portion 9 or a method of injecting (filling) resin. The strength against centrifugal force can be improved, and a highly reliable permanent magnet embedded electric motor 100 can be obtained.

また本実施の形態では、図8に示すように、回転子鉄心4の外周形状において、q軸近傍の一部に、円弧形状の切欠部8を設けている。すなわち、回転子鉄心4の最外周部を構成する第一円弧部41に対して、第一円弧部41の中心(出力軸60の中心と一致)と同じ中心を有する第二円弧部42により、切欠部8が構成される。   Moreover, in this Embodiment, as shown in FIG. 8, the circular arc-shaped notch part 8 is provided in a part of q-axis vicinity in the outer periphery shape of the rotor core 4. As shown in FIG. That is, with respect to the first arc portion 41 constituting the outermost peripheral portion of the rotor core 4, the second arc portion 42 having the same center as the center of the first arc portion 41 (coincident with the center of the output shaft 60), A notch 8 is formed.

円弧形状の切欠部8の中心線(径方向)は、略極間の中心線もしくはq軸と一致している。   The center line (radial direction) of the arc-shaped cutout 8 is substantially coincident with the center line between the poles or the q axis.

第二円弧部42の半径は、第一円弧部41の半径よりも小さい。   The radius of the second arc portion 42 is smaller than the radius of the first arc portion 41.

切欠部8を設けることで、隣接する永久磁石6の間の漏れ磁束を抑制することができるため、電動機の損失を低減させた高効率な永久磁石埋込型電動機100を得ることができる。   By providing the notch 8, the leakage magnetic flux between the adjacent permanent magnets 6 can be suppressed, so that a highly efficient embedded permanent magnet motor 100 with reduced loss of the motor can be obtained.

また本実施の形態では、永久磁石6の外周側表面の外側に配置される回転子鉄心4にスリット7を設けている。スリット7の内部は、空間(空気層)等の非磁性体層である(図7,8参照)。   In the present embodiment, the slits 7 are provided in the rotor core 4 disposed outside the outer peripheral surface of the permanent magnet 6. The inside of the slit 7 is a nonmagnetic layer such as a space (air layer) (see FIGS. 7 and 8).

スリット7は、永久磁石6の周方向端面6aのそれぞれの近傍に設けられる。スリット7と磁石挿入孔5との間に、スリット内周薄肉部13(回転子鉄心4の一部)が形成される。またスリット7と第一円弧部41との間に、スリット外周薄肉部73(図9参照)が形成される。   The slits 7 are provided in the vicinity of the circumferential end surface 6 a of the permanent magnet 6. Between the slit 7 and the magnet insertion hole 5, a slit inner peripheral thin portion 13 (a part of the rotor core 4) is formed. Further, a thin slit outer peripheral portion 73 (see FIG. 9) is formed between the slit 7 and the first arc portion 41.

永久磁石6の外周側で、永久磁石6の周方向端面6aのそれぞれの近傍にスリット7を設けることにより、隣接する永久磁石6の間の漏れ磁束が更に低減する。そのため、スリット7がない場合に比べて、永久磁石6で生成された磁束のうちの固定子80に鎖交する磁束が増加することで、より高効率な永久磁石埋込型電動機100を得ることができる。   By providing the slits 7 in the vicinity of each of the circumferential end surfaces 6a of the permanent magnet 6 on the outer peripheral side of the permanent magnet 6, the leakage magnetic flux between the adjacent permanent magnets 6 is further reduced. Therefore, compared with the case where there is no slit 7, the magnetic flux linked to the stator 80 among the magnetic flux generated by the permanent magnet 6 is increased, so that a more efficient embedded permanent magnet electric motor 100 is obtained. Can do.

図8により切欠部8の位置について説明する。点A1、A2、B1を以下のように定義する。
(1)第一円弧部41の線上に存在し、第一円弧部41と磁石挿入孔5(第三円弧部53)の距離が最も近い点(最近接点)をA1;
(2)第三円弧部53の線上に存在し、第一円弧部41と第三円弧部53の最近接点をA2;
(3)切欠部8と第一円弧部41との交点をB1。
The position of the notch 8 will be described with reference to FIG. Points A1, A2, and B1 are defined as follows.
(1) A1 that is on the line of the first arc portion 41 and has the shortest distance (the closest point) between the first arc portion 41 and the magnet insertion hole 5 (third arc portion 53);
(2) The closest point of contact between the first arc portion 41 and the third arc portion 53 is A2;
(3) The intersection of the notch part 8 and the 1st circular arc part 41 is B1.

このようにした場合、A1よりもB1の方がq軸側に近い位置になるように、切欠部8を設けている。   In this case, the notch 8 is provided so that B1 is closer to the q-axis side than A1.

前述の通り、磁石挿入孔5の端部に第三円弧部53(図8参照)を設けることで、高速回転する回転子90の遠心力に対する強度を確保している。高速回転により回転子鉄心4に働く応力は、A1およびA2近傍で最も大きくなる傾向がある。   As described above, by providing the third arc portion 53 (see FIG. 8) at the end of the magnet insertion hole 5, the strength of the rotor 90 rotating at high speed against the centrifugal force is ensured. The stress acting on the rotor core 4 due to high-speed rotation tends to be greatest near A1 and A2.

本実施の形態では、B1をA1よりもq軸側に配置することで、遠心力に対する強度を確保した、信頼性の高い永久磁石埋込型電動機100を得ることができる。   In the present embodiment, B1 is arranged on the q-axis side with respect to A1, so that it is possible to obtain a highly reliable embedded permanent magnet electric motor 100 that ensures the strength against centrifugal force.

ここで、図8では切欠部8の端部はエッジ(角部)となっているが、金型で打ち抜く場合には、適切な円弧形状(丸取り)を設けることで、金型の劣化を抑制することができると共に、信頼性の高い永久磁石埋込型電動機100を得ることができる。   Here, in FIG. 8, the end of the notch 8 is an edge (corner), but when punching with a mold, an appropriate arc shape (rounding) is provided to reduce the deterioration of the mold. The permanent magnet embedded type electric motor 100 that can be suppressed and has high reliability can be obtained.

また切欠部8とスリット7との別の効果について説明する。図1および図6に示すように、一般的に永久磁石6の直交する方向(磁束の流れる方向)をd軸と定義される。d軸から電気角で90度ずれた位置(すなわち本実施の形態では4極であるため、機械角で45度ずれた位置)をq軸と定義される。   Further, another effect of the notch 8 and the slit 7 will be described. As shown in FIGS. 1 and 6, the direction perpendicular to the permanent magnet 6 (direction in which the magnetic flux flows) is generally defined as the d axis. A position deviated by 90 degrees in electrical angle from the d-axis (that is, a position deviated by 45 degrees in mechanical angle because it has four poles in the present embodiment) is defined as the q-axis.

スリット7を設けることで、q軸方向の磁気抵抗を大きくすることができ、q軸インダクタンスを小さくすることができる。またq軸近傍に切欠部8を設けることで、切欠部8では回転子90と固定子80との空隙25が大きくなるため、q軸インダクタンスを小さくすることができる。   By providing the slit 7, the magnetic resistance in the q-axis direction can be increased, and the q-axis inductance can be reduced. Further, by providing the notch portion 8 in the vicinity of the q-axis, the gap 25 between the rotor 90 and the stator 80 is increased in the notch portion 8, so that the q-axis inductance can be reduced.

本実施の形態の永久磁石埋込型電動機100は、回転子90の回転位置を位置センサで検出しない位置センサレス120度通電方式で制御されている。位置センサレス120度通電方式で制御する場合、回転子90の回転に伴い、固定子80の巻線3に誘起される電圧(誘起電圧)を検出して、回転子90の位置を検出している。すなわち、120度の通電区間に対して、30度の非通電区間では、巻線3の端子間に誘起電圧が現れ、その誘起電圧のゼロクロスポイントから回転子90の回転位置を検出することができる。   The permanent magnet embedded type electric motor 100 of the present embodiment is controlled by a position sensorless 120-degree energization method in which the rotational position of the rotor 90 is not detected by the position sensor. When controlling by the position sensorless 120-degree energization method, the position of the rotor 90 is detected by detecting the voltage (induced voltage) induced in the winding 3 of the stator 80 as the rotor 90 rotates. . That is, an induced voltage appears between terminals of the winding 3 in a non-energized section of 30 degrees with respect to a 120-degree energized section, and the rotational position of the rotor 90 can be detected from the zero cross point of the induced voltage. .

120度の通電区間では、駆動回路(インバータ、図示せず)から固定子80の巻線3に電流が流れており、30度の非通電区間で電流を転流させる必要がある。   In the 120-degree energization section, a current flows from the drive circuit (inverter, not shown) to the winding 3 of the stator 80, and it is necessary to commutate the current in the 30-degree non-energization section.

q軸インダクタンスが大きい場合、巻線3に流れる電流を速やかに減少させることができず、30度の非通電区間で転流できなくなることがあり、誘起電圧のゼロクロスポイントを検出できず、回転位置を検出できなくなる場合があった。   If the q-axis inductance is large, the current flowing through the winding 3 cannot be reduced quickly, and commutation may not be possible in the 30-degree non-energized section, and the zero cross point of the induced voltage cannot be detected, and the rotational position May not be detected.

q軸インダクタンスを小さくする方法としては、巻線3の巻数を減らすことで実現することは可能であるが、巻線3の巻数を減らすと、同一トルクを出力する場合、巻線3に流す電流を大きくする必要がある。   A method for reducing the q-axis inductance can be realized by reducing the number of turns of the winding 3, but if the number of turns of the winding 3 is reduced, when the same torque is output, the current passed through the winding 3 is reduced. Need to be larger.

巻線3に発生する銅損は、巻線3の抵抗と流れる電流の二乗との積に比例するため、電流が大きくなると、銅損が増加し、電動機効率が低下すると共に駆動回路の損失が増加する課題がある。   Since the copper loss generated in the winding 3 is proportional to the product of the resistance of the winding 3 and the square of the flowing current, when the current increases, the copper loss increases, the motor efficiency decreases and the drive circuit loss decreases. There are increasing challenges.

本実施の形態では、切欠部8とスリット7とを設けることにより、巻線3に流れる電流を増加させることなく、q軸インダクタンスを小さくすることができるため、巻線3に流れる電流を速やかに転流させることができ、位置センサレス120度通電方式でも安定して制御可能であり、かつ高効率な永久磁石埋込型電動機100を得ることができる。   In the present embodiment, by providing the notch portion 8 and the slit 7, the q-axis inductance can be reduced without increasing the current flowing through the winding 3. It is possible to obtain a highly efficient embedded permanent magnet motor 100 that can be commutated and can be stably controlled even by a position sensorless 120-degree energization method.

一般的に、位置センサレス120度通電方式の駆動回路は比較的安価で構成することが可能であるため、安価な制御装置を得ることができる。   In general, a position sensorless 120-degree energization driving circuit can be configured at a relatively low cost, so that an inexpensive control device can be obtained.

次に、変形例1の永久磁石埋込型電動機200について、図10乃至図14を参照しながら説明する。   Next, a permanent magnet embedded type electric motor 200 of Modification 1 will be described with reference to FIGS. 10 to 14.

図10に示す変形例1の永久磁石埋込型電動機200は、図1に示す永久磁石埋込型電動機100と比べると、回転子190が異なる。固定子80は、共通であるので、説明は省略する。   The embedded permanent magnet electric motor 200 of Modification 1 shown in FIG. 10 differs from the embedded permanent magnet electric motor 100 shown in FIG. Since the stator 80 is common, description thereof is omitted.

図11に示す変形例1の回転子190は、図6の回転子90と比べると、スリット107の構成が異なる。図11に示すように、変形例1の回転子190は、永久磁石106の外周側にスリット107を一極当たり5本設けている。   11 differs from the rotor 90 of FIG. 6 in the configuration of the slit 107. As shown in FIG. 11, the rotor 190 of Modification 1 has five slits 107 per pole on the outer peripheral side of the permanent magnet 106.

即ち、略磁極中心線上に位置する一つのスリット107a、スリット107aの両側に配設される二つのスリット107b、二つのスリット107bのそれぞれのq軸側に配設される二つのスリット107cが一磁極に設けられる。   That is, one slit 107a positioned substantially on the magnetic pole center line, two slits 107b disposed on both sides of the slit 107a, and two slits 107c disposed on the q-axis side of each of the two slits 107b constitute one magnetic pole. Provided.

一つのスリット107a、二つのスリット107b、二つのスリット107cは、それらの中心線の回転子190の外側への延長線が、回転子190の外側の点Xで交わるように、二つのスリット107b、二つのスリット107cは、磁極中心線側に傾斜している。回転子190の外側の点Xは、例えば、略磁極中心線上に位置する(図12参照)。   One slit 107 a, two slits 107 b, and two slits 107 c have two slits 107 b, so that their extension lines to the outside of the rotor 190 intersect at a point X outside the rotor 190. The two slits 107c are inclined toward the magnetic pole center line. The point X outside the rotor 190 is located, for example, substantially on the magnetic pole center line (see FIG. 12).

スリット107a、スリット107b、及びスリット107cと回転子鉄心104の外周(第一円弧部141)との間のスリット外周薄肉部173は、略均一である(図13参照)。   The slit outer peripheral thin part 173 between the slit 107a, the slit 107b, and the slit 107c and the outer periphery (first arc portion 141) of the rotor core 104 is substantially uniform (see FIG. 13).

また、スリット107a、スリット107b、及びスリット107cと磁石挿入孔105の外周側端面の直線部105aとの間のスリット内周薄肉部113は、略均一である。   The slit inner circumferential thin portion 113 between the slit 107a, the slit 107b, and the slit 107c and the linear portion 105a on the outer peripheral side end surface of the magnet insertion hole 105 is substantially uniform.

但し、スリット外周薄肉部173、スリット内周薄肉部113は、均一でなくてもよい。   However, the slit outer peripheral thin part 173 and the slit inner peripheral thin part 113 may not be uniform.

従って、各スリット107a、スリット107b、及びスリット107cの長さ(略径方向)は、スリット107a>スリット107b>スリット107cである。   Therefore, the lengths of the slits 107a, 107b, and 107c (substantially in the radial direction) are slit 107a> slit 107b> slit 107c.

但し、各スリット107a、スリット107b、及びスリット107cの長さ(略径方向)は、必ずしもスリット107a>スリット107b>スリット107cの関係を満たす必要はない。   However, the length (substantially in the radial direction) of each slit 107a, slit 107b, and slit 107c does not necessarily satisfy the relationship of slit 107a> slit 107b> slit 107c.

図6の回転子90と比べると、スリット107の本数が増加しており、またスリット107の内部は空洞(空気層)となっている。そのため、永久磁石106の外周側に配置される回転子鉄心104の重量が軽くなる。永久磁石106の外周側に配置される回転子鉄心104が軽量になることで、回転子190が同じ回転数で運転される場合、遠心力が低くなり、遠心力に対する応力も低くなる(図11参照)。   Compared with the rotor 90 of FIG. 6, the number of slits 107 is increased, and the inside of the slit 107 is a cavity (air layer). Therefore, the weight of the rotor core 104 arranged on the outer peripheral side of the permanent magnet 106 is reduced. When the rotor core 104 disposed on the outer peripheral side of the permanent magnet 106 becomes lighter, when the rotor 190 is operated at the same rotational speed, the centrifugal force is reduced and the stress against the centrifugal force is also reduced (FIG. 11). reference).

遠心力に対する応力が低いため、第三円弧部153(図14参照)の半径を大きくして、極間薄肉部112(図14参照)の径方向の寸法を小さくしても遠心力に対する応力を確保することができる。極間薄肉部112(図14参照)の径方向の寸法が小さくなることで、漏れ磁束を低減することができ、より高効率な永久磁石埋込型電動機200を得ることができる。   Since the stress with respect to the centrifugal force is low, even if the radius of the third arc portion 153 (see FIG. 14) is increased and the radial dimension of the thin interelectrode portion 112 (see FIG. 14) is reduced, the stress with respect to the centrifugal force is increased. Can be secured. By reducing the radial dimension of the inter-electrode thin portion 112 (see FIG. 14), the leakage magnetic flux can be reduced, and a more efficient embedded permanent magnet electric motor 200 can be obtained.

一方、極間薄肉部112(図14参照)の厚さ寸法を図6の回転子90と同じに設定した場合、スリット本数を増やした回転子190は、スリット本数が少ない回転子90と比較して、永久磁石106の外周側に配置される回転子鉄心104が軽量になることで、更に高い回転数で運転しても遠心力に対する応力は同等となる。   On the other hand, when the thickness dimension of the thin electrode portion 112 (see FIG. 14) is set to be the same as that of the rotor 90 of FIG. 6, the rotor 190 with the increased number of slits is compared with the rotor 90 with a smaller number of slits. Thus, since the rotor core 104 disposed on the outer peripheral side of the permanent magnet 106 becomes lighter, the stress against the centrifugal force becomes the same even when the rotor is operated at a higher rotational speed.

回転数が高いということは、電動機出力が高くなることを意味し、高出力な永久磁石埋込型電動機200を得ることができる。また本電動機を送風機に使用した場合は、高回転な送風機を得ることができるため、風量の高い送風機を得ることができる。   A high rotational speed means that the output of the electric motor becomes high, and a high output embedded permanent magnet electric motor 200 can be obtained. Moreover, when this electric motor is used for a blower, since a high rotation blower can be obtained, a blower with a high air volume can be obtained.

尚、変形例1の回転子190の回転子鉄心104の、切欠部108、非磁性体部109、軸孔110は、回転子90の回転子鉄心4の、切欠部8、非磁性体部9、軸孔10と同じものである。   The notch 108, the nonmagnetic member 109, and the shaft hole 110 of the rotor core 104 of the rotor 190 of the first modification are the notch 8 and nonmagnetic member 9 of the rotor core 4 of the rotor 90. This is the same as the shaft hole 10.

次に、変形例2の永久磁石埋込型電動機300について、図15乃至図19を参照しながら説明する。   Next, a permanent magnet embedded type electric motor 300 of Modification 2 will be described with reference to FIGS. 15 to 19.

図15に示す変形例2の永久磁石埋込型電動機300は、図1に示す永久磁石埋込型電動機100と比べると、回転子290が異なる。固定子80は、共通であるので、説明は省略する。   15 is different from the embedded permanent magnet motor 100 shown in FIG. 1 in the rotor 290. Since the stator 80 is common, description thereof is omitted.

図17に示す変形例2の回転子290は、図6に示す回転子90と比べると、回転子鉄心204が異なる。   The rotor 290 of the second modification shown in FIG. 17 is different in the rotor core 204 from the rotor 90 shown in FIG.

図18に示す変形例2の回転子鉄心204は、図7に示す回転子鉄心4と比べると、切欠部208の構成が異なる。   The rotor core 204 of the modification 2 shown in FIG. 18 differs in the structure of the notch part 208 compared with the rotor core 4 shown in FIG.

図18に示す変形例2の回転子鉄心204は、図18、図19に示すように、切欠部208は回転子鉄心204の外周である第一円弧部241に対して内径側(軸孔210側)に数段(図18、図19では三段)凸形状となるように構成されている。図18、図19の三段の切欠部208は、一例であり、何段でもよい。   As shown in FIGS. 18 and 19, in the rotor core 204 of Modification 2 shown in FIG. 18, the notch portion 208 has an inner diameter side (shaft hole 210) with respect to the first arc portion 241 that is the outer periphery of the rotor core 204. Side) is configured to have a convex shape (three steps in FIGS. 18 and 19). The three-stage cutout 208 in FIGS. 18 and 19 is an example, and may have any number of stages.

極間の外周薄肉部の遠心力に対する応力は、第三円弧部253と第一円弧部241が最も近づく点(最近接点、図19では点A1と点A2)の近傍で最も大きくなり、q軸に近づくにつれて応力は低下する傾向にある。つまりq軸に近いところは、切欠部208を内径側に拡大しても遠心力に対する応力は変わらない。   The stress against the centrifugal force of the outer peripheral thin wall portion between the poles becomes the largest near the point where the third arc portion 253 and the first arc portion 241 are closest (nearest point, point A1 and point A2 in FIG. 19), and the q axis The stress tends to decrease as the value approaches. That is, in the vicinity of the q-axis, the stress against the centrifugal force does not change even if the notch 208 is enlarged toward the inner diameter side.

一方、q軸インダクタンスの観点からは、q軸上における固定子80と回転子290との空隙225(図16参照)が広がることになるため、q軸インダクタンスをより小さくすることが可能である。q軸インダクタンスを小さくすることで、位置センサレス120度通電方式で制御を行った場合でも、安定して制御することができる。   On the other hand, from the viewpoint of the q-axis inductance, the gap 225 (see FIG. 16) between the stator 80 and the rotor 290 on the q-axis is widened, so that the q-axis inductance can be further reduced. By reducing the q-axis inductance, stable control can be performed even when control is performed using the position sensorless 120-degree energization method.

尚、変形例2の回転子290の回転子鉄心204の、磁石挿入孔205、永久磁石206、スリット207、非磁性体部209、極間薄肉部212、出力軸260は、回転子90の回転子鉄心4の、磁石挿入孔5、永久磁石6、スリット7、非磁性体部9、極間薄肉部12、出力軸60と同じものである。   In addition, the magnet insertion hole 205, the permanent magnet 206, the slit 207, the nonmagnetic body portion 209, the inter-electrode thin portion 212, and the output shaft 260 of the rotor core 204 of the rotor 290 of the modified example 2 are rotated by the rotor 90. This is the same as the magnet insertion hole 5, the permanent magnet 6, the slit 7, the nonmagnetic part 9, the inter-electrode thin part 12, and the output shaft 60 of the core 4.

次に、図20乃至図26により、変形例3の永久磁石埋込型電動機400について説明する。   Next, an embedded permanent magnet electric motor 400 according to Modification 3 will be described with reference to FIGS.

図20に示す変形例3の永久磁石埋込型電動機400は、図1に示す永久磁石埋込型電動機100と比べると、回転子390が異なる。固定子80は、共通であるので、説明は省略する。   A permanent magnet embedded type electric motor 400 of Modification 3 shown in FIG. 20 is different in a rotor 390 from the permanent magnet embedded type electric motor 100 shown in FIG. Since the stator 80 is common, description thereof is omitted.

図21に示す変形例3の回転子390は、図6に示す回転子90と比べると、回転子鉄心304が異なる。   The rotor 390 of the modification 3 shown in FIG. 21 differs in the rotor core 304 compared with the rotor 90 shown in FIG.

図22に示す変形例3の回転子鉄心304は、図7に示す回転子鉄心4と比べると、スリット307の構成が異なる。   22 is different from the rotor core 4 shown in FIG. 7 in the configuration of the slits 307.

変形例3の回転子鉄心304のスリット307は、スリット307の半径方向外周部に構成される回転子鉄心304の薄肉部であるスリット外周薄肉部373の半径方向幅寸法において、d軸に近い側に対して、q軸に近い側の幅を大きくしたものである。   The slit 307 of the rotor core 304 of the modification 3 is a side closer to the d axis in the radial width dimension of the slit outer peripheral thin portion 373 that is the thin portion of the rotor core 304 configured on the outer peripheral portion of the slit 307 in the radial direction. In contrast, the width closer to the q-axis is increased.

図23、図24に示すように、スリット307の半径方向外周部に形成されるスリット外周薄肉部373の半径方向幅寸法は、q軸側がd軸側よりも大きい。   As shown in FIGS. 23 and 24, the radial width dimension of the slit outer peripheral thin portion 373 formed in the radial outer peripheral portion of the slit 307 is larger on the q-axis side than on the d-axis side.

即ち、回転子鉄心304の外周(第一円弧部341)とスリット307とのd軸側に近い側の径方向幅寸法をWd、回転子鉄心304の外周(第一円弧部341)とスリット307とのq軸側に近い側の径方向幅寸法をWqとすると、
Wq>Wd
の関係がある。
That is, the radial width dimension on the side close to the d-axis side between the outer periphery (first arc portion 341) and the slit 307 of the rotor core 304 is Wd, and the outer periphery (first arc portion 341) and the slit 307 of the rotor core 304 are. If the radial width dimension on the side close to the q-axis side is Wq,
Wq> Wd
There is a relationship.

回転子鉄心304の高速回転による遠心力は、スリット外周薄肉部373において、q軸に近い側で大きな応力を発生することになる。   Centrifugal force due to high-speed rotation of the rotor core 304 generates a large stress in the slit outer peripheral thin portion 373 on the side close to the q axis.

スリット外周薄肉部373の半径方向幅寸法を均一に大きくすることで遠心力に対する応力を抑制することが可能であるが、q軸インダクタンスが増加してしまうため、位置センサレス120度通電方式で安定して制御することが困難になる。   Although it is possible to suppress stress against centrifugal force by uniformly increasing the radial width dimension of the slit outer peripheral thin portion 373, the q-axis inductance increases, so that the position sensorless 120 degree energization method is stable. It becomes difficult to control.

ここでは、d軸に近い側の半径方向幅寸法Wdを、q軸側に近い側の径方向幅寸法Wqより小さくすることで、q軸インダクタンスの増加を抑制することができる。それにより、位置センサレス120度通電方式でも安定して制御可能な永久磁石埋込型電動機400を得ることができる。   Here, the increase in the q-axis inductance can be suppressed by making the radial width dimension Wd closer to the d-axis smaller than the radial width dimension Wq closer to the q-axis. Thereby, the permanent magnet embedded type electric motor 400 that can be stably controlled even by the position sensorless 120-degree energization method can be obtained.

スリット307を金型で打ち抜く場合、金型の劣化を抑制するために、スリット307の各頂点には適当な丸取り(R形状)を設ける必要がある。本実施の形態では、スリット307の外周側頂点において、d軸に近い側の丸取371の半径R1に対して、q軸に近い側の丸取372の半径R2を大きく設定している(図25参照)。   When the slit 307 is punched with a mold, it is necessary to provide appropriate rounding (R shape) at each vertex of the slit 307 in order to suppress deterioration of the mold. In the present embodiment, the radius R2 of the rounding 372 closer to the q axis is set larger than the radius R1 of the rounding 371 closer to the d axis at the outer peripheral apex of the slit 307 (see FIG. 25).

前述の通り、遠心力によりスリット外周薄肉部373に働く応力はq軸に近い側(丸取372側)の方が大きくなるが、本実施の形態では、丸取372の半径R2を丸取371の半径R1より大きくすることで、遠心力に対する応力を抑制した、信頼性の高い永久磁石埋込型電動機400を得ることができる。   As described above, the stress acting on the slit outer peripheral thin portion 373 due to the centrifugal force is larger on the side closer to the q axis (the rounding 372 side), but in this embodiment, the radius R2 of the rounding 372 is set to the rounding 371. By making it larger than the radius R1, it is possible to obtain a highly reliable embedded permanent magnet electric motor 400 in which stress against centrifugal force is suppressed.

また図26の回転子鉄心304の極間部(q軸)近傍の拡大図において、磁石挿入孔305の半径方向外周側は直線部305aと第三円弧部353からなり、第三円弧部353は直線部305aに接する接円311の一部であり、各々は点Eを交点としている。   Further, in the enlarged view of the vicinity of the inter-pole portion (q-axis) of the rotor core 304 in FIG. 26, the radially outer peripheral side of the magnet insertion hole 305 is composed of a straight portion 305a and a third arc portion 353, These are part of the tangent circle 311 in contact with the straight line portion 305a, and each point is an intersection.

第三円弧部353を直線部305aの接円とすることで、各々が滑らかに接続(連結)されているため、遠心力に対する応力を抑制することができる。   Since the third arc portion 353 is a tangent circle of the straight portion 305a, each is smoothly connected (connected), and therefore stress against centrifugal force can be suppressed.

また第三円弧部353は、第四円弧部354と点Dで接しており、点Dが交点である。隣接する磁石挿入孔305の距離が最も近づく点(最近接点)を点Cとした場合、点Cに対して、点Dを軸孔310に近づけるように構成している(図11参照)。   The third arc portion 353 is in contact with the fourth arc portion 354 at the point D, and the point D is an intersection. When the point where the distance between adjacent magnet insertion holes 305 is closest (the closest point) is point C, the point D is configured to approach the shaft hole 310 with respect to the point C (see FIG. 11).

回転子390が高速で回転する場合、隣接する磁石挿入孔305の間に形成される極間薄肉部312に遠心力に対する応力が発生し、極間薄肉部312の周方向幅寸法を小さくしすぎると、最悪の場合、高速回転時に回転子390が破壊する可能性がある。   When the rotor 390 rotates at a high speed, stress against centrifugal force is generated in the inter-electrode thin portion 312 formed between the adjacent magnet insertion holes 305, and the circumferential width dimension of the inter-electrode thin portion 312 is too small. In the worst case, the rotor 390 may break during high-speed rotation.

また第三円弧部353と第四円弧部354の交点Dを、回転子鉄心304の外周側に近づけると、点Dにより大きな応力が発生するが(図27の比較例を参照)、本実施の形態では、点C(極間薄肉部412)に対して、点Dを内径側(軸孔310に近い側)に設けることで、遠心力に対する応力を緩和させた、信頼性の高い永久磁石埋込型電動機400を得ることができる。   Further, when the intersection D of the third arc portion 353 and the fourth arc portion 354 is brought close to the outer peripheral side of the rotor core 304, a large stress is generated at the point D (see the comparative example of FIG. 27). In the embodiment, by providing the point D on the inner diameter side (side closer to the shaft hole 310) with respect to the point C (inter-electrode thin portion 412), the stress with respect to centrifugal force is relieved, and a highly reliable permanent magnet embedded A built-in electric motor 400 can be obtained.

尚、変形例3の回転子390の回転子鉄心304の、永久磁石306、切欠部308、非磁性体部309は、回転子90の回転子鉄心4の、永久磁石6、切欠部8、非磁性体部9と同じものである。   In addition, the permanent magnet 306, the notch 308, and the non-magnetic part 309 of the rotor core 304 of the rotor 390 of the modification 3 are the permanent magnet 6, the notch 8, and the non-magnetic part 309 of the rotor core 4 of the rotor 90. This is the same as the magnetic part 9.

また、比較例の回転子鉄心404の、磁石挿入孔405、直線部405a、スリット407、極間薄肉部412、第三円弧部453は、回転子90の回転子鉄心4の、磁石挿入孔5、直線部5a、スリット7、極間薄肉部12、第三円弧部53と同じものである。   Further, the magnet insertion hole 405, the straight portion 405 a, the slit 407, the inter-electrode thin portion 412, and the third arc portion 453 of the rotor core 404 of the comparative example are the same as the magnet insertion hole 5 of the rotor core 4 of the rotor 90. These are the same as the straight line part 5 a, the slit 7, the inter-electrode thin part 12, and the third arc part 53.

上述の実施の形態では、例えば永久磁石埋込型電動機100は、永久磁石6の外周側表面の外側に配置される回転子鉄心4にスリット7を設けたものを示したが、スリット7はなくてもよい。他の変形例についても同様である。   In the above-described embodiment, for example, the embedded permanent magnet electric motor 100 has been shown in which the rotor core 4 disposed outside the outer peripheral surface of the permanent magnet 6 is provided with the slit 7, but there is no slit 7. May be. The same applies to other modified examples.

本実施の形態の永久磁石埋込型電動機100〜400を、送風機に搭載することにより、高性能な送風機が得られる。その場合、送風機の羽根が永久磁石埋込型電動機100〜400の回転子に固定される。   A high performance blower can be obtained by mounting the permanent magnet embedded motors 100 to 400 of the present embodiment on the blower. In that case, the blades of the blower are fixed to the rotors of the permanent magnet embedded motors 100 to 400.

本発明の活用例として、送風機に用いられる永久磁石埋込型電動機がある。   As an application example of the present invention, there is an embedded permanent magnet electric motor used for a blower.

1 固定子鉄心、3 巻線、4 回転子鉄心、5 磁石挿入孔、5a 直線部、6 永久磁石、6a 周方向端面、7 スリット、8 切欠部、9 非磁性体部、10 軸孔、11 接円、12 極間薄肉部、13 スリット内周薄肉部、21 歯部、21a 先端部、22 スロット、22a スロット開口部、23 コアバック、25 空隙、41 第一円弧部、42 第二円弧部、51 永久磁石止め部、53 第三円弧部、60 出力軸、73 スリット外周薄肉部、80 固定子、90 回転子、100 永久磁石埋込型電動機、104 回転子鉄心、105 磁石挿入孔、105a 直線部、106 永久磁石、107 スリット、107a スリット、107b スリット、107c スリット、108 切欠部、109 非磁性体部、110 軸孔、112 極間薄肉部、113 スリット内周薄肉部、141 第一円弧部、153 第三円弧部、160 出力軸、173 スリット外周薄肉部、190 回転子、200 永久磁石埋込型電動機、204 回転子鉄心、205 磁石挿入孔、206 永久磁石、207 スリット、208 切欠部、209 非磁性体部、210 軸孔、212 極間薄肉部、225 空隙、241 第一円弧部、253 第三円弧部、260 出力軸、290 回転子、300 永久磁石埋込型電動機、304 回転子鉄心、305 磁石挿入孔、305a 直線部、306 永久磁石、307 スリット、308 切欠部、309 非磁性体部、310 軸孔、311 接円、312 極間薄肉部、353 第三円弧部、354 第四円弧部、360 出力軸、371 丸取、372 丸取、373 スリット外周薄肉部、390 回転子、400 永久磁石埋込型電動機、404 回転子鉄心、405 磁石挿入孔、405a 直線部、407 スリット、412 極間薄肉部、453 第三円弧部、454 第四円弧部。   DESCRIPTION OF SYMBOLS 1 Stator iron core, 3 windings, 4 Rotor iron core, 5 Magnet insertion hole, 5a Linear part, 6 Permanent magnet, 6a Circumferential end surface, 7 Slit, 8 Notch part, 9 Nonmagnetic part, 10 Axis hole, 11 Tangent circle, 12 pole thin part, 13 slit inner thin part, 21 tooth part, 21a tip part, 22 slot, 22a slot opening part, 23 core back, 25 gap, 41 first arc part, 42 second arc part , 51 Permanent magnet retaining part, 53 Third arc part, 60 Output shaft, 73 Slit outer peripheral thin part, 80 Stator, 90 Rotor, 100 Permanent magnet embedded motor, 104 Rotor core, 105 Magnet insertion hole, 105a Straight part, 106 permanent magnet, 107 slit, 107a slit, 107b slit, 107c slit, 108 notch part, 109 non-magnetic part, 110 axial hole, 1 2 Thin part between electrodes, 113 Thin part inside slit, 141 First arc part, 153 Third arc part, 160 Output shaft, 173 Thin part around slit outer circumference, 190 rotor, 200 embedded permanent magnet electric motor, 204 rotor Iron core, 205 Magnet insertion hole, 206 Permanent magnet, 207 Slit, 208 Notch, 209 Non-magnetic part, 210 Shaft hole, 212 Thin part between the poles, 225 Air gap, 241 First arc part, 253 Third arc part, 260 Output shaft, 290 rotor, 300 permanent magnet embedded motor, 304 rotor core, 305 magnet insertion hole, 305a linear portion, 306 permanent magnet, 307 slit, 308 notch, 309 non-magnetic body portion, 310 shaft hole, 311 tangent circle, 312 thin portion between poles, 353 third arc portion, 354 fourth arc portion, 360 output shaft, 371 rounding, 372 Rounding, 373 Slit outer peripheral thin part, 390 Rotor, 400 Permanent magnet embedded motor, 404 Rotor core, 405 Magnet insertion hole, 405a Linear part, 407 Slit, 412 Thin part between poles, 453 Third arc part, 454 Fourth arc portion.

Claims (7)

固定子鉄心に巻線を施した固定子の内側に空隙を介して回転子が配置され、前記回転子の回転位置を位置センサで検出しない位置センサレス120度通電方式で制御される永久磁石埋込型電動機において、
前記回転子は、
薄板の電磁鋼板を複数枚積層して構成される回転子鉄心と、
前記回転子鉄心の外周縁に沿って設けられ、全体が略コの字状で、周方向両端が内側に屈曲した円弧状の非磁性体部を有する複数の磁石挿入孔と、
前記磁石挿入孔に埋め込まれる複数の永久磁石と、
前記永久磁石の外周側に配置される前記回転子鉄心の一部に設けられ、非磁性体層からなるスリットと、を備え、
前記非磁性体部は、前記永久磁石の外周側表面よりも内側に配置するように構成され、かつ前記永久磁石の内周側表面よりも内径側に延びるように形成されることを特徴とする永久磁石埋込型電動機。
A permanent magnet embedded controlled by a position sensorless 120-degree energization method in which a rotor is disposed through a gap inside a stator in which a winding is wound on a stator core, and the rotational position of the rotor is not detected by a position sensor. Type motor,
The rotor is
A rotor core constructed by laminating a plurality of thin electromagnetic steel sheets;
A plurality of magnet insertion holes that are provided along the outer peripheral edge of the rotor core and that have a substantially U-shape as a whole and have arc-shaped non-magnetic parts bent at both ends in the circumferential direction;
A plurality of permanent magnets embedded in the magnet insertion hole;
Provided in a part of the rotor core disposed on the outer peripheral side of the permanent magnet, and comprising a slit made of a non-magnetic layer,
The non-magnetic body portion is configured to be arranged on the inner side of the outer peripheral side surface of the permanent magnet, and is formed to extend to the inner diameter side of the inner peripheral side surface of the permanent magnet. Permanent magnet embedded motor.
前記スリットを、少なくとも前記永久磁石の両端部近傍に設けたことを特徴とする請求項1記載の永久磁石埋込型電動機。   2. The embedded permanent magnet electric motor according to claim 1, wherein the slit is provided at least in the vicinity of both end portions of the permanent magnet. 前記スリットの外周側に形成される前記回転子鉄心のスリット外周薄肉部の径方向幅寸法を、d軸側の径方向幅寸法よりq軸側の径方向幅寸法を大きくしたことを特徴とする請求項1又は請求項2記載の永久磁石埋込型電動機。   The radial width dimension of the thin slit outer peripheral portion of the rotor core formed on the outer peripheral side of the slit is larger in the radial width dimension on the q-axis side than the radial width dimension on the d-axis side. The embedded permanent magnet electric motor according to claim 1 or 2. 固定子鉄心に巻線を施した固定子の内側に空隙を介して回転子が配置され、前記回転子の回転位置を位置センサで検出しない位置センサレス120度通電方式で制御される永久磁石埋込型電動機において、
前記回転子は、
薄板の電磁鋼板を複数枚積層して構成される回転子鉄心と、
前記回転子鉄心の外周縁に沿って設けられ、全体が略コの字状で、周方向両端が内側に屈曲した円弧状の非磁性体部を有する複数の磁石挿入孔と、
前記磁石挿入孔に埋め込まれる複数の永久磁石と、を備え、
前記非磁性体部は、前記永久磁石の外周側表面よりも内側に配置するように構成され、かつ前記永久磁石の内周側表面よりも内径側に延びるように形成されることを特徴とする永久磁石埋込型電動機。
A permanent magnet embedded controlled by a position sensorless 120-degree energization method in which a rotor is disposed through a gap inside a stator in which a winding is wound on a stator core, and the rotational position of the rotor is not detected by a position sensor. Type motor,
The rotor is
A rotor core constructed by laminating a plurality of thin electromagnetic steel sheets;
A plurality of magnet insertion holes that are provided along the outer peripheral edge of the rotor core and that have a substantially U-shape as a whole and have arc-shaped non-magnetic parts bent at both ends in the circumferential direction;
A plurality of permanent magnets embedded in the magnet insertion hole,
The non-magnetic body portion is configured to be arranged on the inner side of the outer peripheral side surface of the permanent magnet, and is formed to extend to the inner diameter side of the inner peripheral side surface of the permanent magnet. Permanent magnet embedded motor.
前記回転子鉄心のq軸近傍の外周縁に、内側に凸形状の切欠部を設けたことを特徴とする請求項1乃至4のいずれかに記載の永久磁石埋込型電動機。   The embedded permanent magnet electric motor according to any one of claims 1 to 4, wherein a convex cutout portion is provided on an outer peripheral edge in the vicinity of the q-axis of the rotor core. 前記切欠部を、q軸上で内側に最も凸形状となるように設けたことを特徴とする請求項5記載の永久磁石埋込型電動機。   6. The embedded permanent magnet electric motor according to claim 5, wherein the notch is provided so as to have a most convex shape inward on the q axis. 少なくとも請求項1乃至6のいずれかに記載の永久磁石埋込型電動機と、前記永久磁石埋込型電動機の前記回転子に固定される羽根と、を備えたことを特徴とする送風機。   A blower comprising: the embedded permanent magnet electric motor according to any one of claims 1 to 6; and a blade fixed to the rotor of the embedded permanent magnet electric motor.
JP2009249686A 2009-10-30 2009-10-30 Permanent magnet embedded motor and blower Active JP5208088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009249686A JP5208088B2 (en) 2009-10-30 2009-10-30 Permanent magnet embedded motor and blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249686A JP5208088B2 (en) 2009-10-30 2009-10-30 Permanent magnet embedded motor and blower

Publications (2)

Publication Number Publication Date
JP2011097754A true JP2011097754A (en) 2011-05-12
JP5208088B2 JP5208088B2 (en) 2013-06-12

Family

ID=44114062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249686A Active JP5208088B2 (en) 2009-10-30 2009-10-30 Permanent magnet embedded motor and blower

Country Status (1)

Country Link
JP (1) JP5208088B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101822A1 (en) * 2012-03-05 2013-10-10 Feaam Gmbh Rotor and electric machine
WO2014091579A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Rotor for motor
JP2014121202A (en) * 2012-12-18 2014-06-30 Fanuc Ltd Rotor of embedded magnet type synchronous motor, embedded magnet type synchronous motor
WO2017038489A1 (en) * 2015-09-01 2017-03-09 三菱電機株式会社 Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning device
EP3163716A1 (en) * 2015-10-29 2017-05-03 Fujitsu General Limited Permanent magnet electric motor
JP2018026965A (en) * 2016-08-10 2018-02-15 富士電機株式会社 Rotor and permanent magnet type rotary electric machine
JPWO2017042886A1 (en) * 2015-09-08 2018-03-15 日立ジョンソンコントロールズ空調株式会社 Permanent magnet type rotary electric motor and compressor using the same
WO2018230309A1 (en) * 2017-06-16 2018-12-20 工機ホールディングス株式会社 Power tool
WO2019097603A1 (en) * 2017-11-15 2019-05-23 三菱電機株式会社 Permanent magnet type rotating electric machine
WO2019198138A1 (en) * 2018-04-10 2019-10-17 三菱電機株式会社 Electric motor, compressor, and air conditioning device
CN112956114A (en) * 2018-10-30 2021-06-11 三菱电机株式会社 Rotating electrical machine
WO2022097322A1 (en) * 2020-11-09 2022-05-12 日本電産株式会社 Rotary electrical machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258187A (en) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp Permanent magnet embedded rotor of permanent magnet motor
JP2002171730A (en) * 2000-12-04 2002-06-14 Hitachi Ltd Permanent magnet rotating electric machine and air conditioner fitted with the same
JP2003037955A (en) * 2001-07-24 2003-02-07 Mitsubishi Heavy Ind Ltd Rotor for magnetic motor
JP2004120886A (en) * 2002-09-26 2004-04-15 Rikogaku Shinkokai Bearing-less motor
JP2005027422A (en) * 2003-07-02 2005-01-27 Hitachi Ltd Permanent magnet type rotating electric machine and electric compressor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258187A (en) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp Permanent magnet embedded rotor of permanent magnet motor
JP2002171730A (en) * 2000-12-04 2002-06-14 Hitachi Ltd Permanent magnet rotating electric machine and air conditioner fitted with the same
JP2003037955A (en) * 2001-07-24 2003-02-07 Mitsubishi Heavy Ind Ltd Rotor for magnetic motor
JP2004120886A (en) * 2002-09-26 2004-04-15 Rikogaku Shinkokai Bearing-less motor
JP2005027422A (en) * 2003-07-02 2005-01-27 Hitachi Ltd Permanent magnet type rotating electric machine and electric compressor using the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101822A1 (en) * 2012-03-05 2013-10-10 Feaam Gmbh Rotor and electric machine
US9692264B2 (en) 2012-12-12 2017-06-27 Mitsubishi Electric Corporation Rotor of permanent magnet motor having air gaps at permanent magnet end portions
WO2014091579A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Rotor for motor
CN104081629A (en) * 2012-12-12 2014-10-01 三菱电机株式会社 Rotor for motor
US20150263574A1 (en) * 2012-12-12 2015-09-17 Mitsubishi Electric Corporation Rotor of motor
JP2014121202A (en) * 2012-12-18 2014-06-30 Fanuc Ltd Rotor of embedded magnet type synchronous motor, embedded magnet type synchronous motor
US9531226B2 (en) 2012-12-18 2016-12-27 Fanuc Corporation Rotor of internal permanent magnet synchronous motor and internal permanent magnet sycnronous motor
JPWO2017038489A1 (en) * 2015-09-01 2018-01-18 三菱電機株式会社 Rotor, rotating electrical machine, electric compressor and refrigeration air conditioner
CN107925285B (en) * 2015-09-01 2019-11-15 三菱电机株式会社 Rotor, rotating electric machine, motor compressor and refrigerating air conditioning device
CN107925285A (en) * 2015-09-01 2018-04-17 三菱电机株式会社 Rotor, electric rotating machine, motor compressor and refrigerating air conditioning device
US10594176B2 (en) 2015-09-01 2020-03-17 Mitsubishi Electric Corporation Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning apparatus
WO2017038489A1 (en) * 2015-09-01 2017-03-09 三菱電機株式会社 Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning device
JPWO2017042886A1 (en) * 2015-09-08 2018-03-15 日立ジョンソンコントロールズ空調株式会社 Permanent magnet type rotary electric motor and compressor using the same
EP3163716A1 (en) * 2015-10-29 2017-05-03 Fujitsu General Limited Permanent magnet electric motor
AU2016250406B2 (en) * 2015-10-29 2021-04-01 Fujitsu General Limited Rotor and permanent magnet electric motor
JP2017085821A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Rotor and permanent magnet motor
US10256684B2 (en) 2015-10-29 2019-04-09 Fujitsu General Limited Rotor and permanent magnet electric motor
US11171525B2 (en) 2015-10-29 2021-11-09 Fujitsu General Limited Rotor and permanent magnet electric motor
JP2018026965A (en) * 2016-08-10 2018-02-15 富士電機株式会社 Rotor and permanent magnet type rotary electric machine
US10727708B2 (en) 2016-08-10 2020-07-28 Fuji Electric Co., Ltd. Rotor and permanent magnet type rotating electrical machine
WO2018230309A1 (en) * 2017-06-16 2018-12-20 工機ホールディングス株式会社 Power tool
JPWO2018230309A1 (en) * 2017-06-16 2020-04-23 工機ホールディングス株式会社 Electric tool
WO2019097603A1 (en) * 2017-11-15 2019-05-23 三菱電機株式会社 Permanent magnet type rotating electric machine
CN111316537A (en) * 2017-11-15 2020-06-19 三菱电机株式会社 Permanent magnet type rotating electrical machine
JPWO2019097603A1 (en) * 2017-11-15 2020-04-02 三菱電機株式会社 Permanent magnet type rotating electric machine
CN111316537B (en) * 2017-11-15 2022-05-03 三菱电机株式会社 Permanent magnet type rotating electrical machine
JPWO2019198138A1 (en) * 2018-04-10 2020-10-22 三菱電機株式会社 Electric motors, compressors and air conditioners
WO2019198138A1 (en) * 2018-04-10 2019-10-17 三菱電機株式会社 Electric motor, compressor, and air conditioning device
JP7019033B2 (en) 2018-04-10 2022-02-14 三菱電機株式会社 Motors, compressors and air conditioners
US11888353B2 (en) 2018-04-10 2024-01-30 Mitsubishi Electric Corporation Motor, compressor, and air conditioner
CN112956114A (en) * 2018-10-30 2021-06-11 三菱电机株式会社 Rotating electrical machine
WO2022097322A1 (en) * 2020-11-09 2022-05-12 日本電産株式会社 Rotary electrical machine

Also Published As

Publication number Publication date
JP5208088B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5208088B2 (en) Permanent magnet embedded motor and blower
KR101030666B1 (en) Permanent magnet motor, hermetic compressor, and fan motor
JP6422595B2 (en) Electric motor and air conditioner
US9369014B2 (en) Rotor of motor and fan driving motor including rotor
JP5677584B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP4844570B2 (en) Permanent magnet type motor
JP5228316B2 (en) Rotating electric machine rotor and rotating electric machine
JP2008206308A (en) Permanent-magnet rotating electric machine
JP2016226267A (en) Single-phase outer-rotor motor and rotor thereof
JP5202455B2 (en) Permanent magnet embedded rotor and vacuum cleaner
JP2011223836A (en) Permanent magnet type revolving armature
CN108475972B (en) Rotor, magnetizing method, motor, and scroll compressor
JP4396537B2 (en) Permanent magnet type motor
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP2009131070A (en) Magnet type synchronous machine
US9293954B2 (en) Rotor of motor and fan driving motor including rotor
JP2015073417A (en) Embedded magnet dynamo-electric machine
JP4080273B2 (en) Permanent magnet embedded motor
CN109997290B (en) Synchronous reluctance type rotating electric machine
KR20090007370U (en) Spoke type motor
JP2008187802A (en) Rotor for rotary electrical machine, and electric machine
JP2014143797A (en) Magnet embedded rotary electric machine
KR101228454B1 (en) Self magnetizing motor
KR102526938B1 (en) Rotor for an interior permanent magnet motor and a motor with the same
JP2014161206A (en) Interior magnet type rotating electrical machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250