[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011064338A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011064338A
JP2011064338A JP2009212633A JP2009212633A JP2011064338A JP 2011064338 A JP2011064338 A JP 2011064338A JP 2009212633 A JP2009212633 A JP 2009212633A JP 2009212633 A JP2009212633 A JP 2009212633A JP 2011064338 A JP2011064338 A JP 2011064338A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
transfer tubes
heat transfer
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009212633A
Other languages
Japanese (ja)
Other versions
JP5081881B2 (en
Inventor
Hiroshi Yoneda
広 米田
Ryoichi Takato
亮一 高藤
Tsutomu Imoto
勉 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009212633A priority Critical patent/JP5081881B2/en
Priority to KR1020100078576A priority patent/KR101287775B1/en
Priority to CN2010102595193A priority patent/CN102022862B/en
Publication of JP2011064338A publication Critical patent/JP2011064338A/en
Application granted granted Critical
Publication of JP5081881B2 publication Critical patent/JP5081881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner improved in wind speed distribution and achieved in compatibility between both the improvement of energy saving performance and reduction in noise. <P>SOLUTION: The air conditioner includes: a casing having an air suction port and an air blowout port; an air fan provided in the casing; and an approximately inverted V-shaped indoor heat exchanger having fins and heat transfer tubes penetrating the fins and arranged to surround the air fan. The indoor heat exchanger includes a front face side indoor heat exchanger and a back face side indoor heat exchanger. The front face side indoor heat exchanger includes two linear parts and a curved part with both ends connected to the two linear parts, and an arrangement interval of the heat transfer tubes in the curved part is set smaller than that in the linear part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は室内熱交換器を備えた空気調和機に関する。   The present invention relates to an air conditioner provided with an indoor heat exchanger.

従来の空気調和機として、前側熱交換器及び背面側熱交換器から構成される室内熱交換器を備えるものがある(例えば、特許文献1(図1,図3)参照)。特許文献1に記載の前側熱交換器は、3つの直線部及び2つの曲線部により、ファン方向に湾曲するように構成される。   As a conventional air conditioner, there is one that includes an indoor heat exchanger that includes a front heat exchanger and a rear heat exchanger (see, for example, Patent Document 1 (FIGS. 1 and 3)). The front heat exchanger described in Patent Document 1 is configured to bend in the fan direction by three straight portions and two curved portions.

このような曲線部を有する熱交換器を通過する空気の流れの基本的特性について、図7を用いて説明する。図7は、内部の空気抵抗が一様な抵抗体37が、一様な空気流中に置かれた場合の空気の流れを示す。抵抗体は、図7に示すように、2つの直線部と両端がこの2つの直線部に接続された曲線部とを有する。図7における太矢印は空気の流線を示し、細矢印群39は抵抗体の下流の空気流の流速分布を示す。   The basic characteristics of the air flow passing through the heat exchanger having such a curved portion will be described with reference to FIG. FIG. 7 shows the air flow when the resistor 37 having a uniform internal air resistance is placed in a uniform air flow. As shown in FIG. 7, the resistor has two straight portions and a curved portion having both ends connected to the two straight portions. The thick arrows in FIG. 7 indicate air flow lines, and the thin arrow group 39 indicates the flow velocity distribution of the air flow downstream of the resistor.

左から流れてきた空気は、抵抗体37を通過して右に流れる。一般的に、空気は圧力の高いところから低いところに向かって、最短経路をとるように流れる性質がある。従って、右上がりの形状である抵抗体37の上部においては、抵抗体37の上流で右向きであった空気流は、抵抗体37内で右下がりの流れとなり、この空気流が抵抗体37を通過した後は、更に下流に向かうため、元の右向きの流れになる。同様に、右下がりの形状である抵抗体37の下部においては、抵抗体37の上流で右向きであった空気流は右上がりの流れとなり、この空気流が抵抗体37を通過した後は、更に下流に向かうため、元の右向きの流れになる。   The air flowing from the left passes through the resistor 37 and flows to the right. In general, air has a property of flowing in a shortest path from a high pressure to a low pressure. Therefore, in the upper part of the resistor 37 having a right-up shape, the air flow that is directed rightward in the upstream of the resistor 37 becomes a right-down flow in the resistor 37, and this air flow passes through the resistor 37. After that, since it goes further downstream, it becomes the original rightward flow. Similarly, in the lower part of the resistor 37 having a right-down shape, the air flow that is directed to the right upstream of the resistor 37 becomes a right-up flow, and after the air flow passes through the resistor 37, the air flow is further increased. Since it goes downstream, it becomes the original rightward flow.

このように、抵抗体37の上部と下部とで、流れの向きが変わるので、抵抗体37の中央部38では流れが集中する縮流となり、流れが加速される。すなわち、抵抗体37を通過する風速の分布が不均一となる。同様の現象が熱交換器で生じた場合には、風速分布の不均一により交換熱量が低下したり、不均一となった風速分布が下流側のファンに作用して騒音が増大したりする可能性がある。   Thus, the flow direction changes between the upper part and the lower part of the resistor 37, so that the flow is concentrated in the central part 38 of the resistor 37, and the flow is accelerated. That is, the distribution of the wind speed passing through the resistor 37 becomes non-uniform. If the same phenomenon occurs in the heat exchanger, the amount of heat exchanged may be reduced due to non-uniform wind speed distribution, or the non-uniform wind speed distribution may act on the downstream fan to increase noise. There is sex.

特開2006−250366号公報JP 2006-250366 A

本発明は、風速分布を改善し、省エネルギ性の向上と静音化を両立する空気調和機を提供することを課題とする。   It is an object of the present invention to provide an air conditioner that improves wind speed distribution and achieves both energy saving and noise reduction.

上記課題を解決するために本発明に係る空気調和機は、空気吸込口及び空気吹出口を有する筐体と、筐体内に設けられた送風ファンと、フィン及びフィンを貫通する伝熱管を有し、送風ファンを取り囲むように配置された略逆V字状の室内熱交換器と、を備え、室内熱交換器は、前面側室内熱交換器及び背面側室内熱交換器を有し、前面側室内熱交換器は、2つの直線部及び両端が2つの直線部に接続された曲線部を有し、曲線部における伝熱管の配置間隔が、直線部における伝熱管の配置間隔よりも小さい。   In order to solve the above problems, an air conditioner according to the present invention has a housing having an air inlet and an air outlet, a blower fan provided in the housing, a fin and a heat transfer tube penetrating the fin. A substantially inverted V-shaped indoor heat exchanger disposed so as to surround the blower fan, and the indoor heat exchanger includes a front side indoor heat exchanger and a back side indoor heat exchanger, the front side The indoor heat exchanger has two straight portions and a curved portion in which both ends are connected to the two straight portions, and the arrangement interval of the heat transfer tubes in the curved portion is smaller than the arrangement interval of the heat transfer tubes in the linear portion.

本発明によれば、風速分布を改善し、省エネルギ性の向上と静音化を両立する空気調和機を提供することができる。   According to the present invention, it is possible to provide an air conditioner that improves the wind speed distribution and achieves both improved energy saving and noise reduction.

前面側室内熱交換器の伝熱管の配置を示す図。The figure which shows arrangement | positioning of the heat exchanger tube of a front side indoor heat exchanger. 冷凍サイクルの構成を示す図。The figure which shows the structure of a refrigerating cycle. クロスフィンチューブ型熱交換器の構造を示す図。The figure which shows the structure of a cross fin tube type heat exchanger. 室内機の断面を示す図。The figure which shows the cross section of an indoor unit. 前面側室内熱交換器の形状を示す図。The figure which shows the shape of a front side indoor heat exchanger. 前面側室内熱交換器の伝熱管の配置を示す図。The figure which shows arrangement | positioning of the heat exchanger tube of a front side indoor heat exchanger. 曲がり部を有する抵抗体を通過する空気流を示す図。The figure which shows the airflow which passes the resistor which has a bending part.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明に係る第1の実施例を図1〜図5,図7により説明する。まず、本実施例に係る空気調和機の基本的構成について説明する。図2は冷凍サイクルの構成図である。本実施例に係る空気調和機は、室外機1と室内機7とが接続配管10によって接続されることで機能する。室外機1は、圧縮機2と、四方弁3と、室外熱交換器4と、絞り装置6と、プロペラファン5とを備える。室内機7は、室内熱交換器8と、送風ファンとを備える。尚、送風ファンとしては貫流ファン9を用いることができる。   A first embodiment according to the present invention will be described with reference to FIGS. First, a basic configuration of the air conditioner according to the present embodiment will be described. FIG. 2 is a configuration diagram of the refrigeration cycle. The air conditioner according to the present embodiment functions when the outdoor unit 1 and the indoor unit 7 are connected by the connection pipe 10. The outdoor unit 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, a throttle device 6, and a propeller fan 5. The indoor unit 7 includes an indoor heat exchanger 8 and a blower fan. A cross-flow fan 9 can be used as the blower fan.

次に、まず、冷房運転時における各構成要素の作用を説明する。圧縮機2で圧縮された高圧のガス状冷媒が室外熱交換器4で外気に放熱することにより凝縮し、高圧の液状冷媒となる。この液状冷媒は絞り装置6の作用で減圧され、低温低圧の気液二相状態となり、接続配管10を通じて室内機7へ流れる。室内機7に入った冷媒は、室内熱交換器8で室内空気の熱を吸熱することにより蒸発する。室内ユニットで蒸発した冷媒は、接続配管10を通じて室外機1へ戻り、四方弁3を通って再び圧縮機2で圧縮される。   Next, the operation of each component during cooling operation will be described first. The high-pressure gaseous refrigerant compressed by the compressor 2 is condensed by dissipating heat to the outside air in the outdoor heat exchanger 4, and becomes a high-pressure liquid refrigerant. This liquid refrigerant is depressurized by the action of the expansion device 6, becomes a low-temperature low-pressure gas-liquid two-phase state, and flows to the indoor unit 7 through the connection pipe 10. The refrigerant that has entered the indoor unit 7 is evaporated by absorbing the heat of the indoor air in the indoor heat exchanger 8. The refrigerant evaporated in the indoor unit returns to the outdoor unit 1 through the connection pipe 10 and is compressed again by the compressor 2 through the four-way valve 3.

暖房運転の場合は、四方弁3により冷媒流路が切り替えられ、圧縮機2で圧縮された高圧のガス状冷媒は、四方弁3及び接続配管10を通って室内機7に流れる。室内機7に入った冷媒は、室内熱交換器8で室内空気に放熱することで凝縮し、高圧の液状冷媒となる。この液状冷媒は、接続配管10を通って室外機1に流れる。室外機1に入った液状冷媒は、絞り装置6の作用で減圧され、低温低圧の気液二相状態となる。低温低圧の気液二相状態となった冷媒は室外熱交換器4に流れ、室外空気の熱を吸熱することで蒸発して、ガス状冷媒となる。このガス状冷媒は、四方弁3を通って再び圧縮機2で圧縮される。   In the heating operation, the refrigerant flow path is switched by the four-way valve 3, and the high-pressure gaseous refrigerant compressed by the compressor 2 flows to the indoor unit 7 through the four-way valve 3 and the connection pipe 10. The refrigerant that has entered the indoor unit 7 is condensed by dissipating heat to the indoor air in the indoor heat exchanger 8, and becomes a high-pressure liquid refrigerant. This liquid refrigerant flows into the outdoor unit 1 through the connection pipe 10. The liquid refrigerant that has entered the outdoor unit 1 is depressurized by the action of the expansion device 6 and enters a low-temperature low-pressure gas-liquid two-phase state. The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 4 and evaporates by absorbing the heat of the outdoor air to become a gaseous refrigerant. This gaseous refrigerant passes through the four-way valve 3 and is compressed again by the compressor 2.

図3は、クロスフィンチューブ型の熱交換器の構造を示す。この熱交換器は、複数のアルミニウム製のフィン11を、U字状に曲げられた銅製の伝熱管12が貫くように構成される。フィンに挿入された伝熱管12を液圧又は機械的に拡管することにより、フィン11と伝熱管12とが密着する。また、伝熱管12の端部には継手部品13が溶接され、冷媒の流路が構成される。   FIG. 3 shows the structure of a cross fin tube type heat exchanger. This heat exchanger is configured such that a plurality of aluminum fins 11 are penetrated by U-shaped copper heat transfer tubes 12. By expanding the heat transfer tube 12 inserted into the fins hydraulically or mechanically, the fin 11 and the heat transfer tube 12 are brought into close contact with each other. Further, a joint part 13 is welded to the end of the heat transfer tube 12 to form a refrigerant flow path.

図4は、空気調和機の室内機の断面図(伝熱管の軸に垂直な断面)である。筐体の上方に空気吸込口(具体的には、筐体の前面に前面空気吸込口22、及び筐体の上面に上面空気吸込口23)が設けられ、筐体の下方には空気吹出口24が設けられる。筐体内には、貫流ファン9が配設されており、この空気吸込口から貫流ファンまでの風路の途中にクロスフィンチューブ型の熱交換器が配設される。室内熱交換器8は、前面側室内熱交換器20及び背面側室内熱交換器21から構成される。また、前面側室内熱交換器20及び背面側室内熱交換器21は、貫流ファン9を取り囲むように略逆V字状に配設される。貫流ファン9を動作させると、室内空気が空気吸込口から流入し、室内熱交換器8で内部の冷媒と熱交換し、空気吹出口24から吹き出すことにより、室内空気を空気調和する。   FIG. 4 is a sectional view of the indoor unit of the air conditioner (cross section perpendicular to the axis of the heat transfer tube). An air suction port (specifically, a front air suction port 22 on the front surface of the housing and a top air suction port 23 on the top surface of the housing) is provided above the housing, and an air outlet is disposed below the housing. 24 is provided. A cross-flow fan 9 is disposed in the housing, and a cross-fin tube type heat exchanger is disposed in the middle of the air path from the air suction port to the cross-flow fan. The indoor heat exchanger 8 includes a front side indoor heat exchanger 20 and a back side indoor heat exchanger 21. The front-side indoor heat exchanger 20 and the back-side indoor heat exchanger 21 are arranged in a substantially inverted V shape so as to surround the cross-flow fan 9. When the cross-flow fan 9 is operated, the room air flows in from the air suction port, exchanges heat with the internal refrigerant in the indoor heat exchanger 8, and blows out from the air outlet 24, thereby air-conditioning the room air.

次に、前面側室内熱交換器20の断面形状の詳細について、図5を用いて説明する。前面側室内熱交換器20の風上前縁部では、前縁側直線部25と前縁側直線部26とが前縁側曲線部28により接続され、前縁側直線部26と前縁側直線部27とが前縁側曲線部29により接続される。また、前面側室内熱交換器20の風下後縁部では、後縁側直線部30と後縁側直線部31とが後縁側曲線部33により接続され、後縁側直線部31と後縁側直線部32とが後縁側曲線部34により接続される。このような構成により、前面側室内熱交換器は貫流ファン9方向に湾曲するように形成される。   Next, the details of the cross-sectional shape of the front-side indoor heat exchanger 20 will be described with reference to FIG. At the windward leading edge of the front side indoor heat exchanger 20, the leading edge side straight portion 25 and the leading edge side straight portion 26 are connected by a leading edge side curved portion 28, and the leading edge side straight portion 26 and the leading edge side straight portion 27 are connected. It is connected by the leading edge side curved portion 29. Further, at the leeward trailing edge of the front side indoor heat exchanger 20, the trailing edge side straight portion 30 and the trailing edge side straight portion 31 are connected by the trailing edge side curved portion 33, and the trailing edge side straight portion 31 and the trailing edge side straight portion 32 are connected. Are connected by the curved portion 34 on the trailing edge side. With such a configuration, the front-side indoor heat exchanger is formed to be curved toward the cross-flow fan 9.

図5の上側の網掛け部は、風上前縁の前縁側曲線部28と風下後縁の後縁側曲線部33とで囲まれた熱交換器曲線部35を示す。また、図5の下側の網掛け部は、風上前縁の前縁側曲線部29と風下後縁の後縁側曲線部34とで囲まれた熱交換器曲線部36を示す。網掛けされていない部分は、風上前縁の前縁側直線部25と風下後縁の後縁側直線部30とで囲まれた熱交換器直線部50、風上前縁の前縁側直線部26と風下後縁の後縁側直線部31とで囲まれた熱交換器直線部51、風上前縁の前縁側直線部27と前縁側風下後縁の後縁側直線部32とで囲まれた熱交換器直線部52である。ここで、熱交換器曲線部35の両端は熱交換器直線部50及び熱交換器直線部51に接続され、熱交換器曲線部36の両端は熱交換器直線部51及び熱交換器直線部52に接続される。熱交換器曲線部35,36は、図7を用いて説明したように、熱交換器直線部50,51,52よりも空気の流れが加速されやすい。   The shaded portion on the upper side of FIG. 5 shows a heat exchanger curved portion 35 surrounded by a leading edge side curved portion 28 of the windward leading edge and a trailing edge side curved portion 33 of the leeward trailing edge. Further, the shaded portion on the lower side of FIG. 5 shows a heat exchanger curved portion 36 surrounded by a leading edge side curved portion 29 of the windward leading edge and a trailing edge side curved portion 34 of the leeward trailing edge. The portions not shaded include a heat exchanger straight line 50 surrounded by a leading edge side straight part 25 of the windward leading edge and a trailing edge side straight part 30 of the leeward trailing edge, and a leading edge side straight part 26 of the windward leading edge. And the heat exchanger straight line 51 surrounded by the trailing edge side straight part 31 of the leeward trailing edge, the heat surrounded by the leading edge side straight part 27 of the windward leading edge and the trailing edge side straight part 32 of the leading edge side leeward trailing edge. This is the exchanger straight section 52. Here, both ends of the heat exchanger curve portion 35 are connected to the heat exchanger straight portion 50 and the heat exchanger straight portion 51, and both ends of the heat exchanger curve portion 36 are connected to the heat exchanger straight portion 51 and the heat exchanger straight portion. 52. As described with reference to FIG. 7, the heat exchanger curve portions 35 and 36 are more easily accelerated in air flow than the heat exchanger linear portions 50, 51 and 52.

次に、本実施例の前面側室内熱交換器20の断面における伝熱管の配置について、図1を用いて説明する。前面側室内熱交換器20では、空気の流れ方向に伝熱管が3列配置され、空気の流れ方向と直角の方向に12段配置される。図中の破線は、挿入された伝熱管のU字状に曲げられた部分を示す。ここでL0は、熱交換器直線部における伝熱管の配置間隔を示す。L1及びL2は、熱交換器曲線部35及び熱交換器曲線部36における伝熱管の配置間隔のうち、最も小さい伝熱管の配置間隔を示す。本実施例では、L0,L1,L2の関係は、次式のとおりである。
L1<L0
L2<L0
すなわち、空気が加速されやすい熱交換器曲線部35,36における伝熱管の配置間隔が熱交換器直線部50,51,52における伝熱管の配置間隔よりも狭く、相対的に熱交換器曲線部35,36における通風抵抗が大きくなるので、熱交換器曲線部35,36における空気流の加速を抑制することができる。つまり、熱交換器を通過する空気の風速分布の不均一を低減することができ、省エネルギ性の向上と静音化を両立することができる。
Next, arrangement | positioning of the heat exchanger tube in the cross section of the front side indoor heat exchanger 20 of a present Example is demonstrated using FIG. In the front-side indoor heat exchanger 20, three rows of heat transfer tubes are arranged in the air flow direction, and twelve stages are arranged in a direction perpendicular to the air flow direction. The broken line in a figure shows the part bent in the U shape of the inserted heat exchanger tube. Here, L0 indicates the arrangement interval of the heat transfer tubes in the heat exchanger linear portion. L1 and L2 indicate the arrangement interval of the smallest heat transfer tubes among the arrangement intervals of the heat transfer tubes in the heat exchanger curve portion 35 and the heat exchanger curve portion 36. In the present embodiment, the relationship between L0, L1, and L2 is as follows.
L1 <L0
L2 <L0
That is, the arrangement interval of the heat transfer tubes in the heat exchanger curve portions 35 and 36 in which air is easily accelerated is narrower than the arrangement interval of the heat transfer tubes in the heat exchanger linear portions 50, 51 and 52, and the heat exchanger curve portions are relatively. Since the ventilation resistance in 35 and 36 becomes large, acceleration of the airflow in the heat exchanger curve portions 35 and 36 can be suppressed. That is, nonuniformity in the wind speed distribution of the air passing through the heat exchanger can be reduced, and both energy saving and noise reduction can be achieved.

熱交換器曲線部35,36の通風抵抗を大きくするには、1列目から3列目の任意の列の伝熱管の配置間隔を小さくすることで実現可能である。ところで、冷房時に空気が冷やされて空気中の水分が凝結し、熱交換器のフィン上に結露が生じる場合、最も湿度の高い空気が通過するのは1列目の部分であるため、1列目のフィンにより多くの結露水が付着する。フィンに結露水が付着すると、空気が通過できる部分が減少するため、通風抵抗が増加する。すなわち、管の配置間隔を小さくすることにより通風抵抗を大きくする場合には、本実施例のように、最も風上の1列目の伝熱管の配置間隔を小さくすることがより効果的である。   Increasing the ventilation resistance of the heat exchanger curved portions 35 and 36 can be realized by reducing the arrangement interval of the heat transfer tubes in any row from the first row to the third row. By the way, when air is cooled during cooling and moisture in the air condenses and condensation occurs on the fins of the heat exchanger, the air with the highest humidity passes through the first row, so that A lot of condensed water adheres to the fins of the eyes. When condensed water adheres to the fins, the portion through which air can pass decreases, so the ventilation resistance increases. That is, when the ventilation resistance is increased by reducing the arrangement interval of the tubes, it is more effective to reduce the arrangement interval of the heat transfer tubes in the first windward as in this embodiment. .

尚、本実施例においては、熱交換器曲線部35,36における伝熱管の配置間隔を熱交換器直線部50,51,52における伝熱管の配置間隔よりも小さくして、空気が加速されやすい熱交換器曲線部35,36の空気流の加速を抑制することにより、熱交換器を通過する空気の風速分布の不均一を低減することとした。しかしながら本発明は、本実施例のように、熱交換器直線部及び熱交換器曲線部を有する室内熱交換器のみならず、熱交換器直線部を備えずに熱交換器曲線部のみで構成される場合であっても、この熱交換器曲線部における曲率が変化することにより、空気が加速されやすい領域が生じて、室内熱交換器を通過する空気の風速分布が不均一となるような場合にも有効である。このような場合は、前面側熱交換器の曲率がより大きい部分における伝熱管の配置間隔を、前面側熱交換器のより曲率がより小さい部分における伝熱管の配置間隔よりも小さくすればよい。前面側熱交換器の曲率がより大きい部分における伝熱管の配置間隔を曲率がより小さい部分における伝熱管の配置間隔よりも小さくすることにより、空気が加速されやすい曲率がより小さい部分の空気流の加速を防止することができるので、熱交換器を通過する空気の風速分布の不均一を低減することができる。   In the present embodiment, the heat transfer tube arrangement interval in the heat exchanger curve portions 35, 36 is made smaller than the heat transfer tube arrangement interval in the heat exchanger linear portions 50, 51, 52 so that the air is easily accelerated. By suppressing the acceleration of the air flow in the heat exchanger curve portions 35 and 36, nonuniformity in the wind speed distribution of the air passing through the heat exchanger was reduced. However, the present invention is not limited to an indoor heat exchanger having a heat exchanger linear part and a heat exchanger curved part as in the present embodiment, but only a heat exchanger curved part without a heat exchanger linear part. Even in the case where the curvature of the heat exchanger curve portion is changed, a region where air is easily accelerated is generated, and the wind speed distribution of the air passing through the indoor heat exchanger becomes non-uniform. It is also effective in some cases. In such a case, what is necessary is just to make the arrangement | positioning space | interval of the heat exchanger tube in the part with a larger curvature of a front surface side heat exchanger smaller than the arrangement | positioning space | interval of the heat exchanger tube in the part with a smaller curvature of a front surface side heat exchanger. By reducing the arrangement interval of the heat transfer tubes in the portion where the curvature of the front side heat exchanger is larger than the arrangement interval of the heat transfer tubes in the portion where the curvature is smaller, the air flow in the portion where the curvature is easy to be accelerated is reduced. Since acceleration can be prevented, the nonuniformity of the wind speed distribution of the air passing through the heat exchanger can be reduced.

尚、図3を用いて説明したとおり、クロスフィンチューブ型の熱交換器は、U字状に曲げられた伝熱管が用いられるため、伝熱管の配置間隔を異ならせるためには、U字状に曲げられた伝熱管の曲げ半径を異ならせる必要がある(つまり、複数の種類の伝熱管を用意する必要がある。)。しかしながら、本実施例では、2つのU字状の伝熱管のうち隣り合う伝熱管の配置間隔を小さくすることにより(つまり、隣り合うU字状の伝熱管をL0,L1,L2となるように調整するため)、複数の種類の伝熱管を必要とせずに、1種類のU字状の伝熱管のみで熱交換器を構成することができる。   As described with reference to FIG. 3, the cross fin tube type heat exchanger uses a U-shaped bent heat transfer tube. Therefore, in order to vary the arrangement interval of the heat transfer tubes, the U-shaped It is necessary to make the bending radii of the heat transfer tubes bent differently (that is, it is necessary to prepare a plurality of types of heat transfer tubes). However, in this embodiment, the arrangement interval between adjacent heat transfer tubes of the two U-shaped heat transfer tubes is reduced (that is, the adjacent U-shaped heat transfer tubes are set to L0, L1, and L2. Therefore, the heat exchanger can be configured with only one type of U-shaped heat transfer tube without requiring a plurality of types of heat transfer tubes.

本発明に係る第2の実施例を図6により説明する。本実施例に係る空気調和機の基本的な構成は第1の実施例と同様であるため詳細な説明は省略し、相違点についてのみ説明する。   A second embodiment according to the present invention will be described with reference to FIG. Since the basic configuration of the air conditioner according to the present embodiment is the same as that of the first embodiment, detailed description thereof will be omitted, and only differences will be described.

図6は、本実施例における前面側室内熱交換器の伝熱管の配置を示す。本実施例における前面側室内熱交換器では、空気の流れ方向に伝熱管が3列配置され、空気の流れ方向と直角の方向に12段配置される。図中の破線は、挿入された伝熱管のU字状に曲げられた部分を示す。ここでL0は、熱交換器直線部における伝熱管の配置間隔を示す。L1及びL2は、熱交換器曲線部35及び熱交換器曲線部36における伝熱管の配置間隔のうち、最も小さい伝熱管の配置間隔を示す。本実施例では、L0,L1,L2の関係は、第1の実施例と同様に、次式の通りである。
L1<L0
L2<L0
すなわち、空気が加速されやすい熱交換器曲線部35,36における伝熱管の配置間隔が熱交換器直線部50,51,52における伝熱管の配置間隔よりも狭く、相対的に熱交換器曲線部35,36における通風抵抗が大きくなるので、熱交換器曲線部35,36における空気流の加速を抑制することができる。つまり、熱交換器を通過する空気の風速分布の不均一を低減することができ、省エネルギ性の向上と静音化を両立することができる。
FIG. 6 shows the arrangement of the heat transfer tubes of the front side indoor heat exchanger in the present embodiment. In the front side indoor heat exchanger in the present embodiment, three rows of heat transfer tubes are arranged in the air flow direction, and twelve stages are arranged in a direction perpendicular to the air flow direction. The broken line in a figure shows the part bent in the U shape of the inserted heat exchanger tube. Here, L0 indicates the arrangement interval of the heat transfer tubes in the heat exchanger linear portion. L1 and L2 indicate the arrangement interval of the smallest heat transfer tubes among the arrangement intervals of the heat transfer tubes in the heat exchanger curve portion 35 and the heat exchanger curve portion 36. In the present embodiment, the relationship between L0, L1, and L2 is as in the following equation, as in the first embodiment.
L1 <L0
L2 <L0
That is, the arrangement interval of the heat transfer tubes in the heat exchanger curve portions 35 and 36 in which air is easily accelerated is narrower than the arrangement interval of the heat transfer tubes in the heat exchanger linear portions 50, 51 and 52, and the heat exchanger curve portions are relatively. Since the ventilation resistance in 35 and 36 becomes large, acceleration of the airflow in the heat exchanger curve portions 35 and 36 can be suppressed. That is, nonuniformity in the wind speed distribution of the air passing through the heat exchanger can be reduced, and both energy saving and noise reduction can be achieved.

ここで、第1の実施例においては、伝熱管のU字状に曲げられた部分(図6に記載の破線部分)は、伝熱管の配置間隔が小さい部分には存在しない。しかし、本実施例においては、伝熱管のU字状に曲げられた部分(図6に記載の破線部分)が、伝熱管の配置間隔が小さい部分に存在する。すなわち、他の伝熱管よりもU字部分の曲げ半径が小さい伝熱管40を使用することにより、伝熱管の配列間隔を小さくする。   Here, in the first embodiment, the portion bent in the U shape of the heat transfer tube (the broken line portion shown in FIG. 6) does not exist in the portion where the heat transfer tube arrangement interval is small. However, in the present embodiment, the portion bent in the U shape of the heat transfer tube (the broken line portion shown in FIG. 6) exists in the portion where the arrangement interval of the heat transfer tubes is small. That is, the arrangement interval of the heat transfer tubes is reduced by using the heat transfer tubes 40 whose U-shaped portion has a smaller bending radius than other heat transfer tubes.

1 室外機
2 圧縮機
3 四方弁
4 室外熱交換器
5 プロペラファン
6 絞り装置
7 室内機
8 室内熱交換器
9 貫流ファン
10 接続配管
11 フィン
12 伝熱管
13 継手部品
14 室内機背面側筐体
15 室内機前面側筐体
16 室内機前面パネル
17 風向制御板
18 室内機上部前側筐体
19 プレフィルタの枠
20 前面側室内熱交換器
21 背面側室内熱交換器
22 前面空気吸込口
23 上面空気吸込口
24 空気吹出口
25,26,27 前縁側直線部
28,29 前縁側曲線部
30,31,32 後縁側直線部
33,34 後縁側曲線部
35,36 熱交換器曲線部
37 抵抗体
38 抵抗体の中央部
39 細矢印群
40 U字部分の曲げ半径が小さい伝熱管
50,51,52 熱交換器直線部
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Propeller fan 6 Throttle device 7 Indoor unit 8 Indoor heat exchanger 9 Cross-flow fan 10 Connection pipe 11 Fin 12 Heat transfer tube 13 Joint part 14 Indoor unit back side housing 15 Indoor unit front side housing 16 Indoor unit front panel 17 Wind direction control plate 18 Indoor unit upper front case 19 Pre-filter frame 20 Front side indoor heat exchanger 21 Rear side indoor heat exchanger 22 Front air inlet 23 Upper surface air suction Port 24 Air outlet 25, 26, 27 Leading edge side straight part 28, 29 Leading edge side curved part 30, 31, 32 Trailing edge side straight part 33, 34 Trailing edge side curved part 35, 36 Heat exchanger curve part 37 Resistor 38 Resistance Body center portion 39 Thin arrow group 40 Heat transfer tubes 50, 51, 52 where the bending radius of the U-shaped portion is small Heat exchanger linear portion

Claims (5)

空気吸込口及び空気吹出口を有する筐体と、
前記筐体内に設けられた送風ファンと、
フィン及び前記フィンを貫通する伝熱管を有し、前記送風ファンを取り囲むように配置された略逆V字状の室内熱交換器と、を備え、
前記室内熱交換器は、前面側室内熱交換器及び背面側室内熱交換器を有し、
前記前面側室内熱交換器は、2つの直線部及び両端が前記2つの直線部に接続された曲線部を有し、
前記曲線部における前記伝熱管の配置間隔が、前記直線部における前記伝熱管の配置間隔よりも小さいことを特徴とする空気調和機。
A housing having an air inlet and an air outlet;
A blower fan provided in the housing;
A substantially reverse V-shaped indoor heat exchanger having fins and heat transfer tubes penetrating the fins and arranged to surround the blower fan,
The indoor heat exchanger has a front side indoor heat exchanger and a back side indoor heat exchanger,
The front-side indoor heat exchanger has two straight portions and curved portions whose both ends are connected to the two straight portions,
The air conditioner characterized in that an arrangement interval of the heat transfer tubes in the curved portion is smaller than an arrangement interval of the heat transfer tubes in the linear portion.
請求項1において、前記曲線部における最風上列の伝熱管の配置間隔が、前記直線部における前記伝熱管の配置間隔よりも小さいことを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein an arrangement interval of the heat transfer tubes in the windward row in the curved portion is smaller than an arrangement interval of the heat transfer tubes in the linear portion. 空気吸込口及び空気吹出口を有する筐体と、
前記筐体内に設けられた送風ファンと、
フィン及び前記フィンを貫通する伝熱管を有し、前記送風ファンを取り囲むように配置された略逆V字状の室内熱交換器と、を備え、
前記室内熱交換器は、前面側室内熱交換器及び背面側室内熱交換器を有し、
前記前面側室内熱交換器は、前記送風ファンの方向に湾曲するように形成され、
前記前面側室内熱交換器の曲率が大きい部分における前記伝熱管の配置間隔が、前記前面側室内熱交換器の曲率がより小さい部分における前記伝熱管の配置間隔よりも小さいことを特徴とする空気調和機。
A housing having an air inlet and an air outlet;
A blower fan provided in the housing;
A substantially reverse V-shaped indoor heat exchanger having fins and heat transfer tubes penetrating the fins and arranged to surround the blower fan,
The indoor heat exchanger has a front side indoor heat exchanger and a back side indoor heat exchanger,
The front-side indoor heat exchanger is formed so as to bend in the direction of the blower fan,
The air is characterized in that an arrangement interval of the heat transfer tubes in a portion where the curvature of the front side indoor heat exchanger is large is smaller than an arrangement interval of the heat transfer tubes in a portion where the curvature of the front side indoor heat exchanger is smaller. Harmony machine.
請求項3において、前記前面側室内熱交換器の曲率が大きい部分における最風上列の伝熱管の配置間隔が、前記前面側室内熱交換器の曲率がより小さい部分における前記伝熱管の配置間隔よりも小さいことを特徴とする空気調和機。   4. The arrangement interval of the heat transfer tubes in a portion where the curvature of the front side indoor heat exchanger is smaller than the arrangement interval of the heat transfer tubes in the windward upper row in the portion where the curvature of the front side indoor heat exchanger is large. Air conditioner characterized by being smaller than. 請求項1乃至4の何れかにおいて、前記室内熱交換器はU字状に曲げられた複数の伝熱管により構成されたクロスフィンチューブ型の室内熱交換器であって、前記U字状に曲げられた伝熱管の曲げ半径が全て等しいことを特徴とする空気調和機。   The indoor heat exchanger according to any one of claims 1 to 4, wherein the indoor heat exchanger is a cross fin tube type indoor heat exchanger configured by a plurality of heat transfer tubes bent in a U shape, and is bent in the U shape. An air conditioner characterized in that the bending radii of the heat transfer tubes are all equal.
JP2009212633A 2009-09-15 2009-09-15 Air conditioner Active JP5081881B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009212633A JP5081881B2 (en) 2009-09-15 2009-09-15 Air conditioner
KR1020100078576A KR101287775B1 (en) 2009-09-15 2010-08-16 Air conditioner
CN2010102595193A CN102022862B (en) 2009-09-15 2010-08-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212633A JP5081881B2 (en) 2009-09-15 2009-09-15 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011064338A true JP2011064338A (en) 2011-03-31
JP5081881B2 JP5081881B2 (en) 2012-11-28

Family

ID=43864456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212633A Active JP5081881B2 (en) 2009-09-15 2009-09-15 Air conditioner

Country Status (3)

Country Link
JP (1) JP5081881B2 (en)
KR (1) KR101287775B1 (en)
CN (1) CN102022862B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048977A (en) * 2013-09-02 2015-03-16 日立アプライアンス株式会社 Air conditioner
CN105783234A (en) * 2016-03-07 2016-07-20 芜湖美智空调设备有限公司 Connector and air-conditioner provided with same
JP2018119742A (en) * 2017-01-25 2018-08-02 日立ジョンソンコントロールズ空調株式会社 Indoor equipment of air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056848B (en) * 2018-04-23 2024-05-03 新能能源有限公司 High-temperature high-pressure flue gas waste heat utilization system
CN110455016A (en) * 2019-08-14 2019-11-15 东北电力大学 A kind of frost-proof wing pipe evaporator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164348A (en) * 1991-12-16 1993-06-29 Hitachi Ltd Air conditioner
JPH07324883A (en) * 1994-05-31 1995-12-12 Toshiba Corp Manufacture of heat exchanger
JPH09210586A (en) * 1996-01-30 1997-08-12 Daikin Ind Ltd Heat exchanger
JP2001304605A (en) * 2000-04-21 2001-10-31 Hitachi Ltd Air conditioner
JP2005147414A (en) * 2003-11-11 2005-06-09 Matsushita Electric Ind Co Ltd Heat exchanger with fin
JP2005214529A (en) * 2004-01-30 2005-08-11 Daikin Ind Ltd Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173998A (en) * 1978-02-16 1979-11-13 Carrier Corporation Formed coil assembly
JPH07208821A (en) * 1994-01-17 1995-08-11 Toshiba Corp Air conditioner
US20030094260A1 (en) * 2001-11-19 2003-05-22 Whitlow Gregory Alan Heat exchanger tube with stone protection appendage
JP2004019999A (en) * 2002-06-14 2004-01-22 Matsushita Electric Ind Co Ltd Heat exchanger with fin, and manufacturing method therefor
KR20050062040A (en) * 2003-12-19 2005-06-23 삼성전자주식회사 End-plate for heat-exchanger, heat-exchanger with the end-plate and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164348A (en) * 1991-12-16 1993-06-29 Hitachi Ltd Air conditioner
JPH07324883A (en) * 1994-05-31 1995-12-12 Toshiba Corp Manufacture of heat exchanger
JPH09210586A (en) * 1996-01-30 1997-08-12 Daikin Ind Ltd Heat exchanger
JP2001304605A (en) * 2000-04-21 2001-10-31 Hitachi Ltd Air conditioner
JP2005147414A (en) * 2003-11-11 2005-06-09 Matsushita Electric Ind Co Ltd Heat exchanger with fin
JP2005214529A (en) * 2004-01-30 2005-08-11 Daikin Ind Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048977A (en) * 2013-09-02 2015-03-16 日立アプライアンス株式会社 Air conditioner
CN105783234A (en) * 2016-03-07 2016-07-20 芜湖美智空调设备有限公司 Connector and air-conditioner provided with same
JP2018119742A (en) * 2017-01-25 2018-08-02 日立ジョンソンコントロールズ空調株式会社 Indoor equipment of air conditioner

Also Published As

Publication number Publication date
KR101287775B1 (en) 2013-07-18
KR20110030302A (en) 2011-03-23
CN102022862B (en) 2013-11-13
JP5081881B2 (en) 2012-11-28
CN102022862A (en) 2011-04-20

Similar Documents

Publication Publication Date Title
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
JP6223596B2 (en) Air conditioner indoor unit
JP5081881B2 (en) Air conditioner
JPWO2019077744A1 (en) Air conditioner
JP2016200338A (en) Air conditioner
WO2017135442A1 (en) Heat exchanger
WO2018235215A1 (en) Heat exchanger, refrigeration cycle device, and air conditioner
JP6370399B2 (en) Air conditioner indoor unit
EP3608618B1 (en) Heat exchanger and refrigeration cycle device
JP2014081150A (en) Air conditioner
JP2014228223A (en) Air conditioner
CN116724209B (en) Heat exchanger
JP6316458B2 (en) Air conditioner
JP6678413B2 (en) Air conditioner
WO2014125603A1 (en) Heat exchange device and refrigeration cycle device equipped with same
JP6230852B2 (en) Air conditioner and heat exchanger for air conditioner
JP6486718B2 (en) Heat exchanger
JP2008128553A (en) Outdoor unit of air conditioner
JP6707152B2 (en) Air conditioner
JP2014047959A (en) Heat exchanger and refrigeration cycle device having the heat exchanger mounted thereon
JP2010266099A (en) Heat exchanger
JP2006138504A (en) Heat exchanger and air conditioner
JP6301091B2 (en) Air conditioner
JP2007170757A (en) Indoor unit of air conditioner
JP6340583B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250