JP2011051553A - ハイブリッド車両の制御装置 - Google Patents
ハイブリッド車両の制御装置 Download PDFInfo
- Publication number
- JP2011051553A JP2011051553A JP2009204577A JP2009204577A JP2011051553A JP 2011051553 A JP2011051553 A JP 2011051553A JP 2009204577 A JP2009204577 A JP 2009204577A JP 2009204577 A JP2009204577 A JP 2009204577A JP 2011051553 A JP2011051553 A JP 2011051553A
- Authority
- JP
- Japan
- Prior art keywords
- torque
- engine torque
- engine
- change
- rotating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008859 change Effects 0.000 claims abstract description 88
- 230000005540 biological transmission Effects 0.000 claims abstract description 78
- 238000006243 chemical reaction Methods 0.000 claims abstract description 56
- 230000007246 mechanism Effects 0.000 claims description 136
- 238000002485 combustion reaction Methods 0.000 claims description 44
- 230000000630 rising effect Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 abstract description 50
- 230000008569 process Effects 0.000 abstract description 48
- 230000035939 shock Effects 0.000 abstract description 8
- 230000006870 function Effects 0.000 description 15
- 239000000446 fuel Substances 0.000 description 13
- 230000009467 reduction Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 6
- 238000010248 power generation Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000009699 differential effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 240000005002 Erythronium dens canis Species 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- -1 etc.) ) Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Hybrid Electric Vehicles (AREA)
- Control Of Transmission Device (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】無段変速モードへの切り替え過程におけるショックの発生を防止する。
【解決手段】ハイブリッド車両(10)は、第1回転要素(310)が非ロック状態にある場合に対応する無段変速モードと、第1回転要素がロック状態にある場合に対応する固定変速モードとの間で変速モードを切り替え可能に構成される。このようなハイブリッド車両の制御装置(100)は、ロック状態から非ロック状態への切り替え時に、機関トルクが上昇するか否かを判定する判定手段と、機関トルクが上昇すると判定された場合に、機関トルクの反力を受け持つために出力される回転電機(MG1)のトルクの変化量を増加させるように、回転電機を制御する制御手段とを備える。
【選択図】図6
【解決手段】ハイブリッド車両(10)は、第1回転要素(310)が非ロック状態にある場合に対応する無段変速モードと、第1回転要素がロック状態にある場合に対応する固定変速モードとの間で変速モードを切り替え可能に構成される。このようなハイブリッド車両の制御装置(100)は、ロック状態から非ロック状態への切り替え時に、機関トルクが上昇するか否かを判定する判定手段と、機関トルクが上昇すると判定された場合に、機関トルクの反力を受け持つために出力される回転電機(MG1)のトルクの変化量を増加させるように、回転電機を制御する制御手段とを備える。
【選択図】図6
Description
本発明は、動力源として内燃機関及び電動発電機を備えるハイブリッド車両の制御装置の技術分野に関する。
この種の装置として、回転要素の歯が固定要素の歯に噛み合っている固定変速比モードでの走行中に、正回転のMG1トルクを徐々に減少させていき(言い換えれば、負回転のMG1トルクを徐々に増加させていき)、回転要素と固定要素との位相が変化した際に、回転要素に付与されているMG1トルクに基づいて、エンジントルクを推定する装置が提案されている(例えば、特許文献1参照)。特許文献1に開示された駆動制御装置によれば、上述したエンジントルクの推定時に、MG1トルクが目標トルクの近傍の値になった場合にMG1トルクを変化させる速度(所謂スイープ速度)を比較的遅くすることで、回転要素の歯が固定要素の歯における負回転方向側の側面に衝突することによる、ショックの発生を抑制することが可能とされている。
上述した特許文献1に開示の駆動制御装置によれば、固定変速比モードから無段変速モードへの切り替え過程において、モータジェネレータMG1がエンジントルクの反力トルクを供給する(具体的には、負回転のMG1トルクが該反力トルクに対応する値に向けて徐々に増加する)際に、エンジントルクの上昇があると、この上昇前に決定されたMG1トルクではエンジントルクの反力トルクを十分に供給する或いは受け持つことができない場合が生じる。この場合、仮に反力トルクを十分に供給しない或いは受け持たない状態で無段変速モードへの切り換えが行われると、この切り替えに伴う衝撃或いは振動等のショックが発生し兼ねないという技術的問題点がある。
本発明は、上述した問題点に鑑みなされたものであり、無段変速モードへの切り替え過程におけるショックの発生を防止可能なハイブリッド車両の制御装置を提供することを課題とする。
上述した課題を解決するために、本発明に係る第1のハイブリッド車両の制御装置は、複数の歯を有し、内燃機関の機関トルクにより回転する回転要素と、複数の歯を有し、前記回転要素と噛み合う固定要素とを有する噛合機構と、前記回転要素に前記機関トルクを付与する回転電機と、前記噛合機構を噛み合わせることで前記機関トルクの反力を当該噛合機構で受け持たせつつ、前記機関トルクを車輪に伝達させるように制御を行う第1伝達制御手段と、前記噛合機構における噛み合いを解放して前記機関トルクの反力を前記トルク付与手段で受け持たせつつ、前記機関トルクを前記車輪に伝達させるように制御を行う第2伝達制御手段とを備え、前記噛み合いを解放した解放状態にある場合に対応し、前記内燃機関の回転速度と前記車輪に繋がる駆動軸の回転速度との比たる変速比が連続的に可変とされる無段変速モードと、前記噛合機構を噛み合わせた噛合状態にある場合に対応し、前記変速比が固定される固定変速モードとの間で変速モードを切り替え可能に構成されたハイブリッド車両を制御するハイブリッド車両の制御装置であって、前記第1回転要素における前記噛合状態から前記解放状態への切り替え時において、前記機関トルクが上昇するか否かを判定する判定手段と、前記機関トルクが上昇すると判定された場合に、前記機関トルクの反力を受け持つために出力される前記回転電機のトルクの変化量を増加させるように、前記回転電機を制御する制御手段とを備える。
上述した課題を解決するために、本発明に係る第2のハイブリッド車両の制御装置は、内燃機関と、回転電機と、前記回転電機に連結された第1回転要素、車軸に繋がる駆動軸に連結された第2回転要素及び前記内燃機関に連結された第3回転要素を含む相互に差動回転可能な複数の回転要素を備えた動力分割機構と、前記第1回転要素に固定された第1係合要素と固定要素である所定のロック要素に固定された第2係合要素とを有し、前記第1係合要素と前記第2係合要素とが係合する状態であって前記第1回転要素を回転不能なロック状態と、前記第1係合要素と前記第2係合要素とが係合しない状態であって前記第1回転要素を回転可能な非ロック状態との間で切り替え可能なロック機構とを備え、前記第1回転要素が前記非ロック状態にある場合に対応し、前記内燃機関の回転速度と前記駆動軸の回転速度との比たる変速比が連続的に可変とされる無段変速モードと、前記第1回転要素が前記ロック状態にある場合に対応し、前記変速比が固定される固定変速モードとの間で変速モードを切り替え可能に構成されたハイブリッド車両を制御するハイブリッド車両の制御装置であって、前記第1回転要素における前記ロック状態から前記非ロック状態への切り替え時において、前記内燃機関の機関トルクが上昇するか否かを判定する判定手段と、前記機関トルクが上昇すると判定された場合に、前記機関トルクの反力を受け持つために出力される前記回転電機のトルクの変化量を増加させるように、前記回転電機を制御する制御手段とを備える。
本発明に係るハイブリッド車両は、駆動軸に対し動力供給可能な動力要素として、例えばモータジェネレータ等の電動発電機として構成され得る回転電機(言い換えれば、トルク付与手段)と、燃料種別、燃料の供給態様、燃料の燃焼態様、吸排気系の構成及び気筒配列等、その物理的、機械的又は電気的構成を問わない各種の態様を採り得る、燃料の燃焼により動力を生成可能な機関としての内燃機関を少なくとも備えた車両である。
本発明に係るハイブリッド車両の制御装置は、このようなハイブリッド車両を制御する制御装置であって、例えば、一又は複数のCPU(Central Processing Unit)、MPU(Micro Processing Unit)、各種プロセッサ又は各種コントローラ、或いは更にROM(Read Only Memory)、RAM(Random Access Memory)、バッファメモリ又はフラッシュメモリ等の各種記憶手段等を適宜に含み得る、単体の或いは複数のECU(Electronic Controlled Unit)等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る。
本発明に係るハイブリッド車両は、動力伝達機構(例えば、トルク付与手段に含まれる)を備える。動力伝達機構は、例えば、(1)回転電機に直接的又は間接的に連結され、回転電機による回転速度の調整が可能な第1回転要素、(2)駆動軸に連結される第2回転要素及び(3)内燃機関に連結される第3回転要素を含む、相互に差動作用をなし得る複数の回転要素を備えており、係る差動作用により各回転要素の状態(端的には、回転可能であるか否か及び他の回転要素又は固定要素と連結された状態にあるか否か等を含む)に応じて、上記動力要素と駆動軸との間の動力伝達(端的にはトルクの伝達である)を行う機構である。
動力伝達機構に備わる複数の回転要素のうち、第1、第2及び第3回転要素は、常時或いは選択的に、これらのうち二要素の回転速度が定まれば自ずと残余の一回転要素の回転速度が定まる回転二自由度の差動機構(尚、この差動機構に含まれる回転要素は必ずしもこれら三要素に限定されない)を構築する。従って、回転電機は、内燃機関に対し内燃機関のトルクに対応する反力トルクを与える反力要素として機能し得るものであり、内燃機関の回転速度制御機構としても機能し得るものである。
本発明に係るハイブリッド車両は、例えばドグクラッチ装置又はカムロック装置等の各種態様を採り得る噛合機構又はロック機構を備える。噛合機構は、内燃機関のトルクにより回転する回転要素と、この回転要素と噛み合う固定要素とを備え、例えば物理的、機械的、電気的又は磁気的な各種係合力により、これらが相互に噛み合ってなる噛合状態と、これらが相互に解放された解放状態とを採ることができる。ロック機構は、第1回転要素に固定された第1係合要素と、この第1係合要素と係合可能な第2係合要素とを備え、例えば物理的、機械的、電気的又は磁気的な各種係合力により、これらが相互に係合してなるロック状態と、これらが相互に解放された非ロック状態とを採ることができる。
本発明に係るハイブリッド車両において、この噛合状態又はロック状態及び解放状態又は非ロック状態は、夫々が、相互に異なる変速モードとしての、固定変速モード及び無段変速モードに対応する構成となっている。尚、噛合機構又はロック機構の採り得る実践的態様は、上記の如く限定されない趣旨であるが、噛合機構又はロック機構は、好適な一形態として、その係合過程に、係合要素同士の回転同期を行う回転同期過程を含む機構であってもよい。
無段変速モードは、上述の回転二自由度の差動機構において、回転電機を内燃機関の回転速度制御機構として機能させる(即ち、解放状態又は非ロック状態でなければならない)ことにより、内燃機関の回転速度と駆動軸の回転速度との比たる変速比を理論的に、実質的に或いは予め規定された物理的、機械的、機構的又は電気的な制約の範囲内で、連続的に(実践上連続的であるのと同等に段階的な態様を含む)変化させることが可能な変速モードである。この場合、好適な一形態として、内燃機関の動作点(例えば、機関回転速度と機関トルクとにより規定される内燃機関の一運転条件を規定する点)が、例えば、理論的に、実質的に又は何らかの制約の範囲で自由に選択され、例えば、燃料消費率が理論的に、実質的に又は何らかの制約の範囲で最小となる、或いはハイブリッド車両のシステム効率(例えば、動力伝達機構の伝達効率と内燃機関の熱効率等に基づいて算出される総合的な効率である)が理論的に、実質的に又は何らかの制約の範囲で最大となる、最適燃費動作点等に制御される。動力伝達機構は、一又は複数の遊星歯車機構等のギア機構を好適な一形態として採り得るものであって、複数の遊星歯車機構を含む場合には、各遊星歯車機構を構成する回転要素の一部が複数の遊星歯車機構相互間で適宜共有され得る。
固定変速モードは、同様に回転二自由度の差動機構において、噛合状態又はロック状態に維持することによって実現される、上記変速比が一義に規定される変速モードである。即ち、噛合状態又はロック状態にある場合、噛合機構の回転要素又は第1回転要素における回転速度(即ち、ゼロ)と、車速と一義的な回転状態を示す回転要素又は第2回転要素における回転速度とによって、残余の内燃機関に連結された回転要素又は第3回転要素における回転速度は一義に規定されるのである。この際、噛合機構の回転要素又は第1回転要素が回転電機に直接連結される構成であれば、回転電機はゼロ回転となり、所謂MG1ロックと称される状態が実現され、噛合機構の回転要素又は第1回転要素が、相互に差動関係にある他の回転要素を介して回転電機に連結される構成であれば、回転電機の回転速度はこれらのギア比に応じて定まる一の値に固定される。いずれにせよ、固定変速モードは、動力循環と称される、動力要素及び動力伝達機構を含むハイブリッド駆動装置全体のシステム効率を低下させ得る非効率な電気パスの発生を回避することを目的として好適には選択される。
ここで、固定変速モードは、内燃機関に対し噛合機構又はロック機構から反力トルクを付与する(即ち、噛合機構又はロック機構を反力要素として機能させる)変速モードであり、固定変速モードから無段変速モードへの変速モードの切り替え過程(言い換えれば、噛合状態又はロック状態から解放状態又は非ロック状態への切り替え過程)において、反力要素が噛合機構又はロック機構から回転電機へ切り替わる。この際、トルク値がゼロである回転電機に対し電力が供給されると、所定の変化量で回転電機のトルクが上昇し、後に反力トルクに相当する値に達する。この時点で回転電機は反力要素として機能することとなる。ところが、反力要素の切り替え時に内燃機関のトルクが上昇すると、この上昇前に変化量が決定される回転電機のトルクは、内燃機関のトルクの上昇に伴い負回転側で増加する反力トルクに相当する値に達し得ない可能性があり、無段変速モードへの切り替えを行うことができない。仮に、回転電機が反力要素として機能する以前に無理に無段変速モードへの切り替えを行えば、噛合機構又はロック機構から回転電機への反力トルクの受け渡しが円滑に行われず、反力トルクと一義的な関係を有する内燃機関からの直達トルクを含む駆動軸トルクが変動する可能性がある。駆動軸トルクの変動は、取りも直さず車輪に供給される駆動力の変動であり、ドライバに物理衝撃或いは物理振動となって伝達されることによりドライバビリティを悪化させる要因となる。
以上のように構成されたハイブリッド車両を制御する本発明に係る制御装置によれば、走行中である、その動作時には、先ず、ECU(Electronic Control Unit)等の判定手段により、内燃機関のトルク(以下、適宜「機関トルク」と称する)が上昇するか否かが判定される。この判定は、内燃機関の機関回転速度、内燃機関における要求パワー等に基づいて行われる。
続いて、ECU等の制御手段により、機関トルクが上昇すると判定された場合には、回転電機のトルクの変化量が増加される。ここで、本発明に係る回転電機における「変化量」とは、所定時間と所定時間経過後に特定される回転電機のトルクの上昇値との比である、又は単位時間当たりの変化量である傾き或いはレート(即ち、トルクの時間微分値)を意味する。このような変化量が増加する(即ち、傾き或いはレートの値が大きくなる)と、単位時間当たりに出力される回転電機のトルクが徐々に増加する。この増加するトルクは、回転電機からその回転軸を介して、内燃機関の機関トルクの反力を受け持つために、出力される。即ち、制御手段は、そのように出力されるトルクの変化量(即ち、単位時間当たりのトルクの変化量或いは変化率(変化割合、変化レート))を、噛合機構又は第1回転要素における解放状態又は非ロック状態への切り替え過程において機関トルクが上昇すると判定された場合に、増加させる。
このように、本発明に係るハイブリッド車両の制御装置は、噛合機構又は第1回転要素における噛合状態又はロック状態から解放状態又は非ロック状態への切り替え過程において、機関トルクの上昇がある場合に、回転電機のトルクの変化量を増加させ、回転電機から内燃機関に対し機関トルクの上昇に対応する反力トルクを与える。これにより、回転電機のトルクを機関トルクの反力トルクに相当する値に到達させることが可能であり、噛合機構又はロック機構から回転電機への反力トルクの受け渡しが確実に行われた上で、噛合機構又は第1回転要素における解放状態又は非ロック状態への切り替えが行われる。従って、解放状態又は非ロック状態への切り替え過程におけるドライバビリティの悪化を確実に抑制することが可能である。
本発明に係るハイブリッド車両の制御装置の一の態様では、前記内燃機関の機関トルクの変化量を特定する特定手段を更に備え、前記判定手段は、前記特定された前記機関トルクの変化量に基づいて前記機関トルクが上昇するか否かを判定する。
この態様によれば、ECU等の特定手段により、機関トルクの変化量が特定される。ここに、本発明に係る機関トルクにおける「変化量」とは、所定時間と所定時間経過後に特定される機関トルクの上昇値との比である、又は単位時間当りの変化量である傾き或いはレート(即ち、トルクの時間微分値)を意味する。このような変化量は、内燃機関の機関回転速度と、当該ハイブリッド車両の総要求パワーのうち内燃機関に対する要求パワーとに基づいて特定される。機関回転速度及び内燃機関に対する要求パワーは共に、機関トルクとの相関が高いため、機関トルクの変化量を特定する要素として極めて適当である。尚、本発明に係る「特定」とは、特定対象(ここでは、機関トルクの変化量である)を直接的に又は間接的に算出、選択、導出、推定、検出、同定、取得或いは決定することを意味する。尚、「間接的に」とは、特定対象と、一対一、一対多、多対一或いは多対多を問わず一義的な関係を有する他の物理量、指標値若しくは制御量等を特定することを意味する。即ち、特定手段は、必ずしも機関トルクの変化量そのものを特定する必要はない。
機関トルクの変化量が特定されると、制御手段により、機関トルクの変化量に基づいて、機関トルクが上昇するか否かが判定される。ここに「変化量に基づいて」とは、変化量の大小や、変化量と予め設定される閾値との比較結果等から、機関トルクの上昇を判定することを意味する。このような判定では、機関トルクの変化量を根拠として、機関トルクの上昇を的確に断定することが可能である。
前記特定手段を更に備える態様では、前記制御手段は、前記特定された前記機関トルクの変化量に応じて、前記回転電機のトルクの変化量を増加させるように、前記回転電機を制御してもよい。
このように構成すれば、「変化量に応じて」とは、理想的には、機関トルクの変化量の上昇分だけ、回転電機のトルクの変化量も上昇させるように増加させる旨を意味する。このような理想的な制御では、回転電機のトルクが機関トルクの反力トルクに相当する値に到達する時間(言い換えれば、解放状態又は非ロック状態への切り替えに要する時間)を一定とすることが可能である。仮に、回転電機のトルクの変化量を増加させる量を同一とすれば、該到達する時間に長短が生じることがある。
前記特定手段を更に備える態様では、前記判定手段は、前記特定された前記機関トルクの変化量が所定の基準変化量を超えた場合に、前記機関トルクが上昇すると判定してもよい。
このように構成すれば、機関トルクの変化量における「所定の基準変化量」とは、制御手段による制御(即ち、回転電機のトルクの変化量の増加)を必要とするか否かを判定するための、機関トルクの変化量の閾値を意味する。このような判定の作用として、例えば機関トルクの変化量が僅かに上昇する場合には、機関トルクが上昇すると判定せずに、制御手段による制御を回避することも可能である。逆に言えば、制御手段による制御を、機関トルクの変化量が比較的大きくなる場合にのみ行うことも可能である。
前記特定手段を更に備える態様では、前記機関トルクの変化量及び前記回転電機のトルクの変化量は夫々、前記機関トルクの変化の時間微分であるレート及び前記回転電機のトルクの変化の時間微分であるレートを示し、前記制御手段は、前記回転電機における基準となるベーストルクレートに、前記特定された前記機関トルクのレートのうち前記機関トルクの上昇分に相当する上昇トルクレートを加えるように、前記回転電機を制御してもよい。
このように構成すれば、「レート」とは、トルクの時間に対する変化率、即ちトルクの時間微分を意味する。制御手段により、現行の機関回転速度及び機関トルク等に応じて予め設定されるベーストルクレートに、機関トルクの上昇分に相当する上昇トルクレートを加えることで、レートを増加させる。これにより、機関トルクの変化量の大きさに関わらず、回転電機のトルクを、一定時間で、機関トルクの反力トルクに相当する値に到達させることが可能となる。従って、解放状態又は非ロック状態への切り替えに要する時間が一定となり、動力性能に係るドライバビリティの悪化を抑制することも可能である。
本発明に係るハイブリッド車両の制御装置の他の態様では、前記制御手段は、前記固定変速モードから前記無段変速モードへの前記変速モードの切り替え時において、前記機関トルクが上昇すると判定された場合に、前記回転電機のトルクの変化量を増加させるように、前記回転電機を制御する。
この態様によれば、固定変速モードから無段変速モードへの変速モードの切り替え過程において、制御手段により、回転電機のトルクの変化量が増加される。このため、回転電機のトルクが機関トルクの反力トルクに相当する値に到達した時に、固定変速モードから無段変速モードへの切り替えが確実に行われることとなる。
本発明の作用及び他の利得は、次に説明する実施するための形態から明らかにされる。
以下、図面を参照して、本発明の好適な実施形態について説明する。
<第1実施形態>
<第1実施形態の構成>
始めに、図1を参照し、本発明の第1実施形態に係るハイブリッド車両10の構成について説明する。ここに、図1は、ハイブリッド車両10の構成を概念的に表してなる概略構成図である。
<第1実施形態>
<第1実施形態の構成>
始めに、図1を参照し、本発明の第1実施形態に係るハイブリッド車両10の構成について説明する。ここに、図1は、ハイブリッド車両10の構成を概念的に表してなる概略構成図である。
図1において、ハイブリッド車両10は、ECU100、PCU(Power Control Unit)11、バッテリ12、車速センサ13及びアクセル開度センサ14並びにハイブリッド駆動装置20を備えた、本発明に係る「ハイブリッド車両」の一例である。
ECU100は、CPU、ROM及びRAM等を備え、ハイブリッド車両10の各部の動作を制御することが可能に構成された電子制御ユニットであり、本発明に係る「第1伝達制御手段」、「第2伝達制御手段」、「特定手段」、「判定手段」及び「制御手段」の一例である。
PCU11は、バッテリ12から取り出した直流電力を交流電力に変換して後述するモータジェネレータMG1及びモータジェネレータMG2に供給すると共に、モータジェネレータMG1及びモータジェネレータMG2によって発電された交流電力を直流電力に変換してバッテリ12に供給することが可能に構成された不図示のインバータを含み、バッテリ12と各モータジェネレータとの間の電力の入出力を、或いは各モータジェネレータ相互間の電力の入出力(即ち、この場合、バッテリ12を介さずに各モータジェネレータ相互間で電力の授受が行われる)を制御することが可能に構成された制御ユニットである。PCU11は、ECU100と電気的に接続されており、ECU100によってその動作が制御される構成となっている。
バッテリ12は、モータジェネレータMG1及びモータジェネレータMG2を力行するための電力に係る電力供給源として機能することが可能に構成された充電可能な蓄電手段である。
車速センサ13は、ハイブリッド車両10の車速Vを特定することが可能に構成されたセンサである。車速センサ13は、ECU100と電気的に接続されており、特定された車速Vは、ECU100によって一定又は不定の周期で参照される構成となっている。
アクセル開度センサ14は、ハイブリッド車両10の図示せぬアクセルペダルの操作量たるアクセル開度Taを特定することが可能に構成されたセンサである。アクセル開度センサ14は、ECU100と電気的に接続されており、特定されたアクセル開度Taは、ECU100によって一定又は不定の周期で参照される構成となっている。
ハイブリッド駆動装置20は、ハイブリッド車両10のパワートレインとして機能する動力ユニットである。ここで、図2を参照し、ハイブリッド駆動装置20の詳細な構成について説明する。ここに、図2は、ハイブリッド駆動装置20の構成を概念的に表してなる概略構成図である。尚、同図において、図1と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
図2において、ハイブリッド駆動装置20は、エンジン200、動力分割機構300、モータジェネレータMG1(以下、適宜「MG1」と略称する)、モータジェネレータMG2(以下、適宜「MG2」と略称する)、ロック機構400、入力軸500、駆動軸600及び減速機構700を備える。
エンジン200は、ハイブリッド車両10の主たる動力源として機能するように構成された、本発明に係る「内燃機関」の一例たるガソリンエンジンである。尚、本発明における「内燃機関」とは、燃料の燃焼を機械的動力に変換可能な機関を意味するものであって、例えば燃料種別(例えばガソリン、軽油、アルコール、アルコール混合燃料或いは天然ガス等)、燃料の供給態様、燃料の燃焼態様、吸排気系の構成及び気筒配列等、物理的、機械的又は電気的な構成は特に限定されない。エンジン200は、動力出力軸としてのクランク軸(不図示)を備えており、このクランク軸は、ハイブリッド駆動装置20の入力軸500に連結されている。
モータジェネレータMG1は、本発明に係る「回転電機」の一例たる電動発電機であり、電気エネルギを運動エネルギに変換する力行機能と、運動エネルギを電気エネルギに変換する回生機能とを備えた構成となっている。モータジェネレータMG2は、電動発電機であり、モータジェネレータMG1と同様に、電気エネルギを運動エネルギに変換する力行機能と、運動エネルギを電気エネルギに変換する回生機能とを備えた構成となっている。尚、モータジェネレータMG1及びMG2は、例えば同期電動発電機として構成され、例えば外周面に複数個の永久磁石を有するロータと、回転磁界を形成する三相コイルが巻回されたステータとを備える構成を有していてもよいし、他の構成を有していてもよい。
動力分割機構300は、本発明に係る「動力伝達機構」の一例たる遊星歯車機構であり、中心部に設けられた、本発明に係る「第1回転要素」の一例たるサンギアS1と、サンギアS1の外周に同心円状に設けられた、本発明に係る「第2回転要素」の一例たるリングギアR1と、サンギアS1とリングギアR1との間に配置されてサンギアS1の外周を自転しつつ公転する複数のピニオンギアP1と、これら各ピニオンギアの回転軸を軸支する、本発明に係る「第3回転要素」の一例たるプラネタリキャリアC1とを備える。
ここで、サンギアS1は、中空のサンギア軸301を介してMG1のロータ(符合は省略)に結合されており、その回転速度はMG1の回転速度(以下、適宜「MG1回転速度Nmg1」と称する)と等価である。また、リングギアR1は、ハイブリッド駆動装置20の動力出力軸たる駆動軸600及び減速機構700を介してMG2の不図示のロータに結合されており、その回転速度はMG2の回転速度(以下、適宜「MG2回転速度Nmg2」と称する)と等価である。更に、プラネタリキャリアC1は、入力軸500に結合されており、その回転速度はエンジン200の機関回転速度NEと等価である。
一方、駆動軸600は、ハイブリッド車両10の駆動輪たる右前輪FR及び左前輪FLを夫々駆動するドライブシャフトSFR及びSFL(即ち、これらドライブシャフトは、本発明に係る「車軸」の一例である)と、デファレンシャル等各種減速ギアを含む減速装置としての減速機構700を介して連結されている。従って、モータジェネレータMG2から駆動軸600に出力されるモータトルクTmは、減速機構700を介して各ドライブシャフトへと伝達され、同様に各ドライブシャフトを介して伝達される各駆動輪からの駆動力は、減速機構700及び駆動軸600を介してモータジェネレータMG2に入力される。即ち、モータジェネレータMG2の回転速度は、ハイブリッド車両10の車速Vと一義的な関係にある。
動力分割機構300は、係る構成の下で、エンジン200が発する動力を、プラネタリキャリアC1とピニオンギアP1とによってサンギアS1及びリングギアR1に所定の比率(各ギア相互間のギア比に応じた比率)で分配し、エンジン200の動力を2系統に分割することが可能となっている。
動力分割機構300の動作を分かり易くするため、リングギアR1の歯数に対するサンギアS1の歯数としてのギア比ρを定義すると、エンジン200からキャリアC1に対しエンジントルク(即ち、本発明に係る「機関トルク」の一例)Teを作用させた場合に、サンギア軸310に現れるトルクTesは下記(1)式により、また駆動軸600に現れるトルクTer(即ち、エンジン200からの直達トルク)は下記(2)式により夫々表される。
Tes=−Te×ρ/(1+ρ)・・・(1)
Ter=Te×1/(1+ρ)・・・(2)
Ter=Te×1/(1+ρ)・・・(2)
尚、本発明に係る「動力伝達機構」に係る実践上の態様は、動力分割機構300に限定されない。例えば、本発明に係る動力伝達機構は、複数の遊星歯車機構を備え、一の遊星歯車機構に備わる複数の回転要素が、他の遊星歯車機構に備わる複数の回転要素の各々と適宜連結され、一体の差動機構を構成していてもよい。また、本実施形態に係る減速機構700は、予め設定された減速比に従って駆動軸600の回転速度を減速するに過ぎないが、ハイブリッド車両10は、この種の減速装置とは別に、例えば、複数のクラッチ機構やブレーキ機構を構成要素とする複数の変速段を備えた有段変速装置を備えていてもよい。更には、この有段変速装置が、例えば複数の遊星歯車機構が適宜連結されてなる複合型遊星歯車機構として構成され、エンジン200の反力トルクを負担する反力要素及び駆動軸600との間で動力の入出力を行う出力要素の役割が、モータジェネレータMG1とモータジェネレータMG2との間で選択的に切り替えられる構成であってもよい。
ハイブリッド駆動装置20は、モータジェネレータMG1の回転量を検出可能に構成された回転センサである第1レゾルバ15と、モータジェネレータMG2の回転量を検出可能に構成された回転センサである第2レゾルバ16とを備える。これら各レゾルバは、ECU100と電気的に接続されており、検出された回転量は、ECU100により一定又は不定の周期で参照される構成となっている。尚、ECU100は、検出された回転量を時間微分処理することにより、各モータジェネレータの回転速度(即ち、Nmg1及びNmg2)を算出することが可能である。
ロック機構400(即ち、本発明に係る「噛合機構」の一例)は、一対のクラッチ板410及び420を有するドグクラッチ機構である。
クラッチ板410は、サンギア軸310に固定されており、サンギア軸310と一体に回転可能な、本発明に係る「回転要素」又は「第1係合要素」の一例である。クラッチ板410において、クラッチ板420と対向する対向面には、周方向に所定間隔で後述する歯状部材(所謂、ドグ歯である)が形成されている。
クラッチ板420は、固定要素たるケースCSに固定された、本発明に係る「固定要素」又は「第2係合要素」の一例である。クラッチ板420において、クラッチ板410と対向する対向面には、クラッチ板410と同様に周方向に所定間隔で後述する歯状部材が形成されている。
一方、クラッチ板420は、不図示の電磁アクチュエータの作用により、図中左方向へ所定量ストローク可能に構成されており、所定量ストロークした状態において、対向面に形成された歯状部材が、クラッチ板410の対向面に形成された歯状部材と相互に噛合することにより、ロック状態(言い換えれば、噛合状態)を採るように構成されている。ロック状態において、クラッチ板410の回転は、固定要素たるケースCSに固定されたクラッチ板420によって阻まれ、クラッチ板410は回転不能にロックされる。
次に、図3を参照し、クラッチ板410及び420の噛合態様について、更に詳しく説明する。ここに、図3は、クラッチ板410及び420の噛合状態を示す平面図である。尚、同図において、図2と重複する箇所には、同一の符合を付してその説明を適宜省略することとする。
図3(a)から図3(c)において、回転要素として機能するクラッチ板410は、ドグ歯410Aと陥没部410Bとが周方向に沿って所定間隔で配列した構成を採る。一方、固定要素として機能するクラッチ板420は、ドグ歯420Aと陥没部420Bとが周方向に沿って所定間隔で配列した構成を採る。
このような構成において、上述したアクチュエータからの駆動力供給によりクラッチ板420が所定量ストロークする過程で、クラッチ板410の陥没部410Bにクラッチ板420のドグ歯420Aが挿入され、同時にクラッチ板420の陥没部420Bにクラッチ板410のドグ歯410Aが挿入される。クラッチ板420のストローク量が最大値に到達すると、クラッチ板410とクラッチ板420とが噛合し、モータジェネレータMG1がロック状態となる。
クラッチ板410の噛合状態について、更に詳しく説明する。図3(a)において、クラッチ板410のドグ歯410Aにおける負回転方向側の側面が、クラッチ板420のドグ歯420Aに当接する場合、後述する固定変速モード時において、ドグ歯410A及び420A間に形成されたガタが詰められた噛合状態にある。図3(b)において、クラッチ板410のドグ歯410Aにおける正回転方向側の側面が、クラッチ板420のドグ歯420Aに当接する場合、後述する無段変速モードへの切り替え過程において、クラッチ板420からのクラッチ板410の解放が遅れたために、ショック発生部分においてショックが発生する噛合状態にある。このような解放の遅れは、後述するMG1トルクTmg1のレートが一定値以上に設定されていることに起因する。図3(c)において、クラッチ板410のドグ歯410Aと、クラッチ板420のドグ歯420Aとが一切当接しない場合、無段変速モードへの切り替え過程において、ショックが発生することなくクラッチ板420からのクラッチ板410の解放が好適に行われる噛合状態にある。このような好適な解放は、MG1トルクTmg1のレートが一定値未満に設定されているために実現することが可能である。
尚、アクチュエータは、PCU11を介してECU100と電気的に接続された状態となっており、その動作状態は、ECU100により制御される構成となっている。また、ドグクラッチ機構の実践的態様は、ロック機構400のものに限定されない。例えば、サンギア軸310に、第1係合要素として中空のハブが固定され、このハブの外周面に歯状部材(即ち、外歯)が形成され、一方で、ケースCSに固定された環状部材の外周面に同様に歯状部材(即ち、外歯)が形成され、更に、第2係合要素として、この環状部材の外歯に勘合する内歯を有するスリーブが、図示左方向に電磁アクチュエータによりストローク可能に設置される構成であってもよい。この場合、スリーブの内歯と環状部材の外歯とを常時噛合させ、ストローク時にスリーブの内歯が更にハブの外歯と噛合することにより、ハブと環状部材とを固定させ、ロック状態を構築してもよい。
また、本発明に係る噛合機構又はロック機構は、このようなドグクラッチ機構に限定されない。例えば、ロック機構は、サンギア軸310に固定された、第1係合要素たるカムと、このカムとの間にカムボールを挟んでこのカムと一体に回転するクラッチ板と、固定要素に連結された第2係合要素たる電磁アクチュエータとを備える所謂カムロック式係合装置であってもよい。この種のカムロック式係合装置においては、カムが係合対象(この場合、固定要素たる電磁アクチュエータである)と回転同期した状態において、電磁アクチュエータによりクラッチ板を電磁アクチュエータ側の摩擦要素へ引きつけ、クラッチ板とカムとの間に生じる差回転によりカムボールを介してセルフロック作用を発現させ、カムの回転を阻止することが可能である。
ハイブリッド駆動装置20において、上述したロック機構400は、クラッチ板410が固定されたサンギアS1を本発明に係る第1回転要素とし、サンギアS1の状態をロック状態と非ロック状態(言い換えれば、解放状態)との間で選択的に切り替えることが可能である。尚、サンギアS1は、既に述べた通りモータジェネレータMG1に連結されており、サンギアS1がロック状態にある場合、モータジェネレータMG1もまた回転不能なロック状態となる。従って、これ以降、サンギアS1がロック状態にあることを適宜「MG1がロック状態にある」等と表現することとする。
<変速モードの詳細>
本実施形態に係るハイブリッド車両10は、サンギアS1の状態に応じて、変速モードとして固定変速モード又は無段変速モードを選択可能である。ここで、図4を参照し、ハイブリッド車両10の変速モードについて説明する。ここに、図4は、動力分割機構300の作用を説明するハイブリッド駆動装置20の動作共線図である。尚、同図において、図2と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
本実施形態に係るハイブリッド車両10は、サンギアS1の状態に応じて、変速モードとして固定変速モード又は無段変速モードを選択可能である。ここで、図4を参照し、ハイブリッド車両10の変速モードについて説明する。ここに、図4は、動力分割機構300の作用を説明するハイブリッド駆動装置20の動作共線図である。尚、同図において、図2と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
図4(a)において、縦軸は回転速度を表しており、横軸には、左から順にモータジェネレータMG1(一義的にサンギアS1)、エンジン200(一義的にキャリアC1)及びモータジェネレータMG2(一義的にリングギアR1)が表されている。ここで、動力分割機構300は遊星歯車機構であり、サンギアS1、キャリアC1及びリングギアR1のうち二要素の回転速度が定まった場合に、残余の一回転要素の回転速度が必然的に定まる構成となっている。即ち、動作共線図上において、各回転要素の動作状態は、ハイブリッド駆動装置20の一動作状態に一対一に対応する一の動作共線によって表すことができる。尚、これ以降適宜、動作共線図上の点を動作点mi(iは自然数)によって表すこととする。即ち、一の動作点miには一の回転速度が対応している。
図4(a)において、MG2の動作点が動作点m1であるとする。この場合、MG1の動作点が動作点m3であれば、残余の一回転要素たるキャリアC1に連結されたエンジン200の動作点は、動作点m2となる。この際、駆動軸600の回転速度を維持したままMG1の動作点を動作点m4及び動作点m5に変化させれば、エンジン200の動作点は夫々動作点m6及び動作点m7へと変化する。
即ち、この場合、モータジェネレータMG1を回転速度制御装置とすることによって、エンジン200を所望の動作点で動作させることが可能となる。この状態に対応する変速モードが、無段変速モードである。無段変速モードでは、エンジン200の動作点(この場合の動作点とは、機関回転速度とエンジントルクTeとの組み合わせによって規定される)は、基本的にエンジン200の燃料消費率が最小となる最適燃費動作点に制御される。尚、当然ながら無段変速モードにおいて、MG1回転速度Nmg1は可変である必要がある。このため、無段変速モードが選択される場合、ロック機構700は、サンギアS1が非ロック状態となるように、その駆動状態が制御される。また、この際、MG1回転速度Nmg1は、回転速度フィードバック制御により、目標回転速度に収束制御される。
ここで補足すると、動力分割機構300において、駆動軸600に先に述べたエンジントルクTeに対応するトルクTerを供給するためには、サンギア軸310にエンジントルクTeに応じて現れる先述のトルクTesと大きさが等しく且つ符合が反転した(即ち、負トルクである)反力トルクをモータジェネレータMG1からサンギア軸310(即ち、本発明に係る「回転電機の回転軸」の一例である)に供給する必要がある。この場合、動作点m3或いは動作点m4といった正回転領域の動作点において、MG1は正回転負トルクの発電状態となる。即ち、無段変速モードにおいては、モータジェネレータMG1(一義的にサンギアS1)を反力要素として機能させることにより、駆動軸600にエンジントルクTeの一部を供給し、且つサンギア軸310に分配されるエンジントルクTeの一部で発電が行われる。駆動軸600に対し要求されるトルクがエンジン直達のトルクで不足する場合には、この発電電力を利用する形で、モータジェネレータMG2から駆動軸600に対し適宜トルクTmg2が供給される。
一方、例えば高速軽負荷走行時等、例えばMG2回転速度Nmg2が高いものの機関回転速度NEが低く済むような運転条件においては、MG1が、例えば動作点m5の如き負回転領域の動作点となる。この場合、モータジェネレータMG1は、エンジントルクTeの反力トルクとして負トルクを出力しており、負回転負トルクの状態となって力行状態となる。即ち、この場合、MG1トルクTmg1は、駆動軸600に作用する駆動軸トルクとして駆動軸600に伝達されてしまう。
他方で、モータジェネレータMG2は、駆動軸600に出力される、要求トルクに対し過剰なトルクを吸収するため、負トルク状態となる。この場合、モータジェネレータMG2は、正回転負トルクの状態となって発電状態となる。このような状態においては、MG1からの駆動力をMG2での発電に利用し、この発電電力によりMG1を力行駆動する、といった所謂動力循環と称される非効率な電気パスが生じることとなる。動力循環が生じた状態では、ハイブリッド駆動装置20の伝達効率が低下してハイブリッド駆動装置20のシステム効率が低下しかねない。
そこで、ハイブリッド車両10では、予めこのような動力循環が生じ得るものとして定められた運転領域において、ロック機構700によりサンギアS1が先に述べたロック状態に制御される。その様子が図4(b)に示される。サンギアS1がロック状態となると、必然的にモータジェネレータMG1もまたロック状態となり、MG1の動作点は、回転速度がゼロである動作点m8となる。このため、エンジン200の動作点は動作点m9となり、その機関回転速度NEは、車速Vと一義的なMG2回転速度Nmg2により一義的に決定される(即ち、変速比が一定となる)。このようにMG1がロック状態にある場合に対応する変速モードが、固定変速モードである。
固定変速モードでは、本来モータジェネレータMG1が負担すべきエンジントルクTeの反力トルクをロック機構700の物理的な制動力により代替させることができる。即ち、モータジェネレータMG1を発電状態にも力行状態にも制御する必要はなくなり、モータジェネレータMG1を停止させることが可能となる。従って、基本的にモータジェネレータMG2を稼動させる必要もなくなり、MG2は言わば空転状態又は補機発電のみを行う状態となる。結局、固定変速モードでは、駆動軸500に現れるトルクたる駆動軸トルクTdsが、エンジントルクTeのうち、動力分割機構300により駆動軸600側に分割された直達成分(上記(2)式参照)である直達トルクTerのみとなり、ハイブリッド駆動装置20は、機械的な動力伝達を行うのみとなって、その伝達効率が向上する。
一方、固定変速モードから無段変速モードへ変速モードを切り替える際には、反力要素をロック機構700からモータジェネレータMG1に切り替える必要がある。ECU100は、固定変速モードにおいて、停止しているモータジェネレータMG1に対しバッテリ12からの電力を供給し、MG1トルクTmg1を所定のレートで徐々に増加する。徐々に増加するMG1トルクTmg1がエンジントルクTeに応じた反力トルクに達した時点で、反力要素がモータジェネレータMG1へ切り替えられると共に、変速モードが無段変速モードへ切り替えられる。ところが、固定変速モードから無段変速モードへの変速モードの切り替え過程において、エンジントルクTeが上昇すると、所定のレートで増加するMG1トルクTmg1が、上昇するエンジントルクTeに応じた反力トルクに達する程に増加せず、モータジェネレータMG1が反力トルクを負担できる状態にない。そこで、本実施形態において、ECU100は、変速モードを固定変速モードから無段変速モードへ切り替える際に、第1解放制御を実行するように構成されている。
<第1実施形態の動作>
<第1解放制御処理>
ここで、図5及び図6を参照し、本発明の第1実施形態として、固定変速モードから無段変速モードへの切り替えに係る第1解放制御処理の詳細について説明する。ここに、図5は、第1解放制御処理を示すフローチャートであり、図6は、第1解放制御処理におけるMG1トルクTmg1のレートの変移を表す二次元グラフである。
<第1解放制御処理>
ここで、図5及び図6を参照し、本発明の第1実施形態として、固定変速モードから無段変速モードへの切り替えに係る第1解放制御処理の詳細について説明する。ここに、図5は、第1解放制御処理を示すフローチャートであり、図6は、第1解放制御処理におけるMG1トルクTmg1のレートの変移を表す二次元グラフである。
車速センサ13により検出される車速V、及びアクセル開度センサ14により検出されるアクセル開度Taに基づく要求駆動力により規定されるハイブリッド車両10の運転条件が、変速モードを選択するマップ上におけるCVT領域(即ち、無段変速モードを規定する領域)に該当する。この場合、図5において、ECU100内における変速モードの制御ルーチンにより、アクセルの踏込等に応じて、ロック状態にあるモータジェネレータMG1を解放する旨の指令が発生したか否かを判定する(ステップS101)。モータジェネレータMG1を解放する旨の指令が未だ発生しない場合(ステップS101:NO)、一連の第1解放制御処理は終了する。
一方、モータジェネレータMG1を解放する旨の指令が発生した場合(ステップS101:YES)、ECU100は、エンジントルクTeのレートを算出する(ステップS102)。ここで、エンジントルクTeのレートは、機関回転速度NEと、ハイブリッド車両10における総要求パワーのうちエンジン200に対する要求パワーとに基づいて算出される。単位は、例えば[N・m/sec]である。エンジントルクTeのレートが算出されると、ECU100は、エンジントルクTeに応じた反力トルクを供給するモータジェネレータMG1のMG1トルクTmg1の初期値を算出すると共に、算出されたMG1トルクTmg1の初期値に基づいて、基準となるMG1トルクTmg1のレート(以下、適宜「ベーストルクレート」と称する)を設定する(ステップS103)。
ここで図6(a)を参照し、設定されるベーストルクレートについて説明する。ここに、図6(a)及び後述する図6(b)は夫々、縦軸にトルク、横軸に時刻が表されてなる二次元グラフである。
図6(a)において、正回転側にエンジントルクTe、負回転側にMG1トルクTmg1が表されている。時刻t0は、モータジェネレータMG1の解放指令が発生した時刻である。この時刻t0以降のエンジントルクTeのレートが、ステップS102の処理にて算出される。また、時刻t0以降のMG1トルクTmg1がモータジェネレータMG1のベーストルクであり、このレートがステップS103の処理にて設定される。点P0は、MG1トルクTmg1の初期値を表す。
図6(a)に示すように、モータジェネレータMG1のベーストルクは、エンジントルクTeの反力トルク(即ち、図6中、点線で表される)と並行しており、ベーストルクのレートで増加するMG1トルクTmg1は、反力トルクに達することができない状態にある。
続いて、ECU100は、算出されたエンジントルクTeのレートに基づいて、エンジントルクTeが上昇するか否かを判定する(ステップS104)。エンジントルクTeが一定或いは下降する場合(ステップS104:NO)、ECU100は、ステップS105におけるMG1トルクTmg1のレートの増加を行うことなく、続いてステップS106の処理を実行する。
一方、エンジントルクTeのレートが上昇する場合(即ち、図6中、エンジントルクを表す線の傾き或いはエンジン反力トルクを表す線の傾きが、より急峻になる場合)(ステップS104:YES)、ECU100は、ベーストルクレートと比較して、MG1トルクTmg1のレートの値を大きくする(言い換えれば、レートを増加する)(ステップS105)。このレートの増加により、モータジェネレータMG1が単位時間当たりに供給するMG1トルクTmg1が増加することになる。
ここで図6(b)を参照し、増加するMGトルクTmg1のレートについて説明する。図6(b)において、正回転側にエンジントルクTe、負回転側に、レートが増加した後のMG1実トルクTmg1が表されている。時刻t1は、MG1トルクTmg1が反力トルクに達する時刻である。時刻t0以降のMG1トルクTmg1は、ベーストルクより、単位時間当たりのMG1トルクTmg1が大きくなっており、この変化を表すレートがステップS105の処理にて決定される。
続いて、ECU100は、実際にMG1トルクTmg1をサンギア軸310に供給する際の、MG1トルクTmg1のレート(以下、適宜「実トルクレート」と称する)を設定すると共に、モータジェネレータMG1に対しバッテリ12から電力を供給する(ステップS106)。ここで実トルクレートは、ステップS104の処理にて、エンジントルクTeが上昇する場合(ステップS104:YES)、ステップS105の処理にて増加したレートとし、一方、エンジントルクTeが一定或いは下降する場合(ステップS104:NO)、ベーストルクレートとして設定される。モータジェネレータMG1が電力供給により駆動されると、このような実トルクレートでMG1トルクTmg1が変移し、エンジントルクTeに応じた反力トルクに達する。
続いて、ECU100は、ロック機構400が解放時における好適なロック状態(即ち、図3(c)に示される状態)にあるように、モータジェネレータMG1の回転角度或いはMG1回転速度Nmg1が変化したか否かを判定する(ステップS107)。MG1回転角度が未だ好適なロック状態が実現するまで変化していない場合(ステップS107:NO)、ステップS104からS106の処理を繰り返す。
一方、MG1回転角度が好適なロック状態が実現する程に変化した場合(ステップS107:YES)、ロック機構700におけるアクチュエータ407への通電を停止し、CVTモード(即ち、無段変速モード)へ移行する(ステップS108)。これにより、一連の第1解放制御処理は終了する。
以上説明したように、第1実施形態に係る第1解放制御処理によれば、固定変速モードから無段変速モードへの変速モードの切り替え過程において、エンジントルクTeが上昇する場合に、MG1トルクTmg1のレートを増加し、モータジェネレータMG1から、エンジン200に対しエンジントルクTeの上昇に対応する反力トルクを与える。これにより、モータジェネレータMG1のMG1トルクTmg1がエンジントルクTeの反力トルクに達し、ロック機構400からモータジェネレータMG1への反力トルクの受け渡しが確実に行われた上で、無段変速モードへの切り替えが行われる。従って、無段変速モードへの切り替え過程におけるドライバビリティの悪化を確実に抑制することが可能である。
尚、上述した第1解放制御処理によれば、エンジントルクTeが上昇すると判定されれば必ず、MG1トルクTmg1のレートの増加が行われるが、エンジントルクTeのレートに応じてMG1トルクTmg1のレートの増加が行われてもよい。この場合、例えばMG1トルクTmg1がエンジントルクTeの反力トルクの値に達する時間を考慮し、エンジントルクTeのレートが比較的大きい場合にのみ、MG1トルクTmg1のレートの増加を行う。
尚、上述した第1解放制御処理によれば、MG1トルクTmg1のレートを単純に増加するが、MG1トルクTmg1のレートの増加方法はこれに限定されない。
<第2実施形態>
<第2実施形態の動作>
<第2解放制御処理>
ここで、図7及び図8を参照し、本発明の第2実施形態として、固定変速モードから無段変速モードへの切り替えに係る第2解放制御処理の詳細について説明する。ここに、図7は、第2解放制御処理を示すフローチャートであり、図8は、第2解放制御処理におけるMG1トルクTmg1のレートの変移を表す二次元グラフである。第2解放制御処理では、第1解放制御処理と比較して、MG1トルクTmg1のレートの増加方法が異なる。
<第2実施形態の動作>
<第2解放制御処理>
ここで、図7及び図8を参照し、本発明の第2実施形態として、固定変速モードから無段変速モードへの切り替えに係る第2解放制御処理の詳細について説明する。ここに、図7は、第2解放制御処理を示すフローチャートであり、図8は、第2解放制御処理におけるMG1トルクTmg1のレートの変移を表す二次元グラフである。第2解放制御処理では、第1解放制御処理と比較して、MG1トルクTmg1のレートの増加方法が異なる。
ハイブリッド車両10の運転条件がCVT領域に該当する場合、図7において、ECU100は、第1解放制御処理と同様にして、ロック状態にあるモータジェネレータMG1を解放する旨の指令が発生したか否かを判定し(ステップS101)、モータジェネレータMG1を解放する旨の指令が発生した場合(ステップS101:YES)、エンジントルクTeのレートを算出する(ステップS102)。すると、ECU100は、第1解放制御処理と同様にして、MG1トルクTmg1の初期値を算出すると共に、MG1トルクTmg1のベーストルクレートを決定する(ステップS103)。
ここで図8(a)を参照し、設定されるベーストルクレートについて説明する。ここに、図8(a)、後述する図8(b)及び図8(c)は、図6と同様にして、縦軸にトルク、横軸に時刻が表されてなる二次元グラフである。
図8(a)においても、正回転側にエンジントルクTe、負回転側にMG1トルクTmg1が表されている。時刻t0は、図6と同様にして、モータジェネレータMG1の解放指令が発生した時刻である。この時刻t0以降のエンジントルクTeのレートが、ステップS102の処理にて算出され、時刻t0以降のMG1トルクTmg1がモータジェネレータMG1のベーストルクであり、このレートがステップS103の処理にて設定される。点P0は、図6(a)と同様にして、MG1トルクTmg1の初期値を表す。
続いて、ECU100は、算出されたエンジントルクTeのレートが所定の閾値を超えたか否かを判定する(ステップS109)。ここで「所定の閾値」とは、MG1トルクTmg1のレートの増加を必要とするか否かを判定するための、エンジントルクTeのレートの判定値を示す。言い換えれば、「所定の閾値」とは、図8中、ある傾きを持った線(不図示)に相当する。エンジントルクTeのレートが所定の閾値未満である場合(ステップS109:NO)、ECU100は、MG1トルクTmg1のレートの増加を行うことなく、続いてステップS106の処理を実行する。
一方、エンジントルクTeのレートが所定の閾値を超える場合(ステップS109:YES)、ECU100は、エンジントルクTeのレートの上昇分に相当する補正項を算出する(ステップS110)。ここで「補正項」とは、エンジントルクTeの上昇分に相当する、MG1トルクTmg1のレート(以下、適宜「上昇トルクレート」と称する)を示す。
続いて、ECU100は、実際にMG1トルクTmg1をサンギア軸310に供給する際の、MG1トルクTmg1の実トルクレートを算出すると共に、モータジェネレータMG1に対しバッテリ12から電力を供給する(ステップS111)。ここで実トルクレートは、先述のベーストルクレートに、エンジントルクTeの上昇分に相当する、補正項としての上昇トルクレートを加算したレートを示す。但し、ステップS109の処理にて、エンジントルクTeのレートが所定の閾値未満である場合(ステップS109:NO)、上昇トルクレートはゼロとなる。モータジェネレータMG1が電力供給により駆動されると、このような実トルクレートでMG1トルクTmg1が変移し、エンジントルクTeに応じた反力トルクに達する。
ここで図8(b)及び図8(c)を参照し、複数のレートの加算によりレートが増加するMGトルクTmg1について説明する。
図8(b)において、時刻t0以降のMG1トルクTmg1は、モータジェネレータMG1の上昇トルクであり、このレートがステップS110の処理にて決定される。
図8(c)において、レートが増加した後のモータジェネレータMG1の実トルクが表されている。時刻t1は、図6(b)と同様にして、MG1トルクTmg1が反力トルクに達する時刻である。時刻t0以降のMG1トルクTmg1は、ベーストルクに、上昇トルクを加算したトルクを表す。この加算したMG1トルクTmg1のレートがステップS111の処理にて決定される。
続いて、ECU100は、第1解放制御処理と同様にして、ロック機構400が解放時における好適なロック状態(即ち、図3(c)に示される状態)にあるように、モータジェネレータMG1の回転角度が変化したか否かを判定し(ステップS107)、MG1回転角度が好適なロック状態が実現する程に変化した場合(ステップS107:YES)、ロック機構700におけるアクチュエータ407への通電を停止し、CVTモード(即ち、無段変速モード)へ移行する(ステップS108)。これにより、一連の第2解放制御処理は終了する。
以上説明したように、第2実施形態に係る第2解放制御処理によれば、予め設定されるベースレートに上昇トルクレートを加えることで、レートが増加する。これにより、エンジントルクTeのレートの大きさに関わらず、MG1トルクTmg1を、一定時間で、エンジントルクTeの反力トルクに到達させることが可能である。従って、CVTモードへの移行に要する時間が一定となり、動力性能に係るドライバビリティの悪化を抑制することが可能である。
<第3実施形態>
<第3実施形態の構成>
上記第1及び第2実施形態においては、ハイブリッド駆動装置20が固定変速モードを採るに際して、MG1がロックされる(正確には、サンギアS1及びクラッチ板410を介してMG1がロックされる)構成を採る。然るに、固定変速モードを得るに際してのハイブリッド駆動装置の構成は、この種のMG1ロックに限定されない。ここで、図9を参照し、本発明の第3実施形態として、他のハイブリッド駆動装置の構成について説明する。ここに、図9は、本発明の第3実施形態に係るハイブリッド駆動装置30の構成を概念的に表してなる概略構成図である。尚、図9において、図2と重複する箇所には同一の符合を付してその説明を適宜省略することとする。
<第3実施形態の構成>
上記第1及び第2実施形態においては、ハイブリッド駆動装置20が固定変速モードを採るに際して、MG1がロックされる(正確には、サンギアS1及びクラッチ板410を介してMG1がロックされる)構成を採る。然るに、固定変速モードを得るに際してのハイブリッド駆動装置の構成は、この種のMG1ロックに限定されない。ここで、図9を参照し、本発明の第3実施形態として、他のハイブリッド駆動装置の構成について説明する。ここに、図9は、本発明の第3実施形態に係るハイブリッド駆動装置30の構成を概念的に表してなる概略構成図である。尚、図9において、図2と重複する箇所には同一の符合を付してその説明を適宜省略することとする。
図9において、ハイブリッド駆動装置30は、動力分割機構300に代えて、本発明に係る「動力分割機構」の他の一例として動力分割機構1100を備える点と、ロック機構400に代えて、本発明に係る「噛合機構」又は「ロック機構」の他の一例としてブレーキB1を備える点とにおいて、ハイブリッド駆動装置20と相違する構成となっている。
動力分割機構1100は、複数の回転要素により構成される差動機構として、シングルピニオンギア型の第1遊星歯車機構1110及びダブルピニオンギア型の第2遊星歯車機構1120を備える。
第1遊星歯車機構1110は、サンギア1111、キャリア1112及びリングギア1113並びに軸線方向に自転し且つキャリア1112の自転により公転するようにキャリア1112に保持された、サンギア1111及びリングギア1113に噛合するピニオンギア1114を備え、サンギア1111にモータジェネレータMG1のロータRT1が、キャリア1112に入力軸500が、またリングギア1113にMG2変速機構1000を介して駆動軸600が夫々連結された構成となっている。
第2遊星歯車機構1120は、サンギア1121、キャリア1122及びリングギア1123並びに軸線方向に自転し且つキャリア1122の自転により公転するようにキャリア1122に保持された、サンギア1121及びリングギア1123に噛合するピニオンギア1124を備え、サンギア1121にブレーキB1の他方のブレーキ板が連結された構成となっている。即ち、本実施形態においては、サンギア1121が、本発明に係る「第1回転要素」の他の一例として機能する。尚、MG2変速機構1000は、駆動軸600の回転速度に対するMG2回転速度Nmg2の比を変更するための有段の変速装置である。
このように、動力分割機構1100は、全体として第1遊星歯車機構1110のサンギア1111、第2遊星歯車機構1120のサンギア1121(第1回転要素)、相互に連結された第1遊星歯車機構1110のキャリア1112及び第2遊星歯車機構1120のリングギア1123からなる第1回転要素群、並びに相互に連結された第1遊星歯車機構1110のリングギア1113及び第2遊星歯車機構1120のキャリア1122からなる第2回転要素群の、合計4個の回転要素を備えている。
ブレーキB1は、一方のブレーキ板が物理的に固定された湿式多板摩擦係合式の係合手段である。ブレーキB1の他方のブレーキ板は、MG1の回転軸に連結されており、ブレーキB1の各ブレーキ板同士が係合した状態においては、MG1の回転は阻止され、所謂MG1ロックが実現される構成となっている。尚、ブレーキB1を駆動する駆動系は、ECU100と電気的に接続されており、ECU100により上位に制御される構成となっている。尚、ブレーキB1は、上記第1及び第2実施形態と同様に、ドグクラッチ機構たるロック機構400であってもよい。
<第3実施形態の動作>
ハイブリッド駆動装置30によれば、サンギア1121がロック状態となり、その回転速度がゼロとなると、車速Vと一義的な回転速度を有する第2回転要素群と、このサンギア1121とによって、残余の回転要素たる第1回転要素群の回転速度が規定される。第1回転要素群を構成するキャリア1112は、エンジン200のクランクシャフト205に連結された入力軸500に連結されているため、結局エンジン200の機関回転速度NEは、車速Vと一義的な関係となって、固定変速モードが実現されるのである。また、このようにエンジン200の機関回転速度NEが車速Vと一義的な関係を維持することに伴って、第1回転要素群及び第2回転要素群と差動関係にあるサンギア1111の回転状態も一義的となり、モータジェネレータMG1もロック状態となる。即ち、ハイブリッド駆動装置30においては、所謂O/Dロックと称される固定変速モードが実現される。
ハイブリッド駆動装置30によれば、サンギア1121がロック状態となり、その回転速度がゼロとなると、車速Vと一義的な回転速度を有する第2回転要素群と、このサンギア1121とによって、残余の回転要素たる第1回転要素群の回転速度が規定される。第1回転要素群を構成するキャリア1112は、エンジン200のクランクシャフト205に連結された入力軸500に連結されているため、結局エンジン200の機関回転速度NEは、車速Vと一義的な関係となって、固定変速モードが実現されるのである。また、このようにエンジン200の機関回転速度NEが車速Vと一義的な関係を維持することに伴って、第1回転要素群及び第2回転要素群と差動関係にあるサンギア1111の回転状態も一義的となり、モータジェネレータMG1もロック状態となる。即ち、ハイブリッド駆動装置30においては、所謂O/Dロックと称される固定変速モードが実現される。
このように、固定変速モードは、ハイブリッド駆動装置20以外の構成においても実現可能であり、それに合わせて、ロック機構400又はブレーキB1のロック対象も適宜変更されてよい。いずれにせよ、固定変速モードから無段変速モードへの変速モードの切り替え過程において、エンジントルクTeが上昇する場合に、MG1トルクTmg1のレートを増加し、モータジェネレータMG1から、エンジントルクTeの上昇に対応する反力トルクを与える。これにより、無段変速モードへの切り替え過程におけるドライバビリティの悪化を確実に抑制することが可能である。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うハイブリッド車両の制御装置もまた本発明の技術的範囲に含まれるものである。
10…ハイブリッド車両、11…PCU、12…バッテリ、13…車速センサ、14…アクセル開度センサ、20…ハイブリッド駆動装置、100…ECU、200…エンジン、300…動力分割機構、400…ロック機構
Claims (7)
- 複数の歯を有し、内燃機関の機関トルクにより回転する回転要素と、複数の歯を有し、前記回転要素と噛み合う固定要素とを有する噛合機構と、
前記回転要素に前記機関トルクを付与する回転電機と、
前記噛合機構を噛み合わせることで前記機関トルクの反力を当該噛合機構で受け持たせつつ、前記機関トルクを車輪に伝達させるように制御を行う第1伝達制御手段と、
前記噛合機構における噛み合いを解放して前記機関トルクの反力を前記トルク付与手段で受け持たせつつ、前記機関トルクを前記車輪に伝達させるように制御を行う第2伝達制御手段と
を備え、
前記噛み合いを解放した解放状態にある場合に対応し、前記内燃機関の回転速度と前記車輪に繋がる駆動軸の回転速度との比たる変速比が連続的に可変とされる無段変速モードと、前記噛合機構を噛み合わせた噛合状態にある場合に対応し、前記変速比が固定される固定変速モードとの間で変速モードを切り替え可能に構成されたハイブリッド車両を制御するハイブリッド車両の制御装置であって、
前記第1回転要素における前記噛合状態から前記解放状態への切り替え時において、前記機関トルクが上昇するか否かを判定する判定手段と、
前記機関トルクが上昇すると判定された場合に、前記機関トルクの反力を受け持つために出力される前記回転電機のトルクの変化量を増加させるように、前記回転電機を制御する制御手段と
を備えることを特徴とするハイブリッド車両の制御装置。 - 前記内燃機関の機関トルクの変化量を特定する特定手段を更に備え、
前記判定手段は、前記特定された前記機関トルクの変化量に基づいて前記機関トルクが上昇するか否かを判定することを特徴とする請求項1に記載のハイブリッド車両の制御装置。 - 前記制御手段は、前記特定された前記機関トルクの変化量に応じて、前記回転電機のトルクの変化量を増加させるように、前記回転電機を制御することを特徴とする請求項2に記載のハイブリッド車両の制御装置。
- 前記判定手段は、前記特定された前記機関トルクの変化量が所定の基準変化量を超えた場合に、前記機関トルクが上昇すると判定することを特徴とする請求項2又は3に記載のハイブリッド車両の制御装置。
- 前記機関トルクの変化量及び前記回転電機のトルクの変化量は夫々、前記機関トルクの変化の時間微分であるレート及び前記回転電機のトルクの変化の時間微分であるレートを示し、
前記制御手段は、前記回転電機における基準となるベーストルクレートに、前記特定された前記機関トルクのレートのうち前記機関トルクの上昇分に相当する上昇トルクレートを加えるように、前記回転電機を制御する
ことを特徴とする請求項2から4のいずれか一項に記載のハイブリッド車両の制御装置。 - 前記制御手段は、前記固定変速モードから前記無段変速モードへの前記変速モードの切り替え時において、前記機関トルクが上昇すると判定された場合に、前記回転電機のトルクの変化量を増加させるように、前記回転電機を制御することを特徴とする請求項1から5のいずれか一項に記載のハイブリッド車両の制御装置。
- 内燃機関と、
回転電機と、
前記回転電機に連結された第1回転要素、車軸に繋がる駆動軸に連結された第2回転要素及び前記内燃機関に連結された第3回転要素を含む相互に差動回転可能な複数の回転要素を備えた動力分割機構と、
前記第1回転要素に固定された第1係合要素と、固定要素である所定のロック要素に固定された第2係合要素とを有し、前記第1係合要素と前記第2係合要素とが係合する状態であって前記第1回転要素を回転不能なロック状態と、前記第1係合要素と前記第2係合要素とが係合しない状態であって前記第1回転要素を回転可能な非ロック状態との間で切り替え可能なロック機構と
を備え、
前記第1回転要素が前記非ロック状態にある場合に対応し、前記内燃機関の回転速度と前記駆動軸の回転速度との比たる変速比が連続的に可変とされる無段変速モードと、前記第1回転要素が前記ロック状態にある場合に対応し、前記変速比が固定される固定変速モードとの間で変速モードを切り替え可能に構成されたハイブリッド車両を制御するハイブリッド車両の制御装置であって、
前記第1回転要素における前記ロック状態から前記非ロック状態への切り替え時において、前記内燃機関の機関トルクが上昇するか否かを判定する判定手段と、
前記機関トルクが上昇すると判定された場合に、前記機関トルクの反力を受け持つために出力される前記回転電機のトルクの変化量を増加させるように、前記回転電機を制御する制御手段と
を備えることを特徴とするハイブリッド車両の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009204577A JP2011051553A (ja) | 2009-09-04 | 2009-09-04 | ハイブリッド車両の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009204577A JP2011051553A (ja) | 2009-09-04 | 2009-09-04 | ハイブリッド車両の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011051553A true JP2011051553A (ja) | 2011-03-17 |
Family
ID=43941011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009204577A Pending JP2011051553A (ja) | 2009-09-04 | 2009-09-04 | ハイブリッド車両の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011051553A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012255489A (ja) * | 2011-06-09 | 2012-12-27 | Toyota Motor Corp | 電磁係合装置の解放制御装置 |
CN105090284A (zh) * | 2014-05-21 | 2015-11-25 | 丰田自动车株式会社 | 驱动控制装置 |
JP2016097768A (ja) * | 2014-11-20 | 2016-05-30 | トヨタ自動車株式会社 | 車両の駆動制御装置 |
US10435013B2 (en) | 2013-04-16 | 2019-10-08 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle drive system |
JP2020006914A (ja) * | 2018-07-12 | 2020-01-16 | トヨタ自動車株式会社 | 車両の制御装置 |
-
2009
- 2009-09-04 JP JP2009204577A patent/JP2011051553A/ja active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012255489A (ja) * | 2011-06-09 | 2012-12-27 | Toyota Motor Corp | 電磁係合装置の解放制御装置 |
US10435013B2 (en) | 2013-04-16 | 2019-10-08 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle drive system |
CN105090284A (zh) * | 2014-05-21 | 2015-11-25 | 丰田自动车株式会社 | 驱动控制装置 |
JP2015217925A (ja) * | 2014-05-21 | 2015-12-07 | トヨタ自動車株式会社 | 駆動制御装置 |
US9566975B2 (en) | 2014-05-21 | 2017-02-14 | Toyota Jidosha Kabushiki Kaisha | Drive control device |
CN105090284B (zh) * | 2014-05-21 | 2018-10-26 | 丰田自动车株式会社 | 驱动控制装置 |
JP2016097768A (ja) * | 2014-11-20 | 2016-05-30 | トヨタ自動車株式会社 | 車両の駆動制御装置 |
JP2020006914A (ja) * | 2018-07-12 | 2020-01-16 | トヨタ自動車株式会社 | 車両の制御装置 |
JP7180156B2 (ja) | 2018-07-12 | 2022-11-30 | トヨタ自動車株式会社 | 車両の制御装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105480077B (zh) | 带有超速离合器的功率分流式混合动力传动系统 | |
US7617896B2 (en) | Control device for an electric vehicle | |
CN104349957B (zh) | 混合动力车辆用驱动装置 | |
CN102612447B (zh) | 车辆的控制装置 | |
WO2015099602A1 (en) | A traction system for a vehicle | |
EP3441249B1 (en) | Drive force control system for hybrid vehicle | |
JP2011051553A (ja) | ハイブリッド車両の制御装置 | |
JP5929956B2 (ja) | ハイブリッド車両の制御装置 | |
JP6048154B2 (ja) | ハイブリッド車両の動力伝達装置及びハイブリッドシステム | |
JP5668863B2 (ja) | ハイブリッド車両の制御装置 | |
CN103835821B (zh) | 用于控制多模式动力系统中的发动机操作的方法 | |
JP5842661B2 (ja) | 車両用動力伝達装置 | |
JP5413252B2 (ja) | 車両の制御装置 | |
JP5803892B2 (ja) | ハイブリッド車両の制御装置 | |
JP5310264B2 (ja) | ハイブリッド車両の制御装置 | |
US9227627B2 (en) | Control apparatus for hybrid vehicle | |
JP2011255837A (ja) | ハイブリッド車両の制御装置 | |
JP2011218850A (ja) | ハイブリッド車両の制御装置 | |
JP5299294B2 (ja) | 車両の制御装置 | |
JP2010247747A (ja) | ハイブリッド車両の制御装置 | |
JP2011231854A (ja) | 車両の制御装置 | |
JP2012224203A (ja) | ハイブリッド車両の駆動制御装置 | |
JP2011102053A (ja) | ハイブリッド車両の制御装置 | |
JP5459045B2 (ja) | 駆動装置 | |
JP2011168091A (ja) | ハイブリッド車両の制御装置 |