[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011048286A - Optical member for stereoscopic image display, and stereoscopic image display device - Google Patents

Optical member for stereoscopic image display, and stereoscopic image display device Download PDF

Info

Publication number
JP2011048286A
JP2011048286A JP2009198688A JP2009198688A JP2011048286A JP 2011048286 A JP2011048286 A JP 2011048286A JP 2009198688 A JP2009198688 A JP 2009198688A JP 2009198688 A JP2009198688 A JP 2009198688A JP 2011048286 A JP2011048286 A JP 2011048286A
Authority
JP
Japan
Prior art keywords
light
polarization
region
polarization axis
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009198688A
Other languages
Japanese (ja)
Inventor
Masahiko Sugiyama
正彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2009198688A priority Critical patent/JP2011048286A/en
Publication of JP2011048286A publication Critical patent/JP2011048286A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical member for stereoscopic image display which reduces the occurrence of moire, and also to provide a stereoscopic image display device. <P>SOLUTION: The optical member for stereoscopic image display has a polarization axis control plate 180. The polarization axis control plate 180 has: a first polarization area 181; a second polarization area 182; and a polarization axis control plate area light shielding part 183 provided in a position corresponding to an image production area light shielding part 163, in a boundary part between the first polarization area 181 and the second polarization area 182 and shielding the whole or a part of image light for a right eye and image light for a left eye. The polarization axis control plate 180 emits the incident image light for a right eye and the incident image light for a left eye as linearly polarized lights whose polarization axes are orthogonal to each other or circularly polarized lights whose rotational directions of the polarization axes are opposite to each other, when the image light for a right eye and the image light for a left eye are made incident on the first polarization area 181 and the second polarization area 182 respectively. Microbeads are added to the polarization axis control plate area light shielding part 183. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、立体映像表示用光学部材及び立体映像表示装置に関する。   The present invention relates to a stereoscopic video display optical member and a stereoscopic video display device.

観察者に立体映像を認識させる装置として、右目用の映像と左目用の映像をそれぞれ異なる領域に表示する映像生成部、及び、二つの異なる領域に入射した偏光の偏光軸が、互いに直交した直線偏光、又は偏光軸の回転方向が互いに逆方向である円偏光として射出する偏光軸制御板を含む立体映像表示装置が知られている(例えば、特許文献1〜5を参照)。   As a device that allows an observer to recognize a stereoscopic image, an image generation unit that displays a right-eye image and a left-eye image in different regions, and straight lines in which polarization axes of polarized light incident on two different regions are orthogonal to each other There is known a stereoscopic image display device including a polarization axis control plate that emits polarized light or circularly polarized light whose polarization axis rotation directions are opposite to each other (see, for example, Patent Documents 1 to 5).

特開平10−232365号公報Japanese Patent Laid-Open No. 10-232365 特開2004−264338号公報JP 2004-264338 A 特開平9−90431号公報JP-A-9-90431 特開2008−304909号公報JP 2008-304909 A 特開2002−185983号公報JP 2002-185983 A

しかしながら、特許文献1〜5に記載の技術では、モアレが発生する場合があった。ここで、モアレとは、干渉縞ともいい、規則正しい繰り返し模様を複数重ね合わせた時に、それらの周期のずれにより視覚的に発生する縞模様のことである。   However, in the techniques described in Patent Documents 1 to 5, moire may occur. Here, moire is also referred to as interference fringe, and is a striped pattern that is visually generated due to a shift in the period when a plurality of regularly repeated patterns are superimposed.

例えば、特許文献4及び特許文献5に記載の立体映像表示装置では、右目用の画像を生成する領域と左目用の画像を生成する領域とクロストークの発生を低減するために設けられた映像生成領域遮光部とを有する画像生成部と、右目用の画像を透過させる第一偏向領域と左目用の画像を偏向軸に対して直角に観点させて透過させる第一偏向領域とクロストークの発生を低減するために設けられた偏光軸制御板領域遮光部とを有する偏向軸制御板とを備えており、映像生成領域遮光部と偏光軸制御板領域遮光部とのピッチが近似しているので、モアレが発生しやすい。一般的に、2つの規則正しい繰り返し模様のパターンがあるとき、第1のパターンの間隔(周期)をp、第2のパターンの間隔(周期)をp+δpとするとき、発生するモアレの間隔(周期)dは、下記(数式1)を用いて表される。   For example, in the stereoscopic video display devices described in Patent Literature 4 and Patent Literature 5, video generation provided to reduce the occurrence of crosstalk and a region for generating a right-eye image, a region for generating a left-eye image, and the like. Crosstalk is generated by an image generation unit having a region light blocking unit, a first deflection region that transmits a right-eye image, and a first deflection region that transmits a left-eye image at a right angle to a deflection axis. A polarization axis control plate having a polarization axis control plate region light shielding portion provided for reduction, and the pitch between the image generation region light shielding portion and the polarization axis control plate region light shielding portion is approximate, Moire is likely to occur. In general, when there are two regularly repeated patterns, when the interval (period) of the first pattern is p and the interval (period) of the second pattern is p + δp, the generated moire interval ( (Period) d is expressed using the following (Formula 1).

d=p/δp ・・・(数式1)
映像生成領域遮光部と偏光軸制御板領域遮光部との間には、偏光軸制御部を保持するためのガラス基板が設けられ、これらはこのガラス基板により一定の距離を保ち隔てられて配置されている。このため、観察者は正面にある映像生成領域遮光部と偏光軸制御板領域遮光部とが重なっているように見え、映像生成領域遮光部と偏光軸制御板領域遮光部とは分離して見えない。このためモアレは発生しない。しかしながら、観察者が正面から離れた部分を観察する場合、映像生成領域遮光部と偏光軸制御板領域遮光部とは分離して見える、即ち見た目のピッチにずれが生じるためモアレが観察される。
d = p 2 / δp (Formula 1)
A glass substrate for holding the polarization axis control unit is provided between the image generation region light shielding unit and the polarization axis control plate region light shielding unit, and these glass substrates are arranged at a certain distance from each other. ing. For this reason, the observer looks as if the image generation area light shielding part and the polarization axis control plate area light shielding part in front of each other overlap, and the image generation area light shielding part and the polarization axis control plate area light shielding part appear to be separated. Absent. For this reason, moire does not occur. However, when the observer observes a part away from the front, the image generation area light shielding part and the polarization axis control plate area light shielding part appear to be separated, that is, a moire is observed because of a deviation in the apparent pitch.

本発明は、上記課題に鑑みてなされたものであり、その目的は、モアレの発生を低減する立体映像表示用光学部材及び立体映像表示装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a stereoscopic image display optical member and a stereoscopic image display apparatus that reduce the occurrence of moire.

上記目的を達成するため、本発明に係る立体映像表示用光学部材の第1の特徴は、外部から入力する第1の映像信号に基づいて、所定の角度の偏光軸である第1の偏光軸の直線偏光を光変調して第1の変調光を生成して射出する第1の変調光生成領域と、外部から入力する第2の映像信号に基づいて前記第1の偏光軸の直線偏光を光変調して第2の変調光を生成して射出する第2の変調光生成領域とを有する映像生成部から射出した前記第1の変調光及び前記第2の変調光のうち、前記第1の偏光軸と異なる角度を有する第2の偏光軸の直線偏光である前記第1の変調偏光及び前記第2の変調偏光を透過して射出する偏光板と、
前記映像生成部における第1の変調光生成領域の位置に対応し、前記偏光板を射出した前記第1の変調偏光が入射した際に前記第1の変調偏光の偏光軸を第3の偏光軸となるよう偏光し第3の変調偏光として射出する第1の偏光領域と、前記映像生成部における第2の変調光生成領域の位置に対応し、前記偏光板を射出した前記第2の変調偏光が入射した際に前記第2の変調偏光の偏光軸を前記第3偏光軸と異なる第4の偏光軸となるよう偏光し第4の変調偏光として射出する第2の偏光領域と、前記第1の偏光領域及び前記第2の偏光領域の境界部に設けられ入射した光を遮光する遮光部とを有する偏光軸制御板とを備え、前記遮光部は、入射した光の一部を透過する光透過性部材が添加されたことにある。
In order to achieve the above object, a first feature of the stereoscopic image display optical member according to the present invention is that a first polarization axis that is a polarization axis of a predetermined angle based on a first video signal input from the outside. A first modulated light generation region that generates and emits first modulated light by optically modulating the linearly polarized light, and linearly polarized light having the first polarization axis based on a second video signal input from the outside. Of the first modulated light and the second modulated light emitted from the image generation unit having a second modulated light generation region that emits light and generates second modulated light and emits the second modulated light, A polarizing plate that transmits and emits the first modulated polarized light and the second modulated polarized light that are linearly polarized light of the second polarization axis having an angle different from the polarization axis of
Corresponding to the position of the first modulated light generation region in the image generation unit, when the first modulated polarized light emitted from the polarizing plate is incident, the polarization axis of the first modulated polarized light is set to the third polarization axis. Corresponding to the position of the second modulated light generation region in the image generation unit, and the second modulated polarized light emitted from the polarizing plate corresponding to the position of the second modulated light generation region in the image generation unit. The second polarization region that is polarized so that the polarization axis of the second modulated polarization becomes a fourth polarization axis different from the third polarization axis and is emitted as the fourth modulated polarization, A polarization axis control plate provided at a boundary between the polarization region and the second polarization region and having a light shielding unit that shields incident light, and the light shielding unit transmits a part of the incident light. The permeable member is added.

上記目的を達成するため、本発明に係る立体映像表示用光学部材の第2の特徴は、前記遮光部に添加された光透過性部材の膜厚方向の大きさが、前記遮光部の膜厚以下であることにある。   In order to achieve the above object, a second feature of the optical member for stereoscopic image display according to the present invention is that the size of the light transmissive member added to the light shielding portion in the film thickness direction is the film thickness of the light shielding portion. It is in the following.

上記目的を達成するため、本発明に係る立体映像表示用光学部材の第3の特徴は、前記遮光部に添加された光透過性部材が球体であることにある。   In order to achieve the above object, a third feature of the optical member for stereoscopic image display according to the present invention is that the light transmissive member added to the light shielding portion is a sphere.

上記目的を達成するため、本発明に係る立体映像表示用光学部材の第4の特徴は、前記遮光部に添加された光透過性部材の添加率が20〜50(vol%)であることにある。   In order to achieve the above object, the fourth feature of the optical member for stereoscopic image display according to the present invention is that the addition ratio of the light transmissive member added to the light shielding portion is 20 to 50 (vol%). is there.

上記目的を達成するため、本発明に係る立体映像表示装置の第1の特徴は、光源と、前記光源を射出した光のうち前記第1偏光軸である第1の直線偏光を透過する直線偏光生成部と、第1の変調光生成領域と第2の変調光生成領域を有し、前記直線偏光生成部を射出した前記第1の直線偏光が入射した際に光変調して前記第1の変調偏光及び前記第2の変調偏光として射出する前記映像生成部と、請求項1〜4いずれか1項記載の立体映像表示用光学部材と、を備え、前記偏光軸制御板における前記第1の偏光領域を射出した前記第3変調偏光により生成される映像を右目用映像とし、前記第2の偏光領域を射出した前記第4の変調偏光により生成される映像を左目用映像とすることにある。   In order to achieve the above object, a first feature of a stereoscopic image display device according to the present invention is a linearly polarized light that transmits a light source and a first linearly polarized light that is the first polarization axis of light emitted from the light source. A first modulation light generation region, a first modulation light generation region, and the first linearly polarized light emitted from the linearly polarized light generation unit is optically modulated when the first linear polarization is incident; 5. The stereoscopic image display optical member according to claim 1, wherein the image generation unit emits the modulated polarized light and the second modulated polarized light, and the first optical axis in the polarization axis control plate. An image generated by the third modulated polarized light exiting the polarization region is a right-eye image, and an image generated by the fourth modulated polarized light exiting the second polarization region is a left-eye image. .

本発明の立体映像表示用光学部材及び立体映像表示装置によれば、モアレの発生を低減することができる。   According to the three-dimensional image display optical member and the three-dimensional image display device of the present invention, it is possible to reduce the occurrence of moire.

本発明の実施例1に係る立体映像表示装置の分解斜視図である。1 is an exploded perspective view of a stereoscopic video display apparatus according to Embodiment 1 of the present invention. 本発明の実施例1に係る立体映像表示装置の偏光軸制御板の別の形態を示す斜視図である。It is a perspective view which shows another form of the polarization-axis control board of the three-dimensional video display apparatus concerning Example 1 of this invention. 本発明の実施例1に係る立体映像表示装置の使用状態を示す概略図である。It is the schematic which shows the use condition of the stereoscopic video display apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る立体映像表示装置が備える映像生成部の一部を拡大して示す平面図である。It is a top view which expands and shows a part of video production | generation part with which the three-dimensional video display apparatus which concerns on Example 1 of this invention is provided. 映像生成領域遮光部及び偏光軸制御板領域遮光部が形成されていない場合における映像生成部と偏光軸制御板との断面の一例を図示した断面図である。It is sectional drawing which showed an example of the cross section of a video production | generation part and a polarization axis control board in case the image production | generation area | region light shielding part and the polarization axis control board area | region light shielding part are not formed. 本発明の実施例に係る立体映像表示装置に備えられた映像生成部と偏光軸制御板との断面の一例を図示した断面図である。FIG. 4 is a cross-sectional view illustrating an example of a cross section of an image generation unit and a polarization axis control plate provided in a stereoscopic image display apparatus according to an embodiment of the present invention. (a)は、本発明の実施例1に係る立体映像表示装置が備える偏光軸制御板領域遮光部の断面図であり、(b)は、本発明の実施例1に係る立体映像表示装置が備える偏光軸制御板領域遮光部の(a)の断面における光学的膜厚を模式的に示した図であり、(c)は、本発明の実施例1に係る立体映像表示装置が備える偏光軸制御板領域遮光部の平面図である。(A) is sectional drawing of the polarization-axis control board area | region light shielding part with which the three-dimensional video display apparatus which concerns on Example 1 of this invention is equipped, (b) is the stereoscopic video display apparatus which concerns on Example 1 of this invention. It is the figure which showed typically the optical film thickness in the cross section of (a) of the polarization axis control board area light-shielding part with which it is equipped, (c) is the polarization axis with which the three-dimensional image display apparatus which concerns on Example 1 of this invention is equipped. It is a top view of a control board area light-shielding part. (a)は、本発明の実施例1に係る立体映像表示装置が備える偏光軸制御板領域遮光部の実験例3の断面図であり、(b)は、本発明の実施例1に係る立体映像表示装置が備える偏光軸制御板領域遮光部の(a)の断面における光学的膜厚を模式的に示した実験例3の図であり、(c)は、本発明の実施例1に係る立体映像表示装置が備える偏光軸制御板領域遮光部の実験例3の平面図である。(A) is sectional drawing of Experimental example 3 of the polarization axis control board area | region light shielding part with which the three-dimensional-image display apparatus which concerns on Example 1 of this invention is equipped, (b) is the three-dimensional which concerns on Example 1 of this invention. It is the figure of Experimental example 3 which showed typically the optical film thickness in the cross section of (a) of the polarization axis control board area | region light shielding part with which an image display apparatus is equipped, (c) concerns on Example 1 of this invention. It is a top view of Experimental example 3 of the polarization axis control board area | region light shielding part with which a three-dimensional video display apparatus is provided. 本発明の実施例1に係る立体映像表示装置において、遮光部に添加するマイクロビーズの大きさ、添加率を変更して実験を行った実験例及び比較例について、モアレ評価及びクロストーク評価の結果を示した図である。In the stereoscopic image display apparatus according to Example 1 of the present invention, the results of moire evaluation and crosstalk evaluation for the experimental example and the comparative example in which the experiment was performed by changing the size and addition rate of the microbeads added to the light shielding portion. FIG. 本発明の実施例1に係る立体映像表示装置の偏光軸制御板の別の形態を示す斜視図である。It is a perspective view which shows another form of the polarization-axis control board of the three-dimensional video display apparatus concerning Example 1 of this invention. 本発明の実施例1に係る立体映像表示装置の偏光軸制御板の別の形態を示す斜視図である。It is a perspective view which shows another form of the polarization-axis control board of the three-dimensional video display apparatus concerning Example 1 of this invention. 本発明の実施例2に係る立体映像表示装置の分解斜視図である。It is a disassembled perspective view of the three-dimensional-video display apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る立体映像表示装置の構成を示した構成図である。It is the block diagram which showed the structure of the three-dimensional video display apparatus concerning Example 3 of this invention.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1に係る立体映像表示装置100の分解斜視図である。   FIG. 1 is an exploded perspective view of a stereoscopic image display apparatus 100 according to Embodiment 1 of the present invention.

立体映像表示装置100は、光源120と、映像表示部130と、偏光軸制御板(立体映像表示用光学部材)180とを図1に示す順で備え、これらが図示しない筐体に収容されている。また、映像表示部130は、偏光板(直線偏光生成部)150、映像生成部160及び偏光板170を含む。この立体映像表示装置100に表示される立体映像を後述する観察者が観察する場合、観測者は、図1に示した矢印X1の方向から(図1における偏光軸制御板180よりも右側から)観察する。   The stereoscopic image display apparatus 100 includes a light source 120, an image display unit 130, and a polarization axis control plate (stereoscopic image display optical member) 180 in the order shown in FIG. 1, and these are accommodated in a casing (not shown). Yes. The image display unit 130 includes a polarizing plate (linearly polarized light generating unit) 150, an image generating unit 160 and a polarizing plate 170. When a viewer who will be described later observes a stereoscopic video displayed on the stereoscopic video display device 100, the observer is from the direction of the arrow X1 shown in FIG. 1 (from the right side of the polarization axis control plate 180 in FIG. 1). Observe.

光源120は、観察者から見て立体映像表示装置100の最も奥側に配され、立体映像表示装置100を使用している状態(以下、「立体映像表示装置100の使用状態」と略称する)において、白色の無偏光を偏光板150の一面に向けて射出する。なお、本発明の実施例1では、光源120に面光源を用いているが、面光源に替えて例えば点光源と集光レンズとの組み合わせでもよい。この集光レンズの一例は、フレネルレンズシートである。   The light source 120 is disposed on the farthest side of the stereoscopic video display device 100 as viewed from the observer, and is in a state where the stereoscopic video display device 100 is used (hereinafter abbreviated as “usage state of the stereoscopic video display device 100”). 2, white non-polarized light is emitted toward one surface of the polarizing plate 150. In the first embodiment of the present invention, a surface light source is used as the light source 120, but a combination of a point light source and a condenser lens may be used instead of the surface light source. An example of this condensing lens is a Fresnel lens sheet.

偏光板150は、映像生成部160の光源120側に配される。偏光板150は、透過軸及び当該透過軸に直交する吸収軸を有し、光源120から射出した無偏光が入射すると、その無偏光のうち透過軸と平行な偏光軸の光を透過し、吸収軸と平行な偏光軸の光を遮断する。ここで、偏光軸とは、光における電界の振動方向のことであり、偏光板150における透過軸は、図1に矢印Y1で示すように、観察者が立体映像表示装置100を見たときの水平方向から右上方向及び左下方向に45度の傾斜を有する。したがって、偏光板150から射出する光は、水平方向から45度の傾斜を有する直線偏光となる。   The polarizing plate 150 is disposed on the light source 120 side of the image generation unit 160. The polarizing plate 150 has a transmission axis and an absorption axis orthogonal to the transmission axis. When non-polarized light emitted from the light source 120 enters, the polarizing plate 150 transmits and absorbs light having a polarization axis parallel to the transmission axis. Blocks light with a polarization axis parallel to the axis. Here, the polarization axis is the vibration direction of the electric field in the light, and the transmission axis in the polarizing plate 150 is when the observer views the stereoscopic image display device 100 as indicated by an arrow Y1 in FIG. It has an inclination of 45 degrees from the horizontal direction to the upper right direction and the lower left direction. Therefore, the light emitted from the polarizing plate 150 becomes linearly polarized light having an inclination of 45 degrees from the horizontal direction.

映像生成部160は、赤色光,緑色光及び青色光にそれぞれ対応した画素を備えている。また、映像生成部160は、複数の画素からなる右目用映像生成領域162及び右目用映像生成領域162と異なる複数の画素からなる左目用映像生成領域164を有する。映像生成部160は、液晶表示素子等の入射した光を外部から入力した映像信号に基づいて光変調するものである。これら右目用映像生成領域162及び左目用映像生成領域164は、図1に示すように、映像生成部160を水平方向に区切った領域であり、複数の右目用映像生成領域162及び左目用映像生成領域164が鉛直方向に互い違いに配される。   The video generation unit 160 includes pixels corresponding to red light, green light, and blue light, respectively. In addition, the video generation unit 160 includes a right-eye video generation area 162 including a plurality of pixels and a left-eye video generation area 164 including a plurality of pixels different from the right-eye video generation area 162. The image generation unit 160 optically modulates incident light from a liquid crystal display element or the like based on an image signal input from the outside. As shown in FIG. 1, the right-eye video generation area 162 and the left-eye video generation area 164 are areas in which the video generation section 160 is horizontally divided, and a plurality of right-eye video generation areas 162 and left-eye video generation areas are generated. Regions 164 are staggered in the vertical direction.

立体映像表示装置100の使用状態において、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164には、外部から供給される右目用映像信号及び左目用映像信号によりそれぞれ右目用映像及び左目用映像が生成される。右目用映像生成領域162に右目用映像が生成されているときに、偏光板150を透過した光の一部が右目用映像生成領域162に入射すると、右目用映像信号に基づいて光変調され右目用映像生成領域162からは右目用映像の映像光(以下、「右目用映像光」と略称する)が射出する。また、左目用映像生成領域164に左目用映像が生成されているときに、偏光板150を透過した光の他の一部が左目用映像生成領域164に入射すると、左目用映像信号に基づいて光変調され左目用映像生成領域164からは左目用映像の映像光(以下、「左目用映像光」と略称する)が射出する。ここで、右目用映像生成領域162から射出する右目用映像光及び左目用映像生成領域164から射出する左目用映像光は、映像光における映像信号に基づいて光変調された領域はそれぞれ偏光軸が回転する。また、映像生成部160の各画素の境界部には赤色光,緑色光及び青色光の混色を低減するために、ブラックマトリクスと呼ばれる遮光部が設けられている。更に、ブラックマトリクスのうち右目用映像生成領域162と左目用映像生成領域164の境界部には、帯状のブラックストライプである映像生成領域遮光部163が形成されている。   In the usage state of the stereoscopic video display device 100, the right-eye video signal is generated in the right-eye video generation area 162 and the left-eye video generation area 164 of the video generation unit 160 by the right-eye video signal and the left-eye video signal supplied from the outside. And a left-eye video is generated. When a right-eye image is generated in the right-eye image generation area 162 and a part of the light transmitted through the polarizing plate 150 enters the right-eye image generation area 162, the right-eye image signal is modulated based on the right-eye image signal. From the video image generation area 162, video light of the right-eye video (hereinafter abbreviated as “right-eye video light”) is emitted. In addition, when a left-eye image is generated in the left-eye image generation region 164 and another part of the light transmitted through the polarizing plate 150 is incident on the left-eye image generation region 164, the left-eye image signal is generated based on the left-eye image signal. Light-modulated, left-eye image generation region 164 emits left-eye image light (hereinafter abbreviated as “left-eye image light”). Here, the right-eye image light emitted from the right-eye image generation region 162 and the left-eye image light emitted from the left-eye image generation region 164 are respectively light-modulated based on the image signal in the image light, and each has a polarization axis. Rotate. Further, in order to reduce the color mixture of red light, green light, and blue light, a light shielding portion called a black matrix is provided at the boundary portion of each pixel of the video generation unit 160. Further, a video generation area light-shielding portion 163 that is a strip-shaped black stripe is formed at the boundary between the right-eye video generation area 162 and the left-eye video generation area 164 in the black matrix.

偏光板170は、映像生成部160における観察者側に配置される。この偏光板170は、上述した右目用映像生成領域162を透過した右目用映像光、及び、上述した左目用映像生成領域164を透過した左目用映像光が入射すると、これらのうち偏光軸の成分の中で透過軸と平行な偏光成分を透過し、偏光軸が吸収軸と平行な偏光成分を遮断する。ここで、偏光板170における透過軸は、図1に矢印Y2で示すように、観察者が立体映像表示装置100を見たときの水平方向から左上方向及び右下方向に45度の傾斜を有する。したがって、偏光板170から射出する光は、偏光板150から射出する光と直交すると共に、水平方向から45度の傾斜を有する直線偏光となる。また、偏光板170における透過軸の方向は、映像生成部160から射出する右目用映像光及び左目用映像光の偏光軸の方向と略一致させることにより立体映像表示装置100の輝度を向上することができる。   The polarizing plate 170 is disposed on the viewer side in the video generation unit 160. When the right-eye video light that has passed through the right-eye video generation region 162 and the left-eye video light that has passed through the left-eye video generation region 164 are incident on the polarizing plate 170, the polarization axis component of these components. The polarization component parallel to the transmission axis is transmitted, and the polarization component whose polarization axis is parallel to the absorption axis is blocked. Here, the transmission axis of the polarizing plate 170 has an inclination of 45 degrees from the horizontal direction to the upper left direction and the lower right direction when the observer views the stereoscopic image display device 100 as indicated by an arrow Y2 in FIG. . Accordingly, the light emitted from the polarizing plate 170 is linearly polarized light that is orthogonal to the light emitted from the polarizing plate 150 and has an inclination of 45 degrees from the horizontal direction. In addition, the direction of the transmission axis in the polarizing plate 170 is substantially matched with the directions of the polarization axes of the right-eye video light and the left-eye video light emitted from the video generation unit 160, thereby improving the luminance of the stereoscopic video display device 100. Can do.

偏光軸制御板180は、基板184と基板184上に形成された第一偏光領域181及び第二偏光領域182とを有する。この偏光軸制御板180における第一偏光領域181及び第二偏光領域182の位置及び大きさは、図1に示すように、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164の位置及び大きさに対応する。したがって、立体映像表示装置100の使用状態において、第一偏光領域181には、右目用映像生成領域162を透過した右目用映像光が入射し、第二偏光領域182には、左目用映像生成領域164を透過した左目用映像光が入射する。   The polarization axis control plate 180 includes a substrate 184 and a first polarization region 181 and a second polarization region 182 formed on the substrate 184. The positions and sizes of the first polarization region 181 and the second polarization region 182 on the polarization axis control plate 180 are as shown in FIG. 1, and the right-eye image generation region 162 and the left-eye image generation region 164 of the image generation unit 160. Corresponds to the position and size. Therefore, in the usage state of the stereoscopic image display device 100, the right-eye image light transmitted through the right-eye image generation region 162 is incident on the first polarization region 181 and the left-eye image generation region is input to the second polarization region 182. The image light for the left eye that has passed through 164 enters.

第一偏光領域181は、入射した右目用映像光の偏光軸を回転させずにそのまま透過する。一方、第二偏光領域182は、入射した左目用映像光の偏光軸を第一偏光領域181に入射した右目用映像光の偏光軸に対して直交する方向に90度回転させる。したがって、第一偏光領域181を透過した右目用映像光の偏光軸と、第二偏光領域182を透過した左目用映像光の偏光軸とは、図1に矢印Y3,Y4で示すように、その向きが互いに直交する。なお、図1において偏光軸制御板180の第一偏光領域181及び第二偏光領域182に示した矢印Y3,Y4は、各偏光領域を通過した偏光の偏光軸の向きを示す。   The first polarizing region 181 transmits the incident right eye image light as it is without rotating the polarization axis thereof. On the other hand, the second polarization region 182 rotates the polarization axis of the incident left-eye image light by 90 degrees in a direction orthogonal to the polarization axis of the right-eye image light incident on the first polarization region 181. Therefore, the polarization axis of the right-eye image light transmitted through the first polarization region 181 and the polarization axis of the left-eye image light transmitted through the second polarization region 182 are as shown by arrows Y3 and Y4 in FIG. The directions are orthogonal to each other. In FIG. 1, arrows Y3 and Y4 shown in the first polarization region 181 and the second polarization region 182 of the polarization axis control plate 180 indicate the directions of the polarization axes of the polarized light passing through the polarization regions.

偏光軸制御板180において、基板184には、入射する映像光の偏光軸の向きを変化させないように、例えば複屈折が低い透明なガラスまたは複屈折が低い樹脂などの板状部材、若しくは複屈折が低いフィルム状部材が用いられる。第一偏光領域181には、入射する右目用映像光の偏光軸の向きを変化させないでそのまま透過させるため、基板184上に何も設けずに光を透過させるか、または、複屈折が低いガラスや樹脂など部材、あるいは偏光板170と同様の偏光状態を有する偏光板が用いられる。また、第二偏光領域182には、例えば入射する左目用映像光の偏光軸の向きを90度回転する性質を有する複屈折性の物質で形成された半波長板が用いられる。結果として偏光軸制御板180から射出した右目用映像光の偏光軸の向きと左目用映像光の偏光軸の向きとは、直交した光となる。   In the polarization axis control plate 180, a plate-like member such as a transparent glass having a low birefringence or a resin having a low birefringence, or a birefringence is provided on the substrate 184 so as not to change the direction of the polarization axis of the incident image light. A film-like member having a low value is used. The first polarizing region 181 transmits light without changing the direction of the polarization axis of the incident video light for the right eye, so that light is transmitted without providing anything on the substrate 184 or glass having low birefringence. Or a member such as a resin, or a polarizing plate having a polarization state similar to that of the polarizing plate 170 is used. For the second polarizing region 182, for example, a half-wave plate made of a birefringent material having the property of rotating the direction of the polarization axis of the incident left-eye image light by 90 degrees is used. As a result, the direction of the polarization axis of the right-eye image light emitted from the polarization axis control plate 180 is orthogonal to the direction of the polarization axis of the left-eye image light.

偏光軸制御板180の別の形態として、図2に示すような基板184と、基板184上に形成された第二偏光領域182とを有する構造としてもよい。   As another form of the polarization axis control plate 180, a structure having a substrate 184 as shown in FIG. 2 and a second polarization region 182 formed on the substrate 184 may be used.

また、偏光軸制御板180の映像表示部130と対向する面における第一偏光領域181と第二偏光領域182との境界部分に、帯状の偏光軸制御板領域遮光部183が映像表示部130側に設けられている。このような偏光軸制御板領域遮光部183を設けることにより、偏光軸制御板180の第一偏光領域181に隣接する第二偏光領域182に入射するべき左目用映像光のうち、上記境界を超えて当該第一偏光領域181に入射する映像光を吸収して遮ることができる。また、同様に、偏光軸制御板180の第二偏光領域182に隣接する第一偏光領域181に入射するべき右目用映像光のうち、上記境界を超えて当該第二偏光領域182に入射する映像光を吸収して遮ることができる。したがって、立体映像表示装置100から射出される右目用映像光及び左目用映像光にクロストークが生じにくくなる。このクロストークについての詳細は後述する。   Further, a band-shaped polarization axis control plate region light-shielding unit 183 is provided on the side of the image display unit 130 at the boundary between the first polarization region 181 and the second polarization region 182 on the surface of the polarization axis control plate 180 facing the image display unit 130. Is provided. By providing such a polarization axis control plate region light-shielding portion 183, the left eye image light that should enter the second polarization region 182 adjacent to the first polarization region 181 of the polarization axis control plate 180 exceeds the boundary. Thus, the image light incident on the first polarization region 181 can be absorbed and blocked. Similarly, of the right-eye image light that should be incident on the first polarization region 181 adjacent to the second polarization region 182 of the polarization axis control plate 180, the image that enters the second polarization region 182 beyond the boundary. Can absorb and block light. Therefore, crosstalk is less likely to occur in the right-eye video light and the left-eye video light emitted from the stereoscopic video display device 100. Details of the crosstalk will be described later.

また、上記立体映像表示装置100は、偏光軸制御板180よりも観察者側(図1における偏光軸制御板180の右側)に、上記偏光軸制御板180の第一偏光領域181及び第二偏光領域182を透過した右目用映像光及び左目用映像光を水平方向または鉛直方向の少なくとも一方の方向に拡散する拡散板を有してもよい。このような拡散板には、例えば水平方向または鉛直方向に延伸するかまぼこ状の凸レンズ(シリンドリカルレンズ)が複数配されたレンチキュラーレンズシート、または、凸レンズが平面状に複数配されたレンズアレイシートが用いられる。   In addition, the stereoscopic image display apparatus 100 is closer to the observer side than the polarization axis control plate 180 (on the right side of the polarization axis control plate 180 in FIG. 1), and the first polarization region 181 and the second polarization of the polarization axis control plate 180. You may have the diffuser which diffuses the image light for right eyes and the image light for left eyes which permeate | transmitted the area | region 182 to at least one direction of a horizontal direction or a perpendicular direction. For such a diffuser plate, for example, a lenticular lens sheet in which a plurality of cylindrically shaped convex lenses (cylindrical lenses) extending in the horizontal direction or the vertical direction is used, or a lens array sheet in which a plurality of convex lenses are arranged in a planar shape is used. It is done.

図3は、立体映像表示装置100の使用状態を示す概略図である。   FIG. 3 is a schematic diagram illustrating a usage state of the stereoscopic video display device 100.

立体映像表示装置100により立体映像を観察する場合、観察者500は、図3に示すように、立体映像表示装置100から投影される右目用映像光及び左目用映像光を、偏光眼鏡200をかけて観察する。この偏光眼鏡200には、観察者500がこの偏光眼鏡200をかけたときに観察者500の右目512側にあたる位置に右目用映像透過部232が配され、左目514側にあたる位置に左目用映像透過部234が配される。これら右目用映像透過部232及び左目用映像透過部234は、透過軸方向が互いに異なる偏光レンズであり、偏光眼鏡200のフレームに固定されている。   When observing a stereoscopic image with the stereoscopic image display device 100, the observer 500 puts the right eye image light and the left eye image light projected from the stereoscopic image display device 100 through polarized glasses 200 as shown in FIG. 3. Observe. In the polarizing glasses 200, when the observer 500 puts on the polarizing glasses 200, a right-eye image transmission unit 232 is disposed at a position corresponding to the right eye 512 side of the observer 500, and a left-eye image transmission is performed at a position corresponding to the left eye 514 side. A part 234 is arranged. The right-eye image transmission unit 232 and the left-eye image transmission unit 234 are polarization lenses having different transmission axis directions, and are fixed to the frame of the polarizing glasses 200.

右目用映像透過部232は、透過軸が第一偏光領域181を透過した右目用映像光と同じ向きを有し、吸収軸が上記透過軸と直交する向きを有する偏光板である。左目用映像透過部234は、透過軸が第二偏光領域182を透過した左目用映像光と同じ向きを有し、吸収軸が上記透過軸と直交する向きを有する偏光板である。これら右目用映像透過部232及び左目用映像透過部234には、例えば二色性染料を含浸させたフィルムを一軸延伸して得られる偏光膜を貼り付けた偏光レンズが用いられる。   The right-eye image transmission unit 232 is a polarizing plate having the same transmission axis as the right-eye image light transmitted through the first polarizing region 181 and the absorption axis being orthogonal to the transmission axis. The left-eye image transmission unit 234 is a polarizing plate having the same transmission axis as the left-eye image light transmitted through the second polarization region 182 and the absorption axis orthogonal to the transmission axis. For the right-eye image transmission unit 232 and the left-eye image transmission unit 234, for example, a polarizing lens to which a polarizing film obtained by uniaxially stretching a film impregnated with a dichroic dye is attached.

観察者500は、立体映像表示装置100により立体映像を観察するときに、第一偏光領域181を透過した右目用映像光及び第二偏光領域182を透過した左目用映像光の射出する範囲内で、偏光眼鏡200をかけて立体映像表示装置100を観察することにより、右目512では右目用映像光に含まれる右目用映像だけを観察することができ、左目514では左目用映像光に含まれる左目用映像だけを観察することができる。したがって、観察者500は、これら右目用映像及び左目用映像を立体映像として認識することができる。   When the observer 500 observes a stereoscopic image with the stereoscopic image display device 100, the observer 500 is within a range in which the right-eye image light transmitted through the first polarization region 181 and the left-eye image light transmitted through the second polarization region 182 are emitted. By observing the stereoscopic image display apparatus 100 with the polarizing glasses 200, the right eye 512 can observe only the right eye image included in the right eye image light, and the left eye 514 includes the left eye included in the left eye image light. You can observe only the video. Therefore, the viewer 500 can recognize these right-eye video and left-eye video as stereoscopic video.

図4は、映像生成部160の一部を拡大して示す平面図である。   FIG. 4 is an enlarged plan view showing a part of the video generation unit 160.

図4に示すように、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164は、それぞれ水平方向において複数の小さなセルに分割されており、これらのセルの1つ1つが赤色表示画素361、緑色表示画素362及び青色表示画素363となっている。   As shown in FIG. 4, the right-eye video generation region 162 and the left-eye video generation region 164 of the video generation unit 160 are each divided into a plurality of small cells in the horizontal direction, and each of these cells is red. A display pixel 361, a green display pixel 362, and a blue display pixel 363 are provided.

なお、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164では、例えば赤色表示画素361、緑色表示画素362及び青色表示画素363が水平方向にこの順に繰り返して配される。   Note that, in the right-eye video generation region 162 and the left-eye video generation region 164 of the video generation unit 160, for example, a red display pixel 361, a green display pixel 362, and a blue display pixel 363 are repeatedly arranged in this order in the horizontal direction.

また、映像生成部160の右目用映像生成領域162と左目用映像生成領域164の境界部を含む各画素の境界部にはブラックストライプである映像生成領域遮光部163が形成されている。   In addition, a video generation region light shielding unit 163 that is a black stripe is formed at the boundary portion of each pixel including the boundary portion between the right eye video generation region 162 and the left eye video generation region 164 of the video generation unit 160.

ここで、クロストークについて説明する。   Here, crosstalk will be described.

図5は、映像生成領域遮光部163及び偏光軸制御板領域遮光部183が形成されていない場合における映像生成部160と偏光軸制御板180との断面の一例を図示した断面図である。   FIG. 5 is a cross-sectional view illustrating an example of a cross section of the image generation unit 160 and the polarization axis control plate 180 when the image generation region light shielding unit 163 and the polarization axis control plate region light shielding unit 183 are not formed.

図5に示すように、偏光軸制御板180は、右目用映像生成領域162の前方に第一偏光領域181が位置するように、また、左目用映像生成領域164の前方に第二偏光領域182が位置するように、観測者500から見て映像生成部160の手前側に配置されている。   As shown in FIG. 5, the polarization axis control plate 180 is arranged such that the first polarization region 181 is positioned in front of the right eye image generation region 162 and the second polarization region 182 is in front of the left eye image generation region 164. Is positioned on the near side of the video generation unit 160 as viewed from the observer 500.

そして、右目用映像生成領域162からは右目用映像光が射出され、射出された右目用映像光は第一偏光領域181を透過して観察者500に到達する。一方、左目用映像生成領域164からは左目用映像光が射出され、射出された左目用映像光は第二偏光領域182に入射して偏光の振動方向が90°回転された後に観察者500に到達する。   Then, right-eye image light is emitted from the right-eye image generation area 162, and the emitted right-eye image light passes through the first polarization area 181 and reaches the observer 500. On the other hand, left-eye image light is emitted from the left-eye image generation region 164, and the emitted left-eye image light is incident on the second polarization region 182 and the polarization vibration direction is rotated by 90 ° to the observer 500. To reach.

このように、立体映像表示装置100において、右目用映像及び左目用映像を表示させるためには、右目用映像生成領域162から射出された右目用映像光が第一偏光領域181に入射され、且つ、左目用映像生成領域164から射出された左目用映像光が第二偏光領域182に入射される必要がある。   As described above, in order to display the right-eye video and the left-eye video in the stereoscopic video display device 100, the right-eye video light emitted from the right-eye video generation region 162 is incident on the first polarization region 181; The left-eye image light emitted from the left-eye image generation region 164 needs to be incident on the second polarization region 182.

例えば、右目用映像生成領域162から射出された右目用映像光が第二偏光領域182に入射された場合、偏光の振動方向が90°回転され、観察者500の左目用映像透過部234で捕らえられる映像となる。この映像は、当然ながら本来の左目用映像とは異なる為、観察者500が捕らえる映像が不鮮明になり、また、立体感が不明瞭となる等の不具合が発生することがある。   For example, when the right-eye image light emitted from the right-eye image generation region 162 is incident on the second polarization region 182, the polarization vibration direction is rotated by 90 ° and is captured by the left-eye image transmission unit 234 of the viewer 500. It will be the video that will be. Of course, this video is different from the original left-eye video, so that the video captured by the observer 500 may become unclear, and the three-dimensional effect may become unclear.

しかしながら、従来技術では、映像生成部160から射出された右目用映像光及び左目用映像光を、全てそれぞれ第一偏光領域181及び第二偏光領域182に入射させるように精度良く映像生成部160と偏光軸制御板180とを配置することは極めて困難であった。   However, in the related art, the right-eye video light and the left-eye video light emitted from the video generation unit 160 are accurately input to the first polarization region 181 and the second polarization region 182 respectively. It was very difficult to arrange the polarization axis control plate 180.

鮮明な映像を得るには右目用映像生成領域162及び左目用映像生成領域164が密である(巾細である)方が良いが、この場合、右目用映像生成領域162及び左目用映像生成領域164が密に配された映像生成部160の前方に、右目用映像生成領域162及び左目用映像生成領域164に対応すべく、正確に第一偏光領域181及び第二偏光領域182を配設することが極めて困難であった。具体的には、一般的な第一偏光領域181及び第二偏光領域182は、夫々200μm程度の巾の極細線状であり、位置ずれを5%未満にする十数μmレベルで正確に配置することは、非常に困難である。   In order to obtain a clear image, it is better that the right-eye image generation area 162 and the left-eye image generation area 164 are dense (thin), but in this case, the right-eye image generation area 162 and the left-eye image generation area The first polarization region 181 and the second polarization region 182 are accurately arranged in front of the image generation unit 160 in which 164 is densely arranged so as to correspond to the right-eye image generation region 162 and the left-eye image generation region 164. It was extremely difficult. Specifically, the general first polarizing region 181 and the second polarizing region 182 are each an ultrathin line having a width of about 200 μm, and are accurately arranged at a level of several tens of μm so that the positional deviation is less than 5%. It is very difficult.

また、右目用映像生成領域162から射出された右目用映像光、及び、左目用映像生成領域164から射出された左目用映像光は共に完全には平行光ではないので、例えば、図5に示した左目用映像生成領域164の上端部付近から射出された左目用映像光の一部は第一偏光領域181に入射されてしまう場合がある(図5に示す矢印10)。   Further, since the right-eye image light emitted from the right-eye image generation region 162 and the left-eye image light emitted from the left-eye image generation region 164 are not completely parallel light, for example, as shown in FIG. In addition, part of the left-eye video light emitted from the vicinity of the upper end of the left-eye video generation region 164 may be incident on the first polarization region 181 (arrow 10 shown in FIG. 5).

更に、左目用映像生成領域164から射出された左目用映像光が、一旦第二偏光領域182に入射された後、第一偏光領域181に入射される場合もある(図5に示す矢印11)。この現象は、一般的にクロストーク現象と呼ばれている。この場合、矢印11で示す左目用映像光の偏光の振動方向は0乃至90°の範囲に回転されることになるが、例えば、45°回転されると、左目用映像光は、右目用映像透過部232及び左目用映像透過部234を夫々50%ずつ通過することになり、この点においても、観察者500が捕らえる映像が不鮮明になり、立体感が不明瞭になる等の不具合が発生する。   Furthermore, the left-eye image light emitted from the left-eye image generation region 164 may once enter the second polarization region 182 and then enter the first polarization region 181 (arrow 11 shown in FIG. 5). . This phenomenon is generally called a crosstalk phenomenon. In this case, the vibration direction of the polarization of the left-eye image light indicated by the arrow 11 is rotated within a range of 0 to 90 °. For example, when the left-eye image light is rotated 45 °, the left-eye image light is converted into the right-eye image light. Each of the images passes through the transmission unit 232 and the left-eye image transmission unit 234 by 50%. Also in this respect, the image captured by the observer 500 becomes unclear and the stereoscopic effect becomes unclear. .

そこで、本発明の実施例1に係る立体映像表示装置100は、偏光軸制御板180に、偏光軸制御板領域遮光部183を備える構成とする。   Therefore, the stereoscopic image display apparatus 100 according to the first embodiment of the present invention is configured to include the polarization axis control plate region light shielding unit 183 in the polarization axis control plate 180.

図6は、本発明の実施例1に係る立体映像表示装置100に備えられた映像生成部160と偏光軸制御板180との断面の一例を図示した断面図である。   FIG. 6 is a cross-sectional view illustrating an example of a cross section of the image generation unit 160 and the polarization axis control plate 180 included in the stereoscopic image display apparatus 100 according to the first embodiment of the present invention.

図6に示すように、映像生成部160は、右目用映像生成領域162と左目用映像生成領域164とが交互に並設された映像生成部160が配置されており、映像生成部160の右目用映像生成領域162と左目用映像生成領域164との境界部にはブラックストライプである映像生成領域遮光部163が形成されている。   As shown in FIG. 6, the video generation unit 160 includes a video generation unit 160 in which a right-eye video generation region 162 and a left-eye video generation region 164 are alternately arranged. A video generation area light-shielding portion 163 that is a black stripe is formed at the boundary between the video generation area 162 and the left-eye video generation area 164.

また、偏光軸制御板180は、第二偏光領域182と第一偏光領域181の境界部に、クロストークを低減するために、帯状の偏光軸制御板領域遮光部183が形成されている。   Further, in the polarization axis control plate 180, a band-shaped polarization axis control plate region light shielding portion 183 is formed at the boundary between the second polarization region 182 and the first polarization region 181 in order to reduce crosstalk.

映像生成領域遮光部163と偏光軸制御板領域遮光部183とは、印刷工法を用いて形成され、この際の塗料は黒色染料を添加した紫外線硬化樹脂や熱硬化性樹脂が用いられる。通常は、偏光軸制御板領域遮光部183は黒色の帯状として形成される。ここで、印刷工法としては、凸版印刷、平版印刷、凹版印刷、孔版印刷、スクリーン印刷及びオフセット印刷等を用いることができる。   The image generation region light shielding portion 163 and the polarization axis control plate region light shielding portion 183 are formed using a printing method, and the coating material used here is an ultraviolet curable resin or a thermosetting resin to which a black dye is added. Usually, the polarization axis control plate region light-shielding portion 183 is formed as a black belt. Here, letterpress printing, planographic printing, intaglio printing, stencil printing, screen printing, offset printing, and the like can be used as the printing method.

これにより、偏光軸制御板180の第一偏光領域181に隣接する第二偏光領域182に入射するべき左目用映像光のうち、上記境界を超えて第一偏光領域181に入射する映像光を吸収して遮ることができる。   As a result, among the image light for the left eye that should enter the second polarization region 182 adjacent to the first polarization region 181 of the polarization axis control plate 180, the image light that enters the first polarization region 181 beyond the boundary is absorbed. Can be blocked.

また、同様に、偏光軸制御板180の第二偏光領域182に隣接する第一偏光領域181に入射するべき右目用映像光のうち、上記境界を超えて第二偏光領域182に入射する映像光を吸収して遮ることができる。したがって、立体映像表示装置100から射出される右目用映像光及び左目用映像光にクロストークが生じにくくなる。   Similarly, among the right-eye video light that should enter the first polarization region 181 adjacent to the second polarization region 182 of the polarization axis control plate 180, the image light that enters the second polarization region 182 beyond the boundary. Can be absorbed and blocked. Therefore, crosstalk is less likely to occur in the right-eye video light and the left-eye video light emitted from the stereoscopic video display device 100.

そのため、観察者500は、立体映像表示装置100により立体映像を観察するときに、第一偏光領域181を透過した右目用映像光及び第二偏光領域182を透過した左目用映像光の射出する範囲内で、偏光眼鏡200をかけて立体映像表示装置100を観察することにより、右目では右目用映像光に含まれる右目用映像だけを観察することができ、左目では左目用映像光に含まれる左目用映像だけを観察することができる。これにより、観察者500は、これら右目用映像及び左目用映像を立体映像として認識することができる。   Therefore, when the observer 500 observes a stereoscopic image with the stereoscopic image display apparatus 100, the range in which the right-eye image light transmitted through the first polarization region 181 and the left-eye image light transmitted through the second polarization region 182 are emitted. , By observing the stereoscopic image display device 100 with polarized glasses 200, the right eye can observe only the right eye image included in the right eye image light, and the left eye includes the left eye included in the left eye image light. You can observe only the video. Thereby, the observer 500 can recognize these right-eye video and left-eye video as stereoscopic video.

映像生成領域遮光部163と偏光軸制御板領域遮光部183とのピッチは近似しており、モアレが発生しやすい。そこで、本発明の実施例1に係る立体映像表示装置100に備えられた偏光軸制御板180の偏光軸制御板領域遮光部183は、塗料の中に球状の光透過性部材(以下、マイクロビーズと称す)を添加して所定の形状を印刷されて形成されることにより、モアレの発生を低減する。ここで用いるマイクロビーズとは、アクリル系材料やシリコン系材料などからなる材料粒径1〜1000μm程度の微細な球体又は略球状の粒子で、所定量の光を透過するものである。また、マイクロビーズとしては、必ずしも球体でなくとも良く、円柱体や不定形であっても良い。   The pitch between the image generation region light shielding unit 163 and the polarization axis control plate region light shielding unit 183 is approximate, and moire is likely to occur. Therefore, the polarization axis control plate region light shielding portion 183 of the polarization axis control plate 180 provided in the stereoscopic image display apparatus 100 according to the first embodiment of the present invention is a spherical light transmissive member (hereinafter referred to as microbead) in the paint. Is added to form a predetermined shape, thereby reducing the occurrence of moire. The microbeads used here are fine spheres or substantially spherical particles having a material particle size of about 1 to 1000 μm made of an acrylic material or a silicon material, and transmit a predetermined amount of light. The microbeads are not necessarily spherical, but may be cylindrical or indefinite.

ここで、マイクロビーズは塗料に含有され、前記した印刷工法により塗布されるので、マイクロビーズの位置をランダムに配置できる。このため、光が透過する量や透過する光量の分布をランダムにすることができ、モアレの発生を低減することができる。   Here, since the microbeads are contained in the paint and are applied by the printing method described above, the positions of the microbeads can be randomly arranged. For this reason, the amount of transmitted light and the distribution of the transmitted light amount can be made random, and the occurrence of moire can be reduced.

図7(a)は、本発明の実施例1に係る立体映像表示装置100が備える偏光軸制御板領域遮光部183の断面図であり、図7(b)は、本発明の実施例1に係る立体映像表示装置100が備える偏光軸制御板領域遮光部183の図7(a)の断面における光学的膜厚を模式的に示した図であり、図7(c)は、本発明の実施例1に係る立体映像表示装置100が備える偏光軸制御板領域遮光部183の平面図である。   FIG. 7A is a cross-sectional view of the polarization axis control plate region light shielding portion 183 included in the stereoscopic image display apparatus 100 according to the first embodiment of the present invention, and FIG. 7B is a diagram illustrating the first embodiment of the present invention. It is the figure which showed typically the optical film thickness in the cross section of Fig.7 (a) of the polarization-axis control board area | region light-shielding part 183 with which the three-dimensional image display apparatus 100 concerned is equipped, FIG.7 (c) is implementation of this invention. 6 is a plan view of a polarization axis control plate region light shielding unit 183 included in the stereoscopic video display apparatus 100 according to Example 1. FIG.

図7(a),(c)に示すように、偏光軸制御板領域遮光部183は、黒色染料を添加した紫外線硬化樹脂や熱硬化性樹脂で形成された遮光部183aに、ランダムにマイクロビーズ183bが添加されている。   As shown in FIGS. 7A and 7C, the polarization axis control plate region light-shielding portion 183 is formed of microbeads randomly on the light-shielding portion 183a formed of an ultraviolet curable resin or a thermosetting resin to which a black dye is added. 183b is added.

また、図7(a),(c)に示すように、マイクロビーズ183bの直径と同程度の膜厚d1で遮光部183aが形成されているので、マイクロビーズ183bの一部が遮光部183aの表面にあらわれるため、映像光が透過し、透過率は、入射される位置によりランダムになる。   Further, as shown in FIGS. 7A and 7C, since the light shielding portion 183a is formed with a film thickness d1 which is approximately the same as the diameter of the microbead 183b, a part of the microbead 183b is part of the light shielding portion 183a. Since it appears on the surface, the image light is transmitted, and the transmittance is random depending on the incident position.

図7(b)に示した図では、偏光軸制御板領域遮光部183の図7(a)の断面において、映像光の遮光率が高い程、即ち透過率が低い程厚くなる光学的な膜厚である光学的膜厚od1を示している。   In the diagram shown in FIG. 7B, in the cross section of FIG. 7A of the polarization axis control plate region light shielding portion 183, the optical film becomes thicker as the image light shielding rate is higher, that is, the transmittance is lower. The optical film thickness od1 which is the thickness is shown.

この図7(b)に示すように、ランダムにマイクロビーズ183bが添加されていることにより、光学的に凹凸の形状がランダムに形成されるので、遮光部183aの表面には透過率の異なる領域がランダムに出現することになる。これにより、映像生成領域遮光部163とのモアレは黒色部と白色部のコントラストが低減してモアレが見えにくくなる。   As shown in FIG. 7 (b), since the micro-beads 183b are randomly added, the optically uneven shape is randomly formed. Therefore, regions having different transmittances are formed on the surface of the light shielding portion 183a. Will appear randomly. As a result, the moire between the image generation region light-shielding portion 163 reduces the contrast between the black portion and the white portion and makes it difficult to see the moire.

以下に、遮光部183aに添加するマイクロビーズ183bの大きさ、添加率を変更して、クロストークとモアレの変化を調査する実験を行った実験例及び比較例について説明する。   Hereinafter, experimental examples and comparative examples in which an experiment for investigating changes in crosstalk and moire by changing the size and addition rate of the microbeads 183b added to the light shielding portion 183a will be described.

<実験例1>
実験例1では、紫外線硬化性樹脂に黒色顔料、直径5(μm)のマイクロビーズ183bを添加して前記した印刷工法により、膜厚(図7(a)におけるd1)を5(μm)、幅(図7(b)におけるW1)を135(μm)の偏光軸制御板領域遮光部183を形成した。この際の偏光軸制御板領域遮光部183のピッチは270(μm)である。また、映像生成領域遮光部163のピッチも270(μm)である。
<Experimental example 1>
In Experimental Example 1, a black pigment and microbeads 183b having a diameter of 5 (μm) were added to an ultraviolet curable resin, and the film thickness (d1 in FIG. 7A) was changed to 5 (μm) and width by the printing method described above. A polarization axis control plate region light-shielding portion 183 (W1 in FIG. 7B) of 135 (μm) was formed. At this time, the pitch of the polarization axis control plate region light shielding portions 183 is 270 (μm). In addition, the pitch of the image generation region light blocking portions 163 is also 270 (μm).

そして、マイクロビーズ183bの添加率を体積比%で10〜70(vol%)の範囲で変化させ、クロストーク(右目用映像に含まれる左目用映像の割合)とモアレの変化を調査した。   Then, the addition rate of the microbeads 183b was changed in a volume ratio of 10 to 70 (vol%), and crosstalk (the ratio of the left-eye image included in the right-eye image) and the change in moire were investigated.

<実験例2>
実験例2では、紫外線硬化性樹脂に黒色顔料、直径10(μm)のマイクロビーズ183bを添加して前記した印刷工法により、膜厚(図7(a)におけるd1)を10(μm)、幅(図7(b)におけるW1)を135(μm)の偏光軸制御板領域遮光部183を形成した。この際の偏光軸制御板領域遮光部183のピッチは270(μm)である。また、映像生成領域遮光部163のピッチも270(μm)である。
<Experimental example 2>
In Experimental Example 2, a black pigment and microbeads 183b having a diameter of 10 (μm) were added to an ultraviolet curable resin, and the film thickness (d1 in FIG. 7A) was set to 10 (μm) and width by the printing method described above. A polarization axis control plate region light-shielding portion 183 (W1 in FIG. 7B) of 135 (μm) was formed. At this time, the pitch of the polarization axis control plate region light shielding portions 183 is 270 (μm). In addition, the pitch of the image generation region light blocking portions 163 is also 270 (μm).

そして、マイクロビーズ183bの添加率を体積比%で10〜70(vol%)の範囲で変化させ、クロストーク(右目用映像に含まれる左目用映像の割合)とモアレの変化を調査した。   Then, the addition rate of the microbeads 183b was changed in a volume ratio of 10 to 70 (vol%), and crosstalk (the ratio of the left-eye image included in the right-eye image) and the change in moire were investigated.

<実験例3>
図8(a)は、本発明の実施例1に係る立体映像表示装置100が備える偏光軸制御板領域遮光部183の実験例3の断面図であり、図8(b)は、本発明の実施例1に係る立体映像表示装置100が備える偏光軸制御板領域遮光部183の図8(a)の断面における光学的膜厚を模式的に示した実験例3の図であり、図8(c)は、本発明の実施例1に係る立体映像表示装置100が備える偏光軸制御板領域遮光部183の実験例3の平面図である。
<Experimental example 3>
FIG. 8A is a cross-sectional view of Experimental Example 3 of the polarization axis control plate region light shielding portion 183 provided in the stereoscopic image display apparatus 100 according to Example 1 of the present invention, and FIG. FIG. 8 is a diagram of Experimental Example 3 schematically showing the optical film thickness in the cross section of FIG. 8A of the polarization axis control plate region light shielding portion 183 included in the stereoscopic image display apparatus 100 according to Example 1; c) is a plan view of Experimental Example 3 of the polarization axis control plate region light-shielding portion 183 included in the stereoscopic image display apparatus 100 according to Embodiment 1 of the present invention.

図8(a),(c)に示すように、偏光軸制御板領域遮光部183は、黒色染料を添加した紫外線硬化樹脂や熱硬化性樹脂で形成された遮光部183aに、ランダムに様々な直径のマイクロビーズ183bが添加されている。   As shown in FIGS. 8A and 8C, the polarization axis control plate region light-shielding portion 183 has various randomly added light-shielding portions 183a formed of an ultraviolet curable resin or a thermosetting resin to which a black dye is added. Microbeads 183b with a diameter are added.

また、図8(a),(c)に示すように、膜厚d2で形成された遮光部183aに様々な直径のマイクロビーズ183bが添加されているので、さらに映像光の透過率は、入射される位置によりランダムになる。   Further, as shown in FIGS. 8A and 8C, since the microbeads 183b having various diameters are added to the light-shielding portion 183a formed with the film thickness d2, the transmittance of the image light is further incident. It becomes random depending on the position.

図8(b)に示した図では、実験例3の偏光軸制御板領域遮光部183の図8(a)の断面において、映像光の遮光率が高い程、即ち透過率が低い程厚くなる光学的な膜厚である光学的膜厚od2を示している。   In the diagram shown in FIG. 8B, in the cross section of FIG. 8A of the polarization axis control plate region light shielding portion 183 of Experimental Example 3, the higher the image light shielding rate, that is, the lower the transmittance, the thicker the light. An optical film thickness od2 that is an optical film thickness is shown.

図8(b)に示すように、直径の異なるマイクロビーズ183bがランダムに添加されていることにより、光学的に凹凸の大きさ及び形状がよりランダムに形成されるので、遮光部183aには透過率の異なる領域がランダムに出現することになる。これにより、映像生成領域遮光部163とのモアレは黒色部と白色部のコントラストが低減してモアレがより見えにくくなる。   As shown in FIG. 8B, since the microbeads 183b having different diameters are randomly added, the size and shape of the optical irregularities are more randomly formed, so that the light-shielding portion 183a is transmissive. Regions with different rates will appear randomly. As a result, the moire between the image generation region light-shielding portion 163 reduces the contrast between the black portion and the white portion, and makes the moire less visible.

実験例3では、紫外線硬化性樹脂に黒色顔料、直径1〜15(μm)の様々なサイズのマイクロビーズ183bを添加して前記した印刷工法により、膜厚(図8(a)におけるd2)を7(μm)、幅(図7(b)におけるW1)を135(μm)の偏光軸制御板領域遮光部183を形成した。この際の偏光軸制御板領域遮光部183のピッチは270(μm)である。また、映像生成領域遮光部163のピッチも270(μm)である。   In Experimental Example 3, a black pigment, microbeads 183b having various diameters of 1 to 15 (μm) were added to an ultraviolet curable resin, and the film thickness (d2 in FIG. 8A) was changed by the above-described printing method. A polarization axis control plate region light-shielding portion 183 having a thickness of 7 (μm) and a width (W1 in FIG. 7B) of 135 (μm) was formed. At this time, the pitch of the polarization axis control plate region light shielding portions 183 is 270 (μm). In addition, the pitch of the image generation region light blocking portions 163 is also 270 (μm).

そして、マイクロビーズ183bの添加率を体積比%で30(vol%)におけるクロストーク(右目用映像に含まれる左目用映像の割合)とモアレの変化を調査した。   And the change of the crosstalk (ratio of the image | video for left eyes contained in the image | video for right eyes) and a moire in 30% (vol%) of the addition rate of the microbead 183b was investigated.

<比較例1>
比較例1では、マイクロビーズ183bを添加しない点以外は実施例1と同一条件で偏光軸制御板領域遮光部を形成した。
<Comparative Example 1>
In Comparative Example 1, the polarization axis control plate region light shielding portion was formed under the same conditions as in Example 1 except that the microbead 183b was not added.

<比較例2>
比較例2では、マイクロビーズ183bを添加しない点以外は実施例2と同一条件で偏光軸制御板領域遮光部を形成した。
<Comparative example 2>
In Comparative Example 2, the polarization axis control plate region light shielding portion was formed under the same conditions as in Example 2 except that the microbead 183b was not added.

<実験結果>
図9は、本発明の実施例1に係る立体映像表示装置100において、遮光部183aに添加するマイクロビーズ183bの大きさ、添加率を変更して実験を行った実験例及び比較例について、モアレ評価及びクロストーク評価の結果を示した図である。なお、モアレ評価は5段階評価とし、評価1はモアレが観察されず、数値が増加するに従い、モアレは鮮明になり、評価5は最も鮮明に観察されたとする。具体的には、モアレ評価4以上は、モアレによる表示画像の劣化が激しく、映像表示装置としての実用上問題がある。また、クロストーク評価は、右目用映像光に含まれる左目用映像光の割合が10(%)以下であれば、映像品位として問題ないレベルであるので、“○”とし、10(%)を越えた場合、“×”とした。
<Experimental result>
FIG. 9 shows a moiré pattern for an experimental example and a comparative example in which the experiment was performed by changing the size and addition rate of the microbeads 183b added to the light-shielding portion 183a in the stereoscopic image display apparatus 100 according to Example 1 of the present invention. It is the figure which showed the result of evaluation and crosstalk evaluation. It is assumed that the moire evaluation is a five-level evaluation. In the evaluation 1, the moire is not observed, the moire becomes clear as the numerical value increases, and the evaluation 5 is observed most clearly. Specifically, when the moire evaluation is 4 or more, the display image is greatly deteriorated due to moire, which causes a practical problem as a video display device. The crosstalk evaluation is “O” if the ratio of the left-eye video light included in the right-eye video light is 10% or less, and therefore, the video quality is not a problem. When it exceeded, it was set as “x”.

図9に示すように、比較例1及び比較例2においては、クロストークは問題ないものの、モアレが発生している。   As shown in FIG. 9, in Comparative Example 1 and Comparative Example 2, although there is no problem with crosstalk, moire occurs.

これに対し、実験例1及び実験例2においては、映像表示装置としての実用レベルであるクロストークの評価結果が○であり、モアレの評価結果が3以下である領域としては、マイクロビーズ183b添加率が20〜50(vol%)であることがわかった。更に、マイクロビーズ183b添加率が30〜40(vol%)の範囲で、よりモアレが見えにくく、クロストークも問題なくより良好な結果であることがわかった。   On the other hand, in Experimental Example 1 and Experimental Example 2, the region where the crosstalk evaluation result, which is a practical level as a video display device, is ◯ and the moire evaluation result is 3 or less is added with microbead 183b. The rate was found to be 20-50 (vol%). Furthermore, when the addition rate of the microbead 183b is in the range of 30 to 40 (vol%), it was found that moire is less visible and crosstalk is a better result without problems.

また、実験例3においても、マイクロビーズ183b添加率が30(vol%)で、比較例1及び比較例2より、モアレが見えにくいことが分かる。   Also in Experimental Example 3, it can be seen that the addition rate of microbead 183b is 30 (vol%), and that moire is less visible than Comparative Examples 1 and 2.

直径の異なるマイクロビーズを添加すると、光学的な凹凸の形状のランダム性が増すためモアレを低減する効果がより大きいと考えられる。   If microbeads having different diameters are added, the randomness of the optical unevenness is increased, so the effect of reducing moire is considered to be greater.

また、実験例1及び実験例2において、マイクロビーズ183bの含有量が体積比70(vol%)におけるモアレが、60(vol%)におけるモアレより鮮明でないのは、偏光軸制御板領域遮光部183が不鮮明になり、映像生成領域遮光部163との干渉が低下したことによる。   In addition, in Experimental Example 1 and Experimental Example 2, the moire at the volume ratio of 70 (vol%) in the content of the microbead 183b is not clearer than the moire at 60 (vol%). This is because the image becomes unclear and the interference with the image generation region light shielding portion 163 is reduced.

以上のように、本発明の実施例1に係る立体映像表示装置100によれば、第一偏光領域181と、第二偏光領域182と、第一偏光領域181及び第二偏光領域182の境界部に設けられたマイクロビーズ183bが添加された偏光軸制御板領域遮光部183とを有するので、透過率の異なる領域がランダムに出現し、映像生成領域遮光部163とのモアレは黒色部と白色部のコントラストが低減し、モアレの発生を低減することができる。   As described above, according to the stereoscopic image display device 100 according to the first embodiment of the present invention, the first polarizing region 181, the second polarizing region 182, and the boundary between the first polarizing region 181 and the second polarizing region 182. And the polarization axis control plate region light shielding portion 183 to which the microbeads 183b are added. Therefore, regions having different transmittances appear at random, and the moire between the image generation region light shielding portion 163 is a black portion and a white portion. Contrast can be reduced, and the occurrence of moire can be reduced.

なお、本発明の実施例1では、第一偏光領域181及び第二偏光領域182の境界部に設けられた球体のマイクロビーズ183bが添加された偏光軸制御板領域遮光部183を備える立体映像表示装置100を例に挙げて説明したが、マイクロビーズ183bは球体に限らず、様々な形状及び大きさの光透過性部材で構成されていてもよい。   In Example 1 of the present invention, a stereoscopic image display including a polarization axis control plate region light shielding unit 183 to which spherical micro beads 183b provided at the boundary between the first polarization region 181 and the second polarization region 182 is added. Although the apparatus 100 has been described as an example, the microbead 183b is not limited to a sphere, and may be formed of light transmissive members having various shapes and sizes.

また、本発明の実施例1では、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164として、図1に示すように映像生成部160を水平方向に区切った領域として説明したが、図10に示すように映像生成部160を鉛直方向に区切った領域としてもよい。その際は、映像生成部160の駆動回路の変更と、偏光軸制御板180における第一偏光領域181及び第二偏光領域182の区切りも垂直方向とする必要がある。   Further, in the first embodiment of the present invention, the right-eye image generation area 162 and the left-eye image generation area 164 of the image generation section 160 are described as areas in which the image generation section 160 is divided in the horizontal direction as shown in FIG. However, as shown in FIG. 10, the video generation unit 160 may be a region partitioned in the vertical direction. In that case, it is necessary to change the drive circuit of the image generation unit 160 and to separate the first polarization region 181 and the second polarization region 182 in the polarization axis control plate 180 in the vertical direction.

更に、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164を、映像生成部160の駆動回路を変更することにより、図11に示すように水平方向及び鉛直方向に区切って格子状に構成してもよい。この場合は、偏光軸制御板180も映像生成部160に合わせて格子状に形成する必要がある。   Further, the right-eye image generation area 162 and the left-eye image generation area 164 of the image generation unit 160 are divided into a lattice by dividing the drive circuit of the image generation unit 160 in the horizontal direction and the vertical direction as shown in FIG. You may comprise in a shape. In this case, the polarization axis control plate 180 also needs to be formed in a lattice shape in accordance with the image generation unit 160.

本発明の実施例1では、第一偏光領域181及び第二偏光領域182に右目用映像光及び左目用映像光がそれぞれ入射したときに、入射した右目用映像光及び左目用映像光を、偏光軸が互いに直交した直線偏光として射出する偏光軸制御板180を備える立体映像表示装置100を例に挙げて説明したがこれに限らない。   In Example 1 of the present invention, when the right-eye video light and the left-eye video light are respectively incident on the first polarizing region 181 and the second polarizing region 182, the incident right-eye video light and left-eye video light are polarized. Although the stereoscopic image display apparatus 100 including the polarization axis control plate 180 that emits linearly polarized light whose axes are orthogonal to each other has been described as an example, the present invention is not limited thereto.

本発明の実施例2では、第一偏光領域181及び第二偏光領域182に右目用映像光及び左目用映像光がそれぞれ入射したときに、入射した右目用映像光及び左目用映像光を、偏光軸の回転方向が互いに逆方向である円偏光として射出する偏光軸制御板を備える立体映像表示装置102を例に挙げて説明する。   In the second embodiment of the present invention, when the right-eye video light and the left-eye video light are respectively incident on the first polarization region 181 and the second polarization region 182, the incident right-eye video light and left-eye video light are polarized. The stereoscopic image display apparatus 102 including a polarization axis control plate that emits circularly polarized light whose axis rotation directions are opposite to each other will be described as an example.

図12は、本発明の実施例2に係る立体映像表示装置101の分解斜視図である。   FIG. 12 is an exploded perspective view of the stereoscopic image display apparatus 101 according to the second embodiment of the present invention.

図12に示す立体映像表示装置101において、図1に示す立体映像表示装置100と同じ構成については同じ符号を付しており、以下において説明を省略する。   In the stereoscopic video display apparatus 101 shown in FIG. 12, the same components as those in the stereoscopic video display apparatus 100 shown in FIG.

図12に示すように、立体映像表示装置101は、立体映像表示装置100の偏光軸制御板180に替えて偏光軸制御板185を備える。この偏光軸制御板185は、基板184と基板184上に形成された第一偏光領域186及び第二偏光領域187とを有する。偏光軸制御板185における第一偏光領域186及び第二偏光領域187の位置及び大きさは、上記偏光軸制御板180における第一偏光領域181及び第二偏光領域182の位置及び大きさと同様に、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164の位置及び大きさに対応している。したがって、立体映像表示装置101の使用状態において、第一偏光領域186には、上記右目用映像生成領域162を透過した右目用映像光が入射し、第二偏光領域187には、上記左目用映像生成領域164を透過した左目用映像光が入射する。   As shown in FIG. 12, the stereoscopic video display device 101 includes a polarization axis control plate 185 instead of the polarization axis control plate 180 of the stereoscopic video display device 100. The polarization axis control plate 185 includes a substrate 184 and a first polarization region 186 and a second polarization region 187 formed on the substrate 184. The positions and sizes of the first polarization region 186 and the second polarization region 187 in the polarization axis control plate 185 are similar to the positions and sizes of the first polarization region 181 and the second polarization region 182 in the polarization axis control plate 180, respectively. This corresponds to the positions and sizes of the right-eye video generation area 162 and the left-eye video generation area 164 of the video generation unit 160. Therefore, in the usage state of the stereoscopic image display apparatus 101, the right-eye image light transmitted through the right-eye image generation region 162 is incident on the first polarization region 186, and the left-eye image is incident on the second polarization region 187. The left-eye image light that has passed through the generation region 164 enters.

第一偏光領域186は、入射した右目用映像光を右回りの円偏光として射出する。また、第二偏光領域187は、入射した左目用映像光を左回りの円偏光として射出する。なお、図12の偏光軸制御板185の矢印Y5,Y6は、この偏光軸制御板185を通過した偏光の回転方向を示している。第一偏光領域186には、例えば光学軸が水平方向である1/4波長板が用いられ、第二偏光領域187には、例えば光学軸が鉛直方向である1/4波長板が用いられる。偏光軸制御板185の第一偏光領域186及び第二偏光領域187は、上記偏光軸制御板180の第一偏光領域181及び第二偏光領域182と同様にそれぞれ水平方向において複数の小さなセルに分割されている。   The first polarizing region 186 emits the incident right-eye video light as clockwise circularly polarized light. The second polarization region 187 emits the incident left-eye image light as counterclockwise circularly polarized light. Note that arrows Y5 and Y6 of the polarization axis control plate 185 in FIG. 12 indicate the rotation direction of the polarized light that has passed through the polarization axis control plate 185. For the first polarizing region 186, for example, a quarter wavelength plate whose optical axis is in the horizontal direction is used, and for the second polarizing region 187, for example, a quarter wavelength plate whose optical axis is in the vertical direction is used. The first polarization region 186 and the second polarization region 187 of the polarization axis control plate 185 are each divided into a plurality of small cells in the horizontal direction in the same manner as the first polarization region 181 and the second polarization region 182 of the polarization axis control plate 180. Has been.

偏光軸制御板185を備えた立体映像表示装置101を観察する場合、観察者500は、右目512側にあたる位置及び左目514側にあたる位置にそれぞれ1/4波長板と偏光レンズが配された偏光眼鏡をかけて観察する。この偏光眼鏡において、観察者500の右目512側にあたる位置に配される1/4波長板は光学軸が水平方向であり、観察者500の左目514側にあたる位置に配される1/4波長板は光学軸が鉛直方向である。   When observing the stereoscopic image display apparatus 101 provided with the polarization axis control plate 185, the observer 500 is polarized glasses in which a quarter wavelength plate and a polarizing lens are arranged at a position corresponding to the right eye 512 and a position corresponding to the left eye 514, respectively. To observe. In this polarized glasses, the quarter-wave plate disposed at the position corresponding to the right eye 512 side of the viewer 500 has a horizontal optical axis and is disposed at the position corresponding to the left eye 514 side of the viewer 500. Is the vertical direction of the optical axis.

また、観察者500の右目512側にあたる位置に配される偏光レンズ、及び、観察者500の左目514側にあたる位置に配される偏光レンズは、ともに透過軸の方向が観察者500から見て右斜め45度であり、吸収軸の方向は透過軸の方向と直交する方向である。   Further, both the polarizing lens arranged at the position corresponding to the right eye 512 side of the observer 500 and the polarizing lens arranged at the position corresponding to the left eye 514 side of the observer 500 both have a transmission axis direction right when viewed from the observer 500. The angle is 45 degrees and the direction of the absorption axis is perpendicular to the direction of the transmission axis.

観察者500が上記の偏光眼鏡をかけて立体映像表示装置101を観察する場合、観察者500の右目512側では、偏光軸が観察者500から見て右回りの円偏光が入射したときに、その円偏光は上記の光学軸が水平方向である1/4波長板によって右斜め45度の直線偏光に変換された後、上記偏光レンズを透過して観察者500の右目512で観察される。   When the viewer 500 observes the stereoscopic image display apparatus 101 wearing the above polarizing glasses, on the right eye 512 side of the viewer 500, when the circularly polarized light whose polarization axis is clockwise when viewed from the viewer 500 is incident, The circularly polarized light is converted into linearly polarized light having an angle of 45 degrees to the right by a ¼ wavelength plate whose horizontal axis is the horizontal direction, and then transmitted through the polarizing lens and observed by the right eye 512 of the observer 500.

また、観察者500の左目514側では、偏光軸が観察者500から見て左回りの円偏光が入射したときに、その円偏光は上記の光学軸が鉛直方向である1/4波長板によって右斜め45度の直線偏光に変換された後、上記偏光レンズを透過して観察者500の左目514で観察される。   On the left eye 514 side of the observer 500, when circularly polarized light whose polarization axis is counterclockwise when viewed from the observer 500 is incident, the circularly polarized light is reflected by the quarter wavelength plate whose optical axis is the vertical direction. After being converted into linearly polarized light having an oblique right angle of 45 degrees, the light passes through the polarizing lens and is observed by the left eye 514 of the observer 500.

このように、上記偏光眼鏡をかけて立体映像表示装置101を観察することにより、右目512では右目用映像光に含まれる右目用映像だけを観察することができ、左目514では左目用映像光に含まれる左目用映像だけを観察することができる。したがって、観察者500は、これら右目用映像及び左目用映像を立体映像として認識することができる。   Thus, by observing the stereoscopic image display apparatus 101 with the polarizing glasses, the right eye 512 can observe only the right eye image included in the right eye image light, and the left eye 514 can convert the left eye image light. Only the left-eye image included can be observed. Therefore, the viewer 500 can recognize these right-eye video and left-eye video as stereoscopic video.

そして、本発明の実施例2に係る立体映像表示装置101によれば、本発明の実施例1に係る立体映像表示装置100と同様に、第一偏光領域181と、第二偏光領域182と、第一偏光領域181及び第二偏光領域182の境界部に設けられたマイクロビーズ183bが添加された偏光軸制御板領域遮光部183とを有するので、透過率の異なる領域がランダムに出現し、映像生成領域遮光部163とのモアレは黒色部と白色部のコントラストが低減し、モアレの発生を低減することができる。   Then, according to the stereoscopic image display apparatus 101 according to the second embodiment of the present invention, similarly to the stereoscopic image display apparatus 100 according to the first embodiment of the present invention, the first polarization region 181, the second polarization region 182, Since it has the polarization axis control plate region light-shielding portion 183 to which the microbeads 183b provided at the boundary between the first polarizing region 181 and the second polarizing region 182 are added, regions having different transmittances appear at random, and the image The moire between the generation region light-shielding portion 163 reduces the contrast between the black portion and the white portion, and can reduce the occurrence of moire.

本発明の実施例1に係る立体映像表示装置100では、偏光軸制御板180の第一偏光領域181及び第二偏光領域182の位置及び大きさは、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164の位置及び大きさに一致するように配置されていたが、これに限らない。   In the stereoscopic image display apparatus 100 according to the first embodiment of the present invention, the position and size of the first polarization region 181 and the second polarization region 182 of the polarization axis control plate 180 are determined based on the right eye image generation region 162 of the image generation unit 160. In addition, although it is arranged so as to coincide with the position and size of the left-eye video generation region 164, the present invention is not limited to this.

本発明の実施例3では、偏光軸制御板180の第一偏光領域181及び第二偏光領域182の位置及び大きさは、観察者の位置までの距離に応じて、映像生成部160の右目用映像生成領域162及び左目用映像生成領域164の位置及び大きさに対応するように配置された立体映像表示装置102を例に挙げて説明する。   In the third embodiment of the present invention, the position and size of the first polarization region 181 and the second polarization region 182 of the polarization axis control plate 180 are for the right eye of the image generation unit 160 according to the distance to the viewer's position. The stereoscopic video display device 102 arranged so as to correspond to the positions and sizes of the video generation area 162 and the left-eye video generation area 164 will be described as an example.

図13は、本発明の実施例3に係る立体映像表示装置102の構成を示した構成図である。なお、図13に示す立体映像表示装置102において、図1に示す立体映像表示装置100と同じ構成については同じ符号を付しており、以下において説明を省略する。   FIG. 13 is a configuration diagram illustrating the configuration of the stereoscopic video display apparatus 102 according to the third embodiment of the present invention. In the stereoscopic video display device 102 shown in FIG. 13, the same components as those in the stereoscopic video display device 100 shown in FIG.

図13に示すように、立体映像表示装置102は、立体映像表示装置100の偏光軸制御板180に替えて偏光軸制御板190を備える。   As shown in FIG. 13, the stereoscopic video display device 102 includes a polarization axis control plate 190 instead of the polarization axis control plate 180 of the stereoscopic video display device 100.

偏光軸制御板190は、基板184(図示しない)と基板184上に形成された第一偏光領域191と、第二偏光領域192(共に図示しない)と、第一偏光領域191及び第二偏光領域192の境界部に設けられたマイクロビーズ183bが添加された偏光軸制御板領域遮光部193とを備えている。   The polarization axis control plate 190 includes a substrate 184 (not shown), a first polarization region 191 formed on the substrate 184, a second polarization region 192 (both not shown), a first polarization region 191 and a second polarization region. And a polarization axis control plate region light-shielding portion 193 to which microbeads 183b provided at the boundary portion of 192 are added.

偏光軸制御板190は、立体映像表示装置100の画面サイズから想定される観察者の位置Pから映像生成部160までの距離と、観察者の位置Pから偏光軸制御板190までの距離とに基づいて、観察者から見て、映像生成領域遮光部163と偏光軸制御板領域遮光部193とが重なり合うように、偏光軸制御板190の第一偏光領域191、第二偏光領域192、及び偏光軸制御板領域遮光部193が配置されている。   The polarization axis control plate 190 has a distance from the observer position P to the image generation unit 160 assumed from the screen size of the stereoscopic image display device 100 and a distance from the observer position P to the polarization axis control plate 190. Based on this, as viewed from the observer, the first polarization region 191, the second polarization region 192, and the polarization of the polarization axis control plate 190 so that the image generation region light shielding unit 163 and the polarization axis control plate region light shielding unit 193 overlap each other. An axis control plate area light-shielding portion 193 is disposed.

このように、本発明の実施例3に係る立体映像表示装置102によれば、観測者が位置Pにおいて観察した場合、映像生成領域遮光部と偏光軸制御板領域遮光部とが重なっているように見える。しかしながら、観察者が位置Pから立体映像表示装置100に対して近く、又は遠くの位置で観察した場合、映像生成領域遮光部と偏光軸制御板領域遮光部とがずれて見えることになる。   Thus, according to the stereoscopic image display apparatus 102 according to the third embodiment of the present invention, when the observer observes at the position P, the image generation region light shielding unit and the polarization axis control plate region light shielding unit seem to overlap each other. Looks like. However, when the observer observes from the position P at a position close to or far from the stereoscopic image display device 100, the image generation region light shielding unit and the polarization axis control plate region light shielding unit appear to be shifted.

本発明の実施例3に係る立体映像表示装置102によれば、このような観測者が位置P以外の位置において観察した場合においても、本発明の実施例1に係る立体映像表示装置100と同様に、第一偏光領域181と、第二偏光領域182と、第一偏光領域181及び第二偏光領域182の境界部に設けられたマイクロビーズ183bが添加された偏光軸制御板領域遮光部183とを有するので、透過率の異なる領域がランダムに出現し、映像生成領域遮光部163とのモアレは黒色部と白色部のコントラストが低減し、モアレの発生を低減することができる。   According to the stereoscopic video display apparatus 102 according to the third embodiment of the present invention, even when such an observer observes at a position other than the position P, the same as the stereoscopic video display apparatus 100 according to the first embodiment of the present invention. A polarization axis control plate region light-shielding portion 183 to which a first polarizing region 181, a second polarizing region 182, and a microbead 183 b provided at the boundary between the first polarizing region 181 and the second polarizing region 182 are added. Therefore, regions having different transmittances appear at random, and the moire between the image generation region light-shielding portion 163 reduces the contrast between the black portion and the white portion, and the occurrence of moire can be reduced.

100,101,102…立体映像表示装置
120…光源
130…映像表示部
150…偏光板
160…映像生成部
162…右目用映像生成領域
163…映像生成領域遮光部
164…左目用映像生成領域
170…偏光板
180,185,190…偏光軸制御板
181,186,191…第一偏光領域
182,187,192…第二偏光領域
183,193…偏光軸制御板領域遮光部
183a…遮光部
183b…マイクロビーズ
200…偏光眼鏡
DESCRIPTION OF SYMBOLS 100,101,102 ... Three-dimensional video display apparatus 120 ... Light source 130 ... Video display part 150 ... Polarizing plate 160 ... Video generation part 162 ... Video generation area for right eyes 163 ... Video generation area light-shielding part 164 ... Video generation area for left eyes 170 ... Polarizing plates 180, 185, 190 ... Polarization axis control plates 181, 186, 191 ... First polarization regions 182, 187, 192 ... Second polarization regions 183, 193 ... Polarization axis control plate regions light shielding part 183a ... Light shielding part 183b ... Micro Bead 200 ... Polarized glasses

Claims (5)

外部から入力する第1の映像信号に基づいて、所定の角度の偏光軸である第1の偏光軸の直線偏光を光変調して第1の変調光を生成して射出する第1の変調光生成領域と、外部から入力する第2の映像信号に基づいて前記第1の偏光軸の直線偏光を光変調して第2の変調光を生成して射出する第2の変調光生成領域とを有する映像生成部から射出した前記第1の変調光及び前記第2の変調光のうち、前記第1の偏光軸と異なる角度を有する第2の偏光軸の直線偏光である前記第1の変調偏光及び前記第2の変調偏光を透過して射出する偏光板と、
前記映像生成部における第1の変調光生成領域の位置に対応し、前記偏光板を射出した前記第1の変調偏光が入射した際に前記第1の変調偏光の偏光軸を第3の偏光軸となるよう偏光し第3の変調偏光として射出する第1の偏光領域と、前記映像生成部における第2の変調光生成領域の位置に対応し、前記偏光板を射出した前記第2の変調偏光が入射した際に前記第2の変調偏光の偏光軸を前記第3偏光軸と異なる第4の偏光軸となるよう偏光し第4の変調偏光として射出する第2の偏光領域と、前記第1の偏光領域及び前記第2の偏光領域の境界部に設けられ入射した光を遮光する遮光部とを有する偏光軸制御板と、
を備え、
前記遮光部は、入射した光の一部を透過する光透過性部材が添加された
ことを特徴とする立体映像表示用光学部材。
Based on the first video signal input from the outside, the first modulated light that generates the first modulated light by optically modulating the linearly polarized light of the first polarization axis that is the polarization axis of a predetermined angle and emits the first modulated light A generation region, and a second modulated light generation region that generates and emits second modulated light by optically modulating linearly polarized light of the first polarization axis based on a second video signal input from the outside. Of the first modulated light and the second modulated light emitted from the image generating unit, the first modulated polarized light that is linearly polarized light having a second polarization axis having an angle different from the first polarization axis And a polarizing plate that transmits and emits the second modulated polarized light,
Corresponding to the position of the first modulated light generation region in the image generation unit, when the first modulated polarized light emitted from the polarizing plate is incident, the polarization axis of the first modulated polarized light is set to the third polarization axis. Corresponding to the position of the second modulated light generation region in the image generation unit, and the second modulated polarized light emitted from the polarizing plate corresponding to the position of the second modulated light generation region in the image generation unit. The second polarization region that is polarized so that the polarization axis of the second modulated polarization becomes a fourth polarization axis different from the third polarization axis and is emitted as the fourth modulated polarization, A polarization axis control plate having a light shielding portion that shields incident light provided at a boundary portion between the polarization region and the second polarization region;
With
The light-shielding part is added with a light-transmitting member that transmits a part of the incident light.
前記遮光部に添加された光透過性部材の膜厚方向の大きさが、前記遮光部の膜厚以下である
ことを特徴とする請求項1記載の立体映像表示用光学部材。
The stereoscopic image display optical member according to claim 1, wherein a size of the light transmissive member added to the light shielding portion in a film thickness direction is equal to or less than a film thickness of the light shielding portion.
前記遮光部に添加された光透過性部材が球体である
ことを特徴とする請求項1又は2記載の立体映像表示用光学部材。
The optical member for stereoscopic video display according to claim 1 or 2, wherein the light transmissive member added to the light shielding portion is a sphere.
前記遮光部に添加された光透過性部材の添加率が20〜50(vol%)である
ことを特徴とする請求項1〜3のうちいずれか1項記載の立体映像表示用光学部材。
The optical member for stereoscopic video display according to any one of claims 1 to 3, wherein an addition ratio of the light transmissive member added to the light shielding portion is 20 to 50 (vol%).
光源と、
前記光源を射出した光のうち前記第1偏光軸である第1の直線偏光を透過する直線偏光生成部と、
第1の変調光生成領域と第2の変調光生成領域を有し、前記直線偏光生成部を射出した前記第1の直線偏光が入射した際に光変調して前記第1の変調偏光及び前記第2の変調偏光として射出する前記映像生成部と、
請求項1〜4いずれか1項記載の立体映像表示用光学部材と、
を備え、
前記偏光軸制御板における前記第1の偏光領域を射出した前記第3変調偏光により生成される映像を右目用映像とし、前記第2の偏光領域を射出した前記第4の変調偏光により生成される映像を左目用映像とすることを特徴とする立体映像装置。
A light source;
A linearly polarized light generator that transmits the first linearly polarized light that is the first polarization axis of the light emitted from the light source;
A first modulated light generation region and a second modulated light generation region, wherein when the first linearly polarized light emitted from the linearly polarized light generation unit is incident, the first modulated polarized light and the first modulated polarized light; The image generation unit emitting the second modulated polarized light;
The optical member for stereoscopic image display according to any one of claims 1 to 4,
With
An image generated by the third modulation polarization emitted from the first polarization region on the polarization axis control plate is a right-eye image, and is generated by the fourth modulation polarization emitted from the second polarization region. A three-dimensional video device characterized in that the video is a left-eye video.
JP2009198688A 2009-08-28 2009-08-28 Optical member for stereoscopic image display, and stereoscopic image display device Pending JP2011048286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198688A JP2011048286A (en) 2009-08-28 2009-08-28 Optical member for stereoscopic image display, and stereoscopic image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198688A JP2011048286A (en) 2009-08-28 2009-08-28 Optical member for stereoscopic image display, and stereoscopic image display device

Publications (1)

Publication Number Publication Date
JP2011048286A true JP2011048286A (en) 2011-03-10

Family

ID=43834644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198688A Pending JP2011048286A (en) 2009-08-28 2009-08-28 Optical member for stereoscopic image display, and stereoscopic image display device

Country Status (1)

Country Link
JP (1) JP2011048286A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180559A (en) * 2010-03-04 2011-09-15 Arisawa Mfg Co Ltd Optical member for stereoscopic image display and stereoscopic image display device
JP2012252302A (en) * 2011-06-07 2012-12-20 Arisawa Mfg Co Ltd Stereoscopic image display device
WO2013004044A1 (en) * 2011-07-04 2013-01-10 深圳市华星光电技术有限公司 Liquid crystal display
WO2013014786A1 (en) * 2011-07-28 2013-01-31 Necディスプレイソリューションズ株式会社 Stereoscopic liquid crystal monitor, stereoscopic image display device and stereoscopic image display method
WO2013022246A2 (en) * 2011-08-05 2013-02-14 주식회사 엘지화학 Display device
WO2013022256A3 (en) * 2011-08-09 2013-04-04 주식회사 엘지화학 Optical filter
KR101266216B1 (en) 2011-08-05 2013-05-21 주식회사 엘지화학 Dislgay device
KR20130060868A (en) * 2011-11-30 2013-06-10 엘지디스플레이 주식회사 Glass patterned retarder stereoscopic 3d display device and method of fabricating the same
CN103163653A (en) * 2011-12-15 2013-06-19 乐金显示有限公司 Polarization glasses type stereoscopic image display
CN103163652A (en) * 2011-12-15 2013-06-19 乐金显示有限公司 Polarization glasses type stereoscopic image display
JP2013156494A (en) * 2012-01-31 2013-08-15 Fujifilm Corp Pattern retardation plate, and polarizing plate having the same, stereoscopic image display device, and stereoscopic image display system
JP2013164525A (en) * 2012-02-13 2013-08-22 Fujifilm Corp Laminate and application of the same
JP2013205459A (en) * 2012-03-27 2013-10-07 Japan Display Inc Liquid crystal display device
KR20130131138A (en) * 2012-05-23 2013-12-03 엘지디스플레이 주식회사 Polarizing film haiving black strip applied to patterned retarder type 3d display device
KR20130137946A (en) * 2012-06-08 2013-12-18 엘지디스플레이 주식회사 Stereoscopic image display device
JP2014010444A (en) * 2012-07-02 2014-01-20 Lg Display Co Ltd Three-dimensional picture display device and manufacturing method of the same
JP2014512021A (en) * 2011-03-23 2014-05-19 エルジー・ケム・リミテッド Display device and manufacturing method of display device
CN103874954A (en) * 2011-08-09 2014-06-18 Lg化学株式会社 Optical filter
TWI464453B (en) * 2011-12-15 2014-12-11 Lg Display Co Ltd Polarization glasses type stereoscopic image display
TWI480593B (en) * 2011-12-15 2015-04-11 Lg Display Co Ltd Polarization glasses type stereoscopic image display
KR20170043629A (en) * 2014-10-22 2017-04-21 인텔 코포레이션 Anti-moire pattern diffuser for optical systems
US9709812B2 (en) 2011-05-17 2017-07-18 Lg Display Co., Ltd. Stereoscopic image display device using pattern retarder method and method for fabricating the same
KR101798239B1 (en) * 2011-07-13 2017-11-16 엘지디스플레이 주식회사 Stereoscopic image display device and driving method thereof
KR101804329B1 (en) * 2011-07-27 2017-12-05 엘지디스플레이 주식회사 3D image display device and method of manufacturing the same
KR101814777B1 (en) * 2011-08-05 2018-01-05 엘지디스플레이 주식회사 Stereoscopic image display
KR101814778B1 (en) * 2011-11-10 2018-01-05 엘지디스플레이 주식회사 Stereoscopic image display and method for manufacturing of the same
KR101818253B1 (en) * 2011-10-21 2018-01-15 엘지디스플레이 주식회사 Stereoscopic Image Display Device
KR101852564B1 (en) * 2011-11-25 2018-04-27 엘지디스플레이 주식회사 3 dimension image display device and method of manufacturing the same
KR101876432B1 (en) * 2011-08-10 2018-07-09 엘지디스플레이 주식회사 Display device and method of fabricating thereof
KR101876570B1 (en) * 2011-09-21 2018-07-09 엘지디스플레이 주식회사 Glass patterned retarder stereoscopic 3d display device and method of fabricating the same
KR101926601B1 (en) * 2011-10-10 2018-12-10 엘지디스플레이 주식회사 Display device and method of fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110772A (en) * 1997-06-23 1999-01-19 Mitsubishi Rayon Co Ltd Resin sheet having light control function
JP2009109968A (en) * 2007-08-09 2009-05-21 Arisawa Mfg Co Ltd Stereoscopic image display apparatus and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110772A (en) * 1997-06-23 1999-01-19 Mitsubishi Rayon Co Ltd Resin sheet having light control function
JP2009109968A (en) * 2007-08-09 2009-05-21 Arisawa Mfg Co Ltd Stereoscopic image display apparatus and manufacturing method thereof

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180559A (en) * 2010-03-04 2011-09-15 Arisawa Mfg Co Ltd Optical member for stereoscopic image display and stereoscopic image display device
JP2014512021A (en) * 2011-03-23 2014-05-19 エルジー・ケム・リミテッド Display device and manufacturing method of display device
US9709812B2 (en) 2011-05-17 2017-07-18 Lg Display Co., Ltd. Stereoscopic image display device using pattern retarder method and method for fabricating the same
KR101818246B1 (en) * 2011-05-17 2018-01-12 엘지디스플레이 주식회사 Stereoscopic image display device using pattern retarder method and fabricating method thereof
JP2012252302A (en) * 2011-06-07 2012-12-20 Arisawa Mfg Co Ltd Stereoscopic image display device
WO2013004044A1 (en) * 2011-07-04 2013-01-10 深圳市华星光电技术有限公司 Liquid crystal display
KR101798239B1 (en) * 2011-07-13 2017-11-16 엘지디스플레이 주식회사 Stereoscopic image display device and driving method thereof
KR101804329B1 (en) * 2011-07-27 2017-12-05 엘지디스플레이 주식회사 3D image display device and method of manufacturing the same
WO2013014786A1 (en) * 2011-07-28 2013-01-31 Necディスプレイソリューションズ株式会社 Stereoscopic liquid crystal monitor, stereoscopic image display device and stereoscopic image display method
KR101266216B1 (en) 2011-08-05 2013-05-21 주식회사 엘지화학 Dislgay device
KR101814777B1 (en) * 2011-08-05 2018-01-05 엘지디스플레이 주식회사 Stereoscopic image display
US9007446B2 (en) 2011-08-05 2015-04-14 Lg Chem, Ltd. Three dimensional display device
WO2013022246A2 (en) * 2011-08-05 2013-02-14 주식회사 엘지화학 Display device
JP2014521999A (en) * 2011-08-05 2014-08-28 エルジー・ケム・リミテッド Display device
WO2013022246A3 (en) * 2011-08-05 2013-04-04 주식회사 엘지화학 Display device
CN103718084A (en) * 2011-08-05 2014-04-09 Lg化学株式会社 Display device
TWI490551B (en) * 2011-08-05 2015-07-01 Lg Chemical Ltd Display device
CN103874954A (en) * 2011-08-09 2014-06-18 Lg化学株式会社 Optical filter
US9411164B2 (en) 2011-08-09 2016-08-09 Lg Chem, Ltd. Optical filter
US9285524B2 (en) 2011-08-09 2016-03-15 Lg Chem, Ltd. Optical filter
CN103748502A (en) * 2011-08-09 2014-04-23 Lg化学株式会社 Optical filter
CN105334564A (en) * 2011-08-09 2016-02-17 Lg化学株式会社 Optical filter
KR101454073B1 (en) 2011-08-09 2014-10-24 주식회사 엘지화학 Optical filter
WO2013022256A3 (en) * 2011-08-09 2013-04-04 주식회사 엘지화학 Optical filter
TWI483001B (en) * 2011-08-09 2015-05-01 Lg Chemical Ltd Optical filter, method of manufacturing thereof, and stereoscopic image display device comprising the same
KR101876432B1 (en) * 2011-08-10 2018-07-09 엘지디스플레이 주식회사 Display device and method of fabricating thereof
KR101876570B1 (en) * 2011-09-21 2018-07-09 엘지디스플레이 주식회사 Glass patterned retarder stereoscopic 3d display device and method of fabricating the same
KR101926601B1 (en) * 2011-10-10 2018-12-10 엘지디스플레이 주식회사 Display device and method of fabricating the same
KR101818253B1 (en) * 2011-10-21 2018-01-15 엘지디스플레이 주식회사 Stereoscopic Image Display Device
KR101814778B1 (en) * 2011-11-10 2018-01-05 엘지디스플레이 주식회사 Stereoscopic image display and method for manufacturing of the same
KR101852564B1 (en) * 2011-11-25 2018-04-27 엘지디스플레이 주식회사 3 dimension image display device and method of manufacturing the same
KR101881169B1 (en) * 2011-11-30 2018-07-24 엘지디스플레이 주식회사 Glass patterned retarder stereoscopic 3d display device and method of fabricating the same
KR20130060868A (en) * 2011-11-30 2013-06-10 엘지디스플레이 주식회사 Glass patterned retarder stereoscopic 3d display device and method of fabricating the same
TWI464453B (en) * 2011-12-15 2014-12-11 Lg Display Co Ltd Polarization glasses type stereoscopic image display
JP2013125269A (en) * 2011-12-15 2013-06-24 Lg Display Co Ltd Polarized glasses type stereoscopic image display device
CN103163653A (en) * 2011-12-15 2013-06-19 乐金显示有限公司 Polarization glasses type stereoscopic image display
US9684177B2 (en) 2011-12-15 2017-06-20 Lg Display Co., Ltd. Polarization glasses type stereoscopic image display
US9239466B2 (en) * 2011-12-15 2016-01-19 Lg Display Co., Ltd. Polarization glasses type stereoscopic image display
TWI480593B (en) * 2011-12-15 2015-04-11 Lg Display Co Ltd Polarization glasses type stereoscopic image display
CN103163652A (en) * 2011-12-15 2013-06-19 乐金显示有限公司 Polarization glasses type stereoscopic image display
JP2013125268A (en) * 2011-12-15 2013-06-24 Lg Display Co Ltd Polarized glasses type stereoscopic image display device
GB2497619B (en) * 2011-12-15 2016-04-06 Lg Display Co Ltd Polarization glasses type stereoscopic image display
JP2013156494A (en) * 2012-01-31 2013-08-15 Fujifilm Corp Pattern retardation plate, and polarizing plate having the same, stereoscopic image display device, and stereoscopic image display system
JP2013164525A (en) * 2012-02-13 2013-08-22 Fujifilm Corp Laminate and application of the same
JP2013205459A (en) * 2012-03-27 2013-10-07 Japan Display Inc Liquid crystal display device
KR20130131138A (en) * 2012-05-23 2013-12-03 엘지디스플레이 주식회사 Polarizing film haiving black strip applied to patterned retarder type 3d display device
KR101977241B1 (en) * 2012-05-23 2019-05-10 엘지디스플레이 주식회사 Polarizing Film Haiving Black Strip Applied To Patterned Retarder Type 3D Display Device
KR101868157B1 (en) * 2012-06-08 2018-06-15 엘지디스플레이 주식회사 Stereoscopic image display device
KR20130137946A (en) * 2012-06-08 2013-12-18 엘지디스플레이 주식회사 Stereoscopic image display device
JP2014010444A (en) * 2012-07-02 2014-01-20 Lg Display Co Ltd Three-dimensional picture display device and manufacturing method of the same
KR20170043629A (en) * 2014-10-22 2017-04-21 인텔 코포레이션 Anti-moire pattern diffuser for optical systems
KR102315504B1 (en) 2014-10-22 2021-10-25 노쓰 인크 Anti-moire pattern diffuser for optical systems

Similar Documents

Publication Publication Date Title
JP2011048286A (en) Optical member for stereoscopic image display, and stereoscopic image display device
JP5177163B2 (en) 3D image display optical member and 3D image display device
JP5514738B2 (en) Liquid crystal filter, retardation plate, and optical low-pass filter
JP2008257207A (en) Method for manufacturing stereoscopic displaying apparatus, method for manufacturing phase difference plate, and phase difference plate thereby
JP5328699B2 (en) 3D image display optical member and 3D image display device
JP5316444B2 (en) 3D image display optical member and 3D image display device
JP5914713B2 (en) 3D stereoscopic glasses for stereoscopic video display device and stereoscopic video display device including the same
WO2014196125A1 (en) Image display device and liquid crystal lens
JP2008304909A (en) Stereoscopic image display device
JP5343917B2 (en) Video display device
JP2009139593A (en) Stereoscopic image display, and phase difference plate
CN102654678B (en) Color filter substrate and manufacturing method thereof as well as 3D (three-dimensional) liquid crystal display
WO2010067506A1 (en) Image display device
JP2005352392A (en) Microlens array, spatial optical modulation device, and projector apparatus
WO2012111496A1 (en) Display device and display method
JP2015145920A (en) image display device
JP4936191B2 (en) 3D display device
JP2016206512A (en) Head-mounted display
JP2013195995A (en) Light deflecting liquid crystal element
JP4652870B2 (en) Image display device
JP5739241B2 (en) Stereoscopic image display device
JP2014182244A (en) Patterned phase difference film and image display device
JP2014174363A (en) Pattern phase difference film and image display device
JP5815135B2 (en) Display device
JP2017187788A (en) Two-dimensional scanner and imaging apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008