[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010236089A - 水電解装置の運転停止方法 - Google Patents

水電解装置の運転停止方法 Download PDF

Info

Publication number
JP2010236089A
JP2010236089A JP2010027148A JP2010027148A JP2010236089A JP 2010236089 A JP2010236089 A JP 2010236089A JP 2010027148 A JP2010027148 A JP 2010027148A JP 2010027148 A JP2010027148 A JP 2010027148A JP 2010236089 A JP2010236089 A JP 2010236089A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
water
voltage
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010027148A
Other languages
English (en)
Other versions
JP5349360B2 (ja
Inventor
Kenji Taruie
憲司 樽家
Masanori Okabe
昌規 岡部
Aoi Miyake
葵 三宅
Jun Takeuchi
淳 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010027148A priority Critical patent/JP5349360B2/ja
Priority to US12/721,740 priority patent/US8721867B2/en
Publication of JP2010236089A publication Critical patent/JP2010236089A/ja
Application granted granted Critical
Publication of JP5349360B2 publication Critical patent/JP5349360B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】運転停止後に、高圧水素がアノード側にリークして滞留することを抑制し、触媒電極の劣化を阻止して良好な水電解処理を遂行可能にする。
【解決手段】電解質膜の両側に給電体が設けられ、前記給電体間に電解電圧を印加することにより、水を電気分解してアノード側電解室に酸素を発生させるとともに、カソード側電解室に常圧よりも高圧な水素を発生させる水電解装置の運転停止方法に関するものである。この運転停止方法は、カソード側電解室から水素の供給が停止された後、電圧を印加する工程と、前記電圧を印加した状態で、少なくとも前記カソード側電解室の減圧を行う工程と、前記カソード側電解室とアノード側電解室とが同圧になった際、前記低圧の電圧の印加を停止する工程とを有している。
【選択図】図3

Description

本発明は、電解質膜の両側に給電体が設けられ、前記給電体間に電解電圧を印加することにより、水を電気分解してアノード側電解室に酸素を発生させるとともに、カソード側電解室に常圧よりも高圧な水素を発生させる水電解装置の運転停止方法に関する。
例えば、固体高分子型燃料電池は、アノード側電極に燃料ガス(主に水素を含有するガス、例えば、水素ガス)が供給される一方、カソード側電極に酸化剤ガス(主に酸素を含有するガス、例えば、空気)が供給されることにより、直流の電気エネルギを得ている。
一般的に、燃料ガスである水素ガスを製造するために、水電解装置が採用されている。この水電解装置は、水を分解して水素(及び酸素)を発生させるため、固体高分子電解質膜(イオン交換膜)を用いている。固体高分子電解質膜の両面には、電極触媒層が設けられて電解質膜・電極構造体が構成されるとともに、前記電解質膜・電極構造体の両側には、給電体を配設してユニットが構成されている。すなわち、ユニットは、実質的には、上記の燃料電池と同様に構成されている。
そこで、複数のユニットが積層された状態で、積層方向両端に電圧が付与されるとともに、アノード側に水が供給される。このため、電解質膜・電極構造体のアノード側では、水が分解されて水素イオン(プロトン)が生成され、この水素イオンが固体高分子電解質膜を透過してカソード側に移動し、電子と結合して水素が製造される。一方、アノード側では、水素イオンと共に生成された酸素が、余剰の水を伴ってユニットから排出される。
この種の水電解装置では、カソード側に高圧(一般的には、1MPa以上)な水素を生成する高圧水素製造装置が採用されている。例えば、特許文献1に開示されているように、固体高分子膜と、該固体高分子膜の両側に相対向して設けられたカソード給電体と、アノード給電体と、各給電体に積層されたセパレータと、各セパレータに設けられて各給電体が露出する流体通路とを備え、アノード側セパレータの流体通路に水を供給するとともに、各給電体に通電することにより、アノード側セパレータの流体通路に供給された水を電気分解し、カソード側セパレータの流体通路に高圧の水素ガスを得る水素製造装置において、該カソード給電体を該固体高分子膜に押圧して密着せしめる押圧手段を備えている。
これにより、カソード側が高圧になったときには、押圧手段がカソード給電体を固体高分子膜に押圧して密着させるため、前記固体高分子膜と前記カソード給電体との間に間隙を生じることがなく、接触抵抗の増大を阻止することが可能になっている。
特開2006−70322号公報
ところで、上記の高圧水素製造装置では、固体高分子膜を挟んでカソード側セパレータの流体通路に高圧水素が充填される一方、アノード側セパレータの流体通路には、常圧の水及び酸素が存在している。このため、運転停止(生成水素の供給終了)時には、固体高分子膜を保護するために、前記固体高分子膜の両側の圧力差を除去する必要がある。
従って、通常、各給電体への電力の供給をゼロにして水電解処理を停止した後、カソード側の流体通路に充填されている水素の圧力を強制的に脱圧し、前記水素の圧力を常圧付近まで減圧させる処理が行われている。
その際、水素圧力の減圧が急激に行われると、固体高分子膜やシールに対して損傷を与えるおそれがあり、減圧は時間をかけて徐々に行う必要がある。これにより、電解処理が停止してから、カソード側の流体通路の水素圧力が常圧になるまでに相当な時間を要してしまい、その間にカソード側からアノード側へと水素が透過するおそれがある。このため、アノード触媒が水素によって還元され、水電解性能が低下するという問題がある。
本発明はこの種の問題を解決するものであり、運転停止後に、アノード側にリークした高圧水素が滞留することを抑制し、触媒電極の劣化を阻止して良好な水電解処理が遂行可能な水電解装置の運転停止方法を提供することを目的とする。
本発明は、電解質膜の両側に給電体が設けられ、前記給電体間に電解電圧を印加することにより、水を電気分解してアノード側電解室に酸素を発生させるとともに、カソード側電解室に常圧よりも高圧な水素を発生させる水電解装置の運転停止方法に関するものである。
この運転停止方法は、カソード側電解室から水素の供給が停止された後、電圧を印加する工程と、前記電圧を印加した状態で、少なくとも前記カソード側電解室の減圧を行う工程とを有している。
また、この運転停止方法は、カソード側電解室とアノード側電解室とが同圧になった際、電圧の印加を停止する工程とを有することが好ましい。
さらに、この運転停止方法は、少なくともカソード側電解室の圧力の低下に伴って、印加電圧を低下させることが好適である。
さらにまた、この運転停止方法は、カソード側電解室から水素の供給が停止された後、電解電圧よりも低圧な電圧を印加することが好ましい。電解電圧を印加しても、劣化を抑制することができるものの、脱圧中に無駄に水素が生成されるため、電解電圧よりも低い電圧が好適である。
本発明によれば、電圧を印加しながら、カソード側電解室の減圧を行っている。このため、カソード側電解室の水素が、アノード側電解室にリークすると、この水素は、印加電圧により再度プロトン化し、水素膜ポンプ効果によって電解質膜を透過してカソード側に戻される。
従って、運転停止後に、アノード側にリークした高圧水素が滞留することを抑制し、触媒電極の水素による還元(劣化)を阻止することができる。これにより、運転停止及び運転開始を繰り返すことによる水電解効率の低下を抑制することが可能になり、水電解処理を良好に遂行することができる。
本発明の第1の実施形態に係る水電解装置の概略構成説明図である。 前記水電解装置を構成する単位セルの分解斜視説明図である。 第1の実施形態に係る水電解装置の運転停止方法を説明するフローチャートである。 印加電圧と水素発生量との説明図である。 前記運転停止方法における水素の挙動の説明図である。 第1の実施形態及び比較例における起動、停止の回数と効率との関係説明図である。 第1の実施形態の起動、停止のサイクル説明図である。 本発明の第2の実施形態に係る水電解装置の概略構成説明図である。 第2の実施形態に係る水電解装置の運転停止方法を説明するフローチャートである。 本発明の第3の実施形態に係る水電解装置の運転停止方法を説明するフローチャートである。 第2流路の圧力と第1流路側への水素のクロスリーク量との関係図である。 第2流路の圧力と電流制御値との関係図である。
図1に示すように、本発明の第1の実施形態に係る運転停止方法が適用される水電解装置10は、純水を電気分解することによって高圧水素(常圧よりも高圧、例えば、1MPa以上)を製造する水電解機構12と、純水供給機構14を介して市水から生成された純水が供給され、この純水を前記水電解機構12に供給するとともに、前記水電解機構12から排出される余剰の前記水を、前記水電解機構12に循環供給する水循環機構16と、前記水電解機構12から導出される前記高圧水素に含まれる水分を除去する水素側気液分離器18と、前記水素側気液分離器18から供給される水素に含まれる水分を吸着して除去する水素除湿器20と、コントローラ(制御部)22とを備える。
水電解機構12は、高圧水素製造装置(カソード側圧力>アノード側圧力)を構成しており、複数の単位セル24が積層される。単位セル24の積層方向一端には、ターミナルプレート26a、絶縁プレート28a及びエンドプレート30aが外方に向かって、順次、配設される。単位セル24の積層方向他端には、同様にターミナルプレート26b、絶縁プレート28b及びエンドプレート30bが外方に向かって、順次、配設される。エンドプレート30a、30b間は、一体的に締め付け保持される。
ターミナルプレート26a、26bの側部には、端子部34a、34bが外方に突出して設けられる。端子部34a、34bは、配線36a、36bを介して電解用電源38に電気的に接続される。陽極(アノード)側である端子部34aは、電解用電源38のプラス極に接続される一方、陰極(カソード)側である端子部34bは、前記電解用電源38のマイナス極に接続される。
図2に示すように、単位セル24は、円盤状の電解質膜・電極構造体42と、この電解質膜・電極構造体42を挟持するアノード側セパレータ44及びカソード側セパレータ46とを備える。アノード側セパレータ44及びカソード側セパレータ46は、円盤状を有するとともに、例えば、カーボン部材等で構成され、又は、鋼板、ステンレス鋼板、チタン板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板をプレス成形して、あるいは切削加工した後に防食用の表面処理を施して構成される。
電解質膜・電極構造体42は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜48と、前記固体高分子電解質膜48の両面に設けられるアノード側給電体50及びカソード側給電体52とを備える。
固体高分子電解質膜48の両面には、アノード電極触媒層50a及びカソード電極触媒層52aが形成される。アノード電極触媒層50aは、例えば、Ru(ルテニウム)系触媒を使用する一方、カソード電極触媒層52aは、例えば、白金触媒を使用する。
アノード側給電体50及びカソード側給電体52は、例えば、球状アトマイズチタン粉末の焼結体(多孔質導電体)により構成される。アノード側給電体50及びカソード側給電体52は、研削加工後にエッチング処理される平滑表面部を設けるとともに、空隙率が10%〜50%、より好ましくは、20%〜40%の範囲内に設定される。
単位セル24の外周縁部には、積層方向である矢印A方向に互いに連通して、水(純水)を供給するための水供給連通孔56と、反応により生成された酸素及び使用済みの水(混合流体)を排出するための排出連通孔58と、反応により生成された高圧水素を流すための水素連通孔60とが設けられる。
アノード側セパレータ44の電解質膜・電極構造体42に向かう面44aには、水供給連通孔56に連通する供給通路62aと、排出連通孔58に連通する排出通路62bとが設けられる。面44aには、供給通路62a及び排出通路62bに連通する第1流路(アノード側電解室)64が設けられる。この第1流路64は、アノード側給電体50の表面積に対応する範囲内に設けられるとともに、複数の流路溝や複数のエンボス等で構成される。
カソード側セパレータ46の電解質膜・電極構造体42に向かう面46aには、水素連通孔60に連通する排出通路66が設けられる。面46aには、排出通路66に連通する第2流路(カソード側電解室)68が形成される。この第2流路68は、カソード側給電体52の表面積に対応する範囲内に設けられるとともに、複数の流路溝や複数のエンボス等で構成される。
アノード側セパレータ44及びカソード側セパレータ46の外周端部を周回して、シール部材70a、70bが一体化される。このシール部材70a、70bには、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材が用いられる。
図1に示すように、水循環機構16は、水電解機構12の水供給連通孔56に連通する循環配管72を備え、この循環配管72には、循環ポンプ74、イオン交換器76及び酸素側気液分離器78が配設される。
酸素側気液分離器78の上部には、戻り配管80の一端部が連通するとともに、前記戻り配管80の他端は、水電解機構12の排出連通孔58に連通する。酸素側気液分離器78には、純水供給機構14に接続された純水供給配管82と、前記酸素側気液分離器78で純水から分離された酸素を排出するための酸素排気配管84とが連結される。
水電解機構12の水素連通孔60には、高圧水素配管88の一端が接続され、この高圧水素配管88の他端が水素側気液分離器18に接続される。高圧水素配管88から脱圧配管88aが分岐するとともに、前記脱圧配管88aには、脱圧用バルブ89が設けられる。
水素側気液分離器18で水分が除去された高圧水素は、水素除湿器20によって除湿され、ドライ水素配管90にドライ水素が供給される。ドライ水素配管90には、背圧弁91が配設されており、水素連通孔60に生成される水素圧力は、酸素側よりも高圧に維持される。
水素側気液分離器18の下部には、ドレン配管92が接続される。このドレン配管92には、排水用バルブ94が配設される。なお、高圧水素配管88には、必要に応じて、水素連通孔60に近接してカソード側電解室である第2流路68の圧力を検出する圧力センサ96が配設される。
このように構成される水電解装置10の動作について、以下に説明する。
先ず、水電解装置10の始動時には、純水供給機構14を介して市水から生成された純水が、水循環機構16を構成する酸素側気液分離器78に供給される。
水循環機構16では、循環ポンプ74の作用下に、循環配管72を介して純水が水電解機構12の水供給連通孔56に供給される。一方、ターミナルプレート26a、26bの端子部34a、34bには、電気的に接続されている電解用電源38を介して電解電圧が付与される。
このため、図2に示すように、各単位セル24では、水供給連通孔56からアノード側セパレータ44の第1流路64に水が供給され、この水がアノード側給電体50内に沿って移動する。
従って、水は、アノード電極触媒層50aで電気により分解され、水素イオン、電子及び酸素が生成される。この陽極反応により生成された水素イオンは、固体高分子電解質膜48を透過してカソード電極触媒層52a側に移動し、電子と結合して水素が得られる。
これにより、カソード側セパレータ46とカソード側給電体52との間に形成される第2流路68に沿って水素が流動する。この水素は、水供給連通孔56よりも高圧に維持されており、水素連通孔60を流れて水電解機構12の外部に取り出し可能となる。
一方、第1流路64には、反応により生成した酸素と、使用済みの水とが流動しており、これらの混合流体が排出連通孔58に沿って水循環機構16の戻り配管80に排出される(図1参照)。この使用済みの水及び酸素は、酸素側気液分離器78に導入されて分離された後、水は、循環ポンプ74を介して循環配管72からイオン交換器76を通って水供給連通孔56に導入される。水から分離された酸素は、酸素排気配管84から外部に排出される。
水電解機構12内に生成された水素は、高圧水素配管88を介して水素側気液分離器18に送られる。この水素側気液分離器18では、水素に含まれる水蒸気が、この水素から分離される。一方、水素は、水素除湿器20を介して除湿された後、背圧弁91の設定圧力に至ると、ドライ水素としてドライ水素配管90に導入される。このドライ水素は、図示しない燃料電池車両に供給される。
次いで、本発明の第1の実施形態に係る水電解装置10の運転停止方法について、図3に示すフローチャートに沿って以下に説明する。
コントローラ22では、図示しない燃料電池車両にドライ水素の充填が完了すると、水電解装置10の運転が停止したと判断する(ステップS1)。なお、運転停止の判断基準は、例えば、図示しないスイッチによるオフ操作等、他の方式を採用してもよい。
次いで、ステップS2に進み、電解用電源38により、上記の電解電圧よりも低圧な電圧が印加される。この印加電圧は、0.2V〜0.8V、より好適には、0.2V〜0.5Vの範囲に設定される。印加電圧が0.2V未満では、アノード電極触媒層50aが還元されて劣化する一方、前記印加電圧が0.8Vを超えると、図4に示すように、特に、1.23Vを超えると、電解が進行して多量の水素が発生するため、水素発生電圧以下が好ましい。但し、水素が発生しても、触媒劣化を抑制する効果がある。
従って、コントローラ22は、水電解機構12を構成する各単位セル24が、常に、設定電圧である、例えば、0.5V以下になるように、電解用電源38の制御を行う。この状態で、カソード側の高圧水素の減圧が開始される(ステップS3)。
具体的には、脱圧用バルブ89が開放されて、脱圧配管88aが水素連通孔60に連通する。このため、カソード側電解室である第2流路68に充填されている高圧水素は、脱圧用バルブ89の開度調整によって徐々に減圧処理される。
そして、第2流路68内の水素圧力が、第1流路64内の圧力(常圧)と同圧になった際(ステップS4中、YES)、ステップS5に進んで、電解用電源38による電圧印加が停止される。これにより、水電解装置10の運転が停止される。
なお、第2流路68内の水素圧力が、第1流路64内の圧力と同圧になったか否かの判断は、例えば、圧力センサ96の検出圧力に基づいて行われる。また、圧力センサ96に代えて、減圧処理開始からの経過時間を計測し、所定の時間が経過したか否かに基づいて行うことも可能である。
この場合、第1の実施形態では、電解用電源38が制御されることによって、電解電圧よりも低圧な電圧を印加しながら、カソード側電解室である第2流路68の減圧を行っている。従って、図5に示すように、高圧状態の第2流路68から常圧状態の第1流路64に、固体高分子電解質膜48を透過して水素が移動し易い。
その際、各単位セル24に微小電位(0.2V〜0.8V、より好ましくは、0.2V〜0.5V)が印加されている。このため、アノード電極触媒層50aにリークした水素は、再度プロトン化し、固体高分子電解質膜48の膜ポンプ効果によって、カソード電極触媒層52a側に戻される。従って、運転停止後に、アノード電極触媒層50a側にリークした高圧水素が滞留することを抑制し、前記アノード電極触媒層50aが水素により還元(劣化)されることを良好に阻止することができる。
ここで、減圧時に微小電位を印加する第1の実施形態と、電圧の印加を行わない比較例とでは、図6に示すように、起動と停止を繰り返す際に、電解効率(耐久性能)に相違が発生している。すなわち、第1の実施形態では、図7に示すように、第2流路68の減圧時に、微小電位の印加し電流を流すことにより、効率の低下は、例えば、10サイクルで1%程度である。これに対し、比較例では、例えば、10サイクルで、約5%の効率低下が惹起している。
これにより、第1の実施形態では、運転停止及び運転開始を繰り返すことによる水電解効率の低下を抑制することが可能になり、水電解処理を良好に遂行することができ、システム効率の低下が抑制されるという効果が得られる。
図8は、本発明の第2の実施形態に係る水電解装置100の概略構成説明図である。
なお、第1の実施形態に係る水電解装置10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
水電解装置100では、水電解機構12には、電解用電源38の他、各単位セル24毎に電圧を付与するセル電源102を備える。
このように構成される水電解装置100による運転停止方法は、図9に示すフローチャートに沿って行われる。なお、図3に示す第1の実施形態に係る水電解装置10の運転停止方法と同一の工程については、その詳細な説明は省略する。
コントローラ22は、水電解装置100の運転が停止すると(ステップS11)、ステップS12に進んで、電解用電源38を遮断する一方、各セル電源102を制御して各単位セル24に設定電圧(例えば、0.5V以下)を印加する。
各単位セル24には、各セル電源102を介して低圧の電圧が印加された状態で、脱圧用バルブ89の開放作用下に、第2流路68内の高圧水素の脱圧処理が開始される(ステップS13)。
そして、第2流路68の圧力が、第1流路64の圧力と同圧になった際、減圧が完了したと判断し(ステップS14中、YES)、ステップS15に進んで、各セル電源102による各単位セル24への電圧印加が停止される。
これにより、第2の実施形態では、各単位セル24毎に、セル電源102を介して設定電圧を付与しながら、カソード側電解室である第2流路68の減圧処理が行われており、上記の第1の実施形態と同様の効果が得られる。
図10は、本発明の第3の実施形態に係る運転停止方法を説明するフローチャートである。なお、第3の実施形態では、第1の実施形態に係る水電解装置10を用いているが、第2の実施形態に係る水電解装置100を用いてもよい。
第3の実施形態では、ステップS21〜ステップS23の処理が、第1の実施形態のステップS1〜ステップS3と同様に行われた後、ステップS24に進む。
ここで、第2流路68の圧力と第1流路64側への水素のクロスリーク量とは、図11に示す関係を有している。すなわち、第1流路64側へのクロスリーク量は、第2流路68の圧力低下に伴って減少する。このため、第3の実施形態では、図12に示すように、第2流路68の圧力低下に伴って、電流制御を行うことにより、印加電圧を除々に低下させる(ステップS24)。その後、ステップS25及びステップS26に移行する。
これにより、第3の実施形態では、特に第1流路64側へのクロスリーク量に応じて印加電圧の制御が行われるため、第2流路68の減圧処理が一層効率的且つ良好に遂行される他、上記の第1実施形態と同様の効果が得られる。
なお、第1〜第3の実施形態では、第2流路68の減圧処理のみについて説明したが、これに限定されるものではなく、第1及び第2流路64、68が高圧である構造では、前記第1流路64も同様に、減圧処理される。
10、100…水電解装置 12…水電解機構
14…純水供給機構 16…水循環機構
18…水素側気液分離器 20…水素除湿器
22…コントローラ 24…単位セル
38…電解用電源 42…電解質膜・電極構造体
44…アノード側セパレータ 46…カソード側セパレータ
48…固体高分子電解質膜 50…アノード側給電体
52…カソード側給電体 56…水供給連通孔
58…排出連通孔 60…水素連通孔
64、68…流路 72…循環配管
78…酸素側気液分離器 80…戻り配管
88…高圧水素配管 88a…脱圧配管
89…脱圧用バルブ 102…セル電源

Claims (4)

  1. 電解質膜の両側に給電体が設けられ、前記給電体間に電解電圧を印加することにより、水を電気分解してアノード側電解室に酸素を発生させるとともに、カソード側電解室に常圧よりも高圧な水素を発生させる水電解装置の運転停止方法であって、
    前記カソード側電解室から前記水素の供給が停止された後、電圧を印加する工程と、
    前記電圧を印加した状態で、少なくとも前記カソード側電解室の減圧を行う工程と、
    を有することを特徴とする水電解装置の運転停止方法。
  2. 請求項1記載の運転停止方法において、前記カソード側電解室と前記アノード側電解室とが同圧になった際、前記電圧の印加を停止する工程を有することを特徴とする水電解装置の運転停止方法。
  3. 請求項1又は2記載の運転停止方法において、少なくとも前記カソード側電解室の圧力の低下に伴って、印加電圧を低下させることを特徴とする水電解装置の運転停止方法。
  4. 請求項1〜3のいずれか1項に記載の運転停止方法において、前記カソード側電解室から前記水素の供給が停止された後、前記電解電圧よりも低圧な電圧を印加することを特徴とする水電解装置の運転停止方法。
JP2010027148A 2009-03-11 2010-02-10 水電解装置の運転停止方法 Active JP5349360B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010027148A JP5349360B2 (ja) 2009-03-11 2010-02-10 水電解装置の運転停止方法
US12/721,740 US8721867B2 (en) 2009-03-11 2010-03-11 Method of shutting down water electrolysis apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009057623 2009-03-11
JP2009057623 2009-03-11
JP2010027148A JP5349360B2 (ja) 2009-03-11 2010-02-10 水電解装置の運転停止方法

Publications (2)

Publication Number Publication Date
JP2010236089A true JP2010236089A (ja) 2010-10-21
JP5349360B2 JP5349360B2 (ja) 2013-11-20

Family

ID=42729815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027148A Active JP5349360B2 (ja) 2009-03-11 2010-02-10 水電解装置の運転停止方法

Country Status (2)

Country Link
US (1) US8721867B2 (ja)
JP (1) JP5349360B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111981A (ja) * 2010-11-19 2012-06-14 Takasago Thermal Eng Co Ltd 水素製造方法及び水素製造システム
JP2012167331A (ja) * 2011-02-15 2012-09-06 Honda Motor Co Ltd 差圧式水電解装置の運転方法
JP2012219291A (ja) * 2011-04-05 2012-11-12 Honda Motor Co Ltd 水電解システムの運転停止方法
JP2012219293A (ja) * 2011-04-05 2012-11-12 Honda Motor Co Ltd 水電解システム及びその運転方法
JP2012241252A (ja) * 2011-05-23 2012-12-10 Honda Motor Co Ltd 水電解システム及びその運転方法
JP2013023733A (ja) * 2011-07-21 2013-02-04 Honda Motor Co Ltd 水電解システムの運転方法
JP2014062311A (ja) * 2012-09-24 2014-04-10 Honda Motor Co Ltd 高圧水電解システム及びその起動方法
US8815075B2 (en) 2011-04-05 2014-08-26 Honda Motor Co., Ltd. Water electrolysis system and method of operating same
US8961747B2 (en) 2011-09-13 2015-02-24 Honda Motor Co., Ltd. Water electrolysis system and method of stopping operation of water electrolysis system
US9580821B2 (en) 2013-08-30 2017-02-28 Honda Motor Co., Ltd. Control method of differential pressure water electrolysis system
JP2017210665A (ja) * 2016-05-27 2017-11-30 本田技研工業株式会社 高圧水電解システムの脱圧方法
JP2021529250A (ja) * 2018-03-22 2021-10-28 ハイメット アーペーエス 圧力補償システムおよびこれを備える高圧電気分解器システム
WO2022239756A1 (ja) * 2021-05-12 2022-11-17 パナソニックIpマネジメント株式会社 水電解装置及びその制御方法
DE102023129441A1 (de) 2022-12-20 2024-06-20 Toyota Jidosha Kabushiki Kaisha Wasserelektrolysevorrichtung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469265B8 (en) * 2009-04-06 2015-06-17 Re Hydrogen Ltd Electrode configuration of electrolysers to protect catalyst from oxidation
JP6672193B2 (ja) * 2017-02-02 2020-03-25 株式会社東芝 二酸化炭素の電解セルと電解装置
DE102018208624A1 (de) 2018-05-30 2019-12-05 Thyssenkrupp Uhde Chlorine Engineers Gmbh Verfahren und Vorrichtung zum Bereitstellen von wenigstens einem Produktstrom durch Elektrolyse sowie Verwendung
CN109721859B (zh) * 2018-12-10 2022-04-19 江苏安凯特科技股份有限公司 一种离子膜电解槽用阳极垫片的制备工艺
JP7269099B2 (ja) * 2019-05-31 2023-05-08 旭化成株式会社 電解装置の運転方法及び電解装置
JP7108010B2 (ja) * 2020-11-24 2022-07-27 本田技研工業株式会社 水素・酸素製造システムの制御方法および水素・酸素製造システム
EP4452870A1 (en) * 2021-12-22 2024-10-30 Electric Hydrogen Co. Operation of an electrolytic cell or system at intermediate oxygen pressure
DE102022213898A1 (de) 2022-12-19 2024-06-20 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Regeneration eines Elektrolyseurs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144079A (ja) * 1994-11-28 1996-06-04 Shinko Pantec Co Ltd 水電解セルの残留電圧除去方法及びそのための装置
JPH10330978A (ja) * 1997-05-29 1998-12-15 Japan Storage Battery Co Ltd 水電解装置
JP2005180545A (ja) * 2003-12-18 2005-07-07 Honda Motor Co Ltd 高圧水素製造装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561949A (en) * 1983-08-29 1985-12-31 Olin Corporation Apparatus and method for preventing activity loss from electrodes during shutdown
DE19607235C1 (de) * 1996-02-27 1997-07-17 Forschungszentrum Juelich Gmbh Elektrolyseur mit verminderten parasitär fließenden Strömen
CA2349508C (en) * 2001-06-04 2004-06-29 Global Tech Environmental Products Inc. Electrolysis cell and internal combustion engine kit comprising the same
JP2006070322A (ja) 2004-09-02 2006-03-16 Honda Motor Co Ltd 高圧水素製造装置
JP4165655B2 (ja) * 2005-02-25 2008-10-15 本田技研工業株式会社 電解装置、電気化学反応型膜装置及び多孔質導電体
DE102007003554A1 (de) * 2007-01-24 2008-07-31 Bayer Materialscience Ag Verfahren zur Leistungsverbesserung von Nickelelektroden

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144079A (ja) * 1994-11-28 1996-06-04 Shinko Pantec Co Ltd 水電解セルの残留電圧除去方法及びそのための装置
JPH10330978A (ja) * 1997-05-29 1998-12-15 Japan Storage Battery Co Ltd 水電解装置
JP2005180545A (ja) * 2003-12-18 2005-07-07 Honda Motor Co Ltd 高圧水素製造装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111981A (ja) * 2010-11-19 2012-06-14 Takasago Thermal Eng Co Ltd 水素製造方法及び水素製造システム
JP2012167331A (ja) * 2011-02-15 2012-09-06 Honda Motor Co Ltd 差圧式水電解装置の運転方法
US8815075B2 (en) 2011-04-05 2014-08-26 Honda Motor Co., Ltd. Water electrolysis system and method of operating same
JP2012219291A (ja) * 2011-04-05 2012-11-12 Honda Motor Co Ltd 水電解システムの運転停止方法
JP2012219293A (ja) * 2011-04-05 2012-11-12 Honda Motor Co Ltd 水電解システム及びその運転方法
JP2012241252A (ja) * 2011-05-23 2012-12-10 Honda Motor Co Ltd 水電解システム及びその運転方法
JP2013023733A (ja) * 2011-07-21 2013-02-04 Honda Motor Co Ltd 水電解システムの運転方法
US8961747B2 (en) 2011-09-13 2015-02-24 Honda Motor Co., Ltd. Water electrolysis system and method of stopping operation of water electrolysis system
JP2014062311A (ja) * 2012-09-24 2014-04-10 Honda Motor Co Ltd 高圧水電解システム及びその起動方法
US9580821B2 (en) 2013-08-30 2017-02-28 Honda Motor Co., Ltd. Control method of differential pressure water electrolysis system
JP2017210665A (ja) * 2016-05-27 2017-11-30 本田技研工業株式会社 高圧水電解システムの脱圧方法
JP2021529250A (ja) * 2018-03-22 2021-10-28 ハイメット アーペーエス 圧力補償システムおよびこれを備える高圧電気分解器システム
JP7342020B2 (ja) 2018-03-22 2023-09-11 ハイメット アーペーエス 圧力補償システムおよびこれを備える高圧電気分解器システム
US12077871B2 (en) 2018-03-22 2024-09-03 Hymeth Aps Pressure compensating system and a high-pressure electrolyser system comprising the same
WO2022239756A1 (ja) * 2021-05-12 2022-11-17 パナソニックIpマネジメント株式会社 水電解装置及びその制御方法
DE102023129441A1 (de) 2022-12-20 2024-06-20 Toyota Jidosha Kabushiki Kaisha Wasserelektrolysevorrichtung

Also Published As

Publication number Publication date
JP5349360B2 (ja) 2013-11-20
US8721867B2 (en) 2014-05-13
US20100230295A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5349360B2 (ja) 水電解装置の運転停止方法
JP5192001B2 (ja) 水電解システムの運転方法
JP4796639B2 (ja) 電気化学装置
JP5394458B2 (ja) 水電解システムの運転停止方法
JP5192004B2 (ja) 水電解システムの停止方法
JP5437968B2 (ja) 水電解システム
JP5048796B2 (ja) 水電解システム
JP5603928B2 (ja) 電気化学装置
JP2012167331A (ja) 差圧式水電解装置の運転方法
JP4856770B2 (ja) 水電解装置
JP5490654B2 (ja) 高圧水電解装置の運転停止方法
JP5341547B2 (ja) 水電解システム
JP5872431B2 (ja) 高圧水電解システム及びその起動方法
JP2013049906A (ja) 水電解システム
JP6090862B2 (ja) 水電解装置の起動方法
US20170342579A1 (en) Pressure releasing method of high-pressure water electrolysis system and pressure releasing method in water electrolysis system
JP2011021212A (ja) 水電解システム
JP5653278B2 (ja) 水電解システムの運転停止方法
JP5421860B2 (ja) 水電解装置の運転停止方法
JP5095670B2 (ja) 電解装置
JP5421876B2 (ja) 水電解システム及びその脱圧方法
JP2011208260A (ja) 水電解装置の運転停止時における減圧速度設定方法
JP2013053321A (ja) 水電解システム
JP5350879B2 (ja) 水電解システム
JP2013032572A (ja) 高圧水素製造システムの運転停止方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5349360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250