[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010223178A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2010223178A
JP2010223178A JP2009074183A JP2009074183A JP2010223178A JP 2010223178 A JP2010223178 A JP 2010223178A JP 2009074183 A JP2009074183 A JP 2009074183A JP 2009074183 A JP2009074183 A JP 2009074183A JP 2010223178 A JP2010223178 A JP 2010223178A
Authority
JP
Japan
Prior art keywords
urea water
amount
catalyst
reducing agent
selective reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009074183A
Other languages
Japanese (ja)
Other versions
JP5126141B2 (en
Inventor
Kiyoshi Fujiwara
清 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009074183A priority Critical patent/JP5126141B2/en
Publication of JP2010223178A publication Critical patent/JP2010223178A/en
Application granted granted Critical
Publication of JP5126141B2 publication Critical patent/JP5126141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain the generation of an ammonia slip while improving reduction efficiency, in a selective reduction catalyst system for reducing NOx by adding urea water. <P>SOLUTION: This exhaust emission control device has a catalyst 50 arranged in an exhaust passage 10 of an internal combustion engine 1 and selectively reducing the NOx included in exhaust gas with ammonia generated by hydrolyzing the urea water as a reducing agent, and a means 100 for controlling a urea water adding valve 62 for adding the urea water from the catalyst upstream side of the exhaust passage and an injection quantity of the urea water 63 according to a catalyst state. The control means 100 improves the dispersiveness of the reducing agent in the catalyst 50 by temporarily injecting urea exceeding a predetermined quantity when a state of being smaller than a predetermined value in the injection quantity of the urea water 63 is continued for a predetermined time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排出する排気ガスに含まれる窒素酸化物(NOx)を浄化する排気浄化装置として、尿素選択還元排気浄化装置が知られている(例えば、特許文献1参照)。この排気浄化装置は、排気通路に選択還元触媒(SCR)を備える触媒コンバータと、その上流側に設けられた尿素水添加弁とを備える。選択還元触媒は、その触媒担体に、酸化バナジウムなどの触媒金属を担持している。排気通路に尿素水を添加すると、排気ガスの熱により、尿素水が加水分解されてアンモニアが生成され、このアンモニアとNOxが選択還元触媒においてNOxと脱硝反応して窒素と水が生成される。   A urea selective reduction exhaust purification device is known as an exhaust purification device that purifies nitrogen oxides (NOx) contained in exhaust gas discharged from an internal combustion engine (see, for example, Patent Document 1). This exhaust purification device includes a catalytic converter including a selective reduction catalyst (SCR) in an exhaust passage, and a urea water addition valve provided upstream thereof. The selective reduction catalyst carries a catalyst metal such as vanadium oxide on its catalyst carrier. When urea water is added to the exhaust passage, the urea water is hydrolyzed and ammonia is generated by the heat of the exhaust gas, and this ammonia and NOx undergo a denitration reaction with NOx in the selective reduction catalyst to generate nitrogen and water.

特開2003−301737号公報JP 2003-301737 A

ところで、従来において、選択還元触媒への尿素添加量は、例えば、選択還元触媒へ導入されるNOxの浄化効率に応じた噴射量と、選択還元触媒に吸着させるべきアンモニアの目標吸着量に対して不足分を補うための噴射量とを算出し、これらの合計量を最終的な噴射量とする。   By the way, conventionally, the urea addition amount to the selective reduction catalyst is, for example, the injection amount according to the purification efficiency of NOx introduced into the selective reduction catalyst and the target adsorption amount of ammonia to be adsorbed on the selective reduction catalyst. The injection amount for compensating for the shortage is calculated, and the total amount is set as the final injection amount.

しかしながら、選択還元触媒へのアンモニアの吸着量が十分であったとしても、噴射量によっては触媒への分散性が異なる。例えば、少量噴射を続けると、尿素噴霧の分散性が悪く、触媒に対する吸着および反応も部分的となり、選択還元触媒全体では浄化効率が落ちることが実験結果から分かっている。一方、必要以上に尿素水の噴射量を増やすと、いわゆるアンモニアスリップが発生することがわかっている。このことは、特に、車両の急加速などの状況において顕著に現れる。   However, even if the adsorption amount of ammonia on the selective reduction catalyst is sufficient, the dispersibility to the catalyst varies depending on the injection amount. For example, it has been found from experimental results that if a small amount of injection is continued, the dispersibility of urea spray is poor, the adsorption and reaction to the catalyst become partial, and the purification efficiency of the selective reduction catalyst as a whole decreases. On the other hand, it is known that when the urea water injection amount is increased more than necessary, so-called ammonia slip occurs. This is particularly noticeable in situations such as sudden acceleration of the vehicle.

本発明の目的は、浄化効率を向上しつつアンモニアスリップの発生を抑制できる内燃機関の排気浄化装置を提供することにある。   An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can suppress the generation of ammonia slip while improving the purification efficiency.

本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、排気ガスに含まれるNOxを尿素水が加水分解されて生成されるアンモニアを還元剤として選択的に還元する選択還元触媒と、前記排気通路の前記選択還元触媒の上流側から前記選択還元触媒に向けて尿素水を添加する尿素水添加弁と、前記選択還元触媒の状態に応じて、前記尿素水添加弁からの前記還元剤の噴射量を制御する制御手段と、を有し、前記制御手段は、前記還元剤の噴射量が所定量よりも少ない状態が所定時間継続された場合には、一時的に、前記所定量を超える量の前記還元剤を噴射させる、ことを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in an exhaust passage of an internal combustion engine, and selectively reduces NOx contained in exhaust gas selectively using ammonia produced by hydrolysis of urea water as a reducing agent. A catalyst, a urea water addition valve for adding urea water toward the selective reduction catalyst from the upstream side of the selective reduction catalyst in the exhaust passage, and a urea water addition valve depending on the state of the selective reduction catalyst. Control means for controlling the injection amount of the reducing agent, and when the state where the injection amount of the reducing agent is less than a predetermined amount continues for a predetermined time, the control means temporarily An amount of the reducing agent exceeding a predetermined amount is injected.

上記構成において、前記制御手段は、一時的に、前記所定量を超える量の前記還元剤を噴射させた直後における尿素水の噴射量を、当該噴射直後における前記選択還元触媒の還元剤の推定吸着量に基づいて補正する、ことができる。   In the above configuration, the control means temporarily estimates the injection amount of urea water immediately after the amount of the reducing agent exceeding the predetermined amount is injected, and the estimated adsorption of the reducing agent of the selective reduction catalyst immediately after the injection. It can be corrected based on the amount.

本発明によれば、還元剤の噴射量を一時的に増加させることにより、選択還元触媒に対する還元剤の分散性を向上させることができ、その結果、浄化効率を高めることができる。また、一時的にのみ還元剤の噴射量を増量するので、いわゆるアンモニアスリップの発生も抑制できる。   According to the present invention, by temporarily increasing the injection amount of the reducing agent, the dispersibility of the reducing agent with respect to the selective reduction catalyst can be improved, and as a result, the purification efficiency can be increased. Further, since the injection amount of the reducing agent is increased only temporarily, the occurrence of so-called ammonia slip can be suppressed.

本発明の一実施形態に係る内燃機関の排気浄化装置の構成を示す概略図である。1 is a schematic diagram illustrating a configuration of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention. ECUにおける処理の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the process in ECU. 瞬時最大噴射量マップの一例を示す図である。It is a figure which shows an example of an instantaneous maximum injection amount map. 瞬時最大噴射量噴射時間マップの一例を示す図である。It is a figure which shows an example of an instantaneous maximum injection amount injection time map. 分散性向上修正係数マップの一例を示す図である。It is a figure which shows an example of a dispersibility improvement correction coefficient map. 瞬時最大噴射量マップの他の例を示す図である。It is a figure which shows the other example of an instantaneous maximum injection amount map.

以下、本発明の好適一実施形態を添付図面に基づいて詳述する。
図1は本発明の一実施形態に係る内燃機関の排気浄化装置の構成図である。
図1において、内燃機関1は、例えば、ディーゼルエンジンである。この内燃機関1の排気通路10には、上流側から、酸化触媒コンバータ30、ディーゼルパティキュレートフィルタ(DPF)40、尿素水添加弁62及び選択還元触媒コンバータ50が設けられている。また、排気通路10には、排気ガスEG中の窒素酸化物(NOx)の濃度を検出するNOxセンサ70A,70Bが設けられている。NOxセンサ70Aは、尿素水添加弁62の下流側でかつ選択還元触媒コンバータ50の上流側に設けられている。NOxセンサ70Bは、選択還元触媒コンバータ50の下流側に設けられている。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention.
In FIG. 1, the internal combustion engine 1 is, for example, a diesel engine. In the exhaust passage 10 of the internal combustion engine 1, an oxidation catalyst converter 30, a diesel particulate filter (DPF) 40, a urea water addition valve 62, and a selective reduction catalyst converter 50 are provided from the upstream side. The exhaust passage 10 is provided with NOx sensors 70A and 70B for detecting the concentration of nitrogen oxides (NOx) in the exhaust gas EG. The NOx sensor 70 </ b> A is provided downstream of the urea water addition valve 62 and upstream of the selective catalytic reduction converter 50. The NOx sensor 70B is provided on the downstream side of the selective catalytic reduction converter 50.

酸化触媒コンバータ30は、後段のDPF40等に供給される排気ガスEGの温度を昇温させるために排気ガスEG中の未燃燃料等を酸化する触媒金属等からなる酸化触媒を担持している。   The oxidation catalyst converter 30 carries an oxidation catalyst made of a catalyst metal or the like that oxidizes unburned fuel or the like in the exhaust gas EG in order to raise the temperature of the exhaust gas EG supplied to the DPF 40 or the like at the subsequent stage.

DPF40は、排気ガスEGに含まれる粒子状物質(PM)を捕集するフィルタである。DPF40の構造は、周知のように、例えば、金属やセラミクス製のハニカム体で構成されている。DPF40は、PMが所定量堆積すると再生処理が必要である。具体的には、たとえば、酸化触媒コンバータ30を昇温により活性化させ、酸化触媒コンバータ30の酸化作用により昇温された排気ガスEGをDPF40に供給する。これにより、捕集したPMが燃焼処理され、フィルタ機能が再生される。また、DPF40は、触媒金属からなる酸化触媒を担持する構成としてもよい。   The DPF 40 is a filter that collects particulate matter (PM) contained in the exhaust gas EG. As is well known, the structure of the DPF 40 is composed of, for example, a honeycomb body made of metal or ceramics. The DPF 40 needs to be regenerated when a predetermined amount of PM is deposited. Specifically, for example, the oxidation catalyst converter 30 is activated by raising the temperature, and the exhaust gas EG heated by the oxidation action of the oxidation catalyst converter 30 is supplied to the DPF 40. As a result, the collected PM is burned and the filter function is regenerated. The DPF 40 may be configured to carry an oxidation catalyst made of a catalyst metal.

尿素水添加弁62は、尿素タンク60に接続され、尿素タンク60から供給された所定の濃度の尿素水63を選択還元触媒コンバータ50に向けて排気通路10に添加する。尿素水添加弁62は、電子制御ユニット(ECU)100からの制御指令に応じた添加量を添加するようになっている。排気通路10に添加された尿素水は、排気ガスEGの熱により、加水分解されてアンモニアが生成される。   The urea water addition valve 62 is connected to the urea tank 60 and adds a predetermined concentration of urea water 63 supplied from the urea tank 60 toward the selective reduction catalytic converter 50 to the exhaust passage 10. The urea water addition valve 62 is configured to add an addition amount according to a control command from the electronic control unit (ECU) 100. The urea water added to the exhaust passage 10 is hydrolyzed by the heat of the exhaust gas EG to generate ammonia.

選択還元触媒コンバータ50は、尿素水添加弁62から添加される尿素水から生成されるアンモニアを還元剤として用いて、排気ガスEGに含まれるNOxを選択的に還元して窒素ガスと水にする。この選択還元触媒コンバータ50は、周知の構造であり、例えば、Si、O、Alを主成分とすると共にFeイオンを含むゼオライトから構成されたものや、例えば、酸化アルミニウムアルミナからなる基材の表面にバナジウム触媒(V)などの触媒金属を担持させたものなどを用いることができるが、特に、これらに限定されるわけではない。 The selective reduction catalytic converter 50 selectively reduces NOx contained in the exhaust gas EG into nitrogen gas and water using ammonia generated from the urea water added from the urea water addition valve 62 as a reducing agent. . This selective reduction catalytic converter 50 has a well-known structure, for example, a material composed of zeolite containing Si, O, and Al as main components and containing Fe ions, or a surface of a base material made of aluminum oxide alumina, for example. In addition, a catalyst on which a catalyst metal such as a vanadium catalyst (V 2 O 5 ) is supported can be used, but it is not particularly limited thereto.

ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM(Electronically Erasable and Programmable Read Only Memory)等のバックアップ用メモリ、A/D変換器やバッファ等を含む入力インターフェース回路、駆動回路等を含む出力インターフェース回路を含むハードウエアと所要のソフトウエアで構成される。このECU100には、NOxセンサ70A,70Bの検出信号が入力されるとともに、尿素水添加弁62に制御信号を出力する。なお、ECU100の処理内容については後述する。   The ECU 100 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a backup memory such as an EEPROM (Electronically Erasable and Programmable Read Only Memory), an A / D converter, a buffer, and the like. It comprises hardware including an output interface circuit including an input interface circuit, a drive circuit, etc., and necessary software. The ECU 100 receives detection signals from the NOx sensors 70A and 70B and outputs a control signal to the urea water addition valve 62. The processing content of the ECU 100 will be described later.

次に、ECU100の処理の一例について図2を参照して説明する。
なお、図2は、通常時における、尿素水噴射量の決定処理の一例を示している。
先ず、NOxセンサ70Aから、内燃機関1から排出される排気ガス中のNOxの濃度を取得する(S1)。このNOxセンサ70Aと、内燃機関1の吸気系から吸入される吸入空気量D1から、選択還元触媒コンバータ50に導入されるNOx量を算出する(S2)。次いで、NOx量とアンモニア(NH)量とを変換するNOx/NH変換マップD2を用いて、NOx浄化に必要なNH量を算出する(S3)。
Next, an example of processing of the ECU 100 will be described with reference to FIG.
FIG. 2 shows an example of the determination process of the urea water injection amount at the normal time.
First, the concentration of NOx in the exhaust gas discharged from the internal combustion engine 1 is acquired from the NOx sensor 70A (S1). The amount of NOx introduced into the selective catalytic reduction converter 50 is calculated from the NOx sensor 70A and the intake air amount D1 taken from the intake system of the internal combustion engine 1 (S2). Next, the amount of NH 3 necessary for NOx purification is calculated using the NOx / NH 3 conversion map D2 for converting the amount of NOx and the amount of ammonia (NH 3 ) (S3).

次いで、選択還元触媒コンバータ50の状態に応じて当該選択還元触媒コンバータ50の浄化効率を規定するSCR浄化効率マップD3を用いて、消費される消費NH量を算出する(S4)。 Next, the amount of consumed NH 3 is calculated using an SCR purification efficiency map D3 that defines the purification efficiency of the selective catalytic reduction converter 50 according to the state of the selective catalytic reduction converter 50 (S4).

次いで、選択還元触媒コンバータ50に吸着させるべきNH量である目標吸着量D4を上記のS4で算出した消費NH量に加え、これを添加すべきNH添加量とする(S5)。 Next, the target adsorption amount D4, which is the amount of NH 3 to be adsorbed by the selective catalytic reduction converter 50, is added to the consumed NH 3 amount calculated in S4 above, and this is set as the NH 3 addition amount to be added (S5).

次いで、S5で算出したNH添加量をフィードバック補正する(S6)。フィードバック補正は、例えば、指令値に対する実際のNHの添加量との偏差に基づいてS5で算出したNH添加量を補正する。 Next, the NH 3 addition amount calculated in S5 is feedback corrected (S6). Feedback correction, for example, to correct the NH 3 amount calculated in step S5 on the basis of a deviation between the amount of actual NH 3 with respect to the command value.

次いで、補正後のNH添加量を尿素水量に変換し(S7)、得られた尿素水量を最終指令噴射量として尿素水添加弁62に出力する。 Next, the corrected NH 3 addition amount is converted into a urea water amount (S7), and the obtained urea water amount is output to the urea water addition valve 62 as a final command injection amount.

次に、尿素水添加弁62からの尿素水の噴射が所定噴射量以下で継続された場合のECU100による処理の一例について説明する。
ここで、尿素水の指令噴射量をQv(mg/s)、所定噴射量をQL(mg/s)、所定噴射時間をTL(sec)、触媒床温をTSCR(℃)、空気量をGa(g/sec)とする。
例としては、QL=10mg/s、TL=10secである。
Next, an example of processing performed by the ECU 100 when the urea water injection from the urea water addition valve 62 is continued at a predetermined injection amount or less will be described.
Here, the command injection amount of urea water is Qv (mg / s), the predetermined injection amount is QL (mg / s), the predetermined injection time is TL (sec), the catalyst bed temperature is TSCR (° C.), and the air amount is Ga. (G / sec).
As an example, QL = 10 mg / s and TL = 10 sec.

ECU100は、指令噴射量Qvが所定噴射量QLを下まわる状態が所定噴射時間TL以上継続した場合には、指令噴射量Qvを図3に示す瞬時最大噴射量Qmaxのマップおよび図4に示す瞬時最大噴射量噴射時間tmaxのマップに基づいて、決定する。図3に示すマップは、触媒床温TSCRと空気量Gaとに応じて瞬時最大噴射量Qmaxを規定しており、図4に示すマップは、触媒床温TSCRと空気量Gaとに応じて瞬時最大噴射量Qmaxを規定しており、図5に示すマップは、触媒床温TSCRと空気量Gaとに応じて瞬時最大噴射量噴射時間tmaxを規定している。これらのマップにしたがって決定された瞬時最大噴射量Qmaxの尿素水を瞬時最大噴射量噴射時間tmaxの間噴射する。なお、瞬時最大噴射量Qmaxは、所定噴射量QLよりも大きい値である。また、指令噴射量Qvが所定噴射量QLを下まわる状態が所定噴射時間TL以上継続した場合には、尿素水の噴射が無い場合も含まれる。当然ながら、触媒床温TSCRが活性化していない、噴射許容温度以下では、噴射量増量制御は実施しない。   When the state where the command injection amount Qv falls below the predetermined injection amount QL continues for the predetermined injection time TL or longer, the ECU 100 sets the command injection amount Qv to the instantaneous maximum injection amount Qmax map shown in FIG. It is determined based on a map of the maximum injection amount injection time tmax. The map shown in FIG. 3 defines the instantaneous maximum injection amount Qmax according to the catalyst bed temperature TSCR and the air amount Ga, and the map shown in FIG. 4 is instantaneous according to the catalyst bed temperature TSCR and the air amount Ga. The maximum injection amount Qmax is defined, and the map shown in FIG. 5 defines the instantaneous maximum injection amount injection time tmax according to the catalyst bed temperature TSCR and the air amount Ga. The urea water of the instantaneous maximum injection amount Qmax determined according to these maps is injected during the instantaneous maximum injection amount injection time tmax. The instantaneous maximum injection amount Qmax is a value larger than the predetermined injection amount QL. Further, when the state where the command injection amount Qv falls below the predetermined injection amount QL continues for the predetermined injection time TL, the case where there is no injection of urea water is also included. Needless to say, the injection amount increase control is not performed when the catalyst bed temperature TSCR is not activated and is equal to or lower than the allowable injection temperature.

また、選択還元触媒における尿素水(アンモニア)の分散性を高め、かつ、アンモニアスリップを抑制する観点からは、瞬時最大噴射量Qmaxは大きく、瞬時最大噴射量噴射時間tmaxは短いほど好ましい。好適な値としては、例えば、QL=25mg/sec、TL=0.5secである。   Further, from the viewpoint of improving the dispersibility of urea water (ammonia) in the selective reduction catalyst and suppressing ammonia slip, it is preferable that the instantaneous maximum injection amount Qmax is large and the instantaneous maximum injection amount injection time tmax is short. Suitable values are, for example, QL = 25 mg / sec and TL = 0.5 sec.

次に、瞬時最大噴射量Qmaxの尿素水を瞬時最大噴射量噴射時間tmaxの間噴射した後の処理の一例について説明する。
瞬時最大噴射量Qmaxの尿素水を噴射した後には、選択還元触媒のアンモニアの推定吸着量に誤差が生じる。
ここで、修正推定吸着量をLm(mg)、推定吸着量をLa(mg)、修正係数をKbとすると、修正推定吸着量Lmは、次式(1)により規定される。なお、修正係数Kbは、図5に示すようなマップから特定することができる。
Lm=La+Kb×Qmax×tmax (1)
Next, an example of processing after injecting urea water having the instantaneous maximum injection amount Qmax for the instantaneous maximum injection amount injection time tmax will be described.
After the urea aqueous solution having the instantaneous maximum injection amount Qmax is injected, an error occurs in the estimated adsorption amount of ammonia of the selective reduction catalyst.
Here, when the corrected estimated adsorption amount is Lm (mg), the estimated adsorption amount is La (mg), and the correction coefficient is Kb, the corrected estimated adsorption amount Lm is defined by the following equation (1). The correction coefficient Kb can be specified from a map as shown in FIG.
Lm = La + Kb × Qmax × tmax (1)

また、修正噴射量をQm(mg/s)、尿素添加弁62の駆動パルス間隔をTfrとすると、修正噴射量Qmは次式(2)により規定される。
Qm=Qv−Qmax×tmax/Tfr (2)
Further, when the corrected injection amount is Qm (mg / s) and the drive pulse interval of the urea addition valve 62 is Tfr, the corrected injection amount Qm is defined by the following equation (2).
Qm = Qv−Qmax × tmax / Tfr (2)

なお、瞬時最大噴射量Qmaxの尿素水を噴射後の修正噴射量Qmは、基本的には、0になると想定される。   It should be noted that the corrected injection amount Qm after injecting the urea water having the instantaneous maximum injection amount Qmax is basically assumed to be zero.

選択還元触媒におけるアンモニアの吸着量の減少の原因は、第1に、導入されるNOxに対してアンモニアが反応することである。第2に、触媒床温が高いと選択還元触媒に吸着されたアンモニアは自然に放出されるため、吸着量が減少する原因となる。   The cause of the decrease in the adsorption amount of ammonia in the selective reduction catalyst is firstly that ammonia reacts with the introduced NOx. Secondly, when the catalyst bed temperature is high, ammonia adsorbed on the selective reduction catalyst is spontaneously released, which causes the amount of adsorption to decrease.

ここで、上記の2つの原因を考慮にいれた尿素水噴射量制御の一例について説明する。
例えば、図6に示すような、空気量Gaと触媒床温TSCRとに応じて、最大吸着量Ldmaxが規定されたマップをあらかじめ保持しておく。
Here, an example of urea water injection amount control in consideration of the above two causes will be described.
For example, as shown in FIG. 6, a map in which the maximum adsorption amount Ldmax is defined in accordance with the air amount Ga and the catalyst bed temperature TSCR is held in advance.

通常時は、飽和吸着量を目標吸着量Ld、かつ、最大吸着量Ldmaxとして、これ以上は吸着させない噴射量と設定する。   In normal times, the saturated adsorption amount is set as the target adsorption amount Ld and the maximum adsorption amount Ldmax, and an injection amount that is not adsorbed beyond this is set.

現在(t1)の推定吸着量をLa1、加速後(t2)の修正推定吸着量をLa2とする。走行状態により、触媒床温TSCRが高くなると、吸着可能量が減少し、アンモニアスリップの発生につながる。このため、次式(3)により、修正推定吸着量La2を求める。
La2=La1+ΔLd=2La1−Ldmax (3)
The current estimated adsorption amount at (t1) is La1, and the corrected estimated adsorption amount after acceleration (t2) is La2. If the catalyst bed temperature TSCR increases due to the running state, the adsorbable amount decreases, leading to the occurrence of ammonia slip. For this reason, the corrected estimated adsorption amount La2 is obtained by the following equation (3).
La2 = La1 + ΔLd = 2La1-Ldmax (3)

そして、(3)式により求めた修正推定吸着量La2を修正目標吸着量とする。これにより、次回の尿素水の噴射は、修正推定吸着量La2をベースに吸着量の計算を開始できる。   Then, the corrected estimated adsorption amount La2 obtained by the equation (3) is set as a corrected target adsorption amount. Thus, the next injection of urea water can start calculating the adsorption amount based on the corrected estimated adsorption amount La2.

1…内燃機関
10…排気通路
30…酸化触媒コンバータ
40…ディーゼルパティキュレートフィルタ(DPF)
50…選択還元触媒コンバータ
62…尿素水添加弁
70A,70B…NOxセンサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 10 ... Exhaust passage 30 ... Oxidation catalytic converter 40 ... Diesel particulate filter (DPF)
50 ... Selective reduction catalytic converter 62 ... Urea water addition valve 70A, 70B ... NOx sensor

Claims (2)

内燃機関の排気通路に設けられ、排気ガスに含まれるNOxを尿素水が加水分解されて生成されるアンモニアを還元剤として選択的に還元する選択還元触媒と、
前記排気通路の前記選択還元触媒の上流側から前記選択還元触媒に向けて尿素水を添加する尿素水添加弁と、
前記選択還元触媒の状態に応じて、前記尿素水添加弁からの前記還元剤の噴射量を制御する制御手段と、を有し、
前記制御手段は、前記還元剤の噴射量が所定量よりも少ない状態が所定時間継続された場合には、一時的に、前記所定量を超える量の前記還元剤を噴射させる、ことを特徴とする内燃機関の排気浄化装置。
A selective reduction catalyst that is provided in an exhaust passage of the internal combustion engine and selectively reduces NOx contained in the exhaust gas by hydrolyzing urea water and using ammonia as a reducing agent;
A urea water addition valve for adding urea water toward the selective reduction catalyst from the upstream side of the selective reduction catalyst in the exhaust passage;
Control means for controlling the injection amount of the reducing agent from the urea water addition valve in accordance with the state of the selective reduction catalyst,
When the state in which the injection amount of the reducing agent is less than a predetermined amount is continued for a predetermined time, the control means temporarily injects the reducing agent in an amount exceeding the predetermined amount. An exhaust purification device for an internal combustion engine.
前記制御手段は、一時的に、前記所定量を超える量の前記還元剤を噴射させた直後における尿素水の噴射量を、当該噴射直後における前記選択還元触媒の還元剤の推定吸着量に基づいて補正する、ことを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The control means temporarily determines the injection amount of urea water immediately after injecting the reducing agent in an amount exceeding the predetermined amount based on the estimated adsorption amount of the reducing agent of the selective reduction catalyst immediately after the injection. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the correction is performed.
JP2009074183A 2009-03-25 2009-03-25 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5126141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074183A JP5126141B2 (en) 2009-03-25 2009-03-25 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074183A JP5126141B2 (en) 2009-03-25 2009-03-25 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010223178A true JP2010223178A (en) 2010-10-07
JP5126141B2 JP5126141B2 (en) 2013-01-23

Family

ID=43040632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074183A Expired - Fee Related JP5126141B2 (en) 2009-03-25 2009-03-25 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5126141B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015117275A1 (en) 2014-10-16 2016-04-21 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system
US11105236B2 (en) 2016-12-21 2021-08-31 Perkins Engine Company Limited Selective catalytic reduction system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222019A (en) * 2002-01-29 2003-08-08 Toyota Motor Corp Reducing agent supply apparatus
JP2003301737A (en) * 2002-04-10 2003-10-24 Mitsubishi Fuso Truck & Bus Corp NOx PURIFIER OF INTERNAL COMBUSTION ENGINE
JP2009036055A (en) * 2007-07-31 2009-02-19 Hino Motors Ltd Control device of exhaust gas treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222019A (en) * 2002-01-29 2003-08-08 Toyota Motor Corp Reducing agent supply apparatus
JP2003301737A (en) * 2002-04-10 2003-10-24 Mitsubishi Fuso Truck & Bus Corp NOx PURIFIER OF INTERNAL COMBUSTION ENGINE
JP2009036055A (en) * 2007-07-31 2009-02-19 Hino Motors Ltd Control device of exhaust gas treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015117275A1 (en) 2014-10-16 2016-04-21 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system
DE102015117275B4 (en) 2014-10-16 2019-05-09 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system
US11105236B2 (en) 2016-12-21 2021-08-31 Perkins Engine Company Limited Selective catalytic reduction system

Also Published As

Publication number Publication date
JP5126141B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5880731B2 (en) Exhaust gas purification device for internal combustion engine
JP4274270B2 (en) NOx purification system and control method of NOx purification system
JP5293811B2 (en) Engine exhaust purification system
JP2007154849A (en) Control method for exhaust emission control system
JP5002040B2 (en) Exhaust gas purification device for internal combustion engine
US20110265457A1 (en) Exhaust purifying device for internal combustion engine
JP2008157136A (en) Exhaust emission control device for internal combustion engine
JP5348539B2 (en) Exhaust gas purification device for internal combustion engine
EP2570626B1 (en) Exhaust gas purification apparatus of an internal combustion engine
JP2008163856A (en) Exhaust emission control device of internal combustion engine
JP5398372B2 (en) Engine exhaust purification system
WO2014097391A1 (en) System for purifying exhaust of internal combustion engine
JP2010180861A (en) Exhaust emission control device
WO2014034947A1 (en) Exhaust purification system for internal combustion engine
JP4919178B2 (en) Exhaust gas purification device for internal combustion engine
JP3956738B2 (en) NOx purification device for internal combustion engine
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP2010261320A (en) Exhaust emission control device of internal combustion engine
JP2021055563A (en) Exhaust emission control apparatus for internal combustion engine, and vehicle
JP5338973B2 (en) Exhaust gas purification device for internal combustion engine
JP4445000B2 (en) Exhaust purification device
JP5126141B2 (en) Exhaust gas purification device for internal combustion engine
JP2010229929A (en) Exhaust emission control device for internal combustion engine
WO2017191813A1 (en) Exhaust gas purification system for internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5126141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees