[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008157136A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2008157136A
JP2008157136A JP2006347689A JP2006347689A JP2008157136A JP 2008157136 A JP2008157136 A JP 2008157136A JP 2006347689 A JP2006347689 A JP 2006347689A JP 2006347689 A JP2006347689 A JP 2006347689A JP 2008157136 A JP2008157136 A JP 2008157136A
Authority
JP
Japan
Prior art keywords
nox
reducing agent
addition amount
slip
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006347689A
Other languages
Japanese (ja)
Inventor
Hitoshi Yokomura
仁志 横村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006347689A priority Critical patent/JP2008157136A/en
Priority to PCT/JP2007/074526 priority patent/WO2008078645A1/en
Publication of JP2008157136A publication Critical patent/JP2008157136A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine, determining NOx slip and ammonia slip in an SCR catalyst by simple structure and easy control using a NOx sensor. <P>SOLUTION: When a NOx concentration deviation Ne1 being a difference between an actual NOx concentration Na1 detected by the NOx sensor provided on the exhaust gas downstream side of the SCR catalyst (selective catalytic reduction catalyst) and a previously set appropriate NOx concentration Nr, is larger than a predetermined value α, a urea water adding amount is reduced by a predetermined amount, and it is determined as NOx slip or ammonia slip if a NOx concentration deviation Ne2 after reducing the urea water adding amount is larger or smaller than the NOx concentration deviation Ne1 before reduction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは選択還元型NOx触媒におけるNOxスリップ及びアンモニアスリップの判定技術に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to a technology for determining NOx slip and ammonia slip in a selective reduction type NOx catalyst.

内燃機関(以下、エンジンともいう)の排ガス中に含まれる窒素酸化物(NOx)を低減する手段の一つとして、排ガス中に尿素水等の還元剤を添加し加水分解により発生するアンモニア(NH)により、NOxを窒素(N)と水(HO)に選択還元するNOx触媒、所謂SCR触媒が知られている。
当該SCR触媒は尿素水の添加量に応じてNOxの浄化性能が変化するものであり、尿素水添加量にはエンジンの運転状態に応じて十分なNOx浄化性能を発揮する適正範囲が存在する。例えば、当該尿素水添加量が適正範囲より不足すると、SCR触媒にてNOxを浄化しきれずNOxが大気中へ排出される、所謂NOxスリップが発生する。一方、当該尿素水添加量が適正範囲より過剰となると、余剰となったアンモニアが大気中へと排出される、所謂アンモニアスリップが発生する。
As one means for reducing nitrogen oxide (NOx) contained in exhaust gas of an internal combustion engine (hereinafter also referred to as engine), ammonia (NH) generated by hydrolysis by adding a reducing agent such as urea water to the exhaust gas. 3 ), a NOx catalyst that selectively reduces NOx to nitrogen (N 2 ) and water (H 2 O), a so-called SCR catalyst is known.
The SCR catalyst has a NOx purification performance that varies depending on the amount of urea water added, and the urea water addition amount has an appropriate range in which sufficient NOx purification performance is exhibited depending on the operating state of the engine. For example, when the urea water addition amount is insufficient from the appropriate range, a so-called NOx slip occurs in which NOx cannot be completely purified by the SCR catalyst and NOx is discharged into the atmosphere. On the other hand, when the urea water addition amount is excessive from the appropriate range, so-called ammonia slip occurs in which excess ammonia is discharged into the atmosphere.

ここで、SCR触媒の排気下流側にNOxセンサを設けることで主としてNOxスリップを検出する構成が考えられる。
一般にNOxセンサは、その検知部に触媒成分(例えばジルコニア)を有しており、当該触媒成分の作用により、まず排ガス中のO成分を除去し、残ったNO成分をN及びOに分解し、このO量を測定することでNOx濃度を検出している。しかし、このように構成されたNOxセンサでは、検知部においてアンモニア成分が酸化され(4NH3+5O→4NO+6HO)、これによりNO成分が生じてしまい、当該NO成分から分解されたO量も測定してしまうという性質を有している。このように、当該NOxセンサではアンモニアの干渉を受けるため、尿素水添加量が適正範囲を外れた場合にNOxスリップが生じているかアンモニアスリップが生じているかを区別することができない。
Here, a configuration in which NOx slip is mainly detected by providing a NOx sensor on the exhaust downstream side of the SCR catalyst is conceivable.
In general, a NOx sensor has a catalyst component (for example, zirconia) in its detection part. By the action of the catalyst component, first, an O 2 component in exhaust gas is removed, and the remaining NO component is converted into N 2 and O 2 . The NOx concentration is detected by decomposing and measuring the amount of O 2 . However, in the NOx sensor configured as described above, the ammonia component is oxidized in the detection unit (4NH 3 + 5O 2 → 4NO + 6H 2 O), thereby generating the NO component, and the amount of O 2 decomposed from the NO component Have the property of measuring. As described above, since the NOx sensor receives the interference of ammonia, it cannot be distinguished whether the NOx slip or the ammonia slip occurs when the urea water addition amount is out of the proper range.

そこで、NOx触媒の排気上流側及び下流側にNOxセンサを設け、この2つのNOxセンサのセンサ出力に基づきSCR触媒の実NOx浄化率を算出し、当該NOx浄化率が予め設定された目標NOx浄化率となるよう尿素水添加量を制御する技術が開発されている(特許文献1参照)。当該特許文献1によれば、実NOx浄化率が目標NOx浄化率より小である場合には尿素水添加量を増大補正し、当該増大補正を行ったにも拘らずNOx浄化率が向上しない場合にはアンモニアスリップが生じていると判定する制御を行っている。
特開2003−293743号公報
Therefore, NOx sensors are provided on the exhaust upstream side and downstream side of the NOx catalyst, the actual NOx purification rate of the SCR catalyst is calculated based on the sensor outputs of the two NOx sensors, and the NOx purification rate is set in advance for the target NOx purification rate. A technique for controlling the amount of urea water added so as to achieve a rate has been developed (see Patent Document 1). According to Patent Document 1, when the actual NOx purification rate is smaller than the target NOx purification rate, the urea water addition amount is increased and corrected, and the NOx purification rate is not improved despite the increase correction. Is controlled to determine that ammonia slip has occurred.
JP 2003-293743 A

しかしながら、上記特許文献1に開示された技術では、NOx触媒の排気上流側及び下流側の2箇所にNOxセンサを設けなければならず、これは構成の複雑化や部品点数及びコスト増加を招くという問題がある。
また、上記特許文献1では、当該NOx触媒のNOx浄化率制御を行うなかでアンモニアスリップの判定を行っており制御が複雑となるという問題がある。
However, in the technique disclosed in Patent Document 1, it is necessary to provide NOx sensors at two locations on the exhaust upstream side and downstream side of the NOx catalyst, which leads to a complicated configuration and an increase in the number of parts and cost. There's a problem.
Moreover, in the said patent document 1, while performing NOx purification rate control of the said NOx catalyst, there exists a problem that determination of ammonia slip is performed and control becomes complicated.

本発明はこのような問題を解決するためになされたもので、その目的とするところは、NOxセンサを用いた簡単な構成且つ容易な制御によりSCR触媒におけるNOxスリップ及びアンモニアスリップの判定を行うことのできる内燃機関の排気浄化装置を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to determine NOx slip and ammonia slip in the SCR catalyst with a simple configuration and easy control using a NOx sensor. An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can perform the above-described operation.

上記した目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられ、尿素水またはアンモニアを還元剤として排ガス中に添加する還元剤添加手段と、前記排気通路の前記還元剤添加手段の排気下流側に設けられ、該還元剤添加手段により添加された前記還元剤によって排ガス中のNOxを選択還元するNOx触媒と、該NOx触媒の排気下流側に設けられ、排ガス中のNOxを検知するとともに、該NOxと同様にアンモニアも検知し、該NOx及びアンモニアの濃度に応じた値を出力するNOxセンサと、前記内燃機関の運転状態に応じて前記NOx触媒の排気下流側の適正NOx濃度を設定する適正NOx濃度設定手段と、前記還元剤添加手段により添加される還元剤の添加量を制御する還元剤添加量制御手段と、前記適正NOx濃度設定手段により設定された適正NOx濃度及び前記NOxセンサにより出力された値との偏差を算出するNOx濃度偏差算出手段と、前記NOx濃度偏差算出手段により算出された偏差が所定値より大となったとき、前記還元剤添加量制御手段により還元剤添加量を減少させ、該還元剤添加量減少後に前記NOx濃度偏差検出手段により算出された偏差が、該還元剤添加量減少前の前記偏差よりも増加した場合にはNOxスリップと判定し、該還元剤添加量減少前の前記偏差よりも減少した場合にはアンモニアスリップと判定するスリップ判定手段を備えたことを特徴としている。   In order to achieve the above object, in the exhaust gas purification apparatus for an internal combustion engine according to claim 1, a reducing agent adding means provided in an exhaust passage of the internal combustion engine for adding urea water or ammonia into the exhaust gas as a reducing agent; Provided on the exhaust gas downstream side of the reducing agent adding means in the exhaust passage and selectively reducing NOx in the exhaust gas by the reducing agent added by the reducing agent adding means, and provided on the exhaust downstream side of the NOx catalyst. A NOx sensor that detects NOx in the exhaust gas, detects ammonia as well as the NOx, and outputs a value corresponding to the concentration of the NOx and ammonia, and the NOx catalyst according to the operating state of the internal combustion engine Appropriate NOx concentration setting means for setting an appropriate NOx concentration downstream of the exhaust gas, and reducing agent addition for controlling the amount of reducing agent added by the reducing agent addition means Calculated by the amount control means, the NOx concentration deviation calculating means for calculating the deviation between the appropriate NOx concentration set by the appropriate NOx concentration setting means and the value output by the NOx sensor, and the NOx concentration deviation calculating means. When the deviation becomes larger than a predetermined value, the reducing agent addition amount control means decreases the reducing agent addition amount, and the deviation calculated by the NOx concentration deviation detecting means after the reducing agent addition amount decreases is the reducing agent addition amount. Slip determination means is provided for determining NOx slip when the deviation before the addition amount is decreased, and for determining ammonia slip when the deviation is less than the deviation before the reducing agent addition amount is decreased. It is a feature.

請求項2の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられ、尿素水またはアンモニアを還元剤として排ガス中に添加する還元剤添加手段と、前記排気通路の前記還元剤添加手段の排気下流側に設けられ、該還元剤添加手段により添加された前記還元剤によって排ガス中のNOxを選択還元するNOx触媒と、該NOx触媒の排気下流側に設けられ、排ガス中のNOxを検知するとともに、該NOxと同様にアンモニアも検知し、該NOx及びアンモニアの濃度に応じた値を出力するNOxセンサと、前記内燃機関の運転状態に応じて前記NOx触媒の排気下流側の適正NOx濃度を設定する適正NOx濃度設定手段と、前記還元剤添加手段により添加される還元剤の添加量を制御する還元剤添加量制御手段と、前記適正NOx濃度設定手段により設定された適正NOx濃度及び前記NOxセンサにより出力された値の偏差を算出するNOx濃度偏差算出手段と、前記NOx濃度偏差算出手段により算出された偏差が所定値より大となったとき、前記還元剤添加量制御手段により還元剤添加量を増加させ、該還元剤添加量増加後に前記NOx濃度偏差検出手段により算出された偏差が、該還元剤添加量増加前の前記偏差よりも減少した場合にはNOxスリップと判定し、該還元剤添加量増加後に前記NOx濃度偏差検出手段により算出された偏差が、該還元剤添加量増加前の前記偏差よりも増加した場合にはアンモニアスリップと判定するスリップ判定手段を備えたことを特徴としている。   In the exhaust gas purification apparatus for an internal combustion engine according to claim 2, a reducing agent adding means provided in the exhaust passage of the internal combustion engine for adding urea water or ammonia into the exhaust gas as a reducing agent, and the reducing agent adding means in the exhaust passage. A NOx catalyst that is provided on the exhaust downstream side and selectively reduces NOx in the exhaust gas by the reducing agent added by the reducing agent addition means, and is provided on the exhaust downstream side of the NOx catalyst to detect NOx in the exhaust gas. At the same time, ammonia is detected in the same manner as the NOx, and a NOx sensor that outputs a value corresponding to the concentration of the NOx and ammonia, and an appropriate NOx concentration on the downstream side of the exhaust of the NOx catalyst according to the operating state of the internal combustion engine. An appropriate NOx concentration setting means for setting, a reducing agent addition amount control means for controlling the addition amount of the reducing agent added by the reducing agent addition means, and the appropriate NOx The NOx concentration deviation calculating means for calculating the deviation between the appropriate NOx concentration set by the degree setting means and the value output by the NOx sensor, and the deviation calculated by the NOx concentration deviation calculating means is larger than a predetermined value. When the reducing agent addition amount control means increases the reducing agent addition amount, the deviation calculated by the NOx concentration deviation detecting means after the reducing agent addition amount increase is greater than the deviation before the reducing agent addition amount increase. When it decreases, it is judged as NOx slip, and when the deviation calculated by the NOx concentration deviation detecting means after increasing the reducing agent addition amount is larger than the deviation before increasing the reducing agent addition amount, ammonia slip Is provided with a slip determination means.

請求項3の内燃機関の排気浄化装置では、請求項1または2において、前記還元剤添加量制御手段は、前記スリップ判定手段によりNOxスリップと判定された場合には、還元剤添加量を増加させるよう制御することを特徴としている。
請求項4の内燃機関の排気浄化装置では、請求項1乃至3のいずれかにおいて、前記還元剤添加量制御手段は、前記スリップ判定手段によりアンモニアスリップと判定された場合には、還元剤添加量を減少させるよう制御することを特徴としている。
According to a third aspect of the present invention, the reducing agent addition amount control means increases the reducing agent addition amount when the NOx slip is determined by the slip determination means. It is characterized by controlling as follows.
The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein, in any one of claims 1 to 3, when the reducing agent addition amount control means determines that ammonia slip has occurred by the slip determination means, the reducing agent addition amount. It is characterized by controlling so as to decrease.

請求項5の内燃機関の排気浄化装置では、請求項1または2において、前記還元剤添加量制御手段は、前記スリップ判定手段によりNOxスリップまたはアンモニアスリップと判定された場合に、前記適正NOx濃度設定手段により設定された適正NOx濃度及び前記NOxセンサにより出力された値の偏差が減少する方向に前記還元剤添加量をフィードバック制御することを特徴としている。   In the exhaust gas purifying apparatus for an internal combustion engine according to claim 5, when the reducing agent addition amount control means is determined as NOx slip or ammonia slip by the slip determination means in claim 1 or 2, the proper NOx concentration setting is performed. The reducing agent addition amount is feedback-controlled so that the deviation between the appropriate NOx concentration set by the means and the value output by the NOx sensor decreases.

上記手段を用いる本発明の請求項1の内燃機関の排気浄化装置では、還元剤添加手段から添加される還元剤によりNOxを選択還元するNOx触媒の排気下流側に、NOxとともにアンモニアも検知されるNOxセンサが設けられた構成において、適正NOx濃度とNOxセンサの出力値との偏差が所定値より大となったときには、還元剤添加量を減少させ、当該還元剤添加量の減少により偏差が増加した場合には還元剤添加量が不足している(NOxスリップ)と判定する。一方、還元剤添加量の減少により偏差が減少した場合には、還元剤の添加量が過剰である(アンモニアスリップ)と判定する。   In the exhaust gas purification apparatus for an internal combustion engine according to claim 1 of the present invention using the above-described means, ammonia is detected together with NOx on the exhaust downstream side of the NOx catalyst that selectively reduces NOx by the reducing agent added from the reducing agent addition means. In the configuration provided with the NOx sensor, when the deviation between the proper NOx concentration and the output value of the NOx sensor becomes larger than a predetermined value, the reducing agent addition amount is decreased, and the deviation increases due to the reduction of the reducing agent addition amount. If it is determined, it is determined that the reducing agent addition amount is insufficient (NOx slip). On the other hand, when the deviation decreases due to the decrease in the reducing agent addition amount, it is determined that the reducing agent addition amount is excessive (ammonia slip).

このように、請求項1の内燃機関の排気浄化装置では、NOx触媒の排気下流側にNOxセンサを1つ設けただけの簡単な構成であって、適正NOx濃度とNOxセンサの出力値との偏差が所定値より大となったときに還元剤添加量を減少させ、当該還元剤添加量の減少による偏差の変化をみるという容易な制御によりNOxスリップ及びアンモニアスリップの判定を行うことができる。   Thus, the exhaust gas purification apparatus for an internal combustion engine according to claim 1 has a simple configuration in which only one NOx sensor is provided on the exhaust downstream side of the NOx catalyst, and the appropriate NOx concentration and the output value of the NOx sensor are NOx slip and ammonia slip can be determined by easy control of reducing the reducing agent addition amount when the deviation becomes larger than a predetermined value and seeing the change in deviation due to the reduction of the reducing agent addition amount.

また、アンモニアは刺激臭を有しているため、極力大気中への排出は回避すべきであり、当該請求項1によれば、還元剤の添加量を減少させることでスリップ判定を行うので、アンモニアの排出を抑制させながら当該スリップ判定を行うことができる。
請求項2の内燃機関の排気浄化装置によれば、還元剤添加手段から添加される還元剤によりNOxを選択還元するNOx触媒の排気下流側に、NOxとともにアンモニアも検知されるNOxセンサが設けられた構成において、適正NOx濃度とNOxセンサの出力値との偏差が所定値より大となったときには、還元剤添加量を増加させ、当該還元剤添加量の増加により偏差が減少した場合には還元剤添加量が不足している(NOxスリップ)と判定する。一方、還元剤添加量の増加により偏差が増加したならば、還元剤添加量が過剰である(アンモニアスリップ)と判定する。
In addition, since ammonia has an irritating odor, emission to the atmosphere should be avoided as much as possible. According to claim 1, slip determination is performed by reducing the amount of reducing agent added. The slip determination can be performed while suppressing the discharge of ammonia.
According to the exhaust gas purification apparatus for an internal combustion engine of claim 2, the NOx sensor for detecting ammonia as well as NOx is provided on the exhaust downstream side of the NOx catalyst that selectively reduces NOx by the reducing agent added from the reducing agent adding means. In the above configuration, when the deviation between the appropriate NOx concentration and the output value of the NOx sensor exceeds a predetermined value, the reducing agent addition amount is increased, and when the deviation decreases due to the increase in the reducing agent addition amount, the reduction is performed. It is determined that the additive amount is insufficient (NOx slip). On the other hand, if the deviation increases due to an increase in the reducing agent addition amount, it is determined that the reducing agent addition amount is excessive (ammonia slip).

このように、請求項2の内燃機関の排気浄化装置では、NOx触媒の排気下流側にNOxセンサを1つ設けただけの簡単な構成であって、適正NOx濃度及びNOxセンサの出力値の偏差が所定値より大となったときに還元剤添加量を増加させ、当該還元剤添加量増加による偏差の変化をみるという容易な制御によりNOxスリップ及びアンモニアスリップの判定を行うことができる。   Thus, the exhaust gas purification apparatus for an internal combustion engine according to claim 2 has a simple configuration in which only one NOx sensor is provided on the exhaust downstream side of the NOx catalyst, and the deviation between the proper NOx concentration and the output value of the NOx sensor. NOx slip and ammonia slip can be determined by easy control of increasing the amount of reducing agent added when the value becomes larger than a predetermined value and seeing a change in deviation due to the increase in the amount of reducing agent added.

請求項3の内燃機関の排気浄化装置によれば、NOxスリップと判定した場合に容易に当該NOxスリップを解消することができる。
請求項4の内燃機関の排気浄化装置によれば、アンモニアスリップと判定した場合に容易に当該アンモニアスリップを解消することができる。
請求項5の内燃機関の排気浄化装置によれば、NOxスリップ及びアンモニアスリップを確実に解消することができる。
According to the exhaust gas purification apparatus for an internal combustion engine according to the third aspect, when the NOx slip is determined, the NOx slip can be easily eliminated.
According to the exhaust gas purification apparatus for an internal combustion engine according to the fourth aspect, when the ammonia slip is determined, the ammonia slip can be easily eliminated.
According to the exhaust gas purification apparatus for an internal combustion engine of claim 5, it is possible to reliably eliminate NOx slip and ammonia slip.

以下、本発明の実施の形態を図面に基づき説明する。
図1を参照すると、本発明に係る排気浄化装置を備えたエンジンの概略構成図が示されている。以下、同図に基づき説明する。
エンジン1(内燃機関)はコモンレール式燃料噴射装置を備えるディーゼルエンジンであり、コモンレール2に蓄圧された高圧燃料を各気筒4の燃料噴射弁5に供給し、任意の噴射時期及び噴射量で燃料噴射弁5から各気筒4の筒内に噴射可能に構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an engine provided with an exhaust purification device according to the present invention. Hereinafter, a description will be given based on FIG.
The engine 1 (internal combustion engine) is a diesel engine equipped with a common rail type fuel injection device, and supplies high pressure fuel accumulated in the common rail 2 to the fuel injection valve 5 of each cylinder 4 to inject fuel at an arbitrary injection timing and injection amount. The valve 5 is configured to be able to inject into the cylinder of each cylinder 4.

エンジン1の吸気側には吸気マニホールド6が接続されており、吸気マニホールド6からは吸気管8が延びている。吸気管8の吸気上流端にはエアクリーナ10が設けられており、吸気管8の途中にはターボ過給機12のコンプレッサ12aが設けられ、当該コンプレッサ12aの吸気下流側にはインタークーラ14が設けられている。
一方、エンジン1の排気側には排気マニホールド16が接続されており、排気マニホールド16からは排気管18が延びている。排気マニホールド16と吸気マニホールド6にはEGR通路20が接続されており、EGR通路20にはEGRガスを冷却するEGRクーラ22やEGRガスの還流量を調節するEGRバルブ24が設けられている。
An intake manifold 6 is connected to the intake side of the engine 1, and an intake pipe 8 extends from the intake manifold 6. An air cleaner 10 is provided at the intake upstream end of the intake pipe 8, a compressor 12a of the turbocharger 12 is provided in the middle of the intake pipe 8, and an intercooler 14 is provided downstream of the compressor 12a. It has been.
On the other hand, an exhaust manifold 16 is connected to the exhaust side of the engine 1, and an exhaust pipe 18 extends from the exhaust manifold 16. An EGR passage 20 is connected to the exhaust manifold 16 and the intake manifold 6, and an EGR cooler 22 that cools the EGR gas and an EGR valve 24 that adjusts the recirculation amount of the EGR gas are provided in the EGR passage 20.

また、排気管18の途中には上記コンプレッサ12aと同軸上に連結されているタービン12bが設けられている。
さらに、当該排気管18の排気下流側にはSCR触媒30(NOx触媒)が設けられている。
当該SCR触媒30は、例えばハニカム構造のセラミックス製の触媒担体上に酸化バナジウム(V)等の触媒金属を担持して構成されており、アンモニア(NH)により排ガス中のNOxを窒素(N)と水(HO)に選択還元するNOx触媒である。
A turbine 12b that is coaxially connected to the compressor 12a is provided in the middle of the exhaust pipe 18.
Further, an SCR catalyst 30 (NOx catalyst) is provided on the exhaust downstream side of the exhaust pipe 18.
The SCR catalyst 30 is configured by, for example, supporting a catalytic metal such as vanadium oxide (V 2 O 5 ) on a ceramic catalyst carrier having a honeycomb structure, and the NOx in the exhaust gas is converted into nitrogen by ammonia (NH 3 ). It is a NOx catalyst that selectively reduces to (N 2 ) and water (H 2 O).

また当該SCR触媒30の排気上流側には、排気管18内において排気下流側へ尿素水を噴射可能な添加ノズル32(還元剤添加手段)が設けられている。なお、当該添加ノズル32より噴射された尿素水は加水分解によりアンモニアを発生させる。
当該添加ノズル32は車両に搭載された尿素水供給装置34(還元剤添加手段)に連結されており、尿素水供給装置34には尿素水が貯蔵されている尿素水タンク36から尿素水が供給される。
An addition nozzle 32 (reducing agent addition means) capable of injecting urea water to the exhaust downstream side in the exhaust pipe 18 is provided on the exhaust upstream side of the SCR catalyst 30. The urea water sprayed from the addition nozzle 32 generates ammonia by hydrolysis.
The addition nozzle 32 is connected to a urea water supply device 34 (reducing agent addition means) mounted on the vehicle, and urea water is supplied to the urea water supply device 34 from a urea water tank 36 in which urea water is stored. Is done.

さらにSCR触媒30の排気下流側には、当該SCR触媒30を通過した排ガス中のNOx濃度を検出可能なNOxセンサ38が設けられている。
当該NOxセンサ38は、検知部に触媒成分(例えばジルコニア)を有しており、当該触媒成分の作用により、まず排ガス中のO成分を除去し、残ったNO成分をN及びOに分解し、このO量を測定することでNOx濃度を検出している。
Further, a NOx sensor 38 capable of detecting the NOx concentration in the exhaust gas that has passed through the SCR catalyst 30 is provided on the exhaust gas downstream side of the SCR catalyst 30.
The NOx sensor 38 has a catalyst component (for example, zirconia) in the detection unit, and by the action of the catalyst component, first, the O 2 component in the exhaust gas is removed, and the remaining NO component is converted into N 2 and O 2 . The NOx concentration is detected by decomposing and measuring the amount of O 2 .

一方、このような構成から、NOxセンサ38では、アンモニアが存在すると、上述したように検知部においてアンモニア成分が酸化されてNO成分が生じ(4NH+5O→4NO+6HO)、これより、NOxセンサ38は、当該NO成分から分解されたO量をも測定してしまうという性質を有している。即ち、NOxセンサ38は、排ガス中のアンモニアもNOxと同様に検知する特性を有している。 On the other hand, with this configuration, in the NOx sensor 38, when ammonia is present, the ammonia component is oxidized in the detection unit as described above to generate a NO component (4NH 3 + 5O 2 → 4NO + 6H 2 O). The sensor 38 has a property of measuring the amount of O 2 decomposed from the NO component. That is, the NOx sensor 38 has a characteristic of detecting ammonia in the exhaust gas similarly to NOx.

したがって、当該NOxセンサ38を通る排ガス中のNOx及びアンモニアの濃度が増加することで当該NOxセンサ38の出力値は増加する。
また、車両にはECU(電子コントロールユニット)40が設けられており、当該ECU40は各種センサ類からの情報に基づき各種制御を行う機能を有している。当該ECU40は、エンジン1の運転制御の他、例えば、尿素水添加量を設定し上記尿素水供給装置34を制御して、所定の時期に添加ノズル32から尿素水の添加を行う(還元剤添加量制御手段)。また、上記NOxセンサ38の出力値からNOxスリップ及びアンモニアスリップの判定を行う(スリップ判定手段)。
Therefore, the output value of the NOx sensor 38 increases as the concentration of NOx and ammonia in the exhaust gas passing through the NOx sensor 38 increases.
Further, the vehicle is provided with an ECU (Electronic Control Unit) 40, and the ECU 40 has a function of performing various controls based on information from various sensors. The ECU 40 controls the operation of the engine 1 and, for example, sets the urea water addition amount and controls the urea water supply device 34 to add urea water from the addition nozzle 32 at a predetermined time (reducing agent addition). Quantity control means). Further, NOx slip and ammonia slip are determined from the output value of the NOx sensor 38 (slip determination means).

以下、このように構成された本発明に係る内燃機関の排気浄化装置におけるスリップ判定制御及び尿素水添加量制御について詳しく説明する。
図2を参照すると、本発明に係る内燃機関の排気浄化装置のECU40により実行されるスリップ判定制御及び尿素水添加量制御ルーチンがフローチャートで示されており、図3を参照すると、所定の運転状態における尿素水添加量とNOxセンサ出力値との関係マップが示されている。以下、図3を参照しつつ図2のフローチャートに沿って説明する。
Hereinafter, the slip determination control and the urea water addition amount control in the exhaust gas purification apparatus for an internal combustion engine according to the present invention configured as described above will be described in detail.
Referring to FIG. 2, there is shown a flowchart of a slip determination control and urea water addition amount control routine executed by the ECU 40 of the exhaust gas purification apparatus for an internal combustion engine according to the present invention. Referring to FIG. A relationship map between the urea water addition amount and the NOx sensor output value is shown. Hereinafter, description will be made along the flowchart of FIG. 2 with reference to FIG.

まず、ステップS1ではNOxセンサ38の出力値を実NOx濃度Na1として取得する。
ステップS2では、上記ステップS1で取得した実NOx濃度Na1と、予め設定される適正NOx濃度Nrとの偏差であるNOx濃度偏差Ne1を算出する(NOx濃度偏差算出手段)。当該適正NOx濃度Nrは、エンジン1の回転数や燃料噴射量、あるいはNOx触媒温度毎に作成された図3に示すような尿素水添加量とNOxセンサ38の出力値との関係マップから決定される。詳しくは、図3に示すように、尿素水添加量が適正範囲であるときのNOxセンサ38の出力値、即ち当該マップにおけるNOxセンサ出力の底値を適正NOx濃度Nrとする(適正NOx濃度設定手段)。
First, in step S1, the output value of the NOx sensor 38 is acquired as the actual NOx concentration Na1.
In step S2, a NOx concentration deviation Ne1 that is a deviation between the actual NOx concentration Na1 acquired in step S1 and a preset appropriate NOx concentration Nr is calculated (NOx concentration deviation calculating means). The appropriate NOx concentration Nr is determined from a relationship map between the urea water addition amount and the output value of the NOx sensor 38 as shown in FIG. 3 created for each engine speed, fuel injection amount, or NOx catalyst temperature. The Specifically, as shown in FIG. 3, the output value of the NOx sensor 38 when the urea water addition amount is in the appropriate range, that is, the bottom value of the NOx sensor output in the map is set as the appropriate NOx concentration Nr (appropriate NOx concentration setting means). ).

そして、ステップS3では、NOx濃度偏差Ne1、即ち実NOx濃度Na1と適正NOx濃度Nrとの偏差が、予め設定された所定値αより大であるか否かを判別する。当該判別結果が偽(No)である場合、即ち実NOx濃度Na1が適正NOx濃度Nrよりも低い場合や当該実NOx濃度Na1と適正NOx濃度Nrとの差が所定値α以下の比較的小さい場合には、尿素水添加量は適正範囲にあると判定し当該ルーチンをリターンする。   In step S3, it is determined whether or not the NOx concentration deviation Ne1, that is, the deviation between the actual NOx concentration Na1 and the appropriate NOx concentration Nr is larger than a predetermined value α set in advance. When the determination result is false (No), that is, when the actual NOx concentration Na1 is lower than the appropriate NOx concentration Nr, or when the difference between the actual NOx concentration Na1 and the appropriate NOx concentration Nr is relatively small below a predetermined value α. In this case, it is determined that the urea water addition amount is within an appropriate range, and the routine returns.

一方、NOx濃度偏差Ne1が所定値αより大、即ち尿素水添加量が適正範囲外にある場合には、NOxスリップまたはアンモニアスリップが発生していると判断し、上記判別結果は真(Yes)となり次のステップS4に進む。
ステップS4では、尿素水添加量を所定量減少するよう尿素水供給装置34を制御する。なお、当該所定量は例えばこのときの尿素水添加量の10%程度とすればよく、またはNOxセンサ出力値を所定の範囲まで減少させればよいものである。
On the other hand, when the NOx concentration deviation Ne1 is larger than the predetermined value α, that is, when the urea water addition amount is outside the appropriate range, it is determined that NOx slip or ammonia slip has occurred, and the above determination result is true (Yes). Then, the process proceeds to the next step S4.
In step S4, the urea water supply device 34 is controlled so as to decrease the urea water addition amount by a predetermined amount. The predetermined amount may be, for example, about 10% of the urea water addition amount at this time, or the NOx sensor output value may be reduced to a predetermined range.

続いて、ステップS5では、尿素水添加量減少後のNOxセンサ38の出力値を実NOx濃度Na2として取得し、次のステップS6では、当該実NOx濃度Na2と適正NOx濃度Nrとの偏差であるNOx濃度偏差Ne2を算出する。
ステップS7では、上記ステップS2で算出した尿素水添加量減少前のNOx濃度偏差Ne1と上記ステップS6で算出した尿素水添加量減少後のNOx濃度偏差Ne2との偏差をNOx濃度変化量Ndとして算出する。
Subsequently, in step S5, the output value of the NOx sensor 38 after decreasing the urea water addition amount is acquired as the actual NOx concentration Na2, and in the next step S6, the deviation between the actual NOx concentration Na2 and the appropriate NOx concentration Nr. The NOx concentration deviation Ne2 is calculated.
In step S7, the difference between the NOx concentration deviation Ne1 before the urea water addition amount calculated in step S2 and the NOx concentration deviation Ne2 after the urea water addition amount calculated in step S6 is calculated as the NOx concentration change amount Nd. To do.

そして、ステップS8において、NOx濃度偏差変化量Ndが0より大であるか否か、即ち、尿素水添加量を減少させたことでNOx濃度偏差Ne2が尿素水添加量減少前のNOx濃度偏差Ne1より増加したか否かを判別する。
当該判別結果が真(Yes)である場合、即ち尿素水添加量を減少させたことでNOx濃度偏差Ne2が増加した場合には、ステップS9に進む。
In step S8, it is determined whether or not the NOx concentration deviation change amount Nd is greater than 0, that is, the urea water addition amount is decreased, so that the NOx concentration deviation Ne2 becomes the NOx concentration deviation Ne1 before the urea water addition amount decreases. It is determined whether or not the number has increased.
If the determination result is true (Yes), that is, if the NOx concentration deviation Ne2 is increased by decreasing the urea water addition amount, the process proceeds to step S9.

ステップS9では、例えば図3のA部分に示すように、尿素水添加量を減少させたことでNOx濃度偏差Ne2が増加したということは尿素水添加量が不足しSCR触媒30の浄化性能が低下してNOx排出量が増加したということであり、NOxスリップが発生していると判定する。
そして、続くステップS10では、NOxスリップを解消すべく、尿素水添加量の増加制御を行い、当該ルーチンをリターンする。
In step S9, for example, as shown in part A of FIG. 3, the fact that the NOx concentration deviation Ne2 has increased by decreasing the urea water addition amount means that the urea water addition amount is insufficient and the purification performance of the SCR catalyst 30 decreases. This means that the amount of NOx emissions has increased, and it is determined that NOx slip has occurred.
In the subsequent step S10, the urea water addition amount is controlled to increase in order to eliminate the NOx slip, and the routine returns.

一方、上記ステップS8の判別結果が偽(No)である場合、即ち尿素水添加量を減少させたことで、NOx濃度偏差Ne2が減少した場合には、ステップS11に進む。
ステップS11では、例えば図3のB部分に示すように、尿素水添加量を減少させたことでNOx濃度偏差Ne2が減少したということは余剰で排気下流側へと排出されていたアンモニアが減少したということであるため、アンモニアスリップが発生していると判定する。
On the other hand, if the determination result in step S8 is false (No), that is, if the NOx concentration deviation Ne2 is decreased by decreasing the urea water addition amount, the process proceeds to step S11.
In step S11, for example, as shown in part B of FIG. 3, the fact that the NOx concentration deviation Ne2 has decreased by decreasing the urea water addition amount has decreased the ammonia that has been exhausted to the exhaust downstream side. Therefore, it is determined that ammonia slip has occurred.

そして、続くステップS12では、アンモニアスリップを解消すべく、余剰なアンモニアを減少させるよう尿素水添加量の減少制御を行い、当該ルーチンをリターンする。
以上のように、当該スリップ判定制御は、SCR触媒30の排気下流側にNOxセンサ38が設けられた構成において、当該NOxセンサ38の出力値、即ち実NOx濃度Na1と予め設定される適正NOx濃度Nrとの偏差であるNOx濃度偏差Ne1が所定値αより大となったときに、尿素水添加量を減少させ、当該尿素水添加量の減少によりNOx濃度偏差Ne2が増加した場合には尿素水添加量の不足、即ちNOxスリップと判定する。一方、尿素水添加量の減少によりNOx濃度偏差Ne2が減少した場合には、尿素水添加量が過剰、即ちアンモニアスリップと判定する。
In the subsequent step S12, the urea water addition amount is controlled to be reduced so as to reduce the excess ammonia in order to eliminate the ammonia slip, and the routine is returned.
As described above, in the configuration in which the NOx sensor 38 is provided on the exhaust downstream side of the SCR catalyst 30, the slip determination control is performed by setting the output value of the NOx sensor 38, that is, the actual NOx concentration Na1 and the appropriate NOx concentration set in advance. When the NOx concentration deviation Ne1, which is a deviation from Nr, becomes larger than the predetermined value α, the urea water addition amount is decreased, and when the NOx concentration deviation Ne2 increases due to the decrease in the urea water addition amount, the urea water It is determined that the addition amount is insufficient, that is, NOx slip. On the other hand, when the NOx concentration deviation Ne2 decreases due to the decrease in the urea water addition amount, it is determined that the urea water addition amount is excessive, that is, ammonia slip.

したがって、本発明に係る内燃機関の排気浄化装置では、SCR触媒30の排気下流側にNOxセンサ38を1つ設けただけの簡単な構成であって、NOxセンサ38の出力値と適正NOx濃度Nrとの偏差が所定値αより大となったときに尿素水添加量を減少させ、当該尿素水添加量の減少によるNOx濃度偏差の変化をみるという容易な制御によりNOxスリップ及びアンモニアスリップの判定を行うことができる。   Therefore, the exhaust gas purification apparatus for an internal combustion engine according to the present invention has a simple configuration in which only one NOx sensor 38 is provided on the exhaust downstream side of the SCR catalyst 30, and the output value of the NOx sensor 38 and the appropriate NOx concentration Nr. NOx slip and ammonia slip are judged by easy control of reducing the urea water addition amount when the deviation from the above becomes greater than a predetermined value α and seeing the change in the NOx concentration deviation due to the decrease in the urea water addition amount. It can be carried out.

そして、当該判定によりNOxスリップと判定された場合には尿素水添加量を増加させ、アンモニアスリップと判定された場合には尿素水添加量を減少させる容易な制御により、当該NOxスリップ及びアンモニアスリップを解消させることができる。
また、尿素水の添加量を減少させることでスリップ判定を行うので、刺激臭を有するアンモニアの排出を抑制させながら当該スリップ判定を行うことができる。
Then, when the NOx slip is determined by the determination, the urea water addition amount is increased, and when the ammonia slip is determined, the NOx slip and the ammonia slip are reduced by easy control to decrease the urea water addition amount. It can be eliminated.
Moreover, since slip determination is performed by reducing the addition amount of urea water, the slip determination can be performed while suppressing discharge of ammonia having an irritating odor.

以上で本発明に係る内燃機関の排気浄化装置の実施形態についての説明を終えるが、実施形態は上記実施形態に限られるものではない。
例えば、上記実施形態では、エンジン1はディーゼルエンジンであるが、エンジンはこれに限られるものではなく、例えばガソリンエンジンであっても構わない。
また、上記実施形態では、NOx濃度偏差Ne1が所定値αより大である場合に、尿水添加量を所定量減少させてスリップ判定を行っているが、例えばNOx濃度偏差Ne1が所定値αより大である場合に、尿素水添加量を増加させ、当該尿素水添加量増加後のNOx濃度偏差が減少した場合にはNOxスリップと判定し、NOx濃度偏差が増加した場合にはアンモニアスリップと判定するスリップ判定制御としても構わない。
Although the description of the embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention is finished above, the embodiment is not limited to the above embodiment.
For example, in the above embodiment, the engine 1 is a diesel engine, but the engine is not limited to this, and may be, for example, a gasoline engine.
In the above embodiment, when the NOx concentration deviation Ne1 is larger than the predetermined value α, the slip determination is performed by decreasing the urine water addition amount by a predetermined amount. For example, the NOx concentration deviation Ne1 is larger than the predetermined value α. When the NOx concentration deviation after the increase in the urea water addition amount is decreased and the NOx concentration deviation after the urea water addition amount is increased, it is determined as NOx slip, and when the NOx concentration deviation is increased, it is determined as ammonia slip. The slip determination control may be performed.

また、上記実施形態では、排気浄化装置としてSCR触媒30のみを備えた構成であるが、例えば排気通路に酸化触媒等の他の触媒やパティキュレートフィルタ等を併せて設けた構成としても構わない。
また、上記実施形態では、NOxスリップと判定した場合には尿素水添加量を増加させ、アンモニアスリップと判定した場合には尿素水添加量を減少させるよう制御しているが、ここで例えばNOx濃度偏差が減少する方向に向かうフィードバック制御により尿水添加量を制御しても構わない。このように尿素水添加量をフィードバック制御することでNOxスリップ及びアンモニアスリップを確実に解消することができる。
Moreover, in the said embodiment, although it is the structure provided with only the SCR catalyst 30 as an exhaust gas purification apparatus, it is good also as a structure which provided other catalysts, such as an oxidation catalyst, a particulate filter, etc. in the exhaust path, for example.
In the above embodiment, control is performed to increase the urea water addition amount when it is determined as NOx slip, and to decrease the urea water addition amount when it is determined as ammonia slip. The urine water addition amount may be controlled by feedback control in a direction in which the deviation decreases. Thus, NOx slip and ammonia slip can be reliably eliminated by feedback control of the urea water addition amount.

また、上記実施形態では、添加ノズル32から尿素水を添加し加水分解したアンモニアによりSCR触媒30にてNOxを選択還元しているが、例えば添加ノズルから直接アンモニアを添加する構成としても構わない。   Further, in the above embodiment, NOx is selectively reduced by the SCR catalyst 30 by adding and hydrolyzing urea water from the addition nozzle 32, but, for example, a configuration in which ammonia is directly added from the addition nozzle may be employed.

本発明に係る排気浄化装置を備えたエンジンの概略構成図である。1 is a schematic configuration diagram of an engine provided with an exhaust purification device according to the present invention. 本発明に係る内燃機関の排気浄化装置のECUにより実行されるスリップ判定制御及び尿素水添加量制御ルーチンを示すフローチャートである。3 is a flowchart showing a slip determination control and urea water addition amount control routine executed by the ECU of the exhaust gas purification apparatus for an internal combustion engine according to the present invention. 所定の運転状態時における尿素水添加量とNOxセンサ出力値との関係マップである。It is a relationship map of the urea water addition amount at the time of a predetermined driving | running state, and a NOx sensor output value.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
18 排気管(排気通路)
30 SCR触媒(NOx触媒)
32 添加ノズル(還元剤添加手段)
34 尿素水供給装置
36 尿素水タンク
38 NOxセンサ
40 ECU(還元剤添加量設定手段、スリップ判定手段)
1 engine (internal combustion engine)
18 Exhaust pipe (exhaust passage)
30 SCR catalyst (NOx catalyst)
32 Addition nozzle (reducing agent addition means)
34 Urea water supply device 36 Urea water tank 38 NOx sensor 40 ECU (reducing agent addition amount setting means, slip determination means)

Claims (5)

内燃機関の排気通路に設けられ、尿素水またはアンモニアを還元剤として排ガス中に添加する還元剤添加手段と、
前記排気通路の前記還元剤添加手段の排気下流側に設けられ、該還元剤添加手段により添加された前記還元剤によって排ガス中のNOxを選択還元するNOx触媒と、
該NOx触媒の排気下流側に設けられ、排ガス中のNOxを検知するとともに、該NOxと同様にアンモニアも検知し、該NOx及びアンモニアの濃度に応じた値を出力するNOxセンサと、
前記内燃機関の運転状態に応じて前記NOx触媒の排気下流側の適正NOx濃度を設定する適正NOx濃度設定手段と、
前記還元剤添加手段により添加される還元剤の添加量を制御する還元剤添加量制御手段と、
前記適正NOx濃度設定手段により設定された適正NOx濃度及び前記NOxセンサにより出力された値との偏差を算出するNOx濃度偏差算出手段と、
前記NOx濃度偏差算出手段により算出された偏差が所定値より大となったとき、前記還元剤添加量制御手段により還元剤添加量を減少させ、該還元剤添加量減少後に前記NOx濃度偏差検出手段により算出された偏差が、該還元剤添加量減少前の前記偏差よりも増加した場合にはNOxスリップと判定し、該還元剤添加量減少前の前記偏差よりも減少した場合にはアンモニアスリップと判定するスリップ判定手段を備えたことを特徴とする内燃機関の排気浄化装置。
A reducing agent adding means provided in the exhaust passage of the internal combustion engine and adding urea water or ammonia as a reducing agent into the exhaust gas;
A NOx catalyst provided on the exhaust gas downstream side of the reducing agent adding means in the exhaust passage and selectively reducing NOx in exhaust gas by the reducing agent added by the reducing agent adding means;
A NOx sensor that is provided on the exhaust downstream side of the NOx catalyst, detects NOx in the exhaust gas, detects ammonia as well as the NOx, and outputs a value corresponding to the concentration of the NOx and ammonia;
An appropriate NOx concentration setting means for setting an appropriate NOx concentration on the exhaust downstream side of the NOx catalyst according to the operating state of the internal combustion engine;
Reducing agent addition amount control means for controlling the addition amount of the reducing agent added by the reducing agent addition means;
NOx concentration deviation calculating means for calculating a deviation between the appropriate NOx concentration set by the appropriate NOx concentration setting means and the value output by the NOx sensor;
When the deviation calculated by the NOx concentration deviation calculating means becomes larger than a predetermined value, the reducing agent addition amount control means decreases the reducing agent addition amount, and after the reducing agent addition amount decreases, the NOx concentration deviation detecting means. Is determined to be NOx slip when it is greater than the deviation before the reducing agent addition amount is decreased, and ammonia slip is determined when the deviation is less than the deviation before the reducing agent addition amount is decreased. An exhaust emission control device for an internal combustion engine, comprising slip determination means for determining.
内燃機関の排気通路に設けられ、尿素水またはアンモニアを還元剤として排ガス中に添加する還元剤添加手段と、
前記排気通路の前記還元剤添加手段の排気下流側に設けられ、該還元剤添加手段により添加された前記還元剤によって排ガス中のNOxを選択還元するNOx触媒と、
該NOx触媒の排気下流側に設けられ、排ガス中のNOxを検知するとともに、該NOxと同様にアンモニアも検知し、該NOx及びアンモニアの濃度に応じた値を出力するNOxセンサと、
前記内燃機関の運転状態に応じて前記NOx触媒の排気下流側の適正NOx濃度を設定する適正NOx濃度設定手段と、
前記還元剤添加手段により添加される還元剤の添加量を制御する還元剤添加量制御手段と、
前記適正NOx濃度設定手段により設定された適正NOx濃度及び前記NOxセンサにより出力された値の偏差を算出するNOx濃度偏差算出手段と、
前記NOx濃度偏差算出手段により算出された偏差が所定値より大となったとき、前記還元剤添加量制御手段により還元剤添加量を増加させ、該還元剤添加量増加後に前記NOx濃度偏差検出手段により算出された偏差が、該還元剤添加量増加前の前記偏差よりも減少した場合にはNOxスリップと判定し、該還元剤添加量増加後に前記NOx濃度偏差検出手段により算出された偏差が、該還元剤添加量増加前の前記偏差よりも増加した場合にはアンモニアスリップと判定するスリップ判定手段を備えたことを特徴とする内燃機関の排気浄化装置。
A reducing agent adding means provided in the exhaust passage of the internal combustion engine and adding urea water or ammonia as a reducing agent into the exhaust gas;
A NOx catalyst provided on the exhaust gas downstream side of the reducing agent adding means in the exhaust passage and selectively reducing NOx in exhaust gas by the reducing agent added by the reducing agent adding means;
A NOx sensor that is provided on the exhaust downstream side of the NOx catalyst, detects NOx in the exhaust gas, detects ammonia as well as the NOx, and outputs a value corresponding to the concentration of the NOx and ammonia;
An appropriate NOx concentration setting means for setting an appropriate NOx concentration on the exhaust downstream side of the NOx catalyst according to the operating state of the internal combustion engine;
Reducing agent addition amount control means for controlling the addition amount of the reducing agent added by the reducing agent addition means;
NOx concentration deviation calculating means for calculating a deviation between an appropriate NOx concentration set by the appropriate NOx concentration setting means and a value output by the NOx sensor;
When the deviation calculated by the NOx concentration deviation calculating means becomes larger than a predetermined value, the reducing agent addition amount control means increases the reducing agent addition amount, and after the reducing agent addition amount increases, the NOx concentration deviation detecting means. Is determined to be NOx slip when the deviation before the reducing agent addition amount is increased, the deviation calculated by the NOx concentration deviation detecting means after the reducing agent addition amount is increased, An exhaust gas purifying apparatus for an internal combustion engine, comprising slip determining means for determining that the slip is an ammonia slip when the deviation before the reducing agent addition amount increases.
前記還元剤添加量制御手段は、前記スリップ判定手段によりNOxスリップと判定された場合には、還元剤添加量を増加させるよう制御することを特徴とする請求項1または2記載の内燃機関の排気浄化装置。   The exhaust gas of an internal combustion engine according to claim 1 or 2, wherein the reducing agent addition amount control means controls to increase the reducing agent addition amount when the slip determination means determines NOx slip. Purification equipment. 前記還元剤添加量制御手段は、前記スリップ判定手段によりアンモニアスリップと判定された場合には、還元剤添加量を減少させるよう制御することを特徴とする請求項1乃至3いずれか記載の内燃機関の排気浄化装置。   4. The internal combustion engine according to claim 1, wherein the reducing agent addition amount control means controls to reduce the reducing agent addition amount when the slip determination means determines that the ammonia slip has occurred. Exhaust purification equipment. 前記還元剤添加量制御手段は、前記スリップ判定手段によりNOxスリップまたはアンモニアスリップと判定された場合に、前記適正NOx濃度設定手段により設定された適正NOx濃度及び前記NOxセンサにより出力された値の偏差が減少する方向に前記還元剤添加量をフィードバック制御することを特徴とする請求項1または2記載の内燃機関の排気浄化装置。   The reducing agent addition amount control means is a deviation between the proper NOx concentration set by the proper NOx concentration setting means and the value output by the NOx sensor when the slip judgment means judges NOx slip or ammonia slip. The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2, wherein the amount of addition of the reducing agent is feedback controlled in a direction in which the amount of reducing agent decreases.
JP2006347689A 2006-12-25 2006-12-25 Exhaust emission control device for internal combustion engine Withdrawn JP2008157136A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006347689A JP2008157136A (en) 2006-12-25 2006-12-25 Exhaust emission control device for internal combustion engine
PCT/JP2007/074526 WO2008078645A1 (en) 2006-12-25 2007-12-20 Exhaust purifying apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347689A JP2008157136A (en) 2006-12-25 2006-12-25 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008157136A true JP2008157136A (en) 2008-07-10

Family

ID=39562437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347689A Withdrawn JP2008157136A (en) 2006-12-25 2006-12-25 Exhaust emission control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2008157136A (en)
WO (1) WO2008078645A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133354A (en) * 2008-12-05 2010-06-17 Bosch Corp Reducing agent injection control device, control method of reducing agent injection device and exhaust emission control device of internal combustion engine
JP2010133298A (en) * 2008-12-03 2010-06-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US20100223908A1 (en) * 2009-03-09 2010-09-09 Gm Global Technology Operations, Inc. AMMONIA (NH3) STORAGE CONTROL SYSTEM AND METHOD BASED ON A NITROGEN OXIDE (NOx) SENSOR
JP2011220126A (en) * 2010-04-05 2011-11-04 Bosch Corp Failure diagnosis device of exhaust gas purification system, failure diagnosis method, and exhaust gas purification system
JP2013515897A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Method and apparatus for controlling a SCR catalytic converter of a vehicle
US20130186067A1 (en) * 2009-12-18 2013-07-25 Johan Dahl Method for controlling the reductant buffer level in an exhaust gas aftertreatment device
WO2013191067A1 (en) 2012-06-21 2013-12-27 ヤンマー株式会社 Urea solution injection device
FR3014483A1 (en) * 2013-12-10 2015-06-12 Renault Sa EXHAUST GAS OUTPUT DEVICE FOR A MOTOR VEHICLE HAVING AN EXTERNAL PROTECTIVE PROTECTOR FOR A PROBE
CN106378006A (en) * 2016-08-30 2017-02-08 华电电力科学研究院 SCR NO<x> supplementing apparatus for controlling ammonia escape
JP2018100615A (en) * 2016-12-20 2018-06-28 日野自動車株式会社 Control device for urea scr system and control method
JP2018105293A (en) * 2016-12-28 2018-07-05 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Control device for reducing agent supply device
JP2019035379A (en) * 2017-08-16 2019-03-07 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079621A1 (en) * 2009-01-09 2010-07-15 トヨタ自動車株式会社 Apparatus for determination of component passing through catalyst, and exhaust gas purification apparatus for internal combustion engine
FR2945962B1 (en) * 2009-05-29 2012-06-08 Peugeot Citroen Automobiles Sa DEVICE, VEHICLE COMPRISING THIS DEVICE AND METHOD FOR TREATING EXHAUST GASES
US9695727B2 (en) 2015-09-02 2017-07-04 Deere & Company System and method for adaptive aftertreatment control of NOx
CN108371888A (en) * 2018-03-13 2018-08-07 成都市润天祥环保科技有限公司 Prevent the SCR denitration system control method of urea overspray

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087914B2 (en) * 1996-07-25 2008-05-21 日本碍子株式会社 Denitration system and denitration method
JP4854122B2 (en) * 2001-03-16 2012-01-18 東京瓦斯株式会社 Reducing agent addition amount control method
JP3979153B2 (en) * 2002-04-03 2007-09-19 三菱ふそうトラック・バス株式会社 NOx purification device for internal combustion engine
JP4284087B2 (en) * 2003-02-18 2009-06-24 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2004324559A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Exhaust emission control device for engine
DE102004046640B4 (en) * 2004-09-25 2013-07-11 Robert Bosch Gmbh Method for operating an internal combustion engine and device for carrying out the method
JP2006125247A (en) * 2004-10-27 2006-05-18 Hitachi Ltd Exhaust emission control method and exhaust emission control device for engine
JP2007327377A (en) * 2006-06-07 2007-12-20 Hitachi Ltd Exhaust emission control device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133298A (en) * 2008-12-03 2010-06-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2010133354A (en) * 2008-12-05 2010-06-17 Bosch Corp Reducing agent injection control device, control method of reducing agent injection device and exhaust emission control device of internal combustion engine
US9255510B2 (en) * 2009-03-09 2016-02-09 GM Global Technology Operations LLC Ammonia (NH3) storage control system and method based on a nitrogen oxide(NOx) sensor
US20100223908A1 (en) * 2009-03-09 2010-09-09 Gm Global Technology Operations, Inc. AMMONIA (NH3) STORAGE CONTROL SYSTEM AND METHOD BASED ON A NITROGEN OXIDE (NOx) SENSOR
CN101832166A (en) * 2009-03-09 2010-09-15 通用汽车环球科技运作公司 Ammonia storage control system and method based on NOx sensor
US20130186067A1 (en) * 2009-12-18 2013-07-25 Johan Dahl Method for controlling the reductant buffer level in an exhaust gas aftertreatment device
US9243535B2 (en) * 2009-12-18 2016-01-26 Volvo Lastvagnar Ab Method for controlling the reductant buffer level in an exhaust gas aftertreatment device
JP2013515897A (en) * 2009-12-23 2013-05-09 エフピーティ モトーレンフォアシュンク アクチェンゲゼルシャフト Method and apparatus for controlling a SCR catalytic converter of a vehicle
JP2011220126A (en) * 2010-04-05 2011-11-04 Bosch Corp Failure diagnosis device of exhaust gas purification system, failure diagnosis method, and exhaust gas purification system
US9068493B2 (en) 2010-04-05 2015-06-30 Bosch Corporation Exhaust gas purification system abnormality diagnosing device and abnormality diagnosing method, and exhaust gas purification system
WO2013191067A1 (en) 2012-06-21 2013-12-27 ヤンマー株式会社 Urea solution injection device
FR3014483A1 (en) * 2013-12-10 2015-06-12 Renault Sa EXHAUST GAS OUTPUT DEVICE FOR A MOTOR VEHICLE HAVING AN EXTERNAL PROTECTIVE PROTECTOR FOR A PROBE
CN106378006A (en) * 2016-08-30 2017-02-08 华电电力科学研究院 SCR NO<x> supplementing apparatus for controlling ammonia escape
JP2018100615A (en) * 2016-12-20 2018-06-28 日野自動車株式会社 Control device for urea scr system and control method
JP2018105293A (en) * 2016-12-28 2018-07-05 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Control device for reducing agent supply device
JP2019035379A (en) * 2017-08-16 2019-03-07 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
WO2008078645A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP2008157136A (en) Exhaust emission control device for internal combustion engine
JP4438828B2 (en) Exhaust gas purification device for internal combustion engine
JP4665923B2 (en) Catalyst deterioration judgment device
US8056323B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
US8266893B2 (en) Exhaust gas purification apparatus of internal combustion engine
US8117833B2 (en) Method and system using a reduction catalyst to reduce nitrate oxide
JP5880731B2 (en) Exhaust gas purification device for internal combustion engine
CN101646846B (en) Method of estimating rate of n2o formation on ammonia oxidation catalyst and exhaust purification system for internal combustion engine
US20100107610A1 (en) Exhaust System for an Internal Combustion Engine
JP2010096039A (en) Urea water injection amount control device and urea water injection control system
JP2010071195A (en) Output calibrator for nox sensor and method of output calibration
JP2008163856A (en) Exhaust emission control device of internal combustion engine
US20100199642A1 (en) Exhaust gas purifying apparatus and method for regenerating particulate filter thereof
WO2010147107A1 (en) Exhaust purification device and exhaust purification method, for engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
EP2738363B1 (en) Exhaust purification device of internal combustion engine
JP2008138619A (en) Exhaust emission control device of internal combustion engine
JP2006002663A (en) Exhaust emission control device
JP2021055563A (en) Exhaust emission control apparatus for internal combustion engine, and vehicle
JP5761255B2 (en) Exhaust gas purification device for internal combustion engine
JP5610956B2 (en) Exhaust gas purification device control method and control device
JP2015086714A (en) Exhaust purification device of internal combustion engine
JP2011106313A (en) Exhaust emission control device for engine
JP2012215143A (en) Catalyst deterioration determination device
JP2009115038A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302