[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010248341A - Polypropylene-based resin prefoamed particle - Google Patents

Polypropylene-based resin prefoamed particle Download PDF

Info

Publication number
JP2010248341A
JP2010248341A JP2009098153A JP2009098153A JP2010248341A JP 2010248341 A JP2010248341 A JP 2010248341A JP 2009098153 A JP2009098153 A JP 2009098153A JP 2009098153 A JP2009098153 A JP 2009098153A JP 2010248341 A JP2010248341 A JP 2010248341A
Authority
JP
Japan
Prior art keywords
resin
melting point
polypropylene
polypropylene resin
mold foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009098153A
Other languages
Japanese (ja)
Other versions
JP5528002B2 (en
Inventor
Tetsuya Shibata
哲也 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009098153A priority Critical patent/JP5528002B2/en
Publication of JP2010248341A publication Critical patent/JP2010248341A/en
Application granted granted Critical
Publication of JP5528002B2 publication Critical patent/JP5528002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypropylene-based resin prefoamed particle which can easily produce an in-mold foamed product of various shapes including complicated shapes under wide molding conditions, the in-mold foamed product having good surface properties and less inside falling down. <P>SOLUTION: The polypropylene-based prefoamed particles include a polypropylene-based resin having a melt index of 3-20 g/10 min. as a base resin. In the polypropylene-based resin prefoamed particles, the resin melting point is lower than 145°C, measured by using a differential scanning calorimeter by heating from 40°C to 200°C at the rate of 10°C/min., subsequently cooling from 200°C to 40°C at the rate of 10°C/min., then heating again from 40°C to 200°C at the rate of 10°C/min., the ratio of the amount of melting heat at high temperature, which is a ratio of the amount of melting heat from the resin melting point to the end of melting to the total amount of the melting heat of the resin, is 20% or more, and a flexural modulus of the resin is 800 MPa or more. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリプロピレン系樹脂予備発泡粒子に関し、更に詳しくは、良好な表面性や寸法性を有する型内発泡成形体を幅広い成形加工条件で得ることが可能となるポリプロピレン系樹脂予備発泡粒子に関する。   The present invention relates to a polypropylene resin pre-expanded particle, and more particularly to a polypropylene resin pre-expanded particle that enables obtaining an in-mold foam molded article having good surface properties and dimensional properties under a wide range of molding processing conditions.

ポリプロピレン系樹脂型内発泡成形体は、ポリスチレン系樹脂型内発泡成形体と比較して、耐薬品性能、耐熱性能、緩衝性能、圧縮歪み回復性能に優れ、ポリエチレン系樹脂型内発泡成形体と比較しても、耐熱性能、圧縮強度に優れることから、緩衝包装資材や通い箱、自動車用部材として広く用いられている。   Polypropylene resin in-mold foam molded products have superior chemical resistance, heat resistance, buffer performance, and compression strain recovery performance compared to polystyrene resin in-mold foam molded products. Compared to polyethylene resin in-mold foam molded products. Even so, since it is excellent in heat resistance and compressive strength, it is widely used as a buffer packaging material, a returnable box, and an automobile member.

特に、様々な形状の緩衝包装資材として、内包する商品や部材の形状に合わせて柔軟に、かつ切削加工無しで成形できることから、電子機械から産業資材など幅広く利用されている。   In particular, as buffer packaging materials of various shapes, they can be molded flexibly and without cutting work in accordance with the shape of products and members to be included, so that they are widely used from electronic machines to industrial materials.

しかし、様々な形状に成形できるとはいえ、発泡粒子同士の融着を満足させつつ成形体形状を所望の形状とするための加熱蒸気圧力の範囲等の成形加工条件幅がポリスチレンなどと比べて狭いため、型内発泡成形時の加熱蒸気圧力の調整や加熱時間の調整、さらには冷却時間の調整などのユーザーの成形技術の熟練を要する。また、複雑な形状の型内発泡成形体を得ようとする場合、所謂“薄肉”形状と呼ばれる、予備発泡粒子が厚み方向に数個程度しか入らないような厚さが薄く狭い形状や、予備発泡粒子の充填が不十分となりやすいような複雑形状がある型内発泡成形体を得ようとする場合、満足な形状を得ることが困難な場合もある。さらに、当該箇所においては緩衝性能や強度が十分得られなかったり、予備発泡粒子同士の粒間が開き、美麗性を損ねるために、形状設計に大きな制約となっていた。   However, although it can be molded into various shapes, the width of the molding process conditions, such as the range of heating steam pressure, to achieve the desired shape of the molded product while satisfying the fusion between the expanded particles, compared to polystyrene, etc. Since it is narrow, it requires user skill in molding techniques such as adjustment of heating steam pressure, adjustment of heating time, and adjustment of cooling time during in-mold foam molding. In addition, when trying to obtain an in-mold foam-molded product having a complicated shape, a so-called “thin” shape, which is a thin and narrow shape with only a few pre-expanded particles in the thickness direction, When trying to obtain an in-mold foam molded product having a complicated shape that tends to be insufficiently filled with expanded particles, it may be difficult to obtain a satisfactory shape. In addition, the buffering performance and strength are not sufficiently obtained at the location, or the space between the pre-expanded particles is widened to impair the beauty.

ポリプロピレン系樹脂予備発泡粒子を用いた型内発泡成形では、一般的に、樹脂融点温度が低い原料を使用することで、蒸気加熱した際の二次発泡性(二次発泡倍率)が高くなりやすくなる為、薄肉形状を成形する場合、融点の低いポリプロピレン系樹脂を使用することは、前記課題を解決するための一手段となりうるが、型内発泡成形後の型内発泡成形体の収縮からの回復が十分でない場合が多く、箱形の型内発泡成形体を目的とした型内発泡成形では、いわゆる“内倒れ”と呼ばれる現象が発生しやすい。内倒れとは、図1における端部寸法(c)と中央部寸法(b)の差が生じることをいい、この差は、個々の製品サイズによって絶対的な数値は変わるが、内倒れが大きい場合、製品として使用できない不良品となる。そのため収縮からの回復時間を長くするなどして内倒れを小さくすることが行われるが、回復時間を長くすると生産性が低下する。   In-mold foam molding using pre-expanded polypropylene resin particles generally uses a raw material with a low resin melting point temperature, which tends to increase the secondary foamability (secondary foaming ratio) when steam heated. Therefore, when molding a thin-walled shape, using a polypropylene resin having a low melting point can be a means for solving the above-mentioned problem, but from the shrinkage of the in-mold foam molding after the in-mold foam molding. In many cases, recovery is not sufficient, and in the in-mold foam molding aiming at a box-shaped in-mold foam-molded product, a phenomenon called “inside-down” tends to occur. Inward tilt means that the difference between the end dimension (c) and the central dimension (b) in FIG. 1 occurs, and this difference varies depending on the size of each product, but the inward tilt is large. In this case, it becomes a defective product that cannot be used as a product. For this reason, the internal fall is reduced by increasing the recovery time from the contraction or the like, but if the recovery time is increased, the productivity is lowered.

以上のような課題に鑑み、樹脂融点が低く、かつ樹脂剛性が融点のわりに高い樹脂として、プロピレン・1−ブテンランダム共重合体またはプロピレン・エチレン・1−ブテンランダム3元共重合体(特許文献1、特許文献2)が提案されている。しかし、1−ブテンコモノマーを含むプロピレン系ランダム共重合体は、1−ブテンの重合速度が遅いため重合生産性が悪く、樹脂価格が高い問題がある。   In view of the above problems, as a resin having a low resin melting point and a high resin rigidity instead of the melting point, a propylene / 1-butene random copolymer or a propylene / ethylene / 1-butene random terpolymer (Patent Documents) 1, Patent Document 2) has been proposed. However, the propylene-based random copolymer containing 1-butene comonomer has a problem that the polymerization rate is low because the polymerization rate of 1-butene is low, and the resin price is high.

従来のポリプロピレン系樹脂予備発泡粒子を蒸気加熱により型内発泡成形する場合、加熱蒸気圧力を高くすると前記の内倒れや、収縮が大きくなりやすいと共に蒸気使用量の増加など経済性も損ねるが、薄肉部や複雑形状部位の表面美麗性を得るためには加熱蒸気圧力が高い方が良好となりやすくなる。つまり、これまでは、良品の型内発泡成形体を得るための加熱蒸気圧力条件を厳密に管理することが要求され、そのために技術や労力が必要であり、幅広い加熱蒸気圧力幅、すなわち成形加工条件幅を有するポリプロピレン系樹脂予備発泡粒子が望まれていた。また、薄肉部や複雑形状部位の表面美麗性を有する型内発泡成形体を得るために低融点樹脂を原料として使用して従来の製造方法で予備発泡粒子を製造した場合、内倒れや収縮が大きくなりやすく、内倒れや収縮の少ない型内発泡成形体を得るために高融点樹脂を原料として使用して従来の製造方法で予備発泡粒子を製造した場合、薄肉部や複雑形状部位の表面美麗性や予備発泡粒子同士の融着性が損なわれたりする場合が多かった。つまり、基材樹脂の選択のみでは充分な成形加工条件幅を有するポリプロピレン系樹脂予備発泡粒子を得られていなかった。   In the case of conventional in-mold foam molding of polypropylene resin pre-expanded particles by steam heating, if the heating steam pressure is increased, the above-mentioned inversion and shrinkage tend to increase and the economics such as an increase in the amount of steam used are impaired. In order to obtain the surface beauty of a part or a complicated shape part, the one where a heating steam pressure is high tends to become favorable. In other words, until now, it has been required to strictly control the heating steam pressure conditions to obtain a good in-mold foam molded product, which requires technology and labor, and has a wide heating steam pressure range, that is, molding processing. A polypropylene resin pre-expanded particle having a condition width has been desired. In addition, when pre-expanded particles are produced by a conventional production method using a low-melting-point resin as a raw material in order to obtain an in-mold foam-molded product having a thin-walled part or a complex-shaped surface, there is no internal collapse or shrinkage. When pre-expanded particles are produced by a conventional production method using a high melting point resin as a raw material in order to obtain an in-mold expanded molded body that tends to be large and has little inward collapse and shrinkage, the surface of thin-walled parts and complex shaped parts is beautiful. In many cases, the adhesiveness and the fusibility between the pre-expanded particles are impaired. In other words, the polypropylene resin pre-expanded particles having a sufficient molding processing condition width cannot be obtained only by selecting the base resin.

二次加工性改良のため、ポリプロピレン系樹脂と特定のビカット軟化点を有するプロピレン−αオレフィン系樹脂を混合して使用する方法が開示されている(特許文献2)が、内倒れ改善、成形加工条件幅改善には効果が見られない。   In order to improve the secondary processability, a method of mixing and using a polypropylene resin and a propylene-α-olefin resin having a specific Vicat softening point is disclosed (Patent Document 2), but the inversion is improved, and the molding process There is no effect in improving the condition range.

特許文献3には、一般的に、示差走査熱量計法により測定される2つの融点の内、低温側融点は基材樹脂融点±5℃付近に現れ、高温側融点は基材樹脂融点+6℃〜+14℃に現れるとしている。これらの特性は、発泡剤種、発泡剤量、樹脂粒子を含む分散媒体を保持する温度や時間、圧力解放時の冷却状況のすべてにおいて限定された条件での特性であり、発泡剤種や発泡剤量、樹脂粒子を含む分散媒体を保持する温度や時間を変更することで調整・制御が可能であり、さらにはポリプロピレン系樹脂のコモノマー成分の分布によりさらに多様となる。   In Patent Document 3, generally, of the two melting points measured by differential scanning calorimetry, the low temperature side melting point appears in the vicinity of the base resin melting point ± 5 ° C., and the high temperature side melting point is the base resin melting point + 6 ° C. It appears to appear at ~ + 14 ° C. These characteristics are the characteristics under limited conditions in all of the foaming agent type, the amount of the foaming agent, the temperature and time for holding the dispersion medium containing the resin particles, and the cooling condition when the pressure is released. It can be adjusted and controlled by changing the amount of the agent and the temperature and time for holding the dispersion medium containing the resin particles, and further vary depending on the distribution of comonomer components of the polypropylene resin.

以上の様に従来技術の範疇では、幅広い成形加工条件で、内倒れがなく、表面美麗な型内発泡成形体を得られるポリプロピレン系樹脂予備発泡粒子を製造する方法は見いだされていなかった。   As described above, in the category of the prior art, no method has been found for producing polypropylene resin pre-expanded particles capable of obtaining an in-mold expanded molded article having a beautiful surface and not falling down under a wide range of molding conditions.

特開平1−242638号公報JP-A-1-242638 特開平7−258455号公報JP 7-258455 A 特開2004−300179号公報JP 2004-300990 A

本発明の目的は、複雑な形状を含む様々な形状のポリプロピレン系樹脂型内発泡成形体を幅広い成形加工条件で、良好な表面性かつ内倒れの小さい型内発泡成形体を容易に製造できるポリプロピレン系樹脂予備発泡粒子を提供することにある。   An object of the present invention is to easily produce a foam-in-mold molded product having a good surface property and small inward tilt in a wide range of molding process conditions for various shapes of polypropylene-based resin in-mold foam-molded products including complex shapes. It is to provide a pre-expanded particle based resin.

本発明者らは前記実情に鑑み、鋭意研究を重ねた結果、次のような知見を得た。即ち、ポリプロピレン系樹脂予備発泡粒子の型内発泡成形では、通常、低温側融点近傍温度範囲内の温度の加熱蒸気により型内発泡成形を行う。その際、低温側融点をピークとする結晶樹脂が溶融し、型内発泡成形時の予備発泡粒子同士の融着に寄与し、高温側融点をピークとする結晶樹脂は、形状を保持し、寸法安定性を発現するための役割を果たすと考えることができる。高温側融点がより高ければ、型内発泡成形時の加熱蒸気の影響が形状保持に寄与する結晶樹脂の溶融を防ぎ、幅広い成形加熱条件で、良好な製品を得ることが可能となる。また低温側結晶融点がより低温であれば、解けやすい結晶樹脂であることを表し、低圧加熱成形でも薄肉部や構造上予備発泡粒子が充填されにくい複雑形状部位でも粒間が少なく金型形状の転写性が良好な型内発泡成形体を得やすくなる。このような樹脂融点が低く、低圧成形が可能であるにもかかわらず、樹脂剛性が高く、十分な形状保持もしくは寸法安定性能を発現するポリプロピレン系樹脂予備発泡粒子を得るためには、ポリプロピレン系樹脂の融点温度は低く、高温融解結晶が一定の範囲にあり樹脂の曲げ弾性率が一定の範囲にあることが、複雑形状を有する型内発泡成形体を極めて幅広い成形加工条件で、容易に得られることを見出し、本発明を完成するに至った。   In light of the above circumstances, the present inventors have conducted extensive research and as a result, have obtained the following knowledge. That is, in the in-mold foam molding of the polypropylene resin pre-expanded particles, the in-mold foam molding is usually performed by heating steam at a temperature in the temperature range near the low temperature side melting point. At that time, the crystalline resin having a peak at the low-temperature side melting point melts and contributes to the fusion of the pre-expanded particles at the time of in-mold foam molding. It can be considered to play a role in developing stability. If the melting point on the high temperature side is higher, the influence of the heating steam at the time of in-mold foam molding prevents melting of the crystalline resin that contributes to shape retention, and a good product can be obtained under a wide range of molding heating conditions. In addition, if the low-temperature side crystal melting point is lower, it indicates that the resin is easily meltable, and even in low-pressure thermoforming, even in complicated shapes where the thin-walled part and structurally pre-expanded particles are difficult to fill, there is little intergranularity. It becomes easy to obtain an in-mold foam molded article having good transferability. In order to obtain polypropylene-based resin pre-expanded particles having a low resin melting point and low-pressure molding and high resin rigidity and exhibiting sufficient shape retention or dimensional stability, a polypropylene resin It is easy to obtain an in-mold foam molded product having a complicated shape under a very wide range of molding conditions because the melting point temperature of the resin is low, the high-temperature melting crystal is in a certain range, and the flexural modulus of the resin is in a certain range. As a result, the present invention has been completed.

すなわち、本発明の第1は、メルトインデックスが3g/10min以上20g/10min以下であるポリプロピレン系樹脂を基材樹脂とする、ポリプロピレン系樹脂予備発泡粒子であって、示差走査熱量計を用い、40℃から200℃まで10℃/分の速度で昇温し、ひきつづいて200℃から40℃まで10℃/分の速度で冷却、再度40℃から200℃まで10℃/分の速度で昇温して得られる、樹脂融点が145℃未満であって、樹脂融点から融解終了温度までの融解熱量の樹脂融解熱量全体に対する割合である高温融解熱量比率が20%以上であり、かつ樹脂の曲げ弾性率が800MPa以上であることを特徴とするポリプロピレン系樹脂予備発泡粒子に関する。   That is, the first of the present invention is a polypropylene resin pre-expanded particle using a polypropylene resin having a melt index of 3 g / 10 min or more and 20 g / 10 min or less as a base resin, using a differential scanning calorimeter. The temperature is raised from 10 ° C. to 200 ° C. at a rate of 10 ° C./min, subsequently cooled from 200 ° C. to 40 ° C. at a rate of 10 ° C./min, and again from 40 ° C. to 200 ° C. at a rate of 10 ° C./min. The resin melting point is less than 145 ° C., the high-temperature melting heat amount ratio, which is the ratio of the heat of fusion from the resin melting point to the melting end temperature to the total resin heat of fusion, is 20% or more, and the flexural modulus of the resin The present invention relates to pre-expanded polypropylene resin particles characterized by having a Mn of 800 MPa or more.

本発明の第2は、前記記載のポリプロピレン系樹脂予備発泡粒子を型内発泡成形してなる型内発泡成形体に関する。   The second of the present invention relates to an in-mold foam-molded product obtained by in-mold foam-molding the polypropylene resin pre-expanded particles described above.

本発明によれば、良好な型内発泡成形体を得ることが可能な成形加工条件幅が広く、良好な二次発泡性を有しているために良好な表面性を有すると共に内倒れの小さい(寸法性に優れた)型内発泡成形体を得ることが出来る、ポリプロピレン系樹脂予備発泡粒子を提供することが出来る。   According to the present invention, it is possible to obtain a good in-mold foam-molded product with a wide range of molding process conditions and a good secondary foaming property. Polypropylene resin pre-expanded particles capable of obtaining an in-mold expanded molded article (excellent in dimensional properties) can be provided.

そのため、ポリプロピレン系樹脂が本来有する耐熱性、耐溶剤性、断熱性、緩衝性を全く阻害することなく、複雑な形状を含む様々な形状の型内発泡成形体を容易に得ることができ、従い、緩衝材や断熱材、自動車用部材などの用途で幅広く好適に利用可能な型内発泡成形体を提供することができる。   Therefore, it is possible to easily obtain in-mold foam molded products of various shapes including complicated shapes without obstructing the heat resistance, solvent resistance, heat insulation, and buffering properties inherent to polypropylene resins. Further, it is possible to provide an in-mold foam-molded product that can be used widely and suitably in applications such as a buffer material, a heat insulating material, and an automobile member.

成形評価に用いた箱型の型内発泡成形体の形状を示す斜視図である。It is a perspective view which shows the shape of the box-shaped in-mold foaming molding used for shaping | molding evaluation. 本発明のポリプロピレン系樹脂予備発泡粒子について、示差走査熱量計を用い、40℃から200℃まで10℃/分の速度で昇温し、ひきつづいて200℃から40℃まで10℃/分の速度で冷却、再度40℃から200℃まで10℃/分の速度で昇温した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。ピーク温度を樹脂融点(℃)(A)、融解熱量を樹脂融解熱量(J/g)(C)とし、この樹脂融解熱量のうち、ピーク温度よりも高い温度での融解熱量(J/g)(B)を全体の樹脂融解熱量で除したものを高温融解熱量比率(%)として算出した。About the polypropylene resin pre-expanded particles of the present invention, using a differential scanning calorimeter, the temperature is raised from 40 ° C. to 200 ° C. at a rate of 10 ° C./min, and subsequently from 200 ° C. to 40 ° C. at a rate of 10 ° C./min. It is an example of a DSC curve obtained when cooling and raising the temperature from 40 ° C. to 200 ° C. at a rate of 10 ° C./min. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. The peak temperature is the resin melting point (° C.) (A), the heat of fusion is the resin heat of fusion (J / g) (C), and the heat of fusion at a temperature higher than the peak temperature (J / g) of the resin heat of fusion. The value obtained by dividing (B) by the total resin heat of fusion was calculated as the high temperature heat of fusion ratio (%). 本発明のポリプロピレン系樹脂予備発泡粒子について、示差走査熱量計を用い、40℃から200℃まで10℃/分の速度で昇温した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。低温側の網掛け部分がQl、高温側の網掛け部分がQhである。It is an example of the DSC curve obtained when the polypropylene resin pre-expanded particles of the present invention are heated from 40 ° C. to 200 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. The shaded portion on the low temperature side is Ql, and the shaded portion on the high temperature side is Qh.

本発明のポリプロピレン系樹脂予備発泡粒子を構成するポリプロピレン系樹脂としては、単量体として、プロピレンを80重量%以上、より好ましくは85重量%以上、さらに好ましくは90重量%以上含むものであれば、その組成、合成法に特に制限はなく、例えば、プロピレン単独重合体、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、エチレン−プロピレン−ブテン三元共重合体などが挙げられる。   As the polypropylene resin constituting the polypropylene resin pre-expanded particles of the present invention, as long as it contains propylene as a monomer in an amount of 80% by weight or more, more preferably 85% by weight or more, and further preferably 90% by weight or more. The composition and the synthesis method are not particularly limited, for example, propylene homopolymer, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-butene ternary. A copolymer etc. are mentioned.

本発明におけるポリプロピレン系樹脂のメルトインデックス(MIと表記する場合がある)は3g/10min以上20g/10min以下であり、3g/10min以上15g/10min以下であることが好ましい。メルトインデックスが当該範囲である場合、高い二次発泡性と良好な寸法性の両立が容易となる。メルトインデックスが3g/10min未満である場合、二次発泡性が悪化し、美麗な表面性が得られなくなり、20g/10minより大きい場合、寸法性が悪化する。メルトインデックスの測定は、JIS−K7210記載のMFR測定装置を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下でおこなう。   In the present invention, the melt index (sometimes referred to as MI) of the polypropylene resin is 3 g / 10 min or more and 20 g / 10 min or less, and preferably 3 g / 10 min or more and 15 g / 10 min or less. When the melt index is within this range, it is easy to achieve both high secondary foamability and good dimensionality. When the melt index is less than 3 g / 10 min, the secondary foaming property is deteriorated and a beautiful surface property cannot be obtained. When the melt index is more than 20 g / 10 min, the dimensional property is deteriorated. The melt index was measured using an MFR measuring device described in JIS-K7210 under the conditions of orifice 2.0959 ± 0.005 mmφ, orifice length 8.000 ± 0.025 mm, load 2160 g, 230 ± 0.2 ° C. Do it.

ポリプロピレン系樹脂のメルトインデックスは、例えば、有機過酸化物の使用などにより調整してもよい。使用できる有機過酸化物としては、メチルエチルケトンパーオキサイド、メチルアセトアセテートパーオキサイドなどのケトンパーオキサイド;1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタンなどのパーオキシケタール;パーメタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイドなどのハイドロパーオキサイド;ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α´−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3などのジアルキルパーオキサイド;ベンゾイルパーオキサイドなどのジアシルパーオキサイド;ジ(3−メチル−3−メトキシブチル)パーオキシジカーボネート、ジ−2−メトキシブチルパーオキシジカーボネートなどのパーオキシジカーボネート;t−ブチルパーオキシオクテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレートなどのパーオキシエステルなどがあげられる。   The melt index of the polypropylene resin may be adjusted, for example, by using an organic peroxide. Examples of the organic peroxide that can be used include ketone peroxides such as methyl ethyl ketone peroxide and methyl acetoacetate peroxide; 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- Peroxyketals such as bis (t-butylperoxy) cyclohexane, n-butyl-4,4-bis (t-butylperoxy) valerate, 2,2-bis (t-butylperoxy) butane; Hydroperoxides such as peroxide, 1,1,3,3-tetramethylbutyl hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide; dicumyl peroxide, 2,5-dimethyl-2,5-di (T-Butylperoxy) hexane α, α′-bis (t-butylperoxy-m-isopropyl) benzene, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxide) Dialkyl peroxides such as oxy) hexyne-3; diacyl peroxides such as benzoyl peroxide; peroxys such as di (3-methyl-3-methoxybutyl) peroxydicarbonate and di-2-methoxybutylperoxydicarbonate Dicarbonate: t-butyl peroxyoctate, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxy Isopropyl carbonate, 2,5-dimethyl-2,5-di (benzoylpa Oxy) hexane, t- butyl peroxy acetate, t- butyl peroxybenzoate, etc. peroxy esters such as di -t- butyl peroxy isophthalate and the like.

本発明のポリプロピレン系樹脂は、樹脂融点が145℃未満であり、より好ましくは142℃未満である。ポリプロピレン系樹脂の樹脂融点が当該範囲内であると、良好な二次発泡性と寸法性を両立できる。実用上の下限は110℃であり、それを下回る場合、低圧蒸気で美麗な表面性の型内発泡成形体を得やすいが、高圧蒸気による型内発泡成形を行うと、表面に皺が多くなったり、寸法性が損なわれたりする場合が多い。また、樹脂融点が145℃よりも高くなると、型内発泡成形時の蒸気加熱圧を高くしなければ融着性や表面転写性、型決まりが悪くなる。   The polypropylene resin of the present invention has a resin melting point of less than 145 ° C, more preferably less than 142 ° C. When the resin melting point of the polypropylene resin is within the above range, both good secondary foamability and dimensionality can be achieved. The practical lower limit is 110 ° C., and if it is lower than that, it is easy to obtain an in-mold foam molding with a beautiful surface with low-pressure steam. However, if in-mold foam molding with high-pressure steam is performed, there will be more wrinkles on the surface. Or dimensionality is often impaired. On the other hand, if the resin melting point is higher than 145 ° C., the fusing property, the surface transfer property, and the mold determination are deteriorated unless the steam heating pressure at the time of in-mold foam molding is increased.

ここでいう寸法性とは、得られた型内発泡成形体の変形や収縮が小さく、所望の形状を有することを言うが、たとえば図1のような箱形状である場合、端部寸法(c)と中央部寸法(b)の差が小さい、いわゆる“内倒れ”の小さいことを指す。   The term “dimensionality” as used herein means that deformation and shrinkage of the obtained in-mold foam-molded product are small and have a desired shape. For example, in the case of a box shape as shown in FIG. ) And the central dimension (b) are small, so-called “inside-down” is small.

一般に樹脂融点が低い場合、設備コスト、エネルギーコストに優れる低蒸気圧でポリプロピレン系樹脂型内発泡成形体の生産が可能であるが、型内発泡成形体が柔らかくなる傾向がある。そのため、満足な緩衝性能や圧縮特性を発現させるために、型内発泡成形体密度を高くしなければならず、発泡体の特長である軽量性が損なわれる場合がある。この型内発泡成形体の特性は、一般的には50%圧縮強度で代表的に比較されるが、ポリプロピレン系樹脂特性としては、曲げ弾性率で代表的に相関付けでき、本発明では、ポリプロピレン系樹脂の曲げ弾性率は800MPa以上であり、より好ましくは850MPa以上である。曲げ弾性率が800MPa未満となった場合、ポリプロピレン系樹脂型内発泡成形体の50%圧縮強度が低くなりやすく、型内発泡成形体密度を高くしなければならない場合がある。実質的な上限は1200MPa程度である。この範囲よりも高くなっても、緩衝性能としては問題ないが、一般的に樹脂融点が高くなる傾向がある。   In general, when the resin melting point is low, it is possible to produce a polypropylene resin in-mold foam molded article with a low vapor pressure that is excellent in equipment cost and energy cost, but the in-mold foam molded article tends to be soft. For this reason, in order to develop satisfactory buffer performance and compression characteristics, the density of the in-mold foam molded body must be increased, and the light weight characteristic of the foam may be impaired. In general, the properties of the in-mold foam-molded product are typically compared at 50% compressive strength, but the polypropylene-based resin properties can be typically correlated by bending elastic modulus. The flexural modulus of the system resin is 800 MPa or more, more preferably 850 MPa or more. When the flexural modulus is less than 800 MPa, the 50% compressive strength of the polypropylene resin in-mold foam molding tends to be low, and the density of the in-mold foam molding may have to be increased. The practical upper limit is about 1200 MPa. Even if the temperature is higher than this range, there is no problem in buffer performance, but generally the resin melting point tends to be high.

ポリプロピレン系樹脂の曲げ弾性率は、ポリプロピレン系樹脂粒子を80℃にて6時間乾燥させた後、35t射出成形機を用い、シリンダー温度200℃、金型温度30℃にて厚み6.4mmバー(幅12mm、長さ127mm)を作製し、ASTM D790に従い曲げ試験を行い、曲げ弾性率を求める。なお、曲げ弾性率は、成形加工等によって殆ど変化しない物性であるため、測定サンプルとして、発泡工程を経ていないポリプロピレン系樹脂粒子、ポリプロピレン系樹脂予備発泡粒子、ポリプロピレン系樹脂型内発泡成形体の樹脂化したもののいずれを用いてもよい。   The flexural modulus of the polypropylene resin is such that after drying the polypropylene resin particles at 80 ° C. for 6 hours, using a 35t injection molding machine, the cylinder temperature is 200 ° C., the mold temperature is 30 ° C., and the thickness is 6.4 mm bar ( Width 12 mm, length 127 mm), and a bending test is performed according to ASTM D790 to determine the flexural modulus. In addition, since the flexural modulus is a physical property that hardly changes due to molding processing or the like, as a measurement sample, polypropylene resin particles that have not undergone the foaming step, polypropylene resin pre-foamed particles, and polypropylene resin in-mold foam-molded resin Any of these may be used.

ポリプロピレン系樹脂予備発泡粒子は示差走査熱量測定(DSC)において、ポリプロピレン系樹脂予備発泡粒子4〜6mgを40℃から200℃まで10℃/分の速度で昇温した際に、2つの融解ピークを示し、2つの融点を有している。   When the polypropylene resin pre-expanded particles are heated at a rate of 10 ° C./min from 40 ° C. to 200 ° C. in the differential scanning calorimetry (DSC), 4-6 mg of the polypropylene resin pre-expanded particles have two melting peaks. Shown with two melting points.

本発明のポリプロピレン系樹脂予備発泡粒子の示差走査熱量計法による測定において、2つの融解ピークのうち低温側融点に基づく融解ピーク熱量Ql(J/g)と高温側融点に基づく融解ピーク熱量Qh(J/g)としたときに、高温側融点に基づく融解ピーク熱量の融解ピーク全体熱量に対する比率(Qh/(Ql+Qh))(以下、DSCピーク比と称す場合がある)が、10%以上50%以下であることが好ましく、15%以上45%以下であることがより好ましい。DSCピーク比が当該範囲内にある場合、本発明の効果である幅広い成形加工条件幅を得やすくなる。   In the measurement by the differential scanning calorimetry of the polypropylene resin pre-expanded particles of the present invention, of the two melting peaks, the melting peak calorie Ql (J / g) based on the low-temperature melting point and the melting peak calorie Qh (based on the high-temperature melting point) J / g), the ratio (Qh / (Ql + Qh)) of the melting peak calorie based on the high temperature side melting point to the total melting peak calorie (hereinafter sometimes referred to as DSC peak ratio) is 10% or more and 50% Or less, more preferably 15% or more and 45% or less. When the DSC peak ratio is within this range, it is easy to obtain a wide range of molding process conditions, which is an effect of the present invention.

ここで、低温側融点に基づく融解ピーク熱量Qlは、低温側融点に基づく融解ピークと、低温側融点に基づく融解ピークと高温側融点に基づく融解ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量であり、高温側融点に基づく融解ピーク熱量Qhは、DSC曲線の高温側融点に基づく融解ピークと、低温側融点に基づく融解ピークと高温側融点に基づく融解ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量を言う。   Here, the melting peak calorie Ql based on the low temperature side melting point is changed to the melting start baseline from the melting peak based on the low temperature side melting point and the maximum point between the melting peak based on the low temperature side melting point and the melting peak based on the high temperature side melting point. The melting peak calorie Qh based on the high temperature side melting point is between the melting peak based on the high temperature side melting point of the DSC curve, the melting peak based on the low temperature side melting point, and the melting peak based on the high temperature side melting point. The amount of heat enclosed by the tangent line from the local maximum point to the end of melting baseline.

低温側融点は本来基材樹脂が有する樹脂融点に近く、冷却時の結晶化履歴により、そのピーク温度や結晶熱量は影響を受ける。また、高温側融点は樹脂の組成はもとより、アニーリングする際の温度や時間、さらには可塑化性能を有する発泡剤の量に関連して制御できる。高いアニーリング温度や長時間のアニーリング、可塑化性能を有する発泡剤の量が多ければ、高温側融点は高温となりやすくなる。   The low-temperature melting point is close to the resin melting point inherent to the base resin, and the peak temperature and heat of crystallization are affected by the crystallization history during cooling. Further, the high temperature side melting point can be controlled in relation to the temperature and time of annealing as well as the amount of the foaming agent having plasticizing performance as well as the resin composition. If the amount of the foaming agent having high annealing temperature, long-time annealing, and plasticizing performance is large, the high temperature side melting point tends to be high.

本発明のポリプロピレン系樹脂は、示差走査熱量計を用い、40℃から200℃まで10℃/分の速度で昇温し、ひきつづいて200℃から40℃まで10℃/分の速度で冷却、再度40℃から200℃まで10℃/分の速度で昇温して得られる、樹脂融点から融解終了温度までの融解熱量の樹脂融解熱量全体に対する割合である高温融解熱量比率が20%以上であり、好ましくは25%以上である。   The polypropylene resin of the present invention is heated at a rate of 10 ° C./min from 40 ° C. to 200 ° C. using a differential scanning calorimeter, and subsequently cooled at a rate of 10 ° C./min from 200 ° C. to 40 ° C. The high-temperature fusion heat quantity ratio, which is the ratio of the heat of fusion from the resin melting point to the end of melting temperature to the whole resin fusion heat quantity, obtained by raising the temperature from 40 ° C. to 200 ° C. at a rate of 10 ° C./min, is 20% or more, Preferably it is 25% or more.

ここでいう樹脂融点および樹脂融解熱量とは、示差走査熱量測定(DSC)において、ポリプロピレン系樹脂粒子(或いは、予備発泡粒子または成形体から切り出したものでもよい)4〜6mgを40℃から200℃まで10℃/分の速度で昇温し、ひきつづいて200℃から40℃まで10℃/分の速度で冷却、再度40℃から200℃まで10℃/分の速度で昇温した時に得られるDSC曲線(図2)から得られるピーク温度を樹脂融点(℃)(A)、融解熱量を樹脂融解熱量(J/g)(C)とした。また、樹脂融解熱量のうち、ピーク温度よりも高い温度での融解熱量(J/g)(B)を全体の樹脂融解熱量で除したものを高温融解熱量比率(%)として算出する。   The resin melting point and the resin melting heat amount here refer to 40 to 200 ° C. of 4 to 6 mg of polypropylene resin particles (or pre-foamed particles or those cut out from a molded product) in differential scanning calorimetry (DSC). DSC obtained when the temperature is raised at a rate of 10 ° C./min until it is subsequently cooled from 200 ° C. to 40 ° C. at a rate of 10 ° C./min, and again raised from 40 ° C. to 200 ° C. at a rate of 10 ° C./min. The peak temperature obtained from the curve (FIG. 2) was the resin melting point (° C.) (A), and the heat of fusion was the resin heat of fusion (J / g) (C). Further, among the heats of fusion of the resin, the heat of fusion (J / g) (B) at a temperature higher than the peak temperature divided by the total heat of fusion of the resin is calculated as the high temperature fusion heat quantity ratio (%).

本発明の樹脂融点から融解終了温度までの融解熱量の樹脂融解熱量全体に対する割合である高温融解熱量比率が当該範囲にある場合、短時間のアニーリングにより、高温側融点をより高温にすることができ、内倒れが発生しにくくなる。   When the high temperature fusion heat quantity ratio, which is the ratio of the heat of fusion from the resin melting point of the present invention to the end of melting temperature, with respect to the total resin heat of fusion is within this range, the high temperature side melting point can be made higher by short-time annealing. , It becomes difficult to fall down.

本発明のポリプロピレン系樹脂は単独のポリプロピレン系樹脂、もしくは、2種類以上のポリプロピレン系樹脂を溶融樹脂ブレンドしたポリプロピレン系樹脂を使用できる。たとえば、樹脂融点の異なる樹脂を適切なバランスでブレンドすることにより、高温融解熱量比率を20%以上とすることができる。   As the polypropylene resin of the present invention, a single polypropylene resin or a polypropylene resin obtained by blending two or more kinds of polypropylene resins with a molten resin can be used. For example, by blending resins having different resin melting points in an appropriate balance, the heat fusion rate can be made 20% or more.

また、前記ポリプロピレン系樹脂にポリプロピレン系樹脂以外の他の合成樹脂を、本発明の効果を損なわない範囲で添加して、基材樹脂としても良い。ポリプロピレン系樹脂以外の他の合成樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−酢酸ビニル共重合体エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体等のエチレン系樹脂、或いはポリスチレン、スチレン−無水マレイン酸共重合体等のスチレン系樹脂等が例示される。   In addition, a synthetic resin other than the polypropylene resin may be added to the polypropylene resin as long as the effects of the present invention are not impaired. Synthetic resins other than polypropylene resins include high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene-vinyl acetate copolymer ethylene-acrylic acid. Examples thereof include ethylene resins such as copolymers and ethylene-methacrylic acid copolymers, and styrene resins such as polystyrene and styrene-maleic anhydride copolymers.

また、必要に応じて、例えば、タルク等の造核剤をはじめ酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸などの安定剤または架橋剤、連鎖移動剤、滑剤、可塑剤、充填剤、強化剤、顔料、染料、難燃剤、帯電防止剤等を本発明の効果を損なわない範囲で基材樹脂に添加してポリプロピレン系樹脂としてもよい。   In addition, if necessary, for example, nucleating agents such as talc, antioxidants, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, etc. Addition of a crosslinking agent, a chain transfer agent, a lubricant, a plasticizer, a filler, a reinforcing agent, a pigment, a dye, a flame retardant, an antistatic agent, etc. to the base resin within a range not impairing the effects of the present invention. It is good also as resin.

本発明に用いるポリプロピレン系樹脂への添加剤としては、発泡剤として、プロパン、ブタン、ペンタン、ヘキサン等の炭化水素系発泡剤を使用する場合は、タルク、シリカ、炭酸カルシウムのようなセル造核剤となる無機物質を、ポリプロピレン系樹脂100重量部に対して、0.005重量部以上0.5重量部以下添加することが好ましい。   As an additive to the polypropylene resin used in the present invention, when using a hydrocarbon-based blowing agent such as propane, butane, pentane, or hexane as a blowing agent, cell nucleation such as talc, silica, calcium carbonate, etc. It is preferable to add 0.005 parts by weight or more and 0.5 parts by weight or less of the inorganic substance serving as the agent with respect to 100 parts by weight of the polypropylene resin.

また、発泡剤として、空気、窒素、炭酸ガス、水等の無機発泡剤を使用する場合は、前記無機物質および/または吸水物質を使用することが好ましい。吸水物質とは、当該物質を樹脂粒子中に添加し、該樹脂粒子を水と接触させる、或いは、水分散媒中で発泡剤含浸をする際に、樹脂粒子内に水を含有させうる物質をいい、具体的には、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の水溶性無機物;ポリエチレングリコール、ポリエーテルを親水性セグメントとした特殊ブロック型ポリマー(商品名:ペレスタット;三洋化成製)、エチレン(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン(メタ)アクリル酸共重合体のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン−無水マレイン酸共重合体のアルカリ金属塩及びポリ(メタ)アクリル酸のアルカリ金属塩等の親水性ポリマー;エチレングリコール、グリセリン、ペンタエリスリトール、イソシアヌル酸等の多価アルコール類;メラミン等が挙げられる。   Moreover, when using inorganic foaming agents, such as air, nitrogen, a carbon dioxide gas, and water, as a foaming agent, it is preferable to use the said inorganic substance and / or a water absorbing substance. The water-absorbing substance is a substance that can contain water in the resin particles when the substance is added to the resin particles and the resin particles are brought into contact with water or impregnated with a foaming agent in an aqueous dispersion medium. Specifically, water-soluble inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax, zinc borate; special block type polymer (trade name: Pelestat; Sanyo Chemical Co., Ltd.) with polyethylene glycol and polyether as hydrophilic segments ), Alkali metal salt of ethylene (meth) acrylic acid copolymer, alkali metal salt of butadiene (meth) acrylic acid copolymer, alkali metal salt of carboxylated nitrile rubber, alkali metal of isobutylene-maleic anhydride copolymer Hydrophilic polymers such as salts and alkali metal salts of poly (meth) acrylic acid; ethylene glycol, glycerin, Data erythritol, polyhydric alcohols such as isocyanuric acid; melamine, and the like.

吸水物質の添加量は、目的とする発泡倍率、使用する発泡剤、使用する吸水物質の種類によって異なり一概に記載することはできないが、水溶性無機物、多価アルコール類、メラミンを使用する場合、ポリプロピレン系樹脂100重量部に対して、0.01重量部以上2重量部以下であることが好ましく、親水性ポリマーを使用する場合、ポリプロピレン系樹脂100重量部に対して、0.05重量部以上5重量部以下であることが好ましい。また、これら、水溶性無機物、親水性ポリマー、多価アルコール類等を2種以上併用してもよい。   The amount of water-absorbing substance added varies depending on the target foaming ratio, the foaming agent used, and the type of water-absorbing substance used, and cannot be described in general, but when using water-soluble inorganic substances, polyhydric alcohols, melamine, It is preferably 0.01 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the polypropylene resin, and when using a hydrophilic polymer, 0.05 parts by weight or more with respect to 100 parts by weight of the polypropylene resin. The amount is preferably 5 parts by weight or less. Two or more of these water-soluble inorganic substances, hydrophilic polymers, polyhydric alcohols and the like may be used in combination.

本発明のポリプロピレン系樹脂は、必要に応じて添加される前記添加剤と共に、あらかじめ押出機、ニーダー、バンバリーミキサー、ロール等を用いて溶融し、円柱状、楕円柱状、球状、立方体状、直方体状等のような所望の粒子形状で、その粒重量が好ましくは0.2mg以上10mg以下、更に好ましくは0.5mg以上6mg以下であるようなポリプロピレン系樹脂粒子に成形加工される。   The polypropylene resin of the present invention is melted in advance using an extruder, a kneader, a Banbury mixer, a roll, etc. together with the additive added as necessary, and is cylindrical, elliptical columnar, spherical, cubic, rectangular parallelepiped In the desired particle shape such as the above, the resin is molded into polypropylene resin particles having a particle weight of preferably 0.2 mg to 10 mg, more preferably 0.5 mg to 6 mg.

本発明では前記ポリプロピレン系樹脂粒子を、例えば、発泡剤と共に耐圧容器内で水中に分散させ、ポリプロピレン系樹脂分散物とし、該分散物を所定の温度まで加熱し、アニーリングを行うと共に発泡剤を含浸させ、該発泡剤の示す蒸気圧以上で、所望の発泡倍率を得るための適宜な圧力で耐圧容器内を一定に保持しながら、該ポリプロピレン系樹脂粒子と水との分散物を耐圧容器内よりも低圧の雰囲気下に放出することによりポリプロピレン系樹脂予備発泡粒子が得られるが、この方法に限定されるものではない。   In the present invention, for example, the polypropylene resin particles are dispersed in water in a pressure-resistant container together with a foaming agent to form a polypropylene resin dispersion, and the dispersion is heated to a predetermined temperature to be annealed and impregnated with the foaming agent. The dispersion of the polypropylene-based resin particles and water from the pressure vessel is maintained at a pressure equal to or higher than the vapor pressure indicated by the blowing agent, and the pressure vessel is maintained at a suitable pressure to obtain a desired expansion ratio. In addition, polypropylene resin pre-expanded particles can be obtained by releasing them under a low-pressure atmosphere, but the method is not limited to this method.

前記分散物の調製に際しては、分散剤として、例えば、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、塩基性炭酸亜鉛、酸化アルミニウム、酸化鉄、酸化チタン、アルミノ珪酸塩、硫酸バリウム、カオリン等の無機系分散剤と、例えばドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等の界面活性剤等を分散助剤として使用することが好ましい。これらの中でも第三リン酸カルシウムとドデシルベンゼンスルホン酸ナトリウムの併用が更に好ましい。分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2重量部以上3重量部以下を配合することが好ましく、分散助剤0.001重量部以上0.1重量部以下を配合することが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20重量部以上100重量部以下使用することが好ましい。   In preparing the dispersion, for example, as a dispersant, for example, tricalcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, aluminosilicate It is preferable to use inorganic dispersants such as salts, barium sulfate, and kaolin, and surfactants such as sodium dodecylbenzene sulfonate, sodium n-paraffin sulfonate, and sodium α-olefin sulfonate as a dispersion aid. . Among these, combined use of tricalcium phosphate and sodium dodecylbenzenesulfonate is more preferable. The amount of the dispersant and the dispersion aid varies depending on the type and the type and amount of the polypropylene resin used, but usually 0.2 parts by weight or more and 3 parts by weight or less of the dispersant with respect to 100 parts by weight of water. It is preferable to mix, and it is preferable to mix 0.001 part by weight or more and 0.1 part by weight or less of the dispersion aid. Moreover, in order to make the polypropylene resin particles have good dispersibility in water, it is usually preferable to use 20 to 100 parts by weight with respect to 100 parts by weight of water.

前記発泡剤としては、プロパン、ブタン、イソブタン、ペンタン、イソペンタン等脂肪族炭化水素、モノクロルメタン、ジクロロメタン、ジクロロジフルオロエタン等のハロゲン化炭化水素、二酸化炭素、窒素、空気などの無機ガス、水等が挙げられる。これらは単独或いは2種類以上を併用して用いることが出来る。発泡剤の添加量は予備発泡粒子の発泡倍率、発泡剤の種類、ポリプロピレン系樹脂の種類、樹脂粒子と、分散媒である水の比率、含浸または発泡温度などによって異なるが、ポリプロピレン系樹脂粒子100重量部に対し、5重量部以上50重量部以下であることが好ましい。   Examples of the blowing agent include aliphatic hydrocarbons such as propane, butane, isobutane, pentane and isopentane, halogenated hydrocarbons such as monochloromethane, dichloromethane and dichlorodifluoroethane, inorganic gases such as carbon dioxide, nitrogen and air, and water. It is done. These can be used alone or in combination of two or more. The amount of foaming agent added varies depending on the expansion ratio of the pre-expanded particles, the type of foaming agent, the type of polypropylene resin, the ratio of resin particles to water as a dispersion medium, the impregnation or foaming temperature, and the like. The amount is preferably 5 parts by weight or more and 50 parts by weight or less with respect to parts by weight.

以上のようにして得られるポリプロピレン系樹脂予備発泡粒子の発泡倍率は3倍以上40倍以下であることが好ましく、5倍以上35倍以下であることがさらに好ましい。必要に応じて、一旦15倍以下のポリプロピレン系樹脂予備発泡粒子を製造した後、該予備発泡粒子に空気等の不活性ガスを含浸させて発泡力を付与した後、加熱を行って更に発泡させるという、いわゆる二段発泡法を採用してもよい。発泡倍率が当該範囲内であると、型内発泡成形した型内発泡成形体の利点である軽量性と満足な圧縮強度が得られる傾向がある。ここでいう発泡倍率は、予備発泡粒子の重量と予備発泡粒子をメスフラスコ中のエタノールに水没させてえられる容積から予備発泡粒子密度を算出し、基材樹脂密度を除したものである。   The expansion ratio of the polypropylene resin pre-expanded particles obtained as described above is preferably 3 to 40 times, and more preferably 5 to 35 times. If necessary, after once producing polypropylene resin pre-expanded particles of 15 times or less, the pre-expanded particles are impregnated with an inert gas such as air to give foaming force, and then heated to be further expanded. A so-called two-stage foaming method may be employed. When the expansion ratio is within the above range, there is a tendency that light weight and satisfactory compressive strength, which are the advantages of the in-mold foam-molded product, are obtained. The expansion ratio here is calculated by calculating the density of the pre-expanded particles from the weight of the pre-expanded particles and the volume obtained by immersing the pre-expanded particles in ethanol in the volumetric flask, and dividing the density of the base resin.

ポリプロピレン系樹脂予備発泡粒子のセル径は50μm以上1000μm以下であることが好ましく、より好ましくは50μm以上750μm以下であり、さらに好ましくは、100μm以上500μmである。当該範囲内のセル径であると、成形性や寸法安定性が高い為、好ましい。セル径とは予備発泡粒子の中から任意に30個の予備発泡粒子を取り出し、JIS K6402に準拠してセル径を測定し、算出される平均セル径である。   The cell diameter of the polypropylene resin pre-expanded particles is preferably 50 μm or more and 1000 μm or less, more preferably 50 μm or more and 750 μm or less, and still more preferably 100 μm or more and 500 μm. A cell diameter within this range is preferable because of high moldability and dimensional stability. The cell diameter is an average cell diameter calculated by taking 30 pre-expanded particles arbitrarily from the pre-expanded particles, measuring the cell diameter in accordance with JIS K6402.

本発明の型内発泡成形体は、本発明のポリプロピレン系樹脂予備発泡粒子を用いて型内発泡成形することにより得られる。   The in-mold foam molded product of the present invention can be obtained by in-mold foam molding using the polypropylene resin pre-expanded particles of the present invention.

本発明のポリプロピレン系樹脂予備発泡粒子を型内発泡成形体にするには、例えば、イ)発泡粒子を無機ガスで加圧処理して粒子内に無機ガスを含浸させ所定の粒子内圧を付与した後、金型に充填し、蒸気等で加熱融着させる方法(特公昭51−22951号公報)、ロ)発泡粒子をガス圧力で圧縮して金型に充填し粒子の回復力を利用して、蒸気等で加熱融着させる方法(特公昭53−33996号公報)等の方法が利用しうる。   To make the polypropylene resin pre-expanded particles of the present invention into an in-mold expanded molded body, for example, a) Pressurized treatment of the expanded particles with an inorganic gas and impregnation of the particles with an inorganic gas gave a predetermined internal pressure. After that, the mold is filled and heated and fused with steam or the like (Japanese Examined Patent Publication No. 51-22951), b) The expanded particles are compressed by gas pressure and filled into the mold, and the recovery force of the particles is utilized. A method such as heating and fusing with steam or the like (Japanese Patent Publication No. 53-33996) can be used.

本発明における型内発泡成形体の密度は、0.012g/cm3以上0.075g/cm3以下であることが好ましい。当該範囲の密度である型内発泡成形体は、型内発泡成形体の特徴である軽量性を有し、かつ、型内発泡成形時に収縮、変形が起こりにくく、不良品の割合が低いため生産性が良好である傾向にある。 The density of the in-mold foam molded product in the present invention is preferably 0.012 g / cm 3 or more and 0.075 g / cm 3 or less. In-mold foam molded products with a density in this range are produced because they have the light weight that is characteristic of in-mold foam molded products, are less likely to shrink and deform during in-mold foam molding, and the proportion of defective products is low. Tend to be good.

ポリプロピレン系樹脂予備発泡粒子の発泡倍率と型内発泡成形時の2次発泡倍率を適宜調整することで所望とする密度の型内発泡成形体を得ることが出来る。   An in-mold foam molded article having a desired density can be obtained by appropriately adjusting the expansion ratio of the polypropylene resin pre-expanded particles and the secondary expansion ratio at the time of in-mold foam molding.

次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited only to these Examples.

〈発泡倍率測定〉
試料となる予備発泡粒子重量と、該試料をメスフラスコ中のエタノールに水没させてえられる容積から予備発泡粒子密度を算出し、基材樹脂密度を除して発泡倍率とした。
<Measurement of foaming ratio>
The pre-foamed particle density was calculated from the weight of the pre-foamed particles used as a sample and the volume obtained by immersing the sample in ethanol in a volumetric flask, and the base resin density was divided to obtain the expansion ratio.

〈低温側融点、高温側融点、DSCピーク比および樹脂融点の測定〉
示差走査熱量測定(DSC)において、ポリプロピレン系樹脂予備発泡粒子4〜10mgを40℃から200℃まで10℃/分の速度で昇温し、得られる2つの融解ピークのうち、基材樹脂が本来有していた結晶状態に基づく融点である低温側融点と、該低温側融点より高温側に現れる高温側融点を得た。該2つの融解ピークのうち低温側融点に基づく融解ピーク熱量Ql(J/g)と高温側融点に基づく融解ピーク熱量Qh(J/g)としたときに、高温側融点に基づく融解ピーク熱量の融解ピーク全体熱量に対する比率(Qh/(Ql+Qh))をDSCピーク比とした。
<Measurement of low temperature side melting point, high temperature side melting point, DSC peak ratio and resin melting point>
In differential scanning calorimetry (DSC), 4 to 10 mg of polypropylene resin pre-expanded particles are heated from 40 ° C. to 200 ° C. at a rate of 10 ° C./min. A low temperature side melting point, which is a melting point based on the crystalline state that had been obtained, and a high temperature side melting point that appeared on the higher temperature side than the low temperature side melting point were obtained. Of the two melting peaks, the melting peak calorific value Ql (J / g) based on the low temperature side melting point and the melting peak calorific value Qh (J / g) based on the high temperature side melting point are obtained. The ratio (Qh / (Ql + Qh)) to the total heat amount of the melting peak was taken as the DSC peak ratio.

ひきつづいて200℃から40℃まで10℃/分の速度で冷却、再度40℃から200℃まで10℃/分の速度で昇温した時に得られるDSC曲線において、得られるピーク温度を基材樹脂が本来有している樹脂融点(A)、融解熱量を樹脂融解熱量(J/g)(C)とした。また、樹脂融解熱量のうち、ピーク温度よりも高い温度での融解熱量(J/g)(B)を全体の樹脂融解熱量で除したものを高温融解熱量比率(%)として算出した。   Subsequently, in the DSC curve obtained when cooling from 200 ° C. to 40 ° C. at a rate of 10 ° C./min and again raising the temperature from 40 ° C. to 200 ° C. at a rate of 10 ° C./min, The inherent resin melting point (A) and heat of fusion were defined as resin heat of fusion (J / g) (C). Further, among the resin heat of fusion, the heat of fusion (J / g) (B) at a temperature higher than the peak temperature divided by the total resin heat of heat was calculated as the high temperature heat of fusion ratio (%).

<ポリプロピレン系樹脂の曲げ弾性率>
ポリプロピレン系樹脂粒子を80℃にて6時間乾燥させた後、35t射出成形機を用い、シリンダー温度200℃、金型温度30℃にて厚み6.4mmバー(幅12mm、長さ127mm)を作製して、一週間以内にASTM D790に従い曲げ試験を行い、曲げ弾性率を求めた。
<Bending elastic modulus of polypropylene resin>
After drying the polypropylene resin particles at 80 ° C. for 6 hours, a 35-ton injection molding machine is used to produce a 6.4 mm bar (width 12 mm, length 127 mm) at a cylinder temperature of 200 ° C. and a mold temperature of 30 ° C. Then, a bending test was performed in accordance with ASTM D790 within one week to obtain a bending elastic modulus.

〈成形評価〉
得られたポリプロピレン系樹脂予備発泡粒子を、pH=1の塩酸水溶液で洗浄した後、75℃で乾燥し、該予備発泡粒子を無機ガスで加圧処理して予備発泡粒子内に無機ガスを含浸させ所定の粒子内圧(約0.2MPa)を付与した後、図1に示す形状の金型(成形体設計外形寸法 327mm×353mm×256mm、薄肉部寸法 103mm×153mm×5mm)を用いて、加熱水蒸気圧力0.20および0.35MPa(ゲージ圧)で型内発泡成形を実施し、薄肉部表面aおよび寸法c(長手方向中央部)を評価した。
<Molding evaluation>
The obtained polypropylene resin pre-expanded particles are washed with a hydrochloric acid aqueous solution of pH = 1, and then dried at 75 ° C. The pre-expanded particles are pressure-treated with an inorganic gas, and the pre-expanded particles are impregnated with the inorganic gas. Then, after applying a predetermined internal pressure of the particles (about 0.2 MPa), heating is performed using a mold having a shape shown in FIG. 1 (molded body design outer dimensions: 327 mm × 353 mm × 256 mm, thin wall size: 103 mm × 153 mm × 5 mm). In-mold foam molding was performed at water vapor pressures of 0.20 and 0.35 MPa (gauge pressure), and the thin-walled portion surface a and dimension c (longitudinal central portion) were evaluated.

(1)表面性
加熱水蒸気圧力0.20および0.35MPa(ゲージ圧)で型内発泡成形した型内発泡成形体表面について、
型内発泡成形体表面aに現れる予備発泡粒子の輪郭全てが隣り合った予備発泡粒子と融着し、エッジ部分の型決まりが良好な型内発泡成形体が得られた場合。・・・◎
型内発泡成形体表面aに現れる予備発泡粒子の輪郭のほとんどが隣り合った予備発泡粒子と融着し、エッジ部分の型決まりが概ね良好な型内発泡成形体が得られた場合。・・・○
予備発泡粒子間に隙間が多く観られるなど、エッジ部分の型決まりが不良な型内発泡成形体が得られた場合。・・・×
(1) Surface property About the surface of the in-mold foam molded body obtained by in-mold foam molding at a heating steam pressure of 0.20 and 0.35 MPa (gauge pressure),
In the case where the contour of the pre-expanded particles appearing on the surface of the in-mold foam molded body a is fused with the adjacent pre-expanded particles, and an in-mold foam molded product having a good mold determination at the edge portion is obtained. ... ◎
When most of the contours of the pre-expanded particles appearing on the surface of the in-mold foam-molded body are fused with the adjacent pre-foamed particles, and an in-mold foam-molded product having a generally good mold determination at the edge portion is obtained.・ ・ ・ ○
When an in-mold foam molded product with poor edge determination is obtained, such as many gaps between pre-expanded particles. ... ×

(2)寸法性
0.20もしくは0.35MPa(共にゲージ圧)の水蒸気加熱により型内発泡成形した後、25℃で2時間静置し、次いで75℃に温調した恒温室内に5時間静置した後、取り出し、25℃で4時間放冷した型内発泡成形体3試験体の寸法(b)と(c)を測定し、(b)−(c)で算出される内倒れ量の3試験体について平均して変形量とした。
変形量(c−b)が3.0mm以下である場合、◎とし、3.0mmを超えて5.0mm以下である場合、○とし、寸法性が良好な型内発泡成形体とした。5.0mmより大きい場合は、不良とした。
(2) Dimensionality After in-mold foam molding by steam heating at 0.20 or 0.35 MPa (both gauge pressures), the mold was allowed to stand at 25 ° C. for 2 hours and then kept in a temperature-controlled room at 75 ° C. for 5 hours. After placing, the dimensions (b) and (c) of the in-mold foam molded body 3 test body which was taken out and allowed to cool at 25 ° C. for 4 hours were measured, and the amount of inclining calculated by (b)-(c) was measured. The average of three specimens was taken as the amount of deformation.
When the deformation amount (cb) was 3.0 mm or less, it was marked with ◎, and when it exceeded 3.0 mm and was 5.0 mm or less, it was marked with ○, and an in-mold foam molded article with good dimensional properties was obtained. When it was larger than 5.0 mm, it was regarded as defective.

<型内発泡成形体の50%圧縮強度>
得られたポリプロピレン系樹脂予備発泡粒子を、pH=1の塩酸水溶液で洗浄した後、75℃で乾燥し、耐圧容器にて加圧空気を含浸して予備発泡粒子内圧を0.2MPaとした後、物性測定用に400mm×300mm×60mmの板状金型を用いて、加熱水蒸気圧力0.20〜0.35MPa(ゲージ圧)で型内発泡成形した。得られた型内発泡成形体は1時間室温で放置した後、75℃の恒温室内で15時間養生乾燥を行い、融着性が60%以上の型内発泡成形体を選び、室温で1週間放置した後に圧縮強度測定を行った。
<50% compressive strength of in-mold foam molding>
The obtained polypropylene resin pre-expanded particles were washed with a hydrochloric acid aqueous solution at pH = 1, dried at 75 ° C., and impregnated with pressurized air in a pressure-resistant container to adjust the internal pressure of the pre-expanded particles to 0.2 MPa. Then, in-mold foam molding was performed at a heated steam pressure of 0.20 to 0.35 MPa (gauge pressure) using a 400 mm × 300 mm × 60 mm plate mold for measuring physical properties. The obtained in-mold foamed molded product was allowed to stand at room temperature for 1 hour, and then cured and dried in a constant temperature room at 75 ° C. for 15 hours, and an in-mold foam molded product having a fusion property of 60% or more was selected. The compression strength measurement was performed after leaving it to stand.

得られた型内発泡成形体から縦50mm×横50mm×厚み25mmのテストピースを切り出し、NDZ−Z0504に準拠し、10mm/分の速度で圧縮した際の50%圧縮時の圧縮応力(MPa)を測定した5点のデータを成形体密度に対してプロットし、最小二乗法により成形体密度20kg/m3における圧縮応力を算出した。 A test piece having a length of 50 mm, a width of 50 mm and a thickness of 25 mm was cut out from the obtained in-mold foam-molded product, and compressed at 50% compression (MPa) when compressed at a speed of 10 mm / min according to NDZ-Z0504. The data of 5 points measured were plotted against the green density, and the compression stress at the green density of 20 kg / m 3 was calculated by the least square method.

(実施例1)
エチレン−ブテン−プロピレンランダム共重合体(樹脂密度0.90g/cm3、樹脂融点141.1℃、メルトインデックス7.6g/10min、高温融解熱量比率25%、曲げ弾性率880MPa)からなる樹脂に対し、該樹脂100重量部にパウダー状タルク0.1重量部、ポリエチレングリコール0.5重量部をブレンドし、該ブレンド物を50mm単軸押出機にて押し出し、1.2mg/粒の樹脂粒子とした。得られた樹脂粒子100重量部(2.8kg)を、攪拌機を有する10L容の耐圧容器の中に入れ、第3リン酸カルシウム(大平化学産業社製)1.0重量部及びノルマルパラフィンスルホン酸ナトリウム0.05重量部の存在下で、水170重量部中に分散させた。該分散物を攪拌しながら、二酸化炭素5重量部を加え、加熱し、該分散物を表1に示す温度に調整した状態で、20分間保持した。さらに二酸化炭素を追加して、耐圧容器の内圧を表1に示す圧力になるように調整した。次に、該耐圧容器内の圧力をガス状の二酸化炭素で維持しながら、内径25mmの放出バルブの後方端に取り付けた直径4mmの円形オリフィスを通して、ペレット及び水の分散物を大気中に放出して、表1の予備発泡粒子を得た。該予備発泡粒子に空気を含浸させた後、二段発泡により、発泡倍率30倍の予備発泡粒子として成形評価を実施したところ、表面性、寸法性ともに良好な型内発泡成形体を得ることができ、50%圧縮強度は0.17MPaであった。
Example 1
A resin comprising an ethylene-butene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 141.1 ° C., melt index 7.6 g / 10 min, high temperature fusion heat ratio 25%, flexural modulus 880 MPa) On the other hand, 100 parts by weight of the resin was blended with 0.1 parts by weight of powdered talc and 0.5 parts by weight of polyethylene glycol, and the blend was extruded with a 50 mm single screw extruder to obtain 1.2 mg / grain of resin particles. did. 100 parts by weight (2.8 kg) of the obtained resin particles are placed in a 10 L pressure vessel having a stirrer, and 1.0 part by weight of tertiary calcium phosphate (manufactured by Ohira Chemical Industry Co., Ltd.) and sodium normal paraffin sulfonate 0 Dispersed in 170 parts by weight of water in the presence of .05 parts by weight. While stirring the dispersion, 5 parts by weight of carbon dioxide was added and heated, and the dispersion was kept at a temperature shown in Table 1 for 20 minutes. Further, carbon dioxide was added to adjust the internal pressure of the pressure vessel to the pressure shown in Table 1. Next, while maintaining the pressure in the pressure vessel with gaseous carbon dioxide, the dispersion of pellets and water is discharged into the atmosphere through a circular orifice with a diameter of 4 mm attached to the rear end of a discharge valve with an inner diameter of 25 mm. Thus, pre-expanded particles shown in Table 1 were obtained. When the pre-expanded particles were impregnated with air and then subjected to molding evaluation as pre-expanded particles having an expansion ratio of 30 times by two-stage expansion, an in-mold expanded molded article having good surface properties and dimensional properties could be obtained. The 50% compressive strength was 0.17 MPa.

(実施例2)
実施例1の樹脂を用いるかわりにエチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm3、樹脂融点142.5℃、メルトインデックス6.2g/10min、高温融解熱量比率21%、曲げ弾性率860MPa)の樹脂を用い、分散物の保持温度を表1に示すとおりとした以外は実施例1と同様の方法により、表1に示す予備発泡粒子を得た。実施例1と同様に二段発泡により発泡倍率30倍として成形評価したところ、表面性、寸法性ともに良好な型内発泡成形体を得ることができ、50%圧縮強度は0.17であった。
(Example 2)
Instead of using the resin of Example 1, an ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 142.5 ° C., melt index 6.2 g / 10 min, high temperature melting heat ratio 21%, flexural elasticity Pre-expanded particles shown in Table 1 were obtained in the same manner as in Example 1 except that a resin having a rate of 860 MPa was used and the retention temperature of the dispersion was as shown in Table 1. In the same manner as in Example 1, when the molding was evaluated by two-stage foaming with a foaming ratio of 30 times, an in-mold foam molded article having good surface properties and dimensional properties could be obtained, and the 50% compression strength was 0.17. .

(実施例3)
実施例1で用いた樹脂を用いる代わりに、エチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm3、樹脂融点144.5℃、メルトインデックス6.5g/10min、高温融解熱量比率27%、曲げ弾性率960MPa)を用い、該樹脂100重量部にパウダー状タルク0.02重量部、グリセリン0.2重量部をブレンドし、該ブレンド物を50mm単軸押出機にて押し出し、1.2mg/粒の樹脂粒子とした。続いて実施例1と同様に調整した分散物を表1に示す温度・圧力に調整し、実施例1と同様に大気放出して表1に示す予備発泡粒子を得た。実施例1と同様に二段発泡を行い、成形評価を実施したところ、表面性、寸法性ともに良好な型内発泡成形体を得ることができ、50%圧縮強度は0.18MPaであった。
(Example 3)
Instead of using the resin used in Example 1, an ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 144.5 ° C., melt index 6.5 g / 10 min, high temperature melting heat ratio 27% , A bending elastic modulus of 960 MPa), 100 parts by weight of the resin was blended with 0.02 part by weight of powdered talc and 0.2 part by weight of glycerin. / Grain resin particles. Subsequently, the dispersion prepared in the same manner as in Example 1 was adjusted to the temperature and pressure shown in Table 1, and released into the atmosphere in the same manner as in Example 1 to obtain pre-expanded particles shown in Table 1. When two-stage foaming was carried out in the same manner as in Example 1 and molding evaluation was carried out, an in-mold foam molded article having good surface properties and dimensional properties could be obtained, and the 50% compression strength was 0.18 MPa.

(比較例1)
実施例3で用いた樹脂を用いる代わりに、エチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm3、樹脂融点145.4℃、メルトインデックス6.8g/10min、高温融解熱量比率14%、曲げ弾性率1100MPa)を用いた以外は実施例3と同様にポリプロピレン系樹脂粒子とした。続いて実施例1と同様に調整した分散物を表1に示す温度・圧力に調整し、実施例1と同様に大気放出して表1に示す予備発泡粒子を得た。実施例1と同様に二段発泡を行い、成形評価を実施したところ、0.2MPaでの表面性が不良な型内発泡成形体となり、50%圧縮強度は0.19MPaであった。
(Comparative Example 1)
Instead of using the resin used in Example 3, an ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 145.4 ° C., melt index 6.8 g / 10 min, high temperature melting heat ratio 14% In addition, polypropylene resin particles were obtained in the same manner as in Example 3 except that the bending elastic modulus was 1100 MPa. Subsequently, the dispersion prepared in the same manner as in Example 1 was adjusted to the temperature and pressure shown in Table 1, and released into the atmosphere in the same manner as in Example 1 to obtain pre-expanded particles shown in Table 1. When two-stage foaming was carried out in the same manner as in Example 1 and molding evaluation was carried out, an in-mold foam molded product with poor surface properties at 0.2 MPa was obtained, and the 50% compression strength was 0.19 MPa.

(比較例2)
実施例1で用いた樹脂を用いる代わりに、エチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm3、樹脂融点141.3℃、メルトインデックス0.5g/10min、高温融解熱量比率28%、曲げ弾性率800MPa)を用い、該樹脂100重量部にパウダー状タルク0.02重量部、グリセリン0.4重量部をブレンドし、該ブレンド物を50mm単軸押出機にて押し出し、1.2mg/粒の樹脂粒子とした。続いて実施例1と同様に調整した分散物を表1に示す温度・圧力に調整し、実施例1と同様に大気放出して表1に示す予備発泡粒子を得た。実施例1と同様に二段発泡を行い、成形評価を実施したところ、0.2MPaでの表面性および寸法性が不良な型内発泡成形体となり、50%圧縮強度は0.17MPaであった。
(Comparative Example 2)
Instead of using the resin used in Example 1, an ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 141.3 ° C., melt index 0.5 g / 10 min, high temperature melting heat ratio 28% , 0.02 parts by weight of powdered talc and 0.4 parts by weight of glycerin were blended with 100 parts by weight of the resin, and the blend was extruded with a 50 mm single screw extruder to obtain 1.2 mg. / Grain resin particles. Subsequently, the dispersion prepared in the same manner as in Example 1 was adjusted to the temperature and pressure shown in Table 1, and released into the atmosphere in the same manner as in Example 1 to obtain pre-expanded particles shown in Table 1. When two-stage foaming was carried out in the same manner as in Example 1 and molding evaluation was carried out, an in-mold foam molded article with poor surface properties and dimensional properties at 0.2 MPa was obtained, and the 50% compression strength was 0.17 MPa. .

(比較例3)
実施例1で用いた樹脂を用いる代わりに、エチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm3、樹脂融点137.5℃、メルトインデックス7.2g/10min、高温融解熱量比率30%、曲げ弾性率750MPa)を用いた以外は実施例1と同様にポリプロピレン系樹脂粒子とした。続いて実施例1と同様に調整した分散物を表1に示す温度・圧力に調整し、実施例1と同様に大気放出して表1に示す予備発泡粒子を得た。実施例1と同様に二段発泡を行い、成形評価を実施したところ、表面性、寸法性ともに良好な型内発泡成形体を得ることができたが、50%圧縮強度は0.15MPaと低くなった。
(Comparative Example 3)
Instead of using the resin used in Example 1, an ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , resin melting point 137.5 ° C., melt index 7.2 g / 10 min, high temperature melting heat ratio 30% The resin particles were polypropylene resin particles in the same manner as in Example 1 except that the flexural modulus was 750 MPa. Subsequently, the dispersion prepared in the same manner as in Example 1 was adjusted to the temperature and pressure shown in Table 1, and released into the atmosphere in the same manner as in Example 1 to obtain pre-expanded particles shown in Table 1. When two-stage foaming was performed in the same manner as in Example 1 and molding evaluation was carried out, an in-mold foam molded article having good surface properties and dimensional properties could be obtained, but the 50% compression strength was as low as 0.15 MPa. became.

a 薄肉形状部位
b 中央部寸法を測定した箇所
c 端部寸法を測定した箇所
a Thin-walled part b Location where the center dimension was measured c Location where the end dimension was measured

Claims (2)

メルトインデックスが3g/10min以上20g/10min以下であるポリプロピレン系樹脂を基材樹脂とする、ポリプロピレン系樹脂予備発泡粒子であって、示差走査熱量計を用い、40℃から200℃まで10℃/分の速度で昇温し、ひきつづいて200℃から40℃まで10℃/分の速度で冷却、再度40℃から200℃まで10℃/分の速度で昇温して得られる、樹脂融点が145℃未満であって、樹脂融点から融解終了温度までの融解熱量の樹脂融解熱量全体に対する割合である高温融解熱量比率が20%以上であり、かつ樹脂の曲げ弾性率が800MPa以上であることを特徴とするポリプロピレン系樹脂予備発泡粒子。   Polypropylene resin pre-expanded particles using a polypropylene resin having a melt index of 3 g / 10 min to 20 g / 10 min as a base resin, and using a differential scanning calorimeter, 10 ° C./min from 40 ° C. to 200 ° C. The resin melting point is 145 ° C. obtained by heating at a rate of 10 ° C./min from 200 ° C. to 40 ° C. and then cooling again at a rate of 10 ° C./min from 40 ° C. to 200 ° C. The ratio of the heat of fusion from the melting point of the resin to the end-of-melting temperature is 20% or more, and the bending elastic modulus of the resin is 800 MPa or more. Pre-expanded polypropylene resin particles. 請求項1に記載のポリプロピレン系樹脂予備発泡粒子を型内発泡成形してなる型内発泡成形体。   An in-mold foam-molded product obtained by in-mold foam-molding the polypropylene resin pre-foamed particles according to claim 1.
JP2009098153A 2009-04-14 2009-04-14 Polypropylene resin pre-expanded particles Active JP5528002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098153A JP5528002B2 (en) 2009-04-14 2009-04-14 Polypropylene resin pre-expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098153A JP5528002B2 (en) 2009-04-14 2009-04-14 Polypropylene resin pre-expanded particles

Publications (2)

Publication Number Publication Date
JP2010248341A true JP2010248341A (en) 2010-11-04
JP5528002B2 JP5528002B2 (en) 2014-06-25

Family

ID=43311042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098153A Active JP5528002B2 (en) 2009-04-14 2009-04-14 Polypropylene resin pre-expanded particles

Country Status (1)

Country Link
JP (1) JP5528002B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144735A (en) * 2012-01-13 2013-07-25 Kaneka Corp Tote box
WO2015098619A1 (en) 2013-12-27 2015-07-02 株式会社カネカ Polyolefin resin foam particles, and polyolefin resin in-mold expansion molded article
WO2016060162A1 (en) * 2014-10-15 2016-04-21 株式会社カネカ Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
WO2017142273A1 (en) * 2016-02-17 2017-08-24 주식회사 엘지화학 High-stiffness and energy-reducing polypropylene for foaming
JPWO2016147919A1 (en) * 2015-03-13 2017-12-28 株式会社カネカ Polypropylene-based resin expanded particles and method for producing the same
CN111363240A (en) * 2020-03-31 2020-07-03 宁波致微新材料科技有限公司 High-foaming-ratio polypropylene foam material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199531A (en) * 1997-09-29 1999-04-13 Kanegafuchi Chem Ind Co Ltd Core material for automobile bumper
JPWO2006054727A1 (en) * 2004-11-22 2008-06-05 株式会社カネカ Polypropylene resin pre-expanded particles and in-mold foam molding
JPWO2009001626A1 (en) * 2007-06-22 2010-08-26 株式会社ジェイエスピー Polypropylene resin foamed particles and molded articles thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199531A (en) * 1997-09-29 1999-04-13 Kanegafuchi Chem Ind Co Ltd Core material for automobile bumper
JPWO2006054727A1 (en) * 2004-11-22 2008-06-05 株式会社カネカ Polypropylene resin pre-expanded particles and in-mold foam molding
JPWO2009001626A1 (en) * 2007-06-22 2010-08-26 株式会社ジェイエスピー Polypropylene resin foamed particles and molded articles thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144735A (en) * 2012-01-13 2013-07-25 Kaneka Corp Tote box
WO2015098619A1 (en) 2013-12-27 2015-07-02 株式会社カネカ Polyolefin resin foam particles, and polyolefin resin in-mold expansion molded article
US10221292B2 (en) 2014-10-15 2019-03-05 Kaneka Corporation Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
JPWO2016060162A1 (en) * 2014-10-15 2017-08-03 株式会社カネカ Polypropylene-based resin expanded particles, polypropylene-based resin in-mold expanded molded body, and method for producing the same
WO2016060162A1 (en) * 2014-10-15 2016-04-21 株式会社カネカ Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
JPWO2016147919A1 (en) * 2015-03-13 2017-12-28 株式会社カネカ Polypropylene-based resin expanded particles and method for producing the same
US10017619B2 (en) 2015-03-13 2018-07-10 Kaneka Corporation Polypropylene resin foamed particles and method for producing same
EP3269761A4 (en) * 2015-03-13 2018-11-07 Kaneka Corporation Polypropylene resin foamed particles and method for producing same
WO2017142273A1 (en) * 2016-02-17 2017-08-24 주식회사 엘지화학 High-stiffness and energy-reducing polypropylene for foaming
KR20170096862A (en) * 2016-02-17 2017-08-25 주식회사 엘지화학 Polypropylene having high rigidity and for reducing energy in foaming
KR101969123B1 (en) 2016-02-17 2019-08-20 주식회사 엘지화학 Polypropylene having high rigidity and for reducing energy in foaming
US10889667B2 (en) 2016-02-17 2021-01-12 Lg Chem, Ltd. High-stiffness and energy-reducing polypropylene for foaming
CN111363240A (en) * 2020-03-31 2020-07-03 宁波致微新材料科技有限公司 High-foaming-ratio polypropylene foam material and preparation method thereof
CN111363240B (en) * 2020-03-31 2022-06-10 宁波致微新材料科技有限公司 High-foaming-ratio polypropylene foam material and preparation method thereof

Also Published As

Publication number Publication date
JP5528002B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
US6130266A (en) Pre-expanded particles of propylene resin, process for preparing the same and flow-restricting device
JP5041812B2 (en) Polypropylene resin pre-expanded particles and in-mold foam molding
JP5528002B2 (en) Polypropylene resin pre-expanded particles
WO2010113471A1 (en) Expandable polypropylene copolymer resin particles
WO2015076306A1 (en) Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JP5587605B2 (en) Polypropylene resin pre-expanded particles and in-mold foam-molded product obtained from the pre-expanded particles
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP4779330B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5630591B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP5080842B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP2005298769A (en) Polypropylenic resin pre-expanded particle and in-mold expansion molded product
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
JP5253123B2 (en) Method for producing foamed molded article in polypropylene resin mold by compression filling method
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
JP5347368B2 (en) Polypropylene resin foam particles and in-mold foam moldings
JP5177247B2 (en) Polypropylene-based resin pre-expanded particles, in-mold foam molded product, and method for producing the same
JP5154194B2 (en) Polypropylene resin foam particles
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP2007302720A (en) Polypropylene-based resin pre-foamed particle and molded article obtained by in-mold foaming of the same
WO2022186281A1 (en) Polyethylene resin foamed particles, polyethylene resin in-mold foam molded body, and method for manufacturing these
JP5279413B2 (en) Method for producing polypropylene resin pre-expanded particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5528002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250