[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5365901B2 - Polypropylene resin pre-expanded particles, and in-mold foam moldings - Google Patents

Polypropylene resin pre-expanded particles, and in-mold foam moldings Download PDF

Info

Publication number
JP5365901B2
JP5365901B2 JP2008223243A JP2008223243A JP5365901B2 JP 5365901 B2 JP5365901 B2 JP 5365901B2 JP 2008223243 A JP2008223243 A JP 2008223243A JP 2008223243 A JP2008223243 A JP 2008223243A JP 5365901 B2 JP5365901 B2 JP 5365901B2
Authority
JP
Japan
Prior art keywords
polypropylene resin
expanded particles
mold foam
melting point
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008223243A
Other languages
Japanese (ja)
Other versions
JP2009280783A (en
Inventor
浩司 常石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008223243A priority Critical patent/JP5365901B2/en
Publication of JP2009280783A publication Critical patent/JP2009280783A/en
Application granted granted Critical
Publication of JP5365901B2 publication Critical patent/JP5365901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、自動車内装部材、自動車バンパー用芯材、断熱材、緩衝包材、通箱などに用いられるポリプロピレン系樹脂予備発泡粒子、及び該予備発泡粒子を用いて得られる型内発泡成形体に関するものである。   The present invention relates to polypropylene resin pre-expanded particles used for automobile interior members, automobile bumper cores, heat insulating materials, cushioning packaging materials, pass boxes, and the like, and in-mold foam molded articles obtained using the pre-expanded particles. Is.

ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴をもつ。また同様の型内発泡成形体と比較しても、ポリスチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、またポリエチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、自動車内装部材、自動車バンパー用芯材をはじめ、断熱材、緩衝包装材など様々な用途に用いられている。   The in-mold foam molded article obtained by using the polypropylene resin pre-expanded particles has characteristics such as shape flexibility, light weight, and heat insulation, which are advantages of the in-mold foam molded article. Compared to similar in-mold foam moldings, it is superior in chemical resistance, heat resistance and strain recovery after compression compared to in-mold foam moldings obtained using polystyrene resin pre-expanded particles. In addition, the dimensional accuracy, heat resistance, and compressive strength are excellent as compared with the in-mold foam molded body obtained using the polyethylene resin pre-expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin pre-expanded particles are used in various applications such as automotive interior members, automotive bumper core materials, heat insulating materials, and cushioning packaging materials. .

ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体に要求される重要な性質として、予備発泡粒子間の融着性、表面の美麗性、収縮回復性が挙げられる。   Important properties required for an in-mold foam molded article obtained using polypropylene resin foamed particles include fusion between pre-foamed particles, surface aesthetics, and shrinkage recovery.

予備発泡粒子間の融着性とは、型内発泡成形体における予備発泡粒子間の融着の程度であり、融着が不十分であれば型内発泡成形体の機械強度が不十分になる。特に型内発泡成形体内部において融着性が不十分になる場合が多い。   The fusion property between the pre-expanded particles is the degree of fusion between the pre-expanded particles in the in-mold foam molded product. If the fusion is insufficient, the mechanical strength of the in-mold foam molded product becomes insufficient. . In particular, in many cases, the melt-bonding property is insufficient inside the in-mold foamed molded product.

表面の美麗性とは、型内発泡成形体表面が平滑である程度である。表面美麗性の低下は、予備発泡粒子の不十分な発泡に起因すると考えられる型内発泡成形体表面の予備発泡粒子間の溝部分に生じる凹みや型内発泡成形体の収縮に起因すると考えられる筋状の溝によって引き起こされる。   The beauty of the surface means that the surface of the in-mold foam molded product is smooth. The decrease in surface aesthetics is considered to be caused by indentations formed in the groove portions between the pre-foamed particles on the surface of the in-mold foam molded body and shrinkage of the in-mold foam molded body, which is considered to be caused by insufficient foaming of the pre-foamed particles. Caused by a streak groove.

ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体は成形後、金型から取り出したとき収縮するのが通常であり、反りや変形を引き起こす。型内発泡成形体を加温雰囲気下に一定時間保持する、いわゆる養生工程により型内発泡成形体の収縮や変形を回復させることができる。養生後においても型内発泡成形体が金型の大きさに回復しがたいが、金型に比較し養生後の型内発泡成形体の寸法収縮率が小さい場合、収縮回復性が優れるとされている。   In-mold foam molded articles obtained using polypropylene resin expanded particles usually shrink after being molded and removed from the mold, causing warping and deformation. The shrinkage and deformation of the in-mold foam-molded product can be recovered by a so-called curing process in which the in-mold foam-molded product is held in a heated atmosphere for a certain time. Even after curing, the in-mold foam molding is difficult to recover to the size of the mold, but when the dimensional shrinkage rate of the in-mold foam molding after curing is small compared to the mold, it is said that the shrink recovery property is excellent. ing.

ポリプロピレン系樹脂予備発泡粒子の型内発泡成形用の成形機は、耐圧0.4MPaの仕様であるものが大半を占めており、該成形機を用いて通常生産される成形加熱蒸気圧力はおおむね0.36MPa程度までである。型内発泡成形に用いられるポリプロピレン系樹脂予備発泡粒子は、これに対応できるような特性の樹脂を用いており、一般には融点が140〜150℃程度のエチレン−ランダムポリプロピレンが用いられている。しかしながら、昨今の燃料価格の高騰などにより、成形加熱蒸気圧のさらなる低減策が待望されている。   Most of the molding machines for in-mold foam molding of polypropylene resin pre-expanded particles occupy a specification with a pressure resistance of 0.4 MPa, and the molding heating steam pressure normally produced using the molding machine is almost 0. It is up to about 36 MPa. The polypropylene-based resin pre-expanded particles used for in-mold foam molding use a resin having such a characteristic as to be compatible with this, and generally, ethylene-random polypropylene having a melting point of about 140 to 150 ° C. is used. However, due to the recent rise in fuel prices and the like, there is a long-awaited measure for further reducing the molding heating steam pressure.

成形加熱蒸気圧を下げる方法としては、基材樹脂の融点がさらに低いものを用いる方法、つまり130℃台のランダムポリプロピレンを用いる方法があるが、一般に、プロピレン系樹脂の融点と樹脂の剛性とは正の相関関係にあり、融点の低い樹脂を用いると剛性が低く、型内発泡成形体の収縮や変形が大きくなる傾向がある。   As a method of lowering the molding heating vapor pressure, there is a method using a material having a lower melting point of the base resin, that is, a method using random polypropylene in the range of 130 ° C. Generally, the melting point of the propylene resin and the rigidity of the resin are When a resin having a positive correlation and a low melting point is used, the rigidity is low, and the shrinkage and deformation of the in-mold foam molded product tend to increase.

一方、高い剛性を達成するためにコモノマー含量の少ない、融点の高い樹脂を用いると、樹脂の融点が高くなるため良好な型内発泡成形体を得るために必要となる成形加熱蒸気圧は高くなる傾向にある。このため、より高い剛性を求める場合、耐圧仕様の高い成形機や金型を用いる必要があり、設備コストが高くなると共に、ユーティリティコストが高くなるため成形加工コストが高くなる。   On the other hand, if a resin having a low comonomer content and a high melting point is used in order to achieve high rigidity, the melting point of the resin will be high, so that the molding heating vapor pressure required to obtain a good in-mold foam molded product will be high There is a tendency. For this reason, when higher rigidity is required, it is necessary to use a molding machine or a die having a high pressure resistance specification, which increases the equipment cost and increases the utility cost, thereby increasing the molding processing cost.

また、近年型内発泡成形体においても外観が重要視されるものが増えてきている。これは使用者の目に触れる場所に使用される自動車内装部材や通い箱と言った用途に多く、型内発泡成形体に通常求められる剛性、軽量性、断熱性などの物性に加え、良好な外観が求められる。型内発泡成形体はその製法上、予備発泡粒子間の隙間や予備発泡粒子の亀甲模様が見られるが、外観を重視する製品にはこれらを嫌うものも多い。予備発泡粒子間の隙間を目立たなくさせるためには、一般に型内発泡成形時の加熱蒸気圧力を高くし、予備発泡粒子同士の融着を促進させるなどの方法が採られる。すなわち表面美麗性の高い型内発泡成形体を得るためには、型内発泡成形時の成形加熱蒸気圧力を予備発泡粒子間の融着に必要となる圧力より高くする必要がある。   In recent years, the number of in-mold foam moldings whose appearance is important is increasing. This is often used for automobile interior parts and returnable boxes used in places where users can see. In addition to the physical properties such as rigidity, light weight, and heat insulation that are usually required for in-mold foam molded products, it is good. Appearance is required. In-mold foam moldings show gaps between pre-expanded particles and turtle shell patterns of pre-expanded particles due to the manufacturing method, but many products that emphasize the appearance dislike them. In order to make the gaps between the pre-expanded particles inconspicuous, generally, a method of increasing the heating steam pressure at the time of in-mold foam molding and promoting the fusion of the pre-expanded particles is adopted. That is, in order to obtain an in-mold foam molded article having a high surface beauty, it is necessary to make the molding heating steam pressure at the time of in-mold foam molding higher than the pressure required for fusion between the pre-expanded particles.

以上のように、剛性が高く、かつ表面美麗性の高いポリプロピレン系樹脂型内発泡成形体を、特殊な成形機を使用しなくとも安定的により低い成形加工温度で製造することができる技術が求められている。   As described above, there is a need for a technology that can stably produce a foam-in-molded polypropylene resin mold with high rigidity and high surface beauty at a lower molding processing temperature without using a special molding machine. It has been.

型内発泡成形体の剛性を向上するための技術に関して、様々な技術が検討されている。ポリプロピレン系樹脂で高い剛性を得るためには単純にホモポリプロピレンを用いることが考えられるが、例えば特許文献1には引張弾性率が15000〜25000kg/cm2で示差走査型熱量計にて得られるDSC曲線の高温側ピークの熱量が30〜60J/gであるホモポリプロピレン系樹脂予備発泡粒子に関しての技術が開示されている。また特許文献2にはメルトフローレートが20〜100g/10分の範囲にあるホモポリプロピレンまたはα−オレフィン含有量が1重量%未満のプロピレン−α−オレフィンランダム共重合体を用いて、比較的低い成形温度で型内発泡成形体を得ることのできる予備発泡粒子が作製しうるという技術が開示されている。 Various techniques have been studied for improving the rigidity of the in-mold foam molded body. In order to obtain high rigidity with a polypropylene resin, it is conceivable to simply use homopolypropylene. For example, Patent Document 1 discloses a DSC obtained by a differential scanning calorimeter with a tensile elastic modulus of 15,000 to 25000 kg / cm 2. The technique regarding the homopolypropylene-type resin pre-expanded particle | grains whose calorie | heat amount of the high temperature side peak of a curve is 30-60 J / g is disclosed. Further, Patent Document 2 uses a homopolypropylene having a melt flow rate in the range of 20 to 100 g / 10 min or a propylene-α-olefin random copolymer having an α-olefin content of less than 1% by weight, which is relatively low. A technique has been disclosed in which pre-expanded particles capable of obtaining an in-mold expanded molded body at a molding temperature can be produced.

しかし、特許文献1記載の技術では、良好な型内発泡成形体を得るために必要な成形時の加熱蒸気の圧力が0.4〜0.6MPaであると記載されており、前述のように0.4MPa耐圧仕様の成形機では成形できない。また成形体の表面美麗性に関しては特段の記載はない。また、特許文献2記載の技術では表面美麗性や収縮率に関して特段の記載は無く、発泡粒子同士の融着が60%以上を達成するための最低成形蒸気圧は3.1kgf/cm2となっており、成形蒸気圧が低いとは言いがたい。 However, in the technique described in Patent Document 1, it is described that the pressure of the heating steam at the time of molding necessary for obtaining a good in-mold foam molded product is 0.4 to 0.6 MPa, as described above. It cannot be molded by a molding machine with a 0.4 MPa pressure resistance specification. Moreover, there is no special description about the surface beauty of a molded object. Further, in the technique described in Patent Document 2, there is no particular description regarding the surface aesthetics and the shrinkage rate, and the minimum molding vapor pressure for achieving fusion of expanded particles of 60% or more is 3.1 kgf / cm 2. It is hard to say that the molding vapor pressure is low.

また、例えば特許文献3には、融点が155〜165℃、Z平均分子量と重量平均分子量の比であるMz/Mwが3〜6であり、かつメルトフローレートが10〜150g/Lである樹脂粒子を用いる技術が開示されているが、当該文献の主目的はいわゆるドカン法を用いずとも型内発泡成形用の発泡粒子を得ることが出来るというものであり、さらには樹脂融点が155℃を越えていることからも分かるように、型内発泡成形体を得る為の加熱条件は4kgf/cm2を越える極めて高い条件である。 Further, for example, Patent Document 3 discloses a resin having a melting point of 155 to 165 ° C., a ratio of Z average molecular weight to weight average molecular weight of 3 to 6, and a melt flow rate of 10 to 150 g / L. Although the technology using particles is disclosed, the main purpose of this document is that foamed particles for in-mold foam molding can be obtained without using the so-called docan method, and the resin melting point is 155 ° C. As can be seen from the above, the heating conditions for obtaining the in-mold foam molded product are extremely high conditions exceeding 4 kgf / cm 2 .

また、特許文献4には、基材樹脂として融点が149〜157℃、MFRが1〜20g/10分、かつ半結晶時間が一定の値以下のプロピレン系ランダム共重合体を基材樹脂として用いる技術が開示されている。   In Patent Document 4, a propylene random copolymer having a melting point of 149 to 157 ° C., an MFR of 1 to 20 g / 10 minutes, and a half-crystal time of a certain value or less is used as the base resin. Technology is disclosed.

また、特許文献5には、型内発泡成形に用いるポリプロピレン系樹脂予備発泡粒子の結晶状態について、示差走査型熱量分析(以下DSCと略す)を用いて得られる融解結晶カーブの高温側結晶量と低温側結晶量の関係を一定の範囲に設定することにより、得られる型内発泡成形体の圧縮強度を向上する技術が開示されている。   Patent Document 5 discloses a high-temperature-side crystal amount of a melting crystal curve obtained by using differential scanning calorimetry (hereinafter abbreviated as DSC) for the crystalline state of polypropylene resin pre-expanded particles used for in-mold foam molding. A technique for improving the compressive strength of the obtained in-mold foam molded article by setting the relationship between the low-temperature side crystal amount within a certain range is disclosed.

しかし、これらの技術に関しては、型内発泡成形に必要となる加熱蒸気の圧力は0.4〜0.5MPaと高く、前記特許文献1〜2に記載の技術と同様、特に耐圧性能の高い成形機を用いることによって可能となっている技術である。   However, regarding these techniques, the pressure of the heating steam required for in-mold foam molding is as high as 0.4 to 0.5 MPa, and in the same way as the techniques described in Patent Documents 1 and 2, molding with particularly high pressure resistance performance is required. This technology is made possible by using a machine.

さらに特許文献6には、1−ブテンをコモノマーとして含むポリプロピレン系樹脂を用いると樹脂融点に対して高い引っ張り弾性率、すなわち剛性を持つ樹脂が得られ、これを用いることにより、高い剛性をもつ型内発泡成形体を得ることができるという技術が開示されている。   Furthermore, in Patent Document 6, when a polypropylene resin containing 1-butene as a comonomer is used, a resin having a high tensile elastic modulus, that is, a rigidity is obtained with respect to the resin melting point. By using this, a mold having a high rigidity is obtained. A technique is disclosed in which an inner foamed molded product can be obtained.

しかし、該技術に関しても、型内発泡成形に必要となる加熱蒸気の圧力は0.4MPa前後であり、他の技術と比較すると比較的低い成形加熱蒸気圧力であるものの、実施されている例の中で最も低いもので0.36MPaであり、現状よく用いられている0.4MPa耐圧仕様の成形機の仕様ぎりぎりのレベルである。また成形体の表面美麗性や収縮率に関して特段の記載もない。   However, with regard to this technique, the pressure of the heating steam required for in-mold foam molding is around 0.4 MPa, and although it is a relatively low molding heating steam pressure compared to other techniques, The lowest of these is 0.36 MPa, which is a level just below the specifications of a molding machine with a 0.4 MPa pressure resistance specification that is often used at present. Moreover, there is no special description regarding the surface aesthetics and shrinkage of the molded body.

さらに特許文献7には、1−ブテン成分量を3〜12重量%含むプロピレン・1−ブテンランダム共重合体を基材樹脂とするポリプロピレン系樹脂予備発泡粒子を用いることにより、高い剛性を持つポリプロピレン系樹脂発泡成形体が得られる技術が開示されている。該技術を用いた場合、成形加熱蒸気の圧力が0.3MPa前後と現状よく用いられる0.4MPa耐圧仕様の成形機でも成形可能であると記載されている。しかし、当該文献記載の実施例を見ると、最低成形圧が0.3MPa前後のものが例示されているが、さらなる低温成形性が望まれており、また、型内発泡成形体の表面美麗性や収縮率に関する特段の記載もない。また、エチレン成分を含まないプロピレン・1−ブテンランダム共重合体は、エチレン成分を含むポリプロピレン系樹脂ランダム共重合体に比べ硬くもろい性質があり、この性質が型内発泡成形体の基材樹脂として用いた場合に、圧縮後の寸法回復性や、低温領域での衝撃特性が劣ると言う性質へと繋がる。ポリプロピレン系樹脂発泡成形体は、同じ型内発泡成形体であるポリスチレン系樹脂発泡成形体と比べ、剛性面では劣るものの、繰り返し衝撃への耐性や柔軟性に優位性があり、これをもって緩衝包装材などに用いられている面もある。このため、該技術記載の技術では、剛性のみを目的とする用途以外の一般的な緩衝包装用途には向いていないという欠点もある。   Furthermore, Patent Document 7 discloses a polypropylene having high rigidity by using polypropylene resin pre-expanded particles having a propylene / 1-butene random copolymer containing 3 to 12% by weight of 1-butene component as a base resin. A technique for obtaining a resin-based foamed molded article is disclosed. It is described that when this technique is used, molding can be performed even with a molding machine having a pressure resistance of 0.4 MPa, which is often used at present, with the pressure of the molding heating steam being around 0.3 MPa. However, looking at the examples described in the literature, those having a minimum molding pressure of about 0.3 MPa are exemplified, but further low-temperature moldability is desired, and the surface beauty of the in-mold foam molded product There is no special description about the shrinkage rate. In addition, propylene / 1-butene random copolymers that do not contain an ethylene component are hard and brittle compared to polypropylene resin random copolymers that contain an ethylene component, and this property is used as a base resin for in-mold foam molded articles. When used, it leads to the property that the dimensional recoverability after compression and the impact property in a low temperature region are inferior. Polypropylene resin foam molded products are superior to polystyrene resin foam molded products, which are the same in-mold foam molded products, in terms of rigidity, but have superior resistance to repeated impacts and flexibility. Some aspects are used for such purposes. For this reason, the technique described in this technology also has a drawback that it is not suitable for general buffer packaging applications other than applications intended only for rigidity.

以上のように高い剛性が必要とされる用途には、高い加熱蒸気圧力に耐えうる特殊な成形機を使用している現状がある。しかし成形機の耐圧性能を上げるためには、成形機の強度を高めるため装置を大型にする必要があり、また金型も肉厚にする必要があるため、装置コストがかなり上昇するという短所がある。   As described above, there is a current situation in which a special molding machine that can withstand a high heating steam pressure is used for an application that requires high rigidity. However, in order to increase the pressure resistance of the molding machine, it is necessary to increase the size of the machine in order to increase the strength of the molding machine, and it is also necessary to increase the thickness of the mold. is there.

また、成形加熱蒸気の圧力を上げるということは、成形時の加熱に必要な蒸気量も増加することとなり、これを冷却するための冷却水量が増加するなどユーティリティコストも上昇する。さらに、より高温に加熱するために成形時の加熱時間が長くなり、さらに加熱された金型を冷却水で冷却する工程にもより長い時間を必要とするため、製品あたりの生産サイクルが長くなり生産性が悪化する。またさらには型内発泡成形では金型形状が複雑であるため、形状によっては成形加熱時に金型の一部に応力が集中し、金型が破損することもあり、さらにコストアップの原因となる。   In addition, increasing the pressure of the molding heating steam increases the amount of steam necessary for heating during molding, which increases the utility cost, for example, increasing the amount of cooling water for cooling this. Furthermore, the heating time at the time of molding becomes longer in order to heat to a higher temperature, and more time is required for the process of cooling the heated mold with cooling water, so the production cycle per product becomes longer. Productivity deteriorates. Furthermore, since the mold shape is complicated in in-mold foam molding, depending on the shape, stress may concentrate on a part of the mold during molding heating, and the mold may be damaged, which further increases costs. .

以上のように、型内発泡成形において成形加熱蒸気圧力が高いということは様々な欠点を有しており、できる限り低い成形加熱蒸気圧力で成形できることが望ましい。既存技術の範疇では、現状多く用いられている0.4MPa耐圧仕様の成形機にて安定生産できることは勿論のこと、さらに低い蒸気圧での成形が可能であり、表面美麗性に優れ、かつ高い剛性を有することにより寸法収縮率にも優れる型内発泡成形用ポリプロピレン系樹脂予備発泡粒子を得ることは困難である。   As described above, the high molding heating steam pressure in the in-mold foam molding has various drawbacks, and it is desirable that molding can be performed with the lowest possible molding heating steam pressure. In the category of existing technology, it is possible to stably produce with a molding machine of 0.4 MPa pressure resistance specification that is widely used at the present time, as well as molding with lower vapor pressure, excellent surface aesthetics and high It is difficult to obtain polypropylene resin pre-expanded particles for in-mold foam molding that have excellent dimensional shrinkage due to rigidity.

さらに特許文献8にはポリプロピレン系樹脂予備発泡粒子の樹脂融点と結晶融解熱量との関係を規定することにより、比較的低い成形蒸気圧で表面美麗性、剛性に優れた型内発泡成型体を得る方法が開示されているが、実施例記載の最低成形蒸気圧は0.3MPa前後であり、さらなる蒸気圧の低下が望まれる。また当該文献には型内発泡成形体の収縮率に関する記載もない。
特開平8−277340号公報 特開平10−45938号公報 特開平10−306173号公報 特開平10−316791号公報 特開平11−156879号公報 特開平7−258455号公報 特開平1−242638号公報 国際公開2006/075491号公報
Furthermore, Patent Document 8 provides an in-mold foam molded article with excellent surface beauty and rigidity at a relatively low molding vapor pressure by defining the relationship between the resin melting point of the polypropylene resin pre-foamed particles and the heat of crystal melting. Although the method is disclosed, the minimum molding vapor pressure described in the examples is around 0.3 MPa, and further reduction of the vapor pressure is desired. Further, this document does not describe the shrinkage rate of the in-mold foam molded article.
JP-A-8-277340 Japanese Patent Laid-Open No. 10-45938 JP-A-10-306173 Japanese Patent Laid-Open No. 10-316791 JP-A-11-156879 JP 7-258455 A JP-A-1-242638 International Publication No. 2006/075491

本発明は、低い加熱蒸気圧で型内発泡成形体を生産でき、そして、得られた型内発泡成形体は、収縮率が小さく、かつ表面美麗性の高いポリプロピレン系樹脂予備発泡粒子を提供することにある。   INDUSTRIAL APPLICABILITY The present invention can produce an in-mold foam molded article with a low heating vapor pressure, and the obtained in-mold foam molded article provides a polypropylene resin pre-foamed particle having a small shrinkage ratio and a high surface beauty. There is.

上記課題に鑑みて鋭意研究した結果、曲げ弾性率と融点の間に一定の関係があるポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂予備発泡粒子を用いることにより、成形時の加熱成形蒸気圧が著しく低く、さらに型内発泡成形体の収縮率が小さく、かつ表面美麗性の高い型内発泡成形体が得られることを見出し、本発明を完成させたものである。   As a result of diligent research in view of the above problems, by using polypropylene resin pre-expanded particles whose base resin is a polypropylene resin having a certain relationship between flexural modulus and melting point, thermoforming vapor pressure during molding is obtained. The present invention has been completed by finding that an in-mold foam-molded product having a significantly low shrinkage, a low shrinkage rate of the in-mold foam-molded product, and a high surface beauty can be obtained.

すなわち、本発明の第1は、メルトフローレートが4g/10min以上20g/10min以下、融点が132.0〜143.0℃、曲げ弾性率が684〜1025MPaであり、融点と曲げ弾性率が下記式(1)を満たし、共重合成分として1−ブテンを1重量%以上含むエチレン−プロピレン−ブテンランダム共重合体(但し、融点が135℃以下の重合体を除く。)を基材樹脂とすることを特徴とするポリプロピレン系樹脂予備発泡粒子に関する。
〔曲げ弾性率(MPa)〕≧31.19×〔融点(℃)〕−3500 (1)
好ましい態様としては、
〔1〕基材樹脂として用いるエチレン−プロピレン−ブテンランダム共重合体が、共重合成分として1−ブテンを3重量%以上含むこと、
〔2〕示差走査熱量計法による測定で、40℃から200℃まで10℃/分の速度で昇温した時に得られるDSC曲線において2つの融解ピークを有し、該融解ピークのうち低温側のピーク温度が140℃以下であり、且つ、低温側の融解ピーク熱量(Ql)と、高温側の融解ピーク熱量(Qh)から算出した、高温側の融解ピークの比率(Qh/(Ql+Qh)×100)が10%以上50%以下であること、
〔3〕ポリプロピレン系樹脂予備発泡粒子表面に付着した無機分散剤量が1000ppm以下であること、
を特徴とする前記記載のポリプロピレン系樹脂予備発泡粒子に関する。
That is, according to the first aspect of the present invention, the melt flow rate is 4 g / 10 min to 20 g / 10 min, the melting point is 132.0 to 143.0 ° C., the flexural modulus is 684 to 1025 MPa, and the melting point and flexural modulus are as follows. An ethylene-propylene-butene random copolymer satisfying the formula (1) and containing 1% by weight or more of 1-butene as a copolymer component (excluding a polymer having a melting point of 135 ° C. or lower) is used as a base resin . The present invention relates to a pre-expanded polypropylene resin particle.
[Flexural modulus (MPa)] ≧ 31.19 × [melting point (° C.)] − 3500 (1)
As a preferred embodiment,
[1] The ethylene-propylene-butene random copolymer used as the base resin contains 3% by weight or more of 1-butene as a copolymer component,
[2] As measured by differential scanning calorimetry, the DSC curve obtained when the temperature is raised from 40 ° C. to 200 ° C. at a rate of 10 ° C./min has two melting peaks, and the melting peak on the lower temperature side The ratio of the melting peak on the high temperature side (Qh / (Ql + Qh) × 100 calculated from the melting peak calorific value (Ql) on the low temperature side and the melting peak heat value (Qh) on the high temperature side with a peak temperature of 140 ° C. or less. ) Is 10% or more and 50% or less,
[3] The amount of the inorganic dispersant adhering to the surface of the polypropylene resin pre-expanded particles is 1000 ppm or less,
The above-mentioned polypropylene resin pre-expanded particles are characterized by the following.

本発明の第2は、前記記載のポリプロピレン系樹脂予備発泡粒子を用いて得られる、密度が10kg/m3以上300kg/m3以下の型内発泡成形体に関する。 A second aspect of the present invention relates to an in-mold foam molded article having a density of 10 kg / m 3 or more and 300 kg / m 3 or less, obtained using the polypropylene resin pre-foamed particles described above.

本発明のポリプロピレン系樹脂予備発泡粒子は、寸法収縮率が小さく、表面美麗性の優れた型内発泡成形体を低い加熱成形蒸気圧で製造することができる。   The pre-expanded polypropylene resin particles of the present invention can produce an in-mold expanded molded article having a small dimensional shrinkage and excellent surface aesthetics at a low thermoforming vapor pressure.

本発明の型内発泡成形体は、寸法精度、表面外観が良好であるため、緩衝包装材、通函、自動車用部材等に好適に使用することができる。
Since the in-mold foam molded article of the present invention has good dimensional accuracy and surface appearance , it can be suitably used for buffer packaging materials, boxing, automobile members, and the like.

本発明のポリプロピレン系樹脂予備発泡粒子は、メルトフローレート(以下、MFRと表記する場合がある)が4g/10min以上20g/10min以下、融点が145℃以下、曲げ弾性率が600MPa以上であり、融点と曲げ弾性率が下記式(1)を満たすポリプロピレン系樹脂を基材樹脂としたものである。
〔曲げ弾性率(MPa)〕≧31.19×〔融点(℃)〕−3500 (1)
The polypropylene resin pre-expanded particles of the present invention have a melt flow rate (hereinafter sometimes referred to as MFR) of 4 g / 10 min or more and 20 g / 10 min or less, a melting point of 145 ° C. or less, and a flexural modulus of 600 MPa or more, A polypropylene resin that has a melting point and a flexural modulus satisfying the following formula (1) is used as a base resin.
[Flexural modulus (MPa)] ≧ 31.19 × [melting point (° C.)] − 3500 (1)

本発明のポリプロピレン系樹脂は、モノマーとしてプロピレンを主体とした樹脂でありプロピレン単独であっても、他の共重合成分を含んでいても良い。共重合成分としては、エチレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられる。これらのうち、エチレン、1−ブテンを使用することが耐寒脆性向上、安価等という点で好ましい。 The polypropylene resin of the present invention is a resin mainly composed of propylene as a monomer and may be propylene alone or may contain other copolymerization components. Examples of copolymer components include ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1- Α-olefin having 2 or 4 to 12 carbon atoms such as heptene, 3-methyl-1-hexene, 1-octene, 1-decene, cyclopentene, norbornene, tetracyclo [6,2,1 1,8 , 1 3,6 ] Cyclic olefins such as 4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, etc. Diene, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, butyric acid butyl , Methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, and vinyl monomers such as divinylbenzene. Among these, it is preferable to use ethylene and 1-butene from the viewpoint of improving cold brittleness resistance and low cost.

本発明の基材樹脂として用いるポリプロピレン系樹脂は、共重合成分として1−ブテンを1重量%以上含むことが好ましく、2重量%以上がさらに好ましく、3重量%以上が最も好ましい。共重合成分として1−ブテンを含むと、樹脂融点に対する結晶性が高く、曲げ弾性率の高いポリプロピレン系樹脂型内発泡成形体が得られやすい。   The polypropylene resin used as the base resin of the present invention preferably contains 1% by weight or more of 1-butene as a copolymer component, more preferably 2% by weight or more, and most preferably 3% by weight or more. When 1-butene is contained as a copolymerization component, a polypropylene resin in-mold foam molded article having high crystallinity with respect to the resin melting point and high flexural modulus is easily obtained.

さらに、本発明の基材樹脂として用いるポリプロピレン系樹脂は、エチレン−プロピレン−ブテンランダム共重合体であることが好ましく、この場合、エチレンの含有量は0.5重量%以上が好ましく、1.0重量%以上がより好ましく、1.5重量%以上がさらに好ましい。コモノマーとしてエチレンを含むことにより比較的安価に基材樹脂の融点を下げることができる傾向にある。   Furthermore, the polypropylene resin used as the base resin of the present invention is preferably an ethylene-propylene-butene random copolymer. In this case, the ethylene content is preferably 0.5% by weight or more, and 1.0 % By weight or more is more preferable, and 1.5% by weight or more is more preferable. By including ethylene as a comonomer, the melting point of the base resin tends to be lowered at a relatively low cost.

これらのポリプロピレン系樹脂は無架橋の状態が好ましいが、パーオキサイドや放射線により架橋させても良い。またポリプロピレン系樹脂と混合使用可能な他の熱可塑性樹脂、例えば低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリスチレン、ポリブテン、アイオノマー等をポリプロプレン系樹脂の特性が失われない範囲で混合使用しても良い。   These polypropylene resins are preferably in a non-crosslinked state, but may be crosslinked by peroxide or radiation. Also, other thermoplastic resins that can be mixed with polypropylene resin, such as low density polyethylene, linear low density polyethylene, polystyrene, polybutene, ionomer, etc. are mixed and used within the range that does not lose the properties of polypropylene resin. Also good.

本発明のポリプロピレン系樹脂はMFRが4g/10min以上20g/10min以下であり、好ましくは5g/10min以上15g/10min以下である。本発明においてMFRの測定は、JIS K 7210記載のMFR測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、230±0.2℃の条件下で測定したときの値である。MFRが上記範囲にあると比較的大きな発泡倍率のポリプロピレン系樹脂予備発泡粒子が得られやすく、それを型内発泡成形すると、型内発泡成形体の表面美麗性が優れ、寸法収縮率が小さい型内発泡成形体が得られる。   The polypropylene resin of the present invention has an MFR of 4 g / 10 min to 20 g / 10 min, preferably 5 g / 10 min to 15 g / 10 min. In the present invention, MFR is measured using an MFR measuring instrument described in JIS K 7210, with an orifice of 2.0959 ± 0.005 mmφ, an orifice length of 8.000 ± 0.025 mm, a load of 2160 g, and 230 ± 0.2 ° C. It is the value when measured below. When the MFR is in the above range, it is easy to obtain a pre-expanded polypropylene resin particle having a relatively large expansion ratio, and when it is subjected to in-mold foam molding, the mold has excellent surface beauty and small dimensional shrinkage. An inner foamed molded product is obtained.

また、本発明のポリプロピレン系樹脂は融点が145℃以下であり、好ましくは142℃以下である。ここで言う融点は、示差走査熱量計を用いて、試料5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事により樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに、2回目の昇温時に得られるDSC曲線における融解ピーク温度である。融点が145℃より高い場合は大幅に低い蒸気圧で成形できない。   The polypropylene resin of the present invention has a melting point of 145 ° C. or lower, preferably 142 ° C. or lower. The melting point here refers to melting a resin particle by heating a sample 5-6 mg from 40 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter, and then 10 ° C./min. At a melting peak temperature in the DSC curve obtained at the second temperature increase when the temperature is further increased from 40 ° C. to 220 ° C. at a rate of 10 ° C./min. is there. When the melting point is higher than 145 ° C., molding cannot be performed with a significantly low vapor pressure.

また、本発明のポリプロピレン系樹脂の曲げ弾性率は600MPa以上であり、好ましくは650MPa以上であり、より好ましくは700MPaである。曲げ弾性率が600MPa未満では型内発泡成形体の寸法収縮率が大きくなる。なお、本発明において曲げ弾性率は、ASTM D790に従って測定する。   Further, the flexural modulus of the polypropylene resin of the present invention is 600 MPa or more, preferably 650 MPa or more, and more preferably 700 MPa. When the flexural modulus is less than 600 MPa, the dimensional shrinkage rate of the in-mold foam molded product increases. In the present invention, the flexural modulus is measured according to ASTM D790.

さらには、本発明のポリプロピレン系樹脂は、曲げ弾性率と融点の間に下記式(1)を満たす。
〔曲げ弾性率(MPa)〕≧31.19×〔融点(℃)〕−3500 (1)
Furthermore, the polypropylene resin of the present invention satisfies the following formula (1) between the flexural modulus and the melting point.
[Flexural modulus (MPa)] ≧ 31.19 × [melting point (° C.)] − 3500 (1)

ポリプロピレン系樹脂が前記式(1)の範囲である場合、融点に対して比較的曲げ弾性率が高く、得られる型内発泡成形体の剛性が高くなり寸法収縮率が少ない、また、融点が比較的低いため低い加熱蒸気圧での成形も可能である。   When the polypropylene resin is in the range of the above formula (1), the bending elastic modulus is relatively high with respect to the melting point, the rigidity of the obtained in-mold foam molded article is high, and the dimensional shrinkage rate is small, and the melting points are compared. Therefore, molding with a low heating vapor pressure is also possible.

上記のポリプロピレン系樹脂は、通常、予備発泡に利用されやすいようにあらかじめ押出機、ニーダー、バンバリミキサー、ロール等を用いて溶融し、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状で、その粒子の平均粒径が好ましくは0.1〜5mm、更に好ましくは0.5〜3mmになるようなポリプロピレン系樹脂粒子に成形加工される。   The above polypropylene resin is usually melted in advance using an extruder, kneader, Banbury mixer, roll, etc. so as to be easily used for pre-foaming, and has a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, etc. In such a desired particle shape, the resin is molded into polypropylene resin particles having an average particle size of preferably 0.1 to 5 mm, more preferably 0.5 to 3 mm.

本発明において、ポリプロピレン系樹脂の他に、帯電防止剤、顔料、難燃性改良材、導電性改良材等を必要により加えてもよく、その場合は、これらは、通常、樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。   In the present invention, in addition to the polypropylene resin, an antistatic agent, a pigment, a flame retardant improving material, a conductivity improving material and the like may be added as necessary. It is preferable to add to the molten resin.

本発明のポリプロピレン系樹脂予備発泡粒子は、ポリプロピレン系樹脂粒子、発泡剤、水、分散剤、分散助剤を含んでなる分散液を耐圧容器に入れて、所定温度まで加熱し、加圧下のもと、容器内混合物を、好ましくはポリプロピレン系樹脂粒子の融点−20℃以上+10℃以下の範囲の温度に加熱するとともに発泡剤を含浸させ、容器内の温度、圧力を一定に保持しながら、加圧下で、ポリプロピレン系樹脂粒子と水との混合物を容器内よりも低圧雰囲気下に放出することによりポリプロピレン系樹脂予備発泡粒子を製造することができる。   The polypropylene resin pre-expanded particles of the present invention are prepared by placing a dispersion containing polypropylene resin particles, a foaming agent, water, a dispersant and a dispersion aid in a pressure vessel, heating to a predetermined temperature, The mixture in the container is preferably heated to a temperature in the range of -20 ° C to + 10 ° C in the melting point of the polypropylene resin particles and impregnated with the foaming agent, and the temperature and pressure in the container are kept constant. Polypropylene resin pre-expanded particles can be produced by releasing a mixture of polypropylene resin particles and water under pressure under a lower pressure atmosphere than in the container.

本発明に使用されるポリプロピレン系樹脂粒子に含浸させる発泡剤としては、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素類;シクロペンタン、シクロブタン等の脂環式炭化水素類;空気、窒素、炭酸ガス等の無機ガス類;水、等が上げられる。これらの発泡剤は単独で用いてもよく、また、2種類以上併用してもよい。好ましくは、炭酸ガス、水や、より高倍率での発泡を可能とするイソブタンである。   Examples of the foaming agent impregnated into the polypropylene resin particles used in the present invention include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane and hexane; and alicyclic carbonization such as cyclopentane and cyclobutane. Hydrogen; inorganic gases such as air, nitrogen, carbon dioxide; water, etc. These foaming agents may be used alone or in combination of two or more. Preferably, carbon dioxide, water, or isobutane that enables foaming at a higher magnification.

またその使用量に限定はなく、ポリプロピレン系樹脂予備発泡粒子の所望の発泡倍率に応じて適宣使用すれば良く、通常発泡剤の使用量はポリプロピレン系樹脂粒子100重量部に対して3重量部以上60重量部以下であることが好ましい。   The amount used is not limited, and may be appropriately used according to the desired expansion ratio of the polypropylene resin pre-expanded particles. The amount of the foaming agent used is usually 3 parts by weight with respect to 100 parts by weight of the polypropylene resin particles. The amount is preferably 60 parts by weight or less.

ポリプロピレン系樹脂予備発泡粒子製造時に使用する耐圧容器には特に制限はなく、ポリプロピレン系樹脂予備発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよく、例えばオートクレーブ型の耐圧容器があげられる。   There is no particular limitation on the pressure vessel used when producing the polypropylene resin pre-expanded particles, and any pressure-resistant vessel that can withstand the pressure and temperature in the vessel at the time of producing the polypropylene resin pre-expanded particles may be used. For example, an autoclave-type pressure vessel Can be given.

本発明で使用することが出来る分散剤としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、塩基性炭酸亜鉛、酸化アルミニウム、酸化鉄、酸化チタン、アルミノ珪酸塩、硫酸バリウム等の無機系分散剤が挙げられる。   Examples of the dispersant that can be used in the present invention include tribasic calcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, and aluminosilicate. And inorganic dispersants such as barium sulfate.

本発明で使用することが出来る分散助剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられる。これらの中でも、分散剤と分散助剤の組み合わせとしては、第三リン酸カルシウムとドデシルベンゼンスルホン酸ナトリウムの組み合わせが好ましい。   Examples of the dispersion aid that can be used in the present invention include sodium dodecylbenzene sulfonate, sodium n-paraffin sulfonate, and sodium α-olefin sulfonate. Among these, as a combination of a dispersant and a dispersion aid, a combination of tricalcium phosphate and sodium dodecylbenzenesulfonate is preferable.

分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2重量部以上3重量部以下、分散助剤0.001重量部以上0.1重量部以下であることが好ましい。また、ポリプロピレン系樹脂粒子は、水中での分散性を良好なものにするために、通常、水100重量部に対して20重量部以上100重量部以下使用するのが好ましい。   The amount of dispersant and dispersion aid used varies depending on the type and the type and amount of polypropylene resin used, but usually 0.2 parts by weight to 3 parts by weight of dispersant with respect to 100 parts by weight of water, The dispersion aid is preferably 0.001 part by weight or more and 0.1 part by weight or less. Moreover, in order to make the polypropylene resin particles have good dispersibility in water, it is usually preferable to use 20 to 100 parts by weight with respect to 100 parts by weight of water.

本発明のポリプロピレン系樹脂予備発泡粒子を製造するためには、基材樹脂にセル造核剤を添加することがこのましい。セル造核剤としてはプロパン、ブタン、ペンタン、ヘキサン等の炭化水素系発泡剤を使用する場合は、タルク、シリカ、炭酸カルシウムのような無機造核剤をポリプロピレン系樹脂100重量部に対して0.005重量部以上0.5重量部以下添加することが好ましい。また、空気、窒素、炭酸ガス、水等の無機発泡剤を使用する場合は、前記無機造核剤および/または吸水物質を使用することが好ましい。水を分散媒として使用する場合、ポリプロピレン系樹脂中に水が含浸し、含浸した水は他の発泡剤と共にあるいは単独で発泡剤として作用する。吸水物質は含浸水分量を多くするように作用する。   In order to produce the polypropylene resin pre-expanded particles of the present invention, it is preferable to add a cell nucleating agent to the base resin. When a hydrocarbon foaming agent such as propane, butane, pentane or hexane is used as the cell nucleating agent, an inorganic nucleating agent such as talc, silica or calcium carbonate is added to 100 parts by weight of the polypropylene resin. It is preferable to add 0.005 parts by weight or more and 0.5 parts by weight or less. Moreover, when using inorganic foaming agents, such as air, nitrogen, a carbon dioxide gas, and water, it is preferable to use the said inorganic nucleating agent and / or a water absorbing substance. When water is used as a dispersion medium, water is impregnated into the polypropylene resin, and the impregnated water acts as a foaming agent together with other foaming agents or alone. The water-absorbing substance acts to increase the amount of impregnated water.

吸水物質の具体例として、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硼砂、硼酸亜鉛等の水溶性無機物、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物等の吸水性有機物、ポリエチレングリコール、ポリエチレンオキシド等のポリエーテル、ポリエーテルのポリプロピレン等への付加物やこれらのアロイ、エチレン(メタ)アクリル酸共重合体のアルカリ金属塩、ブタジエン(メタ)アクリル酸共重合体のアルカリ金属塩、カルボキシル化ニトリルゴムのアルカリ金属塩、イソブチレン−無水マレイン酸共重合体のアルカリ金属塩及びポリ(メタ)アクリル酸のアルカリ金属塩等の親水性ポリマーが挙げられる。   Specific examples of the water-absorbing substance include water-soluble inorganic substances such as sodium chloride, calcium chloride, magnesium chloride, borax and zinc borate, water-absorbing organic substances such as melamine, isocyanuric acid, melamine / isocyanuric acid condensate, polyethylene glycol, polyethylene oxide and the like. Polyethers, addition products of polyethers to polypropylene, and alloys thereof, alkali metal salts of ethylene (meth) acrylic acid copolymers, alkali metal salts of butadiene (meth) acrylic acid copolymers, carboxylated nitrile rubber Examples thereof include hydrophilic polymers such as alkali metal salts, alkali metal salts of isobutylene-maleic anhydride copolymer and alkali metal salts of poly (meth) acrylic acid.

吸水物質の添加量は、目的とする発泡倍率、使用する発泡剤、使用する吸水物質の種類によって異なるが、水溶性無機物を使用する場合、ポリプロピレン系樹脂100重量部に対して、0.01重量部以上1重量部以下であることが好ましく、親水性ポリマーを使用する場合、ポリプロピレン系樹脂100重量部に対して、0.1重量部以上5重量部以下であることが好ましい。また、これら、水溶性無機物や親水性ポリマーを2種以上併用してもよい。無機造核剤や吸水物質の種類や量を調整することによりポリプロピレン系樹脂発泡粒子の平均気泡径を調整することができる。   The amount of water-absorbing substance added varies depending on the target foaming ratio, the foaming agent used, and the type of water-absorbing substance used, but when using a water-soluble inorganic substance, 0.01 wt. The amount is preferably not less than 1 part by weight and not more than 1 part by weight. When a hydrophilic polymer is used, it is preferably not less than 0.1 part by weight and not more than 5 parts by weight with respect to 100 parts by weight of the polypropylene resin. Two or more of these water-soluble inorganic substances and hydrophilic polymers may be used in combination. The average cell diameter of the polypropylene resin foamed particles can be adjusted by adjusting the kind and amount of the inorganic nucleating agent and the water-absorbing substance.

本発明のポリプロピレン系樹脂予備発泡粒子は、ポリプロピレン系樹脂予備発泡粒子表面に付着した無機分散剤量は1000ppm以下であることが好ましく、より好ましくは800ppm以下であり、最も好ましくは600ppm以下である。当該範囲内であれば、型内発泡成形の際にポリプロピレン系樹脂予備発泡粒子同士の融着性が阻害されないため好ましい。   In the polypropylene resin pre-expanded particles of the present invention, the amount of the inorganic dispersant adhering to the surface of the polypropylene resin pre-expanded particles is preferably 1000 ppm or less, more preferably 800 ppm or less, and most preferably 600 ppm or less. If it is in the said range, since the melt | fusion property of polypropylene resin pre-expanded particles is not inhibited in the case of in-mold foam molding, it is preferable.

以上の製造方法により得られるポリプロピレン系樹脂予備発泡粒子表面に付着した無機分散剤量が1000ppmより多い場合は、予備発泡粒子の洗浄等によって付着無機分散剤量を減らすことができる。例えば、分散剤として第三リン酸カルシウムや第三リン酸マグネシウムを用いた場合には予備発泡粒子を塩酸水溶液やヘキサメタリン酸ナトリウム水溶液などで洗浄する方法が挙げられる。   When the amount of the inorganic dispersant adhering to the surface of the polypropylene resin pre-expanded particles obtained by the above production method is more than 1000 ppm, the amount of the adhering inorganic dispersant can be reduced by washing the pre-expanded particles. For example, when tricalcium phosphate or tribasic magnesium phosphate is used as the dispersant, a method of washing the pre-foamed particles with a hydrochloric acid aqueous solution, a sodium hexametaphosphate aqueous solution or the like can be mentioned.

付着無機分散剤量については各種分光分析や、或いはポリプロピレン系樹脂予備発泡粒子を燃焼したときの灰分量から定量できる。例えば分散剤として、リン酸塩を使用する場合、乾燥させた予備発泡粒子をメタバナジン酸アンモニウム0.022重量%、モリブデン酸アンモニウム0.54重量%および硝酸3重量%を含む水溶液(比色液)50.0mLとW(g)の予備発泡粒子をコニカルビーカーに採り、1分間撹拌したのち10分間放置した。得られた液相を光路長1.0cmの石英セルに採り、分光光度計により410nmでの吸光度A(−)を測定し、標準のリン酸塩溶液の吸光度から求めることが出来る。   The amount of the adhering inorganic dispersant can be determined from various spectroscopic analyzes or from the amount of ash when the polypropylene resin pre-expanded particles are burned. For example, when phosphate is used as a dispersant, the dried pre-foamed particles are an aqueous solution (colorimetric solution) containing 0.022 wt% ammonium metavanadate, 0.54 wt% ammonium molybdate and 3 wt% nitric acid. 50.0 mL and W (g) of pre-expanded particles were placed in a conical beaker, stirred for 1 minute, and allowed to stand for 10 minutes. The obtained liquid phase is put in a quartz cell having an optical path length of 1.0 cm, and the absorbance A (−) at 410 nm is measured with a spectrophotometer, and can be obtained from the absorbance of a standard phosphate solution.

本発明のポリプロピレン系樹脂予備発泡粒子の平均気泡径は100μm以上が好ましく、120μm以上がさらに好ましい。平均気泡径が100μm未満では型内発泡成形体の収縮率が大きくなったり、表面美麗性が低下する場合がある。   The average cell diameter of the polypropylene resin pre-expanded particles of the present invention is preferably 100 μm or more, and more preferably 120 μm or more. If the average cell diameter is less than 100 μm, the shrinkage rate of the in-mold foam molded product may increase or the surface aesthetics may deteriorate.

本発明のポリプロピレン系樹脂予備発泡粒子は図1に示すように、示差走査熱量計法による測定で、40℃から200℃まで10℃/分の速度で昇温した時に得られるDSC曲線において2つの融解ピークを有することが好ましく、該融解ピークのうち低温側のピーク温度が140℃以下であることが好ましい。より好ましくは137℃以下であり、135℃以下がさらに好ましい。低温側のピーク温度が140℃より高い場合は大幅に低い蒸気圧で成形できない場合がある。   As shown in FIG. 1, the pre-expanded particles of the polypropylene resin of the present invention have two DSC curves obtained when the temperature is raised from 40 ° C. to 200 ° C. at a rate of 10 ° C./min as measured by a differential scanning calorimetry method. It is preferable to have a melting peak, and the peak temperature on the low temperature side of the melting peak is preferably 140 ° C. or lower. More preferably, it is 137 degrees C or less, and 135 degrees C or less is still more preferable. When the peak temperature on the low temperature side is higher than 140 ° C., molding may not be possible at a significantly low vapor pressure.

さらに、上記DSC曲線の低温側ピークと、低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である低温側の融解ピーク熱量(Ql)と、DSC曲線の高温側ピークと、低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量(Qh)から算出した、高温側の融解ピークの比率(Qh/(Ql+Qh)×100(以下、DSC比と略す))が10%以上50%以下であることが好ましく、より好ましくは15%以上40%以下の範囲である。DSC比が当該範囲であると、表面美麗性の高い型内発泡成形体が得られやすい。   Further, the low temperature side peak of the DSC curve, the low temperature side melting peak calorie (Ql), which is the amount of heat surrounded by the tangent to the melting start baseline from the maximum point between the low temperature side peak and the high temperature side peak, and the DSC Melting on the high temperature side calculated from the high temperature side melting peak calorie (Qh), which is the amount of heat surrounded by the tangent to the melting end baseline from the high temperature side peak of the curve and the maximum point between the low temperature side peak and the high temperature side peak The peak ratio (Qh / (Ql + Qh) × 100 (hereinafter abbreviated as DSC ratio)) is preferably 10% or more and 50% or less, and more preferably 15% or more and 40% or less. When the DSC ratio is within the above range, an in-mold foam molded product having a high surface beauty is easily obtained.

本発明のポリプロピレン系樹脂予備発泡粒子の発泡倍率は、好ましくは5倍以上50倍以下であり、さらに好ましくは7倍以上45倍以下である。また、上述の方法(一段発泡と称する場合がある)で5倍以上35倍以下のポリプロピレン系樹脂予備発泡粒子(一段発泡粒子と称する場合がある)を製造し、該一段発泡粒子を耐圧密閉容器内に入れて窒素、空気などを0.1〜0.6MPa加圧含浸させる加圧処理により一段発泡粒子内の圧力を常圧よりも高くした後、該発泡粒子をスチーム等で加熱して更に発泡させることにより、一段発泡粒子以上の発泡倍率のポリプロピレン系樹脂予備発泡粒子(以下、二段発泡粒子と称する場合がある)を得ても良い。   The expansion ratio of the polypropylene resin pre-expanded particles of the present invention is preferably 5 to 50 times, and more preferably 7 to 45 times. Further, a polypropylene resin pre-expanded particle (sometimes referred to as a single-stage expanded particle) of 5 to 35 times is manufactured by the above-described method (sometimes referred to as a single-stage expansion), and the single-stage expanded particle is sealed in a pressure-resistant sealed container. After the pressure in the one-stage expanded particles is made higher than the normal pressure by pressurizing and impregnating with nitrogen, air, etc. at 0.1 to 0.6 MPa, the expanded particles are further heated with steam or the like. By foaming, pre-expanded polypropylene resin particles (hereinafter sometimes referred to as “two-stage expanded particles”) having an expansion ratio equal to or higher than the first-stage expanded particles may be obtained.

ここで予備発泡粒子の発泡倍率は、ポリプロピレン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前のポリプロピレン系樹脂粒子の密度d(g/cm3)から次式により求めたものである。
発泡倍率=d×v/w
Here, the expansion ratio of the pre-expanded particles is obtained by determining the weight w (g) and the ethanol submerged volume v (cm 3 ) of the polypropylene resin pre-expanded particles, and the density d (g / cm 3 ) of the polypropylene resin particles before expansion. From the following equation.
Foaming ratio = d × v / w

本発明のポリプロピレン系樹脂予備発泡粒子は、型内発泡成形を行って型内発泡成形体とする。型内発泡成形に用いる場合には、イ)そのまま用いる方法、ロ)あらかじめ予備発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する方法、ハ)予備発泡粒子を圧縮状態で金型内に充填し成形する方法、など従来既知の方法が使用しうる。   The polypropylene resin pre-expanded particles of the present invention are subjected to in-mold foam molding to obtain an in-mold foam molded body. When used for in-mold foam molding, a) a method for use as it is, b) a method in which an inorganic gas such as air is press-fitted into the pre-foamed particles in advance to impart foaming capability, and c) the pre-foamed particles are gold in a compressed state. A conventionally known method such as a method of filling in a mold and molding can be used.

本発明のポリプロピレン系樹脂予備発泡粒子から型内発泡成形体を成形する方法としては、たとえばあらかじめ予備発泡粒子を耐圧容器内で空気加圧し、粒子中に空気を圧入することにより発泡能を付与し、これを閉鎖しうるが密閉し得ない成形型内に充填し、水蒸気などを加熱媒体として0.1〜0.4MPa(ゲージ圧)程度の加熱水蒸気圧で3〜30秒程度の加熱時間で成形しポリプロピレン系樹脂予備発泡粒子同士を融着させ、このあと成形金型を水冷により型内発泡成形体取り出し後の型内発泡成形体の変形を抑制できる程度まで冷却した後、金型を開き、型内発泡成形体を得る方法などが挙げられる。   As a method for molding an in-mold foam molded body from the polypropylene resin pre-foamed particles of the present invention, for example, the pre-foamed particles are preliminarily air-pressurized in a pressure-resistant container, and air is injected into the particles to give foaming ability. In a mold that can be closed but cannot be sealed, steam or the like is used as a heating medium with a heating steam pressure of about 0.1 to 0.4 MPa (gauge pressure) in a heating time of about 3 to 30 seconds. Molding and pre-expanding the polypropylene resin pre-expanded particles, and then cooling the mold to a level that can prevent deformation of the in-mold foam molding after taking out the in-mold foam molding by water cooling, and then opening the mold And a method for obtaining an in-mold foam molded article.

また、ポリプロピレン系樹脂予備発泡粒子の内圧は、例えば耐圧容器内で、1〜48時間、室温〜80℃の温度条件下、空気、窒素等の無機ガスによって0.1〜1.0MPa(ゲージ圧)加圧することによって調整できる。   In addition, the internal pressure of the polypropylene resin pre-expanded particles is 0.1 to 1.0 MPa (gauge pressure) by an inorganic gas such as air and nitrogen under a temperature condition of room temperature to 80 ° C. for 1 to 48 hours, for example. ) Can be adjusted by applying pressure.

上述の予備発泡粒子を用いて得られる型内発泡成形体の密度は10kg/m3以上300kg/m3以下であることが好ましく、より好ましくは15kg/m3以上250kg/m3以下である。 The density of the in-mold foam molded body obtained using the above pre-expanded particles is preferably 10 kg / m 3 or more and 300 kg / m 3 or less, more preferably 15 kg / m 3 or more and 250 kg / m 3 or less.

以下、本発明を実施例によって詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

実施例、比較例で用いたプロピレン系樹脂を表1および図2に示す。   The propylene resins used in the examples and comparative examples are shown in Table 1 and FIG.

Figure 0005365901
〔融点の測定〕
セイコーインスツルメンツ(株)製のDSC6200型示差走査熱量計を用いて、ポリプロピレン系樹脂粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事により樹脂粒子を融解し、その後10℃/minで220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度を融点として求めた。
Figure 0005365901
[Measurement of melting point]
Using a DSC6200 differential scanning calorimeter manufactured by Seiko Instruments Inc., 5-6 mg of polypropylene resin particles are heated from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min to melt the resin particles. Then, after crystallizing by lowering the temperature from 220 ° C. to 40 ° C. at 10 ° C./min, the second rise from the DSC curve obtained when the temperature is further raised from 40 ° C. to 220 ° C. at 10 ° C./min. The melting peak temperature when warm was determined as the melting point.

〔ポリプロピレン系樹脂の曲げ弾性率〕
ポリプロピレン系樹脂を80℃にて6時間乾燥させた後、35t射出成形機を用い、シリンダー温度200℃、金型温度30℃にて厚み6.4mmバー(幅12mm、長さ127mm)を作製して、一週間以内にASTM D790に従い曲げ試験を行い、曲げ弾性率を求めた。
[Flexural modulus of polypropylene resin]
After drying the polypropylene resin at 80 ° C for 6 hours, a 35t injection molding machine is used to produce a 6.4mm bar (width 12mm, length 127mm) at a cylinder temperature of 200 ° C and a mold temperature of 30 ° C. Then, a bending test was performed according to ASTM D790 within one week to obtain a bending elastic modulus.

〔予備発泡粒子の発泡倍率〕
嵩体積約50cm3のポリプロピレン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前の樹脂粒子の密度d(g/cm3)から次式により求めた。
発泡倍率=d×v/w
[Expansion ratio of pre-expanded particles]
Obtains the bulk volume of about 50 cm 3 of polypropylene by weight of the resin pre-expanded particles w (g) and ethanol submerged volume v (cm 3), was determined by the following formula from the density d of before foaming of the resin particles (g / cm 3) .
Foaming ratio = d × v / w

〔融着性評価〕
得られたポリプロピレン系樹脂型内発泡成形体を、カッターナイフで発泡成形体の厚み方向に約3mmの切り込みを入れた後、手で切り込み部から発泡成形体を破断し、破断面を観察して、破断面を構成する発泡粒子数に対する破壊された発泡粒子の割合を求めて以下の判定とした。
60%以上・・・○
60%未満・・・×
[Fusability evaluation]
The obtained polypropylene resin molded foam-molded product was cut with a cutter knife in the thickness direction of the foam-molded product by about 3 mm, and then the foam-molded product was broken by hand from the cut portion, and the fracture surface was observed. The ratio of the expanded foam particles to the number of the expanded particles constituting the fractured surface was determined, and the following determination was made.
60% or more
Less than 60% ... ×

〔表面性評価〕
得られたポリプロピレン系樹脂発泡成形体の表面を観察し、10cm2当たりの粒子間の1mm2以上の陥没や間隙の平均個数を求めて以下の判定とした。
100箇所未満・・・○
100箇所以上・・・×
[Surface property evaluation]
The surface of the obtained polypropylene resin foam molded article was observed, and the average number of depressions and gaps of 1 mm 2 or more between particles per 10 cm 2 was determined as the following judgment.
Less than 100 ... ○
More than 100 ... ×

〔寸法収縮率〕
得られたポリプロピレン系樹脂発泡成形体の長手寸法を測定し、金型寸法(400mm)に対する収縮率を算出して以下の判定とした。
5%未満・・・○
5%以上・・・×
[Dimensional shrinkage]
The longitudinal dimension of the obtained polypropylene resin foam molded article was measured, and the shrinkage rate with respect to the mold dimension (400 mm) was calculated, and the following determination was made.
Less than 5% ... ○
5% or more ×

〔付着分散剤量の測定(分散剤がリン酸マグネシウムの場合)〕
乾燥させた予備発泡粒子をメタバナジン酸アンモニウム0.022重量%、モリブデン酸アンモニウム0.54重量%および硝酸3重量%を含む水溶液(比色液)50.0mLとW(g)の予備発泡粒子をコニカルビーカーに採り、1分間撹拌したのち10分間放置した。得られた液相を光路長1.0cmの石英セルに採り、分光光度計により410nmでの吸光度A(−)を測定した。
[Measurement of amount of adhering dispersant (when the dispersant is magnesium phosphate)]
The dried pre-expanded particles were prepared by adding 50.0 mL of an aqueous solution (colorimetric solution) containing 0.022 wt% ammonium metavanadate, 0.54 wt% ammonium molybdate and 3 wt% nitric acid and W (g). The sample was placed in a conical beaker, stirred for 1 minute, and allowed to stand for 10 minutes. The obtained liquid phase was put in a quartz cell having an optical path length of 1.0 cm, and the absorbance A (−) at 410 nm was measured with a spectrophotometer.

同一の比色液について、予め測定しておいた第三リン酸マグネシウムの410nmでの吸光度係数ε(g/L・cm)を用いて、第三リン酸マグネシウムの付着量C(ppm)=4.7×104・ε・A/Wを求めた。 For the same colorimetric solution, the amount of tribasic magnesium phosphate adhering C (ppm) = 4 using the absorbance coefficient ε (g / L · cm) of tribasic magnesium phosphate at 410 nm measured in advance. 7 × 10 4 · ε · A / W was determined.

(実施例1)
ポリプロピレン系樹脂として、融点140.8℃、曲げ弾性率953MPaのエチレン−プロピレン−ブテンランダム共重合体(A−1)100重量部を用い、セル造核剤としポリエチレングリコール(ライオン(株)製PEG#300)0.5重量部およびタルク(林化成製PKS)0.1重量部をブレンドした後、50mm単軸押出機(大阪精機工作(株)製20VSE−50−28型)内で溶融混練した。得られた溶融混練樹脂を円形ダイよりストランド状に押出し、水冷後、ペレタイザーで切断し、一粒の重量が1.2mg/粒のポリプロピレン系樹脂粒子を得た。
Example 1
As a polypropylene resin, 100 parts by weight of an ethylene-propylene-butene random copolymer (A-1) having a melting point of 140.8 ° C. and a flexural modulus of 953 MPa is used as a cell nucleating agent, and polyethylene glycol (PEG manufactured by Lion Corporation) # 300) After blending 0.5 part by weight and 0.1 part by weight of talc (PKS made by Hayashi Kasei), melt kneading in a 50 mm single screw extruder (20VSE-50-28 type, manufactured by Osaka Seiki Co., Ltd.) did. The obtained melt-kneaded resin was extruded into a strand from a circular die, cooled with water, and cut with a pelletizer to obtain polypropylene resin particles having a weight of 1.2 mg / grain.

得られたポリプロピレン系樹脂粒子100重量部、水200重量部、分散剤として第3リン酸マグネシウム1.0重量部、分散助剤としてアルキルスルホン酸ナトリウム0.05重量部を容量10Lの耐圧オートクレーブ中に仕込み、攪拌下、発泡剤として炭酸ガスを6.25重量部添加した。オートクレーブ内容物を昇温し、146.4℃の発泡温度まで加熱した後、さらに炭酸ガスを追加してオートクレーブ内圧を3.0MPa(ゲージ圧)とした。その後、30分間保持した後、オートクレーブ下部のバルブを開き、4.0mmφの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出して一段発泡粒子を得た。得られた一段発泡粒子の発泡倍率は17倍、融点ピークのDSC比は20%であった。得られた一段発泡粒子内に空気含浸により0.32MPaの内圧を付与し、0.11MPa(ゲージ圧)の蒸気により加熱し、発泡倍率約30倍の発泡粒子を得た。結果を表2に示す。   In a pressure-resistant autoclave having a capacity of 10 L, 100 parts by weight of the obtained polypropylene resin particles, 200 parts by weight of water, 1.0 part by weight of tertiary magnesium phosphate as a dispersant, and 0.05 parts by weight of sodium alkylsulfonate as a dispersion aid. Then, under stirring, 6.25 parts by weight of carbon dioxide gas was added as a foaming agent. The temperature of the autoclave was raised and heated to a foaming temperature of 146.4 ° C., and then carbon dioxide was added to make the autoclave internal pressure 3.0 MPa (gauge pressure). Then, after holding for 30 minutes, the valve | bulb of the autoclave lower part was opened, the autoclave content was discharge | released under atmospheric pressure through the 4.0 mm diameter opening orifice, and the 1st stage | paragraph expanded particle was obtained. The resulting single-stage expanded particles had an expansion ratio of 17 times and a DSC ratio of the melting point peak of 20%. An internal pressure of 0.32 MPa was applied to the obtained one-stage expanded particles by air impregnation, and heated with 0.11 MPa (gauge pressure) steam to obtain expanded particles with an expansion ratio of about 30 times. The results are shown in Table 2.

得られたポリプロピレン系樹脂予備発泡粒子を、pH=1の塩酸水溶液で洗浄した後、75℃で乾燥し、ダイセン株式会社製ポリオレフィン発泡成形機KD−345を用い、縦300mm×横400mm×厚み21mmの金型に、あらかじめ予備発泡粒子内部の空気圧力が0.20MPaになるように調整したポリプロピレン系樹脂予備発泡粒子を充填し、0.20および0.25MPa(ゲージ圧)の水蒸気で厚み方向に5%圧縮して加熱成形させることにより、ポリプロピレン系樹脂発泡成形体を得た。得られた発泡成形体は1時間室温で放置した後、75℃の恒温室内で3時間養生乾燥を行い、再び室温に取出してから室温で1時間放置した後の粒子間の融着性と型内発泡成形体の表面状態および寸法収縮率を評価した。結果を表2に示す。   The obtained polypropylene resin pre-expanded particles were washed with an aqueous hydrochloric acid solution having a pH of 1, and then dried at 75 ° C., and using a polyolefin foam molding machine KD-345 manufactured by Daisen Corporation, the length was 300 mm × width 400 mm × thickness 21 mm. Is filled with polypropylene resin pre-expanded particles adjusted in advance so that the air pressure inside the pre-expanded particles becomes 0.20 MPa, and 0.20 and 0.25 MPa (gauge pressure) water vapor is used in the thickness direction. A polypropylene resin foamed molded article was obtained by compression molding at 5% and thermoforming. The obtained foamed molded product was allowed to stand at room temperature for 1 hour, then cured and dried in a thermostatic chamber at 75 ° C. for 3 hours, taken out again to room temperature, and then allowed to stand at room temperature for 1 hour, and the fusion between particles and the mold. The surface state and dimensional shrinkage of the inner foamed molded product were evaluated. The results are shown in Table 2.

Figure 0005365901
(実施例2)
実施例1において、基材樹脂として融点138.5℃、曲げ弾性率873MPaのエチレン−プロピレン−ブテンランダム共重合体(A−2)とし、表2記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。結果を表2に示す。
Figure 0005365901
(Example 2)
In Example 1, except that the base resin was an ethylene-propylene-butene random copolymer (A-2) having a melting point of 138.5 ° C. and a flexural modulus of 873 MPa, and the conditions described in Table 2 were used, Similarly, a polypropylene resin pre-expanded particle was obtained, and an in-mold expanded molded body was obtained. The results are shown in Table 2.

(実施例3)
実施例1において、基材樹脂として融点143.0℃、曲げ弾性率1025MPaのエチレン−プロピレン−ブテンランダム共重合体(A−3)とし、表2記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。結果を表2に示す。
(Example 3)
In Example 1, except that the base resin is an ethylene-propylene-butene random copolymer (A-3) having a melting point of 143.0 ° C. and a flexural modulus of 1025 MPa, and the conditions described in Table 2 are used, Similarly, a polypropylene resin pre-expanded particle was obtained, and an in-mold expanded molded body was obtained. The results are shown in Table 2.

(実施例4)
実施例1において、基材樹脂として融点139.7℃、曲げ弾性率911MPaのエチレン−プロピレン−ブテンランダム共重合体(A−4)とし、表2記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。結果を表2に示す。
Example 4
In Example 1, except that the base resin was an ethylene-propylene-butene random copolymer (A-4) having a melting point of 139.7 ° C. and a flexural modulus of 911 MPa, and the conditions described in Table 2 were used, Similarly, a polypropylene resin pre-expanded particle was obtained, and an in-mold expanded molded body was obtained. The results are shown in Table 2.

(実施例5)
実施例1において、基材樹脂として融点141.6℃、曲げ弾性率987MPaのエチレン−プロピレン−ブテンランダム共重合体(A−5)とし、表2記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。結果を表2に示す。
(Example 5)
In Example 1, except that the base resin was an ethylene-propylene-butene random copolymer (A-5) having a melting point of 141.6 ° C. and a flexural modulus of 987 MPa, and the conditions described in Table 2 were used, Similarly, a polypropylene resin pre-expanded particle was obtained, and an in-mold expanded molded body was obtained. The results are shown in Table 2.

(実施例6)
実施例1において、基材樹脂として融点132.0℃、曲げ弾性率684MPaのエチレン−プロピレン−ブテンランダム共重合体(A−6)とし、表2記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。結果を表2に示す。
(Example 6)
In Example 1, the base resin was an ethylene-propylene-butene random copolymer (A-6) having a melting point of 132.0 ° C. and a flexural modulus of 684 MPa, and the conditions described in Table 2 were used. Similarly, a polypropylene resin pre-expanded particle was obtained, and an in-mold expanded molded body was obtained. The results are shown in Table 2.

(比較例1)
実施例1において、基材樹脂として融点145.1℃、曲げ弾性率1128MPaのエチレン−プロピレン−ブテンランダム共重合体(A−7)とし、表2記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。結果を表3に示す。
(Comparative Example 1)
In Example 1, as the base resin, an ethylene-propylene-butene random copolymer (A-7) having a melting point of 145.1 ° C. and a flexural modulus of 1128 MPa was used, and the conditions described in Table 2 were used. Similarly, a polypropylene resin pre-expanded particle was obtained, and an in-mold expanded molded body was obtained. The results are shown in Table 3.

Figure 0005365901
(比較例2)
実施例1において、基材樹脂として融点136.1℃、曲げ弾性率679MPaのエチレン−プロピレンランダム共重合体(A−8)とし、表2記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。結果を表3に示す。
Figure 0005365901
(Comparative Example 2)
In Example 1, except that the base resin was an ethylene-propylene random copolymer (A-8) having a melting point of 136.1 ° C. and a flexural modulus of 679 MPa, and the conditions described in Table 2 were used, the same as in Example 1. As a result, pre-expanded polypropylene resin particles were obtained, and an in-mold foam molded article was obtained. The results are shown in Table 3.

(比較例3)
実施例1において、基材樹脂として融点142.0℃、曲げ弾性率860MPaのエチレン−プロピレンランダム共重合体(A−9)とし、表2記載の条件とした以外は、実施例1と同様にして、ポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。結果を表3に示す。
(Comparative Example 3)
In Example 1, an ethylene-propylene random copolymer (A-9) having a melting point of 142.0 ° C. and a flexural modulus of 860 MPa was used as the base resin, and the same conditions as in Table 2 were used except that the conditions shown in Table 2 were used. As a result, pre-expanded polypropylene resin particles were obtained, and an in-mold foam molded article was obtained. The results are shown in Table 3.

実施例では、いずれも0.20MPa(ゲージ圧)の低い成型蒸気圧の成型で、融着性、表面性、寸法収縮率に優れた成形体が得られている。比較例1、2、および3ではポリプロピレン系樹脂が本発明の範囲外にあり、0.25MPa(ゲージ圧)での成形も困難であったり、成形できた場合も寸法収縮率が大きいものであった。   In the examples, moldings having a low molding vapor pressure of 0.20 MPa (gauge pressure) were obtained, and a molded article excellent in fusion property, surface property, and dimensional shrinkage ratio was obtained. In Comparative Examples 1, 2, and 3, the polypropylene resin is out of the scope of the present invention, and molding at 0.25 MPa (gauge pressure) is difficult, and even when molded, the dimensional shrinkage ratio is large. It was.

示差走査熱量計を用い、本発明記載のポリプロピレン系樹脂予備発泡粒子を測定した際に得られるDSC曲線の一例である。横軸は温度、縦軸は吸熱量である。It is an example of a DSC curve obtained when a differential scanning calorimeter is used to measure polypropylene resin pre-expanded particles according to the present invention. The horizontal axis is the temperature, and the vertical axis is the endothermic amount. 評価した実施例、ならびに比較例について、横軸に樹脂融点、縦軸に曲げ弾性率を取り、グラフ化したものである。2本の直線より囲まれた左上の部分が本発明の基材樹脂の融点、曲げ弾性率量の範囲である。実施例は全てこの範囲の中にある。比較例はこの範囲を外れている。About the Example evaluated and the comparative example, taking a resin melting | fusing point on a horizontal axis | shaft and a bending elastic modulus on the vertical axis | shaft, it graphed. The upper left part surrounded by two straight lines is the range of the melting point and bending elastic modulus of the base resin of the present invention. All examples are within this range. Comparative examples are outside this range.

Claims (5)

メルトフローレートが4g/10min以上20g/10min以下、融点が132.0〜143.0℃、曲げ弾性率が684〜1025MPaであり、融点と曲げ弾性率が下記式(1)を満たし、共重合成分として1−ブテンを1重量%以上含むエチレン−プロピレン−ブテンランダム共重合体(但し、融点が135℃以下の重合体を除く。)を基材樹脂とすることを特徴とするポリプロピレン系樹脂予備発泡粒子。
〔曲げ弾性率(MPa)〕≧31.19×〔融点(℃)〕−3500 (1)
A melt flow rate of 4 g / 10 min to 20 g / 10 min, a melting point of 132.0 to 143.0 ° C., a flexural modulus of 684 to 1025 MPa, a melting point and a flexural modulus satisfying the following formula (1), and copolymerization Polypropylene resin reserve characterized in that an ethylene-propylene-butene random copolymer containing 1% by weight or more of 1-butene as a component (excluding a polymer having a melting point of 135 ° C. or lower) is used as a base resin . Expanded particles.
[Flexural modulus (MPa)] ≧ 31.19 × [melting point (° C.)] − 3500 (1)
基材樹脂として用いるエチレン−プロピレン−ブテンランダム共重合体が、共重合成分として1−ブテンを3重量%以上含むことを特徴とする請求項1記載のポリプロピレン系樹脂予備発泡粒子。   The polypropylene-based resin pre-expanded particles according to claim 1, wherein the ethylene-propylene-butene random copolymer used as the base resin contains 3% by weight or more of 1-butene as a copolymer component. 示差走査熱量計法による測定で、40℃から200℃まで10℃/分の速度で昇温した時に得られるDSC曲線において2つの融解ピークを有し、該融解ピークのうち低温側のピーク温度が140℃以下であり、且つ、低温側の融解ピーク熱量(Ql)と、高温側の融解ピーク熱量(Qh)から算出した、高温側の融解ピークの比率(Qh/(Ql+Qh)×100)が10%以上50%以下であることを特徴とする、請求項1又は2の何れか一項記載のポリプロピレン系樹脂予備発泡粒子。   The DSC curve obtained when the temperature is increased from 40 ° C. to 200 ° C. at a rate of 10 ° C./min, as measured by differential scanning calorimetry, has a peak temperature on the low temperature side of the melting peak. The ratio (Qh / (Ql + Qh) × 100) of the melting peak on the high temperature side calculated from the melting peak calorie (Ql) on the low temperature side and the melting peak calorie (Qh) on the high temperature side is 10 ° C. or lower. The polypropylene-based resin pre-expanded particles according to claim 1, wherein the pre-expanded particles are polypropylene-based resin. ポリプロピレン系樹脂予備発泡粒子表面に付着した無機分散剤量が1000ppm以下であることを特徴とする請求項1〜3の何れか一項記載のポリプロピレン系樹脂予備発泡粒子。   The polypropylene resin pre-expanded particles according to any one of claims 1 to 3, wherein the amount of the inorganic dispersant adhering to the surface of the polypropylene resin pre-expanded particles is 1000 ppm or less. 請求項1〜4の何れか一項記載のポリプロピレン系樹脂予備発泡粒子を用いて得られる、密度が10kg/m3以上300kg/m3以下の型内発泡成形体。 An in-mold foam molded article having a density of 10 kg / m 3 or more and 300 kg / m 3 or less, obtained by using the polypropylene resin pre-foamed particles according to claim 1.
JP2008223243A 2008-04-24 2008-09-01 Polypropylene resin pre-expanded particles, and in-mold foam moldings Active JP5365901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223243A JP5365901B2 (en) 2008-04-24 2008-09-01 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008114051 2008-04-24
JP2008114051 2008-04-24
JP2008223243A JP5365901B2 (en) 2008-04-24 2008-09-01 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Publications (2)

Publication Number Publication Date
JP2009280783A JP2009280783A (en) 2009-12-03
JP5365901B2 true JP5365901B2 (en) 2013-12-11

Family

ID=41451567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223243A Active JP5365901B2 (en) 2008-04-24 2008-09-01 Polypropylene resin pre-expanded particles, and in-mold foam moldings

Country Status (1)

Country Link
JP (1) JP5365901B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727210B2 (en) * 2010-12-15 2015-06-03 株式会社ジェイエスピー Method for producing polyolefin resin expanded particle molded body, and polyolefin resin expanded resin molded body
JP6038479B2 (en) * 2011-04-21 2016-12-07 株式会社カネカ Polypropylene resin in-mold foam molding
JP5851850B2 (en) * 2012-01-13 2016-02-03 株式会社カネカ Returnable box
JP5909368B2 (en) * 2012-01-13 2016-04-26 株式会社カネカ Polypropylene resin-in-mold foam-molded article and method for producing the same
WO2014084165A1 (en) 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
EP3269761B1 (en) 2015-03-13 2019-08-28 Kaneka Corporation Polypropylene resin foamed particles and method for producing same
EP3795622A4 (en) * 2018-05-15 2022-02-09 Kaneka Corporation Polypropylene resin foam particles, polypropylene resin in-mold foam molded body, and method for producing polypropylene resin foam particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124832A (en) * 1995-10-30 1997-05-13 Kanegafuchi Chem Ind Co Ltd Polyloefin-based resin preliminary foamed particle and its production
JPH10176077A (en) * 1996-12-19 1998-06-30 Kanegafuchi Chem Ind Co Ltd Polyolefin-based resin preexpanded particle and its production
JP2005298769A (en) * 2004-04-16 2005-10-27 Kaneka Corp Polypropylenic resin pre-expanded particle and in-mold expansion molded product
JP2007320275A (en) * 2006-06-05 2007-12-13 Kaneka Corp Method for manufacturing inmold molded foam using polypropylene preliminary foamed particles
JP2008303376A (en) * 2007-05-09 2008-12-18 Jsp Corp Polypropylene resin foam particle and molded article therefrom

Also Published As

Publication number Publication date
JP2009280783A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP6447494B2 (en) Method for producing expanded polypropylene resin particles
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5587867B2 (en) Polypropylene copolymer resin expanded particles
JP5666918B2 (en) Polypropylene resin pre-expanded particles, method for producing the same, and polypropylene resin in-mold foam molded article
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5219375B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP2009126914A (en) Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP4965163B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP2005298769A (en) Polypropylenic resin pre-expanded particle and in-mold expansion molded product
JP6038479B2 (en) Polypropylene resin in-mold foam molding
JP5910626B2 (en) Polypropylene-based resin pre-expanded particles, polypropylene-based in-mold foam-molded article, and method for producing the same
JP5040167B2 (en) Polypropylene resin pre-expanded particles and in-mold foam moldings thereof
JP5347368B2 (en) Polypropylene resin foam particles and in-mold foam moldings
JP5022094B2 (en) Polypropylene resin pre-expanded particles, method for producing the same, and in-mold foam molded article
JP5460227B2 (en) Polypropylene resin in-mold foam molding
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP5252957B2 (en) Polypropylene resin pre-expanded particles and in-mold molded body comprising the same
JP2010013606A (en) Polypropylene-based resin pre-expanded particle, and polypropylene-based resin in-mold expansion molded product
JP2010209286A (en) Polyolefin resin foaming particle
JP2009256410A (en) Method for producing polypropylene-based resin foam particle
JP5161593B2 (en) Method for producing expanded polypropylene resin particles
JP5331344B2 (en) Polypropylene resin pre-expanded particles
JP2012177135A (en) Polypropylene-based resin pre-foamed particle and in-mold foamed molding of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5365901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250